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Abstract. We developed a method of image preprocessing based on the information entropy, namely,
on the information contribution made by each individual pixel to the whole image or to image’s part
(i.e., a Point Information Gain; PIG). An idea of the PIG calculation is that an image background
remains informatively poor, whereas objects carry relevant information. In one calculation, this method
preserves details, highlights edges, and decreases random noise. This paper describes optimization
and implementation of the PIG calculation on graphical processing units (GPU) to overcome a high
computational burden.
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1. Introduction
One of the tasks in image analysis is an accurate seg-
mentation of entities from their background. Correct
finding of objects depends on plenty of factors, such
as the kind of illumination, shadows, level of noise,
proper focusing, overlaps of objects, and dissimilarity
between an object and its background. The tradi-
tional methods, e.g., thresholding or edge detectors,
are generally based on local or global characteristics
of intensity histograms [1–4]. The final result of a
chosen segmentation algorithm is more or less condi-
tioned by the sufficiency of preprocessing computation
that include color space transformations, denoising,
or other adjustments [5–7]. The segmentation process
is of a high quality if the borders of the objects of
interest are sharp, clearly visible, and separated from
the background.
A promising way for automation of the whole pro-

cess of the selection of a sub-image of proper parame-
ters is a usage of an equation of information entropy,
which was defined by Shannon and generalized by
Rényi [8]. Although the formula for the information
entropy is well known for a longer time, other ways
how to use it for one or two dimensional thresholding
and filtering, e.g., [1–4, 9–11], still appear. The en-
tropy also generally measures an information content.
An important question is how much information is
included in a data point and how the points can be dis-
tinguished from each other. This question was solved
by a derivation of the variable Point Information Gain
(PIG, Γ) [12–22] which evaluates an information con-
tent of a single pixel in local and global context. This
variable says how much is one individual pixel impor-
tant for understanding of an image or image’s part. In

addition, the method of the PIG preserves the details,
highlights the edges, and decreases random noise in
one calculation. Examples of usage of the PIG in im-
age (pre)processing were published previously [12–22]

The computation tool for image preprocessing using
the PIG method is called the Image Info Extractor
Professional software (IIEP; Institute of Complex Sys-
tems, Nové Hrady). The theoretical concept and
practical utilization of this kind of software was in-
troduced previously and this paper is supplemental
to [17]. The task of this paper is, using the examples
of the Shannonian PIG with whole image approach
and for cross neighbourhood for each pixel, to present
a kind of computational optimization and the imple-
mentation of this computation on GPUs in order to
achieve a higher computation performance of the IIEP
software.

2. The Shannon entropy
The Shannon entropy is a special case of the Rényi en-
tropy for α = 1. Any discrete probability distribution
P = {p0, p1, ..., pk} fulfils the condition

pj ≥ 0;
k∑

j=1
pj = 1. (1)

In an intensity image, the approximation of the prob-
ability distribution is given by the histogram function
that shows counts of the pixels Φ(x,y) with intensity j
at the position (h,w) in the image [3, 4].
More conditions are assumed when measuring the

information. The information must be additive for
two independent events with the probabilities of oc-
currence of p1 and p2:

I(p1,2) = I(p1) + I(p2). (2)
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The information itself is dependent only on the prob-
ability distribution or, as in our case, on normal-
ized histogram function. Eq. 2 describes a modified
Cauchy’s functional equation with the unique solution
I(p1) = −K×log2(p1). In statistical thermodynamics,
the constant K refers to the Boltzmann constant [23],
in the Hartley information, K = 1 [24]. If different
amounts of information occur with different proba-
bilities, the total amount of information corresponds
to the average of the individual information contribu-
tions weighted by the probabilities of their individual
occurrences [24–26]. This leads to the definition of
the Shannon information entropy as∑

j

(pjIj); H (P) = −
∑

j

pj log2(pj). (3)

The image histogram N is normalized to the total
amount of pixels [27, 28] to fulfil the condition (1):

N =

∑
h,w

n0(h,w),
∑
h,w

n1(h,w), . . .
∑
h,w

nk(h,w)

 ;

nj(h,w) =
{

1 for Φ(h,w) = j
0 for Φ(h,w) 6= j.

