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Abstract  

Diabetic neuropathy is a common chronic complication in diabetes mellitus. Such 

neuropathy associates with chronic inflammation and immune system activation. 

Microglia, a type of neuroglia, are involved in the immune system and are found in grey 

and white matter of the central nervous system, such as the brain and spinal cord. The 

spinal cord connects the peripheral nervous system and the higher brain center. 

Hyperglycemia during diabetes mellitus has been found to activate and increase number of 

microglia in the dorsal grey horn or column of the lumbar segments in spinal cord, which 

release several cytokines in the development of hypersensitivity in diabetic neuropathic 

pain. Therefore, in this study, anatomical alterations of rat spinal microglia in all areas 

(dorsal, intermediate and ventral columns of grey matter and dorsal, lateral and ventral 

funiculi of white matter) in cervical enlargement, thoracic level and lumbosacral 

enlargement were observed in early stage of diabetic conditions by using light and 

transmission electron microscopies. The numbers of microglia in all parts of grey and 

white matter of all spinal levels significantly increased in the diabetic group. The structures 

and ultrastructures of microglia in grey and white matter at cervical enlargement, thoracic 

level and lumbosacral enlargement similarly changed in diabetes. In diabetic rats, 

microglia became hypertrophied with a pale nucleus. Moreover, short fragments of rough 
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endoplasmic reticulum, elevated numbers of lysosomes and numerous actin filaments in 

the cytoplasm were examined. Microglial phagocytosis of myelin and axonal debris were 

also observed. In this investigation, the morphology of spinal microglia during short-term 

diabetes became activated during hyperglycemia. It is suggested that these changes may be 

involved in the development of diabetic neuropathic pain in the spinal cord. 

Key words: diabetes mellitus, microglia, spinal cord, rat 

 

 

Introduction 

Diabetes mellitus (DM) is a chronic metabolic disorder of global concern [11]. 

Chronic inflammation and activation of the immune system are involved in the 

pathogenesis of diabetes and associated with diabetic complications, particularly diabetic 

neuropathy [10]. The current hypothesis suggests that neuro-immune interactions actively 

contribute to pain in diabetes of both peripheral and central nervous systems (CNS) [30]. 

The cells, which relate with the immune system in the CNS, are microglia, which are the 

macrophage-like cells of both white and grey matter [17]. The microglia can be classified 

into two different forms with varying functional roles: resting in the normal condition and 

active microglia in neural damage, ischemia and infection [4]. Furthermore, the high 

concentration of glucose during short-term diabetic rats can activate and increase in 

number of microglia, which is observed in dorsal horn or column of grey matter in spinal 

lumbar segments [24]. The activation of microglia is implicated in stimulation of 

intracellular signaling molecules and release of pro-inflammatory cytokines, which are 

involved in pain hypersensitivity in diabetic neuropathy [3, 5, 14, 23]. Most previous 

studies have focused on biochemical alterations of microglia. However, little is known 

regarding the beginning of phenotypic changes of microglia in all areas and levels of spinal 

cord, which receive and modulate the sensory input from peripheral nerves to the higher 

center and also output to peripheral organs [7]. Thus, this study aimed to investigate the 

numbers and activated morphological changes of early diabetic spinal microglia in all parts 

at the cervical enlargement, thoracic level and lumbosacral enlargement by using light 

(LM) and transmission electron microscopies (TEM), compared to untreated control rats. 
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Materials and Methods 

Experimental animals, light and transmission electron microscopies 

Fifteen healthy male Sprague-Dawley rats, 5-8 weeks of age, initially weighting 

200-270 g, were received from the National Laboratory Animal Center, Mahidol 

University, Thailand. The animal protocol was followed by Mahidol University Council’s 

Guidelines for Care and Use of Laboratory Animals, Thailand. After arriving, the rats were 

acclimatized for a week. Then, all rats were fasted at least 6 hr to measure blood glucose of 

tail vein and urine glucose. Both levels were in the normal ranges. Then, the animals were 

randomly divided into two groups: a type 1-induced DM (n=9) with an intraperitoneal 

injection of 60 mg/ kg body weight of STZ in citrate buffer and a control (n=6), injected 

with the buffer [27]. After fasting for 10-12 hr, urine glucose levels and body weights of 

each animal were measured daily for four weeks. The whole blood glucose levels were 

detected at 48, 72 hr after the STZ or the buffer injection and before sacrifice. Each animal 

was sacrificed by an overdose of halothane inhalation at four weeks after induction.  

