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The role of sodium phosphate cotransporters in ectopic 
calcification
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Abstract 
Phosphate plays a critical role in many vital cellular processes. Deviations from normal serum phosphate levels, including alterations in 
the extracellular phosphate/pyrophosphate ratio, can cause severe consequences, such as ectopic calcification. Cellular phosphate levels 
are tightly controlled by sodium phosphate cotransporters, underscoring their importance in cellular physiology. The role of sodium 
phosphate cotransporters in ectopic calcification requires further elucidation, taking into account their important role in the control of 
intracellular phosphate levels and the synthesis of ATP, the main source of extracellular pyrophosphate (a potent endogenous inhibitor 
of calcification). In this review, we discuss the roles of phosphate and pyrophosphate homeostasis in ectopic calcification, with a specific 
focus on phosphate transporters. We concentrate on the five known sodium-dependent phosphate transporters and review their localisa-
tion and regulation by external factors, and the effects observed in knockout studies and in naturally occurring mutations. (Endokrynol 
Pol 2019; 70 (6): 496–441)

Key words: phosphate; ectopic calcification; pyrophosphate; transporters; ATP

Introduction 

Phosphate
Phosphate is required for many biological processes, 
including bioenergetics, metabolic regulation, cell 
signalling, cell proliferation, membrane integrity, and 
bone mineralisation [1, 2]. Organic phosphate that is 
ingested in foods is hydrolysed in the gastrointestinal 
tract, releasing inorganic phosphate. Aqueous phos-
phate exists in four forms, according to its triprotic 
equilibrium: 1 — trihydrogen phosphate (H3PO4), 
2 — dihydrogen phosphate ion (H2PO4

–), 3) hydrogen 
phosphate ion (HPO4

2–), and 4) phosphate ion (PO4
2–). 

Phosphate is quite strong with respect to the first dis-
sociation constant (pKa1 = 2.1), moderately weak with 
respect to the second (pKa2 = 6.9), and very weak with 
respect to the third (pKa3 = 12.4) [3].

The phosphate concentration in the plasma is 
determined by its intestinal intake, excretion through 
the faeces, release from bone and soft tissue, and renal 
excretion. The principal means by which mammals 
achieve phosphate homeostasis is through the control 
of its reabsorption along the renal proximal tubule 
(PT) [4]. 

Given its critical roles in vital cellular processes, it 
is not surprising that deviations from normal serum 

phosphate concentrations can cause severe clinical 
disorders. A phosphate deficiency typically results in 
muscle weakness, rhabdomyolysis, impaired leukocyte 
function, and abnormal bone mineralisation, leading to 
rickets or osteomalacia [5–7]. Elevated serum phosphate 
concentrations contribute to the pathogenesis of sec-
ondary hyperparathyroidism in patients with chronic 
renal failure [8, 9].

Although systematically underestimated in national 
surveys, phosphorus intake seemingly continues to 
increase as a result of the growing consumption of 
highly processed foods, in particular restaurant meals, 
fast foods, and convenience foods [10]. While a high 
dietary intake of phosphate increases its renal excre-
tion, a low dietary phosphate intake increases its renal 
reabsorption.

Phosphate homeostasis is also influenced by 
many other factors. For example, the renal excretion 
of phosphate is increased by parathyroid hormone 
(PTH), 1,25-OH2-vitamin D3, fibroblast growth fac-
tor 23 (FGF23), dopamine, and glucocorticoids, and 
is also increased during acidosis or hypokalaemia [7, 
11]. Moreover, the renal reabsorption of phosphate is 
increased by insulin, insulin-like growth factor 1 (IGF1), 
1,25-OH2-vitamin D3, and thyroid hormone, as well as 
during alkalosis [12–15]. 
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An inverse and direct relationship between vascular 
calcification and bone mass has been established in a rat 
model of CKD receiving a long-term high-phosphorus 
diet, highlighting the complex relationship between cal-
cification and phosphate homeostasis. After 20 weeks, 
the rats receiving the high-phosphorus diet displayed 
a significant increase in serum phosphorus, PTH, and 
creatinine, as well as aortic calcification and a decrease 
in bone mass [32].

