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ABSTRACT

Driven by the advances in signal processing and ubiquitous availability of high-speed low-cost

computing resources over the past decade, computational imaging has seen growing interest. Im-

provements on spatial, temporal, and spectral resolutions have been made with novel designs of

imaging systems and optimization methods. However, there are two limitations in computational

imaging. 1), Computational imaging requires full knowledge and representation of the imaging

system called forward model to reconstruct the object of interest faithfully. This limits the applica-

tions in the systems with parameterized unknown forward model such as range imaging systems.

2), The regularization in the optimization process incorporates strong assumptions which may not

accurately reflect the a priori distribution of the object. To overcome these limitations, we propose

1) novel optimization frameworks for applying computational imaging on active and passive range

imaging systems and achieve 5-10 folds improvement on temporal resolution in various range

imaging systems; 2) a data-driven method for estimating the distribution of high dimensional ob-

jects and a framework of adaptive sensing for maximum information gain. The adaptive strategy

with our proposed method outperforms Gaussian process-based method consistently. The work

would potentially benefit the high-speed 3D imaging applications such as autonomous driving and

adaptive sensing applications such as low-dose adaptive computed tomography(CT).

Keywords: Range Imaging, Computational Imaging, Adaptive Sensing, Sensor Placement
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CHAPTER 1: INTRODUCTION

1.1 History of Image Sensors

Photography has a long history since 1839 introduced by Louis Daguerre[1]. The first generation

of camera did not use film but light-sensitive chemicals that formed on the silver-plated copper

sheet. Glass plate coated with photographic emulsion was introduced from 1850s as a less ex-

pensive alternative especially in astrophotography and electron micrography. The first plastic roll

film was invented in 1889 which was made from highly flammable materials called nitrocellulose

and became the standard theatrical 35 mm film[2]. The film cameras remained the domination of

camera sensors until 2000s when the digital cameras supplanted them[3]. Modern digital cameras

converted the two dimensional optical signal into digital signal at typically 30 frames per sec-

ond on millions of pixels. The digital signal enables the post processing step in imaging such as

denoising, white balancing, and contrast. Beyond the processing techniques on direct measured

image, indirectly reconstructing the images from multiple measurements, termed computational

imaging, such as computational microscopy[4, 5, 6], tomographic imaging, magnetic resonance

imaging(MRI)[7], and coded aperture imaging[8] techniques have undergone significant improve-

ment thanks to the advances of signal processing and the ubiquitous availability of high-speed

computing resources.

1.2 Computational Imaging

Computational imaging models the imaging system as a function of the object f ,

g = H( f )+n (1.1)
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where g is the observable measurement, n is the additive noise. The function H is called forward

model which describes the physical process of the imaging system. Prior to any computations, the

first thing is to calibrate the imaging system as well as the forward model H. It is inevitable that the

calibrated forward model H will be deteriorated by the measurement errors and detection noises.

However, it is still a better option than using the forward model built under ideal assumptions,

especially when the system is complex. In this dissertation, we consider discretized measurement

g and object f which are one dimensional vectors stretched from high dimensional data. The

goal of computational imaging is to retrieve the object f from the measurement g inversely. This

can be formulated as an optimization problem by defining and minimizing an objective function.

Ideally, we would like to minimize the distance between the reconstruction and the true object

L ( f̂ , f ). However, the true object f is not available. Thus, we minimize the distance between

the synthetic measurement and the real measurement L (H( f̂ ),g) where H is obtained from the

system calibration. Given the stochastic nature of the noise n on the measurements, it is natural

to use the negtive log-likelihood as the objective function. For instance, assume the noise is a

Gaussian noise n∼N (0,σ), the negtive log-likelihood of f̂ can be evaluated by

L =
1

2σ2

∥∥H( f̂ )−g
∥∥2

2 +
1
2

ln2πσ
2 (1.2)

Note that the second term is independent of f̂ . Thus, it will be discarded in the optimization.

The coefficient in the first term before the L2 norm is a constant. Through a maximum likelihood

framework, the reconstruction f ∗ satisfies

f ∗ = argmin
f̂

1
2

∥∥H( f̂ )−g
∥∥2

2 (1.3)

Equation 1.3 only requires the forward model H and the real measurement g. If the forward

model H is differentiable, this can be optimized through gradient based optimizations. The scalar

2



1
2 is for the convenience of taking derivative. It worth noting that different types of the noise

distributions result in different forms of negative log-likelihoods. Equation 1.3 incorporates the

intuition that the closer the synthetic measurement H( f̂ ) to the real measurement g is, the better

guess f̂ is. However, this is not always true. Using Equation 1.3 as objective function showed poor

performance in practice. To better regularize the reconstruction, different regularization terms

are proposed such as total variance (TV)[9] and sparsity[10]. Adding the regularizations showed

different degree of success in many applications[11, 12]. Formly, the reconstruction f ∗ optimizes

f ∗ = argmin
f̂

1
2

∥∥H( f̂ )−g
∥∥2

2 +λΦ( f̂ ) (1.4)

where Φ is the regularizer on f̂ , and λ is the regularization parameter controlling the strength of

the regularization. The first term in Equation 1.4 is the data term which enforces the reconstructed

object f̂ should generate measurements close to the observed g. The second term is the regulariza-

tion term which enforces certain a prori structure of the object. Note that the regularization Φ is

often selected to be convex for the convenience of the optimization.