(4)

pj(h,w) =
nj(h,w)

WH
;

P =

∑
h,w

p0(h,w),
∑
h,w

p1(h,w), . . .
∑
h,w

pk(h,w)

 ,
where WH is a total amount of pixels in an image of
the size of [H ×W ]. Then, the normalized histogram
function P is used to define the information in the
form of the Shannon entropy as

H (P) = −
∑

j

pj log2 pj . (5)

For the simplification of the next deduction, the
binary logarithm log2, which explains the information
in bits, is supplied by natural algorithm ln.

3. Point Information Gain
In the form of the variable PIG (Γ(i)), the Shannon
entropy allows to measure an information content
of either the whole image or a selected part of the
image. The key idea for the definition of the PIG was
if the occurrence of the intensity of a single pixel is a
surprise. One can predict that, on the one hand, the
background pixels will not carry much information
and, on the other hand, the pixels of structurally
complicated objects will increase the entropy on their
positions after discarding one of them. In order to
investigate the contribution of one single pixel with
intensity value i to the total entropy, it is necessary to
introduce a histogram N(i), which is created without
this investigated pixel:

n
(i)
j =

{
nj for j 6= i
nj − 1 for j = i.

The intensity value i of the investigated pixel Φ(h,w) =
Φ(x,y) was now discarded from the computation, but
only once. One single pixel of intensity j will only
decrease the histogram value n(i)

j on its intensity po-
sition i. Then, the histogram is normalized according
to condition (1). The probability (value of the normal-
ized histogram) p(i)

i of the intensity i is slightly lower
than the probability pi of the primary normalized
histogram P (with all pixels). The other probabili-
ties p(i)

j , where j is not the value of the investigated
pixel i, are slightly higher than the probability pj of
the primary normalized histogram P (with all pix-
els). Then, the second Shannon information entropy
H (P(i)) without the pixel of intensity i at the posi-
tion (x, y) is computed from the modified normalized
histogram P (i) as

H (P(i)) = −
∑

j

p
(i)
j ln(p(i)

j ), (6)

where the individual information contributions ln(p(i)
j )

as well as their weights p(i)
j slightly differ from those

in the Shannon information entropy H (P) (Eq. 5).
Thus, using Eqs. (5)–(6), we obtained two different
values of the information entropy: The entropy H (P)
represents the total information in the whole original
image, whereas the entropy H (P(i)) represents the
information in the image without the investigated
pixel.

Γ(i) = H (P)−H (P(i)) = H −H (i) (7)

refers then to a difference between the entropy of the
two histograms and thus also to the difference be-
tween the entropy of two images – with and without
the investigated pixel Φ(x,y) of the intensity i. Recall
that the histograms P and P(i) were normalized and,
therefore, the difference Γ(i) is usually a small number.
(In the IIEP software, the Point Information Gain is
defined with the opposite sign as Γ(i) = H (i) −H .)
The difference Γ(i) represents either the entropy con-
tribution of the pixel Φ(x,y) or the contribution of the
intensity value of the pixel Φ(x,y) to the information
content of the image. In other words, the transforma-
tion of the intensity value of the pixel Φ(x,y) value to
its contribution to the image via Eq. (7) represents the
information contribution carried by this pixel. The
computation of the Γ(i) for each single pixel trans-
forms an original image into an entropy map, i.e., into
an image that shows the contribution of each pixel to
the total information content of the image.

The variable Γ(i) is dependent only on the intensity
of the pixel Φ(x,y) and does not carry any information
about the pixel’s position. However, the histogram
can include pixels from not only the whole image
but also from a selected area around an investigated
pixel. If the image has a semi-uniform background
with changes in intensity and the background is com-
pletely different in different parts of the image, it is
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advantageous to use the row and the column with the
investigated pixel in the centre as the area for the
computation of the intensity histogram

N = N(x) + N(y) −Ei, (8)

where the value of pixel Φ(x,y) is counted only once.
The value of the second pixel Φ(x,y) is subtracted using
the unit histogram Ei = [0, 0, . . . , 1, . . . , 0, 0] with 1
at the position relevant to nj = ni > 0. The outputs
consist of the amount of information for the cross
centred on the investigated pixel itself. The additional
histogram is again a histogram of the values from the
cross, however, in this case, the intensity value of the
center pixel Φ(x,y) was discarded:

N(i) = N(x) + N(y) − 2Ei. (9)

The subsequent application of Eq. (5) results in en-
tropies H(x,y)(P ) = H(x,y) and H(x,y)(P (i)) = H