Phosphate transport and extracellular 
pyrophosphate metabolism

Extracellular pyrophosphate is a potent inhibitor of 
vascular calcification and directly inhibits calcium 
phosphate crystal formation and growth in vitro and 
in vivo [31, 33–35]. Extracellular pyrophosphate is 
produced by the hydrolysis of extracellular ATP by 
ectonucleotide pyrophosphate/phosphodiesterase 1 
(eNPP1) to form pyrophosphate and AMP (Fig. 1) [36], 
which is hydrolysed to form adenosine and phosphate 
via ecto-5´nucleotidase (NT5E, also called CD73). More-
over, pyrophosphate is degraded to phosphate by tissue 
non-specific alkaline phosphatase (TNAP). Both phos-
phate and adenosine can be recovered from the extra-
cellular space for ATP generation by the mitochondria or 
through another metabolic pathway (Fig. 1). Phosphate 
is transported by sodium phosphate transporters that 
are described in the following section. Moreover, Ado is 
transported into cells by two known types of nucleoside 
transporters: concentrative nucleoside transporters 
(CNTs, SLC28) and equilibrative nucleoside transporters 
(ENTs, SLC29). Extracellular pyrophosphate metabo-
lism begins with the transport of ATP to the extracel-
lular milieu via an exocytotic mechanism and multiple 
types of membrane channels (Fig. 1). Studies show that 
loss-of-function mutations in eNPP1 [16], NT5E [37], 
and ENT1 [38] can also result in ectopic calcification. 
Therefore, the role of sodium-phosphate transporters 
(NPT) in the context of ectopic calcification is probably 
the main contributor to high intracellular phosphate 
and thus has implications for ATP synthesis [2].

Sodium phosphate cotransporters 

Because of the negative electrochemical potential 
across the cell membrane, the movement of phosphate 
into the cell does not occur by simple diffusion. So-
dium phosphate cotransporters enable cellular import, 
thereby controlling cellular Pi levels [13]. Three types 
of sodium-dependent phosphate transporter classes 
have been recognised in mammals: the NaPi-I (SLC17) 
family [39], the NaPi-II (SLC34) family [40], and the 
NaPi-III (SLC20) family [41]. Although the NaPi-I family 

Phosphate and vascular calcification
Elevated serum phosphate is a known inducer of 
vascular calcification [16, 17], which is associated with 
increased mortality [18].

Elevated serum phosphate significantly increases 
the risk of cardiovascular disease, regardless of pre-ex-
isting diseases such as chronic kidney disease (CKD) 
[19]. Increased serum phosphate concentrations are as-
sociated with the thickening of the carotid intima-media 
and are a strong contributing factor to arteriosclerosis 
in haemodialysis patients [20]. Furthermore, even 
when within the normal range, higher serum phos-
phate levels are associated with a higher prevalence 
of vascular and valvular calcification in people with 
moderate CKD [21].

Vascular calcification occurs in distinct layers of 
the aortic wall and is associated with specific patholo-
gies. Intimal calcification is observed in atherosclerotic 
lesions, whereas medial calcification, “Monckeberg’s 
medial sclerosis”, occurs in the medial layer of the aortic 
wall and is associated with the elastic lamina [22, 23].

Over the last few years, a relationship between 
phosphate transport and the initiation of vascular 
calcification has been increasingly investigated [24]. 
Nevertheless, our understanding of calcification patho-
genesis is far from complete. Several mechanisms that 
govern the initiation and progression of vascular cal-
cification have been suggested, including passive and 
active processes [17, 25]. At physiological calcium and 
phosphate serum concentrations, calcium phosphate 
deposition (CPD) is a passive process that does not 
require cellular activity [26–29]. For example, calcifica-
tion occurs more slowly than in hyperphosphataemic 
conditions, but it is highly pronounced after 21 days 
in a model without cellular activity [27]. Nevertheless, 
given that living cells do not calcify under physiologi-
cal conditions, vascular smooth muscle cells (VSMCs) 
must participate in the process by synthesising several 
CPD inhibitors [27]. 