In the LM, after 500 ml of 0.9% sodium chloride was injected through the 

ascending aorta, 300 ml of the Bouin’s solution was followed. Next, six spinal cords 

(control; n=3, DM; n=3) were dissected into cervical enlargement, thoracic level and 

lumbosacral enlargement, cut at 6-7 µm thick and processed for conventional histological 

investigation with hematoxylin (H) and eosin (E) staining. 

In the TEM, 0.1 M phosphate buffered saline (PBS) was perfused into ascending 

aorta and then injected with 2.5% glutaraldehyde in 0.1 M PBS, orderly. Nine rat spinal 

cords (control; n=3, DM; n=6) were dissected and separated into cervical enlargement, 

thoracic level and lumbosacral enlargement. Next, each level of spinal cord was cut into 1 

mm cube, according to dorsal, lateral and ventral funiculi of white matter and dorsal, 

intermediate and ventral columns of grey matter. Then, each area of each spinal level was 

processed for the conventional TEM [19, 22].  

 

Microglia counting  

In all areas of grey and white matter in all spinal levels (dorsal, intermediate and 

ventral columns of grey matter, dorsal, lateral and ventral funiculi of white matter in 

cervical enlargement, thoracic level and lumbosacral enlargement in both control and 

diabetic groups), the numbers of microglia were counted under the LM with 400 
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magnification. The amounts of microglia per area (200 x 300 µm2) in each area, spinal 

level and group were totally counted in 30 serial sections with 3 section interval in each 

counted section; therefore the same microglia was not repeatedly summed. Amounts of 

microglia in the same area of each level and group were calculated as an average and a 

standard deviation (SD). 

 

Statistical analysis 

The quantitative analyses in body weights and numbers of microglia in each area, 

level and group were expressed as means ± SD. The Mann-Whitney U test was used to 

compare on body weights of control and diabetic groups. Comparisons in amounts of 

microglia between control and diabetic groups in each area and level were performed using 

unpaired t-test (SPSS 19.0 software). Differences were considered significant at p-values < 

0.05. 

 

Results 

At 48 and 72 hr after the STZ induction and before sacrifice, the average whole 

blood glucose level of diabetic rats was higher than 300 mg/dl, and the mean urine glucose 

level of diabetic rats was more than 500 mg/dl, which indicated that these rats became 

diabetes. Moreover, the diabetic rats showed other symptoms of DM, including 

polyphagia, polydipsia, and polyuria. Moreover, there was a significant decrease in body 

weight of early stage in diabetes, compared to the control (Table I).  

 

Altered histological appearances and numbers of microglia in early diabetes 

At low magnification, the cross sections of spinal cords in cervical enlargement, 

thoracic level and lumbosacral enlargement consisted of inner butterfly shaped grey and 

outer surrounding white matter. The grey matter was divided into dorsal, intermediate and 

ventral columns. The white matter was classified into dorsal, lateral and ventral funiculi. In 

the diabetes, the spinal cords were slightly paler than those in the control group (Fig. 1). 

Microglial appearances of each group (control and diabetes) in all white and grey matter of 

cervical enlargement, thoracic level and lumbosacral enlargement in spinal cord were 

similar in both histological and ultrastructural examinations. Under LM observation, 

microglia in grey matter dispersed among neurons, other neuroglial cells and blood vessels 
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(Fig. 2), whereas they situated around nerve fibers and other neuroglia in white matter 

(Fig. 3). To identify glial cells (microglia, astrocytes and oligodendrocytes) of both grey 

and white matter with the H & E staining, a microglia had a smaller and more elongated 

nucleus with dense basophilic staining, whereas an astrocyte contained a large oval nucleus 

with pale staining. Moreover, an oligodendrocyte consisted of a smaller and dense round 

nucleus, compared to the astrocyte (Figs. 2-3). In the diabetes, microglia became slight 

hypertrophied with a pale-stained nucleus in all areas (dorsal, intermediate and ventral 

columns of grey matter and dorsal, lateral and ventral funiculi of white matter) in all levels 

(cervical enlargement, thoracic level and lumbosacral enlargement) of spinal cords (Figs. 

2-3). Interestingly, the disorganized pattern of nerve fibers in white matter was detected in 

diabetes (Fig. 3). Moreover, the numbers of diabetic microglial cells significantly increased 

compared to the age-matched control group in all parts of all spinal levels (Figs. 2-4).  

 

Ultrastructural changes in early stage of diabetic microglia 

Under TEM, the rod-shaped nuclei of control microglial cells were dark with 

clumped chromatin beneath the nuclear envelope. The contours of cell bodies were 

irregular and extended thin cytoplasmic processes into the surrounding neuropil (Figs. 5A-

5B). The cells in the control contained a nucleus and numerous organelles, including long 

cisternae of rough endoplasmic reticulum (rER) and oval or elongated mitochondria (Figs. 