(i)
(x,y)

with and without the center pixel, respectively. The
difference Γ(i)

(x,y) = H(x,y) −H
(i)

(x,y) refers to the dif-
ference between the information content of these two
crosses. Recall again that the difference Γ(i)

(x,y) is a
small number and represents either the entropy contri-
bution of pixel Φ(x,y) or the contribution of the value
of pixel Φ(x,y) to the cross.
Both (whole and cross) PIG can be considered as

special cases of the Kullback-Leibler divergence [29]
of two distributions: one distribution is formed from
the neighbourhood of the investigated pixel including
this pixel, while the second distribution is formed
from the same neighbourhood but without this pixel.
The whole approach considers the whole image as the
neighbourhood, while the cross approach considers
the designed cross with the investigated pixel in the
center.
Thus, the novelty of the PIG approach lies in the

practical definition of the investigated normalized dis-
tributions.

4. Optimization of the algorithm
4.1. Point Information Gain for the

whole image
The Γ(i) values for the whole image does not need to
be computed for each pixel repeatedly. The value of
the total entropy H remains the same through the
whole image and the value of the entropy H (i) is the
same for all pixels Φ(x,y) with the same intensity j = i.
The algorithm was optimized by the modification of
the relevant equations as follows:

The histogram N = [n0, n1, . . . n2d−1] for the whole
image was redefined to

nj = ||{∀(x, y) : Φ(x,y) = j ∧ x ∈ {1, 2, . . . ,H}
∧y ∈ {1, 2, . . . ,W}}||;

j = [0, 1, . . . , i, . . . , 2d − 1].

The entropy H can be subsequently explained as

H = −
2d−1∑
j=0

pj ln(pj),

H = −
2d−1∑
j=0

nj

WH
ln
( nj

WH

)
,

H = −
2d−1∑
j=0

nj

WH
[ln(nj)− ln(WH)],

H = ln(WH)
WH

2d−1∑
j=0

nj︸ ︷︷ ︸
W H

− 1
WH

2d−1∑
j=0

nj ln(nj),

H = ln(WH)− 1
WH

2d−1∑
j=0

nj ln(nj). (10)

The function H (i) which explains the entropy of the
modified image with the omitted investigated pixel
Φ(x,y) was reformulated as

H (i) = −
2d−1∑
j=0

p
(i)
j ln(p(i)

j ),

H (i) = −
2d−1∑
j=0

n
(i)
j

WH − 1 ln
(

n
(i)
j

WH − 1

)
,

H (i) = −
2d−1∑
j=0

n
(i)
j

WH − 1 [ln(n(i)
j )− ln(WH − 1)],

H (i) = ln(WH − 1)
WH − 1

2d−1∑
j=0

n
(i)
j︸ ︷︷ ︸

W H−1

−
∑2d−1

j=0 n
(i)
j ln(n(i)

j )
WH − 1 ,

H (i) = ln(WH − 1)−
∑2d−1

j=0 n
(i)
j ln(n(i)

j )
WH − 1 . (11)

The histogram N(i) is then defined as

n
(i)
j =

{
nj j 6= i
nj − 1 j = i,

j = [0, 1, . . . , 2d − 1].

The first optimization was performed as

n(i) ⇔H (i) ⇔ Φ(x,y) = i;
x ∈ {1, 2, . . . ,H};
y ∈ {1, 2, . . . ,W};

i ∈ {0, 1, . . . , 2d − 1}.
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Figure 1. Image of the size of [H × W ] with the
intensity levels of d bits.

From this optimization as well as Eq.(7) follows di-
rectly that the entropy H (i) is dependent only on the
intensity i of the pixel Φ(x,y) and not on the pixel’s
position (x, y) in the image. Then, the entropy H (i)

can be redefined as

H (i) = (H (i)|Φ(x,y) = i); i = [0, 1, . . . , 2d − 1].