On the other hand, the reduced capacity of VSMCs 
to synthesise and secrete calcification inhibitors is the 
active process that contributes to vascular calcification 
[16, 17, 28, 30, 31]. In the extracellular fluids there are 
a range of endogenous low and high molecular weight 
inhibitors, including: 1 — low molecular weight (such as 
pyrophosphate, the major direct inhibitor of CPD for-
mation and growth); and 2 — small and medium-sized 
proteins (mainly calcium binding proteins such as 
osteopontin, fetuin-A, and matrix gla proteins) [16, 17]. 
Other inhibitors in the second group include proteins 
involved in phosphate homeostasis regulation, which 
could play a potential indirect role as inhibitors of calci-
fication (including osteoprotegerin, klotho/FGF23, and 
vitamin K) [16, 17].
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members were originally identified as phosphate trans-
porters, the relativity low affinity of the NaPi-I fam-
ily members for phosphate suggested that they more 
readily transport organic and inorganic anions, rather 
than phosphate. By contrast, the NaPi-II and NaPi-III 
family members transport phosphate with high affinity 
(Km ≈ 0.1 mmol/L or less) but display different affinities 
for H2PO4

– and HPO4
2– ions [42–44].

In a very interesting review, Werner et al. [45] hy-
pothesised that the original NaPi-IIb-related gene was 
duplicated early in vertebrate development and that 
the appearance of NaPi-IIa correlated with the develop-
ment of the mammalian nephron. NaPi-II and NaPi-III 
exhibit conserved structural features that are consistent 
with a prokaryotic origin.

The physiological importance of sodium phosphate 
cotransporters is underscored by the effects observed 
in knockout studies and in cases of naturally occurring 
mutations, as we review in the following sections and 
summarise in Table I.

NaPi-II (SLC34 family)
The NaPi-II (SLC34) family comprises three members: 
NaPi-IIa, NaPi-IIb, and NaPi-IIc [40]. They are high-af-
finity Pi transporters (Km ≤ 100 μmol/L), exhibit a higher 
specificity for deprotonated phosphate (HPO4

2–), and 
are specifically inhibited by phosphonoformic acid 
(PFA) [42].

All members of this family share a duplicated motif 
consisting of glutamine followed by a stretch of threo-

nine or serine residues [46]. The two isoforms, NaPi-IIa 
and NaPi-IIb, have distinct differences in three hydro-
philic regions. These include the two termini and a seg-
ment within the glycosylated extracellular loop [45]. 
There are differences in the protein/protein interactions 
between NaPi-IIa and NaPi-IIc. Fewer PDZ proteins 
interact with NaPi-IIc compared with NaPi-IIa. NaPi-IIa 
interacts with NHERF1–4 (Na+/H+ exchanger regula-
tory factors 1–4), CALPIST (Golgi-associated PDZ and 
coiled-coil motif containing), and SHANK2E (SH3 mul-
tiple ankyrin repeat domains 2E), while NaPi-IIc only 
interacts with NHERF1 and NHERF3 [47, 48].

NaPi-IIa and NaPi-IIb are electrogenic and translo-
cate one net positive charge per transport cycle [49]. By 
contrast, NaPi-IIc is electroneutral with no net charge 
translocation [50–52]. The members transport one diva-
lent phosphate ion with an apparent affinity (K0.5

Pi) of 
10–70 mmol/L, together with two (NaPi-IIc) or three Na 
ions (NaPi-IIa and NaPi-IIb) with an apparent affinity 
(K0.5

Na) of 25–50 mmol/L [46].

NaPi-IIa (SLC34A1)
NaPi-IIa is expressed predominantly in the renal PTs 
and the osteoclast basolateral membrane. Under nor-
mal conditions, NaPi-IIa is the major transporter for 
phosphate reabsorption in the PT [43]. 

A recent study reported that the loss-of-function 
of NaPi-IIa (Table 1) results in nephrocalcinosis and 
possibly in kidney insufficiency [53]. Interestingly, 
NaPi-IIa has also been identified in the brain [54]. It 

Figure 1. Role of sodium-phosphate cotransporters in the extracellular pyrophosphate metabolism. ATP is released by cells via exocytotic 
mechanisms and through multiple types of membrane channels. Ectonucleotide pyrophosphatase phosphodiesterase (eNPP) hydrolyses 
ATP, releasing pyrophosphate (PPi) and adenosine-5’-monophosphate (AMP). PPi is degraded to phosphate (Pi) by tissue non-specific 
alkaline phosphatase (TNAP). AMP is degraded to adenosine (Ado) and Pi via ecto-5´nucleotidase (5NT). Ado and Pi are recovered 
from the extracellular space by equilibrative nucleoside transporter 1 (ENT1) and sodium phosphate transporter (NaPi), respectively. 
ATP is generated in the mitochondria or through another metabolic pathway
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is hypothesised that NaPi-IIa in the brain is involved 
in phosphate sensing, which consequently suggests 
that the renal expression of NaPi-IIa may be centrally 
regulated [55].

