
1 Introduction and statement of
results
This paper considers the fundamental questions: what is

the determinant of a partial differential operator, and how
might one compute it?

Determinants of differential operators occur naturally in
many applications in mathematical and theoretical phys-
ics, and also have inherent mathematical interest since they
encode certain spectral properties of differential operators.
Physically, such determinants arise, for example, in semi-
classical approximations in quantum mechanics and quan-
tum field theory, in grand canonical potentials in many-body
theory and statistical mechanics, in gap equations in the
mean-field approximation, in lattice gauge theory, and in
gauge fixing (Faddeev-Popov determinant) for non-abelian
gauge theory. Determinants of free Laplacians and free Dirac
operators have been extensively studied [1–6], but much less
is known about operators involving an arbitrary potential
function. When the operator under consideration is an ordi-
nary (i.e., one dimensional) differential operator, a beautiful
general theory due to Gel’fand and Yaglom [7] has been de-
veloped for defining and computing the determinant [8–11].
In this paper I discuss attempts to extend these results to par-
tial differential operators. Even for the simple radially
separable case of the free Laplacian on a 2d disc, the naive
extension via a sum over partial waves of ordinary differen-
tial operators, leads to a divergence, as noted by Forman
[9]. However, it turns out that this divergence has a clear phys-
ical meaning and can be understood in the context of re-
normalization in quantum field theory. This leads to finite,
renormalized expressions [see Eqs. (6)–(8) below] for the de-
terminant of such separable operators. The result for four
dimensions was first found in [12] using radial WKB and
an angular momentum cut-off regularization and renormal-
ization [13], and then in [14] using the zeta function approach
to determinants. The primary motivation of this work is for
applications in quantum field theory, so we concentrate on
examples in two, three and four dimensions, but the mathe-
matical generalization to arbitrary dimension should be clear.

Consider the radially separable partial differential
operators
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where � is the Laplace operator in|Rd , and V(r) is a radial po-
tential vanishing at infinity as r�2�� for d � 2 and d � 3, and as

r�4�� for d � 4. For d � 1, with Dirichlet boundary conditions
on the interval [0, �), the results of Gel’fand and Yaglom [7]
lead to the following simple expression for the determinant
ratio:
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where [ ]� � �m2 0� , with initial value boundary conditions:
�( )0 0� and � �� ( )0 1. The function �free is defined similarly
in terms of the free operator: [ ]�

free � m2 . The squared
mass, m2, is important for physical applications, and plays
the mathematical role of a spectral parameter. The result
(4) is geometrically interesting, in addition to being com-
putationally simple, as it means that the determinant is
determined simply by the boundary values of the solutions of
[ ]� � �m2 0� , and no detailed information is needed con-
cerning the actual spectrum of eigenvalues.

Now consider dimensions d 	1. Since the potential is ra-
dial, V=V(r), we can express the eigenfunctions of � as linear
combinations of basis functions of the form
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where Y l( )( )
�

� is a hyperspherical harmonic, labeled in part by

a non-negative integer l, and the radial function �( )( )l r is an
eigenfunction of the Schrödinger-like radial operator
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�( )
free
l is defined similarly, with the potential omitted:

V � 0. In dimension d �2, the radial eigenfunctions �(l) have
degeneracy given by
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Formally, for the separable operators in (1), the logarithm
of the determinant ratio can be written as a sum over l
(weighted with the degeneracy factor) of the logarithm of
one-dimensional determinant ratios,
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Each term in the sum can be computed using the Sturm-
-Liouville extension [10] of the Gel’fand-Yaglom result (2).
However, the l sum in (5) is divergent, as noted by Forman [9]
for the free Laplace operator in a two-dimensional disc. How-
ever, it is possible to understand this divergence and define a
finite and renormalized determinant ratio for the radially
separable partial differential operators (1). Specifically, we
have found [1] the following simple expressions, which gener-
alize (2) to higher dimensions:
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Here 	 is Euler’s constant, and � is a renormalization scale
(defined in the next section), which is essential for physical
applications, and which arises naturally in even dimensions.
A conventional renormalization choice is to take � � m in
(6)–(8). In each of (6)–(8), the sum over l is convergent once
the indicated subtractions are made. The function �(l)(r) is
the solution to the radial equation
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The function �( ) ( )l rfree is defined similarly, with the same

behavior as r # 0, in terms of the operator [ ]� ( )
free
l m� 2 .