Eventually, the PIG for the whole image is subse-
quently explained as

Γ(i) = H −H (i),

Γ(i) = ln(WH)−
∑2d−1

j=0 nj ln(nj)
WH

− ln(WH − 1)

+
∑2d−1

j=0 n
(i)
j ln(n(i)

j )
WH − 1 ,

Γ(i) = ln
(

WH

WH − 1

)

−
ni ln(ni) +

∑i−1
j=0 nj ln(nj) +

∑2d−1
j=i+1 nj ln(nj)

WH

+ (ni − 1) ln(ni − 1)
WH − 1

+
∑i−1

j=0 nj ln(nj) +
∑2d−1

j=i+1 nj ln(nj)
WH − 1 ,

Γ(i) =

ln
(

WH

WH − 1

)

+ 1
WH(WH − 1)

i−1∑
j=0

nj ln(nj) +
2d−1∑

j=i+1
nj ln(nj)


︸ ︷︷ ︸∑2d−1

j=0
(nj ln(nj))−ni ln(ni)

− ni ln(ni)
WH

+ (ni − 1) ln(ni − 1)
WH − 1 ,

Figure 2. Image of the size of [H × W ] with the
intensity levels of d bits, with investigated cross.

Γ(i) = ln
(

WH

WH − 1

)
+
∑2d−1

j=0 nj ln(nj)
WH(WH − 1)

+ 1
WH − 1 [(ni − 1) ln(ni − 1)− ni ln(ni)] ,

Γ(i) = ln
(

WH

WH − 1

)
+
∑2d−1

j=0 nj ln(nj)
WH(WH − 1)

+ 1
WH − 1 ln (ni − 1)(ni−1)

n
(ni)
i

. (12)

From Eq. 12 follows that the Γ(i) can be evaluated
as

Γ(i) = B + C ln (ni − 1)(ni−1)

n
(ni)
i

, (13)

where the constant C = 1
W H−1 and the base

B = ln
(

W H
W H−1

)
+ 1

W H(W H−1)
∑2d−1

j=0 nj ln(nj).

4.2. Point Information Gain for the
cross computation

A column histogram N(y) is defined as

N(y) = [n0(y), n1(y), . . . , n(2d−1)(y)];
y = [1, 2, . . . ,W ];

j = [0, 1, . . . , i, . . . , 2d − 1].

Similarly, a row histogram N(x) is defined as

N(x) = [n0(x), n1(x), . . . , n(2d−1)(x)];
x = [1, 2, . . . ,H];

j = [0, 1, . . . , i, . . . , 2d − 1].

The elements of the unit histogram Ei are (cf. Eqs.
(8)–(9))

ej =
{

0 j 6= i = Φ(x,y)
1 j = i = Φ(x,y)

j = [0, 1, . . . , i, . . . , 2d − 1].
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The entropy H(x,y) for computation from the col-
umn histogram N(y) and row histogram N(x) of the
cross with the center pixel on, of the intensity i at the
position (x, y), can be written as

H(x,y) = −
2d−1∑
j=0

pj ln(pj),

H(x,y) =

= −
2d−1∑
j=0

nj(x) + nj(y) − ej

H +W − 1 ln
nj(x) + nj(y) − ej

H +W − 1 ,

H(x,y) =

=
2d−1∑
j=0

nj(x) + nj(y) − ej

H +W − 1 ln(H +W − 1)

−
2d−1∑
j=0

nj(x) + nj(y) − ej

H +W − 1 ln(nj(x) + nj(y) − ej),

H(x,y) =

= ln(H +W − 1)
H +W − 1

2d−1∑
j=0

nj(x) + nj(y) − ej︸ ︷︷ ︸
H+W −1

−
∑2d−1

j=0 (nj(x) + nj(y) − ej) ln(nj(x) + nj(y) − ej)
H +W − 1 ,

H(x,y) =
= ln(H +W − 1)

−
∑2d−1

j=0 (nj(x) + nj(y) − ej) ln(nj(x) + nj(y) − ej)
H +W − 1 ,

H(x,y) =
= ln(H +W − 1)

−
∑i−1

j=0 (nj(x) + nj(y)) ln(nj(x) + nj(y))
H +W − 1 (14)

−
∑2d−1

j=i+1 (nj(x) + nj(y)) ln(nj(x) + nj(y))
H +W − 1

−
(ni(x) + ni(y) − 1) ln(ni(x) + ni(y) − 1)

H +W − 1 .