Recently, it was demonstrated that NaPi-IIa is the 
only SLC34 member expressed during RANKL-induced 
osteoclast differentiation but is dispensable for osteo-
clast differentiation and bone resorption [56]. 

Within the first four hours after ingestion of 
a low-phosphate diet, brush border Na+/Pi cotrans-
port increases due to a rise in NaPi-IIa levels [57, 58]. 
By contrast, NaPi-IIa abundance changes quickly in 
response to a high-phosphate intake (in less than 
one hour) throughout the PT. In this case, phosphate 
internalisation occurs in a microtubule-independent 
way, and molecules are targeted to the lysosome via 
endosomes [59, 60]. 

The global knockout of NaPi-IIa in mice results in 
skeletal abnormalities, hypophosphataemia with hy-
perphosphaturia, reduced PTH, and elevated 1,25-OH 
vitamin D3 levels with secondary hypercalcaemia 
and hypercalciuria (Tab. I). Moreover, Na-dependent 
phosphate uptake in brush border membrane (BBM) 
preparations from these mice is reduced by 70% com-
pared with that in the tissue from normal animals [61]. 

Recently, it was shown that oestrogen specifically 
down-regulates NaPi-IIa, but not NaPi-IIc or Pit-2, 
in the kidney cortex through the activation of both 

oestrogen receptor isoforms (ERa and ERb) in the rat 
kidney PT [62].

NaPi-IIb (SLC34A2)
NaPi-IIb expression has been detected in the small in-
testine, lungs, mammary glands, salivary gland, thyroid 
gland, testis, and liver [40]. 

Global NaPi-IIb knockout is lethal [63], but NaPi-IIb 
loss-of-function is associated with alveolar calcifica-
tion in middle age [64, 65], and sometimes calcifica-
tion in other organs, such as the testis (Tab. I) [64]. 
Intestine-specific ablation of NaPi-IIb in mice results in 
viable pups with normal growth, but increased excre-
tion of phosphate through the faeces and a complete 
absence of sodium-phosphate cotransport activity in 
BBM vesicles (BBMVs) isolated from the ileum were 
observed. Notably, the absence of this transporter is 
fully compensated in adult females by a mechanism 
involving the bone-kidney axis [66]. 

It is likely that NaPi-IIb mediates secondary active 
phosphate accumulation at the basolateral membrane 
and consequently reverses phosphate flux in mamma-
lian secretory tissue [45].

NaPi-IIc (SLC34A3)
NaPi-IIc is expressed in the kidney and has been de-
scribed a having growth-related functions [51, 52]. It 
is found in the BBM of the early PT (S1 segment) of 

Table I. Sodium phosphate transporters. Expression and effects observed in knockout studies and in naturally occurring 
mutations (loss of function)

Transporter Expression Loss of function References

NaPi-IIa 
(SLC34A1)

Kidney Nephrocalcinosis, stone formation, kidney insufficiency [53]

Bone (osteoclast) Osteoporosis, rickets [61]

Other Hypophosphataemia with hyperphosphaturia, reduced PTH, elevated 1,25-OH 
vitamin D3 levels with secondary hypercalcaemia and hypercalciuria.