6A-6C). In addition, a few fine fibrillar actin filaments arranged in parallel arrays in the 

cytoplasm were observed (Fig. 6B). In short-term diabetes, the altered microglial cell had 

an oval shape nucleus with dense thick patches of heterochromatin along the periphery 

with extension of microglial processes in comparison to the control (Figs. 5C-5H). 

Moreover, a broad cytoplasmic area was found with several changes of cytoplasmic 

organelles. Short segments of rER and spherical lysosomes partly filled with hydrolytic 

enzymes were widely dispersed in the diabetic microglial cytoplasm (Figs. 6D-6F). An 

abundance of actin filaments was also observed near the nucleus of diabetic microglia 

(Figs. 5D, 5G, 6E). Furthermore, the degenerated myelin and axonal debris were found in 

the cytoplasm, which suggested phagocytic activity during diabetes (Fig. 6F). 

 

Discussion 
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In early stage of diabetes, increased numbers of microglia were found in this 

investigation of all parts of spinal grey and white matter (dorsal, intermediate and ventral 

columns of grey matter and dorsal, lateral and ventral funiculi of white matter) in cervical 

enlargement, thoracic level and lumbosacral enlargement, which was similar result as that 

in dorsal horn or column of spinal lumbar segments in the short-term DM [24]. 

Hyperglycemia during DM undergoes non-enzymatic glycation to produce advanced 

glycation end products (AGEs). Then, AGEs activate oxidative stress via activation of 

nicotinamide adenine dinucleotide phosphate oxidase [28], which produces hydrogen 

peroxide (H2O2) in the microglia. H2O2 then stimulates sulfhydryl groups in the tyrosine 

phosphatase, which causes increased tyrosine phosphorylation and prolongation of 

mitogenic signaling [9]. Consequently, hematopoietic cell kinase activation occurs to 

induce phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) and mitogen-activated 

protein kinases (MAPK)/extracellular signal-regulated kinase pathways [20]. As a result, 

cyclin D1 and cyclin-dependent kinase (CDK) 4 increase to progress G0 to G1 phases, 

whereas raised levels of cyclin E and CDK2 cause G1 to S phases of the cell cycle. 

Moreover, decreased CDK inhibitor, p27Kip1, prevents the cell cycle from moving to the G0 

phase [21]. Finally, proliferation and differentiation of diabetic microglia caused 

significantly increased numbers in all areas of both grey and white matter in all levels 

(cervical enlargement, thoracic level and lumbosacral enlargement) of the spinal cords.  

In our experiments, microglia in the early stage of diabetes became hypertrophy in 

all areas of grey and white matter in cervical enlargement, thoracic level and lumbosacral 

enlargement, which were same appearances as those of the microglia in dorsal horn or 

column of spinal lumbar segment in short-term diabetes [24]. There were also elevated 

lysosomes and numerous actin filaments in the diabetic microglia, which are involved in 

phagocytosis. As described, increased H2O2 in the microglia activates PI3K/Akt and p38 

MAPK pathways [25]. Next, mammalian target of rapamycin is stimulated to increase 

global protein synthesis and ribosomal gene transcription [1], which directly 

phosphorylates transcription factor EB to bind and encode the V-ATPase lysosomal gene. 

Then, rER becomes hyperfunction to produce lysosomal membrane and hydrolytic 

enzymes [18]. Therefore, the number of lysosomes in the diabetic microglia increased. In 

addition, high glucose levels lead to damaged nervous tissues and endothelium [13], which 

release vascular endothelial growth factor (VEGF) [26, 29] and monocyte chemoattractant 
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protein-1 (MCP-1) to microglia. The VEGF activates myocardin-related transcription and 

serum response factors in that order. Increased G-actin is found [15]. Furthermore, MCP-1 

binds to G-couple receptor on the plasma membrane of microglia to stimulate guanosine 

triphosphate-binding protein [12]. Then, profilin, an actin-binding protein, phosphorylates, 

while cofilin, involved in depolymerization of actin filaments, down-regulates in the 

microglia. Increased numbers of G-actin and profilin, but decreased cofilin, cause elevated 

production of actin filaments [16]. Abundant actin filaments were found in the microglia of 

diabetes. During hyperglycemia, neurons in the spinal cord are damaged and become 

apoptotic cells, releasing uridine 5'‑diphosphate. This substance binds to its receptor on the 

microglia to produce phospholipase C in the PI3K pathway. The inositol 1, 4, 5-

trisphosphate (InsP3) releases to cause calcium (Ca2+) efflux through InsP3 receptor on the 

ER [8]. Intracellular Ca2+ induces calcium release-activated channels on the plasma 

membrane of microglia. Then, Ca2+ influxes into the cell [16]. The high level of Ca2+ 

regulates remodeling of increased actin filaments to form a phagocytic cup around 

apoptotic debris. Next, the actin filaments surrounding the phagosome dissociate, and 

lysosomes bind to the phagosome to digest the debris in the Ca2+ dependency [2, 6]. Then, 

phagocytosis of the damaged cells is proceeded by microglia, as seen in the axonal debris 

in the cytoplasm. 