Thus, in d dimensions, �( ) ( )l rfree is expressed as a Bessel

function:
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Notice that the results (6)–(8) state once again that the de-
terminant is determined by the boundary values of solutions
of [ ]� � �m2 0� , with the only additional information be-
ing a finite number of integrals involving the potential V(r).
We also stress the computational simplicity of (6)–(8), as the
initial value problem (9) is trivial to implement numerically.

2 Zeta function formalism
The functional determinant can be defined in terms of a

zeta function [1, 2, 5] for the operator �. For dimensional
reasons, we define
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where the sum is over the spectrum of �, and � is an arbi-
trary parameter with dimension of a mass. Physically, � plays
the role of a renormalization scale. Then the logarithm of
the determinant is defined as [1, 2, 5]
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To compute the determinant ratio, we define the zeta func-
tion difference
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Thus we need to compute the zeta function and its de-
rivative, each evaluated at s � 0. In general, the zeta function
at s � 0 is related to the heat kernel coefficient, ad/2(�), as-
sociated with the operator � [6]: �� �( ) ( )0 2� ad . For the

operator � � � �� E, these heat kernel coefficients are known
[6], and we find the standard results
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This gives the first term on the RHS of (12). Now we turn
to the second term, the derivative of the zeta function at s � 0,
�� ( )0 . This can be evaluated using the relation to the familiar

Jost functions of scattering theory [15]. Consider the radial
eigenvalue equation

�( ) ( ),( ),l l pl p
p
 
� 2 , (15)

where �(l) is the Schrödinger-like radial operator defined in
(3). A distinguished role is played by the so-called regular solu-
tion, 
(l),p(r), which is defined to have the same behavior as
r#0 as the solution without potential:
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Here the spherical Bessel function is defined as
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The asymptotic behavior of the regular solution, 
(l),p(r),
as r #� defines theJost function, fl(p), [15]
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As is well known from scattering theory [15], the analytic
properties of the Jost function fl(p) strongly depend on the
properties of the potential V(r). Analyticity of the Jost function
as a function of p for$ 	p 0 is guaranteed, if in addition to the
aforementioned behavior as r #�, we impose V(r) ~ r�2�� for
r # 0, and continuity of V(r) in 0<r<� (except perhaps at a
finite number of finite discontinuities). For us, the analytic
properties of the Jost function in the upper half plane will be
of particular importance because they are related to the shift-
ing of contours in the complex momentum plane.

By standard contour manipulations [6], the zeta function
can be expressed in terms of the Jost functions as:
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This representation is valid for ' 	s d 2, and the technical
problem is the construction of the analytic continuation of
(19) to a neighborhood about s � 0. If expression (19) were
analytic at s � 0, then we would deduce that
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where �( )( )l r is defined in (9). Thus, the regulated expression
(20) coincides with the formal partial wave expansion (5), us-
ing the Gelf’and-Yaglom result (2) for each l. However, the
expansion (20) is divergent in positive integer dimensions. In
the zeta function approach, the divergence of the formal sum
in (20) is directly related to the need for analytic continuation
of �( )s in s to a region including s � 0. From (19), this analytic
continuation relies on the uniform asymptotic behavior of the
Jost function fl(ik). Denoting this behavior by f ikl

asym( ), the an-
alytic continuation is achieved by adding and subtracting the
leading asymptotic terms of the integrand in (19) to write
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Ultimately we are interested in the analytic continuation
of �(s) to s � 0. As many asymptotic terms will be included in
f ikl

asym( ) as are necessary to make � f s( ) as given in (23) ana-
lytic around s � 0. On the other hand, for �as s( ) the analytic
continuation to s � 0 can be constructed in closed form using
an explicit representation of the asymptotic behavior of the
Jost function, derived in the next section.

2.1 Asymptotics of the Jost function
The asymptotics of the Jost function f ikl( ) follows from

standard results in scattering theory [15]. In particular, the
partial-wave Lippmann-Schwinger integral equation for the
regular solution
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leads to an iterative expansion for f ikl( )in powers of the po-
tential V(r). For dimensions d)4, we need at most the �(V)
and �(V2) terms of ln ( )f ikl :
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This iterative scheme effectively reduces the calculation of
the asymptotics of the Jost function to the well-known uni-
form asymptotics of the modified Bessel functions K* and I*.
Using these asymptotics, wedefine ln ( )f ikl

asym as the �(V) and

�(V2) parts of this uniform asymptotic expansion:
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2.2 Computing �� f ( )0
By construction, �( )s , defined in (23), is now well defined at s � 0, and we find
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This form is suitable for straightforward numerical computation, as the Jost function f iml( ) can be computed using (9) and
(21), while ln ( )f iml

asym can be computed using (27). With the subtraction of ln ( )f iml
asym in (28), the l sum is now convergent.