Idiopathic infantile hypercalcaemia

[61]

NaPi-IIb 
(SLC34A2)

Small intestine Phosphaturia, higher expression of NaPi-IIa, higher Na/Pi cotransport activity  
in renal BBMVs, reduced plasma levels of intact FGF23

[66]

Testis Testicular calcification [64]

Lung Pulmonary alveolar microlithiasis [64]

Full KO Lethal [63]

NaPi-IIc 
(SLC34A3)

Kidney Higher levels of Pi in plasma and urine as well as circulating levels of parathyroid 
hormone, FGF23; vitamin D3 levels remained unchanged (in mice)

[70]

Full KO Hypercalcaemia, hypercalciuria, and increased 1,25-OH vitamin D3 levels [69]

Pit-1 
(SLC20A1)

VSMCs Not produced: ectopic calcification [95]

Chondrocytes Cartilage calcification [92]

Full KO Lethal [94]

Pit-2 
(SLC20A2)

Brain Brain calcification [97, 98]

Placenta Placental calcification [96]

Full KO Foetal growth restriction, subviability (~50% death rate prior to weaning age in mice) [96]
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juxtamedullary nephrons. During phosphate depletion, 
NaPi-IIc is also detected in the early PT of superficial 
nephrons [51, 67, 68]. 

The global knockout of NaPi-IIc in mice results in 
hypercalcaemia, hypercalciuria, and increased 1,25-OH 
vitamin D3 levels (Tab. I) [69]. However, unlike in hu-
mans, the kidney-specific deletion of NaPi-IIc in mice 
does not disturb phosphate homeostasis, strongly sug-
gesting an extrarenal role of NaPi-IIc in the intestine 
and/or bone [70] (Tab. I).

The role of NaPi-IIc in bone physiology is not clear. 
Although it regulates calcium metabolism [69], it was 
recently described to have no role in osteoclast differ-
entiation and function [56].

NaPi-III (SLC20 family)
Although NaPi-IIa and NaPi-IIc are the principal me-
diators of renal phosphate reabsorption, significant 
phosphate reabsorption remains in both knockout 
animals. This observation suggested the existence of 
other phosphate transporters: the SLC20 family. This 
family, also called NaPi-III, comprises two members: 
Pit-1 and Pit-2(41). These were originally identified as 
cell surface receptors for gibbon ape leukaemia virus 
(Glvr-1) and rat amphotropic leukaemia virus (Ram-1), 
respectively [71, 72]. 

Pit-1 and Pit-2 mediate the movement of phosphate 
ions across the cell membrane [73, 74] and are ubiq-
uitously expressed. VSMCs express both phosphate 
transporters, but Pit-1 [24, 75] is more abundant than 
Pit-2 [76].

Pit-1 and Pit-2 are electrogenic, with a coupling 
stoichiometry of > 1 Na+ ions per Pi ion cotransported 
[41], but unlike NaPi-IIa and NaPi-IIc, they display 
a preference for monovalent phosphate and a reduced 
sensitivity to pH and the phosphate transport inhibitor 
PFA [73, 77].

The current model predicts a 12 transmembrane 
domains structure, but in contrast to the SLC34 family 
proteins, the N- and C-termini are both extracellular 
[78, 79].

A recent study proposes that Pit-1 and Pit-2 are 
the main transporters responsible for sodium-driven 
phosphate uptake in osteoclasts [56]. In fact, their in-
volvement in vascular calcification [76, 80, 81] and bone 
mineralisation [82] suggests a key role in vascular and 
skeletal pathologies VSMCs have both Na-dependent 
and Na-independent phosphate transport components 
with a similar kinetic behaviour, but only Na-coupled 
saturable uptake can be attributed to the expression 
of both Pit-1 and Pit-2 [73, 76]. Recently, Pit-1 and 
Pit-2 gene expression was shown to be upregulated in 
Npt2a-null mice during metabolic acidosis, suggesting 
a possible compensatory role for SLC20 proteins [83].

The expression level and thereby the transport 
activity of the NaPi-III protein family are regulated by 
the extracellular phosphate levels [84–87]. For instance, 
phosphate uptake and Pit-1 and Pit-2 mRNA levels were 
higher in 208F rat fibroblasts grown in a Pi-free medium. 
Similarly, in human embryonic kidney cells, phosphate 
deprivation stimulated Pit-1-mediated phosphate up-
take [88], and an increase in Pit-2 mRNA and protein 
levels was reported for two osteosarcoma cell lines [84]. 
We showed that rats receiving a long-term high-phos-
phate (1.2%) diet exhibit a significant decrease in Pit-2 
protein expression in the kidney compared with that of 
rats maintained on a long-term low-phosphate (0.1%) 
diet [89].