 

Conclusions 

 During early stage of diabetes, microglia in all areas of both grey and white matter 

in cervical enlargement, thoracic level and lumbosacral enlargement became hypertrophy 

with a significantly increased number. Additionally, the morphological changes in the 

period of DM contained an oval nucleus with heterochromatin with altered cytoplasmic 

organelles as in phagocytosis. 
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Table I. Comparisons in parameters between early stage of diabetic rats, compared to age-

matched control rats. 

Parameters (mean ± SD) 
Control 

(n=6) 

Diabetes 

(n=9) 

Whole blood glucose levels (mg/dl) 

- Before experiment 

- Before sacrifice 

 

86.50 ± 3.37 

130.50 ± 20.26 

 

85.00 ± 1.00 

446.00 ± 23.24a 

Urine glucose levels (mg/dl) 

- Before experiment 

- Before sacrifice 

 

0 

0 

 

0 

> 500b 

Body weights (g)  

- Before experiment 

- Before sacrifice 

 

253.67 ± 66.18 

331.50 ± 24.56 

 

252.38 ± 38.51 

206.00 ± 5.56* 

a; If the average whole blood glucose level was more than 300 mg/dl, it was indicated as 

diabetes in rat. 

b; If the average urine glucose level was greater than 500 mg/dl, it was a characteristic of 

diabetic rat. 

* p-value < 0.05 compared to the age-matched control rats. 

 

 

 

FIGURE LEGENDS  

Figure 1. Representative LM of cross sections in cervical enlargement (1A-1B), thoracic 

level (1C-1D) and lumbosacral enlargement (1E-1F) of spinal cord, short-term control (1A, 

1C, 1E) and diabetes (1B, 1D, 1F). Dorsal (dc), intermediate (ic) and ventral columns (vc) 

of grey matter, dorsal (df), lateral (lf) and ventral funiculi (vf) of white matter. 

 

Figure 2. LM of spinal glial cell types in typical grey matter of cervical enlargement (2A-

2B), thoracic level (2C-2D) and lumbosacral enlargement (2E-2F) in control (2A, 2C, 2E) 
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and early stage of DM (2B, 2D, 2F). Microglia (M), astrocyte (A), oligodendrocyte (O), 

neuron (N), capillary (c). 

 

Figure 3. LM of microglia and other cells in white matter of cervical enlargement (3A-

3B), thoracic level (3C-3D), and lumbosacral enlargement (3E-3F) in control (3A, 3C, 3E) 

and diabetic (3B, 3D, 3F) groups. Microglia (M), astrocyte (A), oligodendrocyte (O), nerve 

fiber (NF), capillary (c). 

 

Figure 4. 4A: A typical cross section of spinal cord. 4B-4D: Comparisons in numbers of 

microglia per 200x300 µm2 of cervical enlargement (4B), thoracic level (4C) and 

lumbosacral enlargement (4D). Dorsal (dc), intermediate (ic) and ventral columns (vc) of 

grey matter, dorsal (df), lateral (lf) and ventral funiculi (vf) of white matter. *p-value < 

0.05 compared to the age-matched control rats. 

 

Figure 5. TEM of microglia in representative grey (5A) and white matter (5B) of control 

group; grey (5C, 5E, 5G) and white matter (5D, 5F, 5H) of short-term DM; cervical 

enlargement (5C-5D), thoracic level (5E-5F) and lumbosacral enlargement (5G-5H). 

Nucleus of microglia (Nu); microglial process (black asterisks); actin filaments (black 

arrows); neuron (N); astrocyte (As). 

 

Figure 6. Ultrastructural images of microglial cells in the control (6A-6C) and STZ 

diabetic (6D-6F) groups. Nucleus of microglia (Nu), mitochondria (m), flatten cisternae 

rough endoplasmic reticulum (rER), actin filaments (black arrows), ribosome (r), lysosome 

(Ly), axonal debris (black asterisks), a vacuole (V) and axon (Ax). 

 