Similarly, the entropy H
(i)

(x,y) for the computation
from the column histogram N(y) and row histogram
N(x) of the cross without center pixel, of the intensity
i at the position (x, y), is

H
(i)

(x,y) = −
2d−1∑
j=0

p
(i)
j ln(p(i)

j ),

H
(i)

(x,y) =

= −
2d−1∑
n=0

nj(x) + nj(y) − 2ej

H +W − 2 ln
nj(x) + nj(y) − 2ej

H +W − 2 ,

H
(i)

(x,y) = ln(H +W − 2)

−
∑2d−1

j=0 (nj(x) + nj(y) − 2ej) ln(nj(x) + nj(y) − 2ej)
H +W − 2 ,

H
(i)

(x,y) =

= ln(H +W − 2)

−
∑i−1

j=0 (nj(x) + nj(y)) ln(nj(x) + nj(y))
H +W − 2

−
∑2d−1

j=i+1 (nj(x) + nj(y)) ln(nj(x) + nj(y))
H +W − 2 . (15)

It gives a PIG for the cross computation as

Γ(i)
(x,y) = H(x,y) −H

(i)
(x,y),

Γ(i)
(x,y) =

= ln
(
H +W − 1
H +W − 2

)
+
∑i−1

j=0 (nj(x) + nj(y)) ln(nj(x) + nj(y))
(H +W − 1)(H +W − 2)

+
∑2d−1

j=i+1 (nj(x) + nj(y)) ln(nj(x) + nj(y))
(H +W − 1)(H +W − 2) (16)

−
(ni(x) + ni(y) − 1)

H +W − 1 ln(ni(x) + ni(y) − 1)

+
(ni(x) + ni(y) − 2)

H +W − 2 ln(ni(x) + ni(y) − 2).

Let us introduce the vector t defined as

t =[t(0), t(1), t(2), . . . , t(H+W −1)] =
=[0 ln(0), 1 ln(1), 2 ln(2),
. . . , (H +W − 1) ln(H +W − 1)].

Then, Eq. (16) can be written as

Γ(i)
(x,y) =

= ln
(
H +W − 1
H +W − 2

)
+

∑i−1
j=0 t(nj(x)+nj(y))

(H +W − 1)(H +W − 2) (17)

+
∑2d−1

j=i+1 t(nj(x)+nj(y))

(H +W − 1)(H +W − 2)

−
t(ni(x)+ni(y)−1)

H +W − 1 +
t(ni(x)+ni(y)−2)

H +W − 2 .
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In this way, the time consuming computation of
the logarithms was replaced by the summing of pre-
computed vectors k ln(k). The length of the vector
t does not depend on the number of pixels in the
image but on the dimensions (sizes of the sides) of
the image. The number of rows and columns of the
image determines how many points in the histogram
created from the cross is available. It is, however,
possible that some values in the vector t will never
be used in the computation. Nevertheless, due to the
possibility of searching in the list of all stored k ln(k),
the approach of the precomputed histograms makes
the computation faster. Eq. (17) implicates

Γ(i)
(x,y) = C(x,y) +B(x,y) + F (x,y);

C(x,y) = ln
(
H +W − 1
H +W − 2

)
;

B(x,y) =
∑i−1

j=0 (nj(x) + nj(y)) ln(nj(x) + nj(y))
(H +W − 1)(H +W − 2)

+
∑2d−1

j=i+1 (nj(x) + nj(y)) ln(nj(x) + nj(y))
(H +W − 1)(H +W − 2) ; (18)

Fi =
(ni(x) + ni(y) − 2) ln(ni(x) + ni(y) − 2)

H +W − 2

−
(ni(x) + ni(y) − 1) ln(ni(x) + ni(y) − 1)

H +W − 1 .

In Eq. 18 the term C(x,y) is a constant, the B(x,y) is
a base of the computation, and the Fi corresponds to
a fluctuating part of the computation.

5. Implementation on GPU
The algorithm optimised above can be further split
into a few threads when multi-core CPUs can be fully
utilized, however this is relevant mainly for batch pro-
cessing of image sets. The computation process was
further optimized by an implementation on graph-
ics cards [30]. The algorithm was executed using the
CUDA architecture to run on NVIDIA hardware. The
key to the next acceleration was to fit the algorithm to
GPU highly-parallel architecture which is typical of a
double hierarchy. All multiprocessors can access data
to the device memory. In the CUDA data-parallel
programming, the data has to be split into two levels
of algorithmically independent parts, into a grid of
blocks where a kernel processes the block with the
same algorithm. During the processing of the block,
several threads run – the second level of the hierarchy.
All threads of one block run per one multiprocessor.