Pit-1 (SLC20A1)
Pit-1 mRNA expression is highest in osteoblasts, VSMCs, 
and bone marrow [73, 76, 82]. Pit-1 plays a critical role 
in cartilage calcification and the regulation of apoptosis 
and cell proliferation [90–93]. 

Various transport-independent functions of 
Pit-1 have been described that may help explain the 
role of Pit-1 in VC: the transporter is involved not 
only in the modulation of cell proliferation [91] but 
also in the regulation of TNFa-induced apoptosis and 
mitogen-activated protein kinase (MAPK) activation 
[91], which are related to calcification pathogenesisThe 
deletion of Pit-1 in the mouse suggests that Pit-1 plays 
an essential function in liver development (Tab. I) [94]. 
The targeted deletion of Pit-1 in VSMCs in the mouse 
did not induce aortic calcification due to compensatory 
regulation by Pit-2 [95]. Moreover, loss of function in 
Pit-1 results in cartilage calcification (Tab. I) [92]. In con-
trast to Pit-2, a global Pit-1 knockout is embryonically 
lethal in mice (Tab. I) [94]. 

Pit-2 (SLC20A2)
The expression of Pit-2 is highest in VSMCs, liver, heart, 
and brain, and it is also localised in the BBM of the PT 
epithelia [41, 73, 89]. Recently, it was reported that Pit-2 
is required for normal placental function and that its 
deficiency results in foetal growth restriction and pla-
cental calcification [96].

Pit-2 mutations have been identified in patients with 
familial idiopathic basal ganglia calcification(FIBCG) 
[97], suggesting that the functional loss of phosphate 
transport can produce a decrease in the synthesis of 
CPD inhibitors and a local phosphate accumulation 
in the extracellular matrix, both contributing to the 
consequent increase of CPD (Tab. I). No abnormalities 
in serum electrolytes or calciotropic hormones and no 
obvious bone phenotype have been described in FIBCG 
patients. Pit-2 KO mice recapitulate the human disease 
in that they exhibit basal ganglia calcification [98].
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Previous studies reported that PiT-2 is significantly 
down-regulated in the BBM in rats switched from 
a long-term low-Pi to a high-Pi diet after only 24 hours 
[89]. For the reverse dietary regime, PiT-2 displayed 
a slower adaptive trend. These findings suggest that 
PiT-2, until now considered to be a ubiquitously ex-
pressed phosphate housekeeping transporter, is a novel 
mediator of phosphate reabsorption in the PT during 
acute phosphate deprivation and acidosis conditions 
[43], and that it displays a different adaptive time course 
than NaPi-IIa and NaPi-IIc [89].

The influence of pH on NaPi cotransporters

One of the most important factors that affects NaPi 
transporters is the pH. NaPi-IIa and NaPi-IIc activity 
is highest at alkaline pH levels, whereas Pit-1 and Pit-2 
are maximally activated at low pH levels [43]. In addi-
tion, while chronic adaptation to a low-phosphate diet 
increases the expression of NaPi-IIa, NaPi-IIc, and Pit-2 
protein and increases the phosphate transport Vmax in 
BBMVs at pH 7.5, the increase in transport is minimised 
when uptake takes place at pH 6.0 (i.e. when Pit-2 is 
maximally activated but NaPi-IIa and NaPi-IIc are in-
hibited by 90%). In contrast to the renal type II isoform, 
type IIb-associated sodium-phosphate cotransport was 
less dependent on the pH and was slightly higher at 
more acidic pH values [43,99]. These biochemical differ-
ences suggest that each transporter has a specific role 
in the PT to avoid physiological redundancy

Conclusions and future perspectives

The maintenance of appropriate phosphate homeo-
stasis is vital to avoid negative health consequences, 
such as calcification in soft tissues. Sodium phosphate 
cotransporters are key players in these processes, and 
their importance has been underscored in different 
studies demonstrating the effects of the alteration in 
their expression and loss of function (Tab. I).

Understanding sodium phosphate cotransporter 
function and regulation is very useful for improving 
the treatment and prevention of ectopic calcification, 
because they play critical roles in maintaining phos-
phate homeostasis and in the intracellular synthesis 
of ATP. Moreover, we propose that not only phosphate 
homeostasis but also pyrophosphate homeostasis must 
be taken into account in the design of therapeutic strate-
gies for ectopic calcification [25]. 
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