However, it is possible to find an even simpler expression. It turns out that the subtraction in (28) is an over-subtraction. To
see this, expand ln ( )f iml

asym into its large l behavior as follows:
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The first term is�( )1
l , and the second is�( )1

3l
, while the remaining terms are all�( )1

5l
. In dimensions d ) 4, the degeneracy

factor deg(l; d) is at most quadratic in l, and so these last terms are finite when summed over l in (28). (In fact, in d � 2 and d � 3,
the �( )1

3l
terms are also finite when summed over l.) In the next section we show that these finite terms cancel exactly against

corresponding terms arising in the evaluation of ��as( )0 . Thus, for � � � � �� � �( ) ( ) ( )0 0 0f as , we only actually need to subtract the lead-
ing large l terms in (29), rather than the full asymptotics in (27).

2.3 Computing ��as( )0
The explicit form of the asymptotic terms in (28) provides the analytic continuation to s=0 of �as s( ), as defined in (24). The k

integrals are done using
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We now subtract sufficiently many terms inside thesum to ensure the analytic continuation of �as s( ) to s � 0. The added back
terms produce Riemann zeta function terms, such as � R s( )2 1� , whose analytic continuation is immediate. For example, in d � 4,
we find
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Notice that the terms involving summation over � cancel
exactly against identical terms in �� f ( )0 from (29), after those
terms are summed over l with the d � 4 degeneracy factor
�2 21� �( )l . Furthermore, note that the ln r term inside the
integral on the second line of (32) is precisely of the same
form as the renormalization term in (14), so the ln � in (12)
combines with ln r to form the dimensionless combination
ln(�r) in (8).

The analogous computations for d � 2 and d � 3 lead to (6)
and (7), respectively [14].

3 Conclusions and applications
The mathematical results reported here are the formulas

in (6)–(8), which provide simple new expressions for the de-
terminant of a radially separable partial differential operator
of the form � � �� m V r2 ( ). This generalizes the Gel’fand-
-Yaglom result (2) to higher dimensions, and greatly increases
the class of differential operators for which the determi-
nant can be computed simply and efficiently. The derivation
presented here [14] uses the zeta function definition of the
determinant, but the same expressions can be found using
the radial WKB approach of [12, 13]. Furthermore, it can
be shown [14] how these expressions relate to the Feynman
diagrammatic definition of the determinant based on di-
mensional regularization [16]. These superficially different
expressions are in fact equal, although the zeta function
expression is considerably simpler to implement.

These results lead to many direct applications in quantum
field theory, where they extend the class of solvable fluctua-
tion determinant problems away from the restrictive class of
constant background fields, or one dimensional background
fields, to the more general class of separable higher dimen-
sional background fields. Mathematically, this represents a
small but surprisingly non-trivial step towards more general
partial differential operators. While this is still a small class of
partial differential operators, it is large enough to have many
important applications in quantum field theory, for example
the study of quantum fluctuations in the presence of vortices,
monopoles, sphalerons, instantons, domain walls (branes),
etc …

A number of generalizations could be made. First, in cer-
tain quantum field theory applications the determinant may
have zero modes, and correspondingly one is actually inter-
ested in computing the determinant with these zero modes
removed. Our method provides a simple way to compute such
determinants [12]. A systematic study of this approach, ex-
ploiting the relation between zero modes and topology, would
be extremely interesting. Another important generalization
is to include directly the matrix structure that arises from

Dirac-like differential operators and from non-abelian gauge
degrees of freedom. The Feynman diagrammatic approach is
well developed for such separable problems [17]; for example
it has been applied to the fluctuations about the electroweak
sphaleron [18, 19] and to compute the metastability of the
electroweak vacuum [20]. More recently, the angular momen-
tum cut-off method has been used to compute the full mass
dependence of the fermion determinant in a four dimen-
sional Yang-Mills instanton background [13], to compute the
fermion determinant in a background instanton in the two
dimensional chiral Higgs model [21], and to address the fluc-
tuation problem for false vacuum decay in curved space [22].
A unified zeta function analysis should be possible, as there is
a straightforward generalization of the Gel’fand-Yaglom result
(2) to systems of ordinary differential operators [10].

Finally, to conclude, the real mathematical challenge is to
ask if the restriction of separability can be loosened. This is a
difficult problem, but it is clear that any progress will be
interesting.
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