The IIEP software tries to detect the graphics card
with the CUDA support and, if the card is available,
the calculation is realised as the parallel computation
on the graphics card kernels (GPU). Depending on
the image resolution and the type of the entropy cal-
culation, the calculation is typically 50–150× faster
on the GPU than on the CPU. The original concept of
the software expected an 8-bpc (bits per channel) im-
ages (which could be optimized directly for the GPU

memory block), while the current cameras are also
able to provide raw file formats with ≥10 bpc (which
requires a different GPU static-field allocation). The
possibility to work with the raw data files deals with
signal processing without debayerization [14].

6. Conclusion
We investigated the degree of modality for a compu-
tation of the difference of two entropies: H , entropy
with a central pixel Φ(x,y), and H (i), entropy without
such pixel. An output image then represents a map of
pixels’ importance. We simplified the calculation of
the information contribution of a pixel to the whole
Shannonian information of the image and to local
information explained for pixels lying on shanks cross-
ing the studied pixel Φ(x,y). The pre-computation
of a fixed set (for a given bit precision) of possible
logarithm values reduces the total number of neces-
sary calculations in the algorithm and decrease the
computational burden in the evaluation of the entropy
difference. The calculation kernel was implemented
for hardware acceleration using a graphics card.

List of symbols
B Base in computation of Γ(i)

B(x,y) Base in computation of Γ(i)
(x,y)

C Constant member in computation of Γ(i)

C(x,y) Constant member in computation of Γ(i)
(x,y)

CUDA Compute Unified Device Architecture
d Image intensity bit depth
ej Element of the unit vector Ei

Ei Unit vector [0,0, . . . ,1,. . . ,0,0], where 1 is at the
position ei

Fi Fluctuating in computation of Γ(i)
(x,y)

GPU Graphical Processing Unit
h Row position of the pixel of intensity j
H Image height (in pixels)
H (P) = H Shannon entropy for probability histogram

function of the whole image
H(x,y) Shannon entropy for probability histogram func-

tion from the cross around an investigated pixel of the
intensity i at the position (x, y)

H (P(i)) = H (i) Shannon entropy for probability his-
togram function from the whole image without an in-
vestigated pixel of intensity i

H (i)
(x,y) Shannon entropy for probability histogram func-
tion from the cross around and without an investigated
pixel of the intensity i at the position (x, y)

i Intensity of an investigated pixel
I Information
IIEP Image Info Extractor Professional software
j Pixel intensity; j ∈ {0, 1, . . . , i, . . . , i, . . . , k}
K Weight of the entropic contribution; e.g., K = 1 in

the Hartley and Shannon entropy; K = 1.38× 10−23 in
the Boltzmann entropy

nj(h,w) = nj Contribution of the pixel of intensity j at
the position (h,w) to the histogram N
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n
(i)
j Element in the histogram N, where a pixel of inten-
sity i is discarded

nj(x) Element of the intensity histogram of an image
pixel row x

nj(y) Element of the intensity histogram of an image
pixel column y

N Image histogram function
N(i) Intensity histogram without an investigated pixel of

intensity i
N(x) Intensity histogram for the image pixel row x

N(y) Intensity histogram for the image pixel column y
pi Probability of the occurrence of the investigated pixels

of intensity i in histogram P
pj(h,w) = pj Contribution of the pixel of intensity j at

the position (h,w) to the probability histogram P
;

p
(i)
j Element in the probability histogram P, where the
pixel of intensity i is discarded

P Discrete probability distribution (of the whole image)
P(i) Probability intensity histogram without an investi-

gated pixel of the intensity i
PIG Point Information Gain; Γ
t Mathematical substitution for a vector of weighted

logarithms with element t(nj ) = nj lnnj

t(nj ) Element of the vector t of weighted logarithms
w Column position of the pixel of intensity j
W Image width (in pixels)
x Row position of the pixel of intensity i
y Column position of the pixel of intensity i
α Rényi dimensionless coefficient
Γ(i) Point Information Gain for a pixel of intensity i

(from a whole-image histogram)
Γ(i)

(x,y) Point Information Gain for a pixel of intensity i
from a histogram from pixels forming a cross around
the investigated pixel

Φ(h,w) Pixel of intensity j at the position (h,w)
Φ(x,y) Pixel (of) intensity i at the position (x, y)
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