There are many existing iterative methods to optimize Equation 1.4[13, 14, 15]. Most

of them can be reformulated into proximal optimization methods[16]. It deals with the two

terms,namely a differentiable data term and a convex regularization term, in Equation 1.4 sepa-

rately. For example in proximal gradient method(PGM), the iteration can be written as

f k+1 =ProxProxProxλΦ( f k− γ

2
∇

∥∥∥H( f k)−g
∥∥∥2

2
) (1.5)

where ProxProxProx(·) is the proximal operator, γ is the step size which can be determined through line

search methods[17]. For Φ := L1 norm, the proximal operator is a soft thresholding operator. For

Φ := L2 norm, the proximal operator is called a shrinkage operator. If the imaging system is a

linear system, the forward model H can be represented by a matrix. Equation 1.5 can be written as

3



f k+1 =ProxProxProxλΦ( f k− γHT (H f k−g)) (1.6)

where HT is the transpose matrix of H.

Most imaging systems such as spectral domain optical coherence tomography(SD-OCT),

computed tomography(CT), Fourier ptychography, and compressive coded aperture imaging(CSSI)

can be formulated into this framework with different forward models H. It is worth noting that

Equation 1.6 assumes a linear imaging system in which the forward model can be represented by

a matrix. In the case of non-linear imaging systems such as optical diffraction tomography(ODT)

and phase retrieval imaging system, the forward model cannot be represented by a matrix but a

differentiable function as shown in Equation 1.5.

Despite the success of computational imaging, there are two limitations. 1). The first

limitation stems from the data term. The forward model H has to be known explicitly for taking

the derivative in Equation 1.5. In practice, the forward model is calibrated from the real imaging

setup. Thus, well parameterized but unknown forward models in 3D imaging systems such as

stereo rang imaging systems can not be fitted into the framework mentioned above. 2). The second

limitation lies in the regularization term Φ. The form of the regularization term determines the a

priori assumption or the preference enforced in the structure of the reconstruction f̂ . For instance,

the Total Variance regularizer enforces the smoothness in the reconstructed object f̂ , while the L1

norm regularizer enforces sparsity approximately. The selection of regularization plays a vital role

in the reconstruction but is a subjective choice and may not accurately reflect the a priori of the true

object f . In this dissertation, we propose 1) a novel framework to apply computational imaging on

well parameterized unknown forward models[12, 18, 19, 20], namely the range imaging systems in

Chapter 2; 2) a data-driven estimation of the object distribution and verify it in an adaptive sensing

task[21] in Chapter 3 to overcome these limitations.

The Dissertation is organized as followed. In Chapter 2, we present the temporal com-

4



pressive range imaging systems which include unknown, well-parameterized forward models. In

Chapter 3, we present the adaptive sensing framework which captures the object distribution with

generative neural networks. We conclude the dissertation with Chapter 4.
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CHAPTER 2: COMPUTATIONAL IMAGING FOR HIGH-SPEED

RANGE IMAGING

2.1 Range Imaging

Range imaging systems, which collect three-dimensional spatial information of the object surface,

have a wide range of applications in medical procedures[22, 23], archaeological landscape map-

ping[24], industrial metrology, 3D printing, tracking, and vehicle navigation[25]. Range imaging

systems can be roughly categorized into either passive or active sensing methods [26]. Passive

sensing methods are cost-effective and simple in implementation while active illumination has

more degrees of freedom in controlling the properties of the light source, such as wavelength,

polarization, coherence, temporal profile, etc.

2.2 Passive Computational Range Imaging

Passive imaging system is robust and cost efficient, making high-speed 3D imaging more acces-

sible. We demonstrate a compressive stereo imaging setup as an attempt to implement a passive

high-speed depth sensing system. Bearing the system cost in mind, we engineered an asymmetric

stereo imaging system that includes the high-speed modulator in only one of the optical paths,

while keeping the other optical path unmodified, simply a low-frame-rate camera to capture a low-

frame-rate blurry scene. To reconstruct the high-speed 3D scene, a general framework is proposed

to estimate the depth and intensity information from the two measurements. The major challenge

is to estimate the depth from the two asymmetric optical paths and in order to address this, we

develop a two-step algorithm, in which the first step recovers the high-speed scene from the modu-

lated optical path and the second step extracts the depth of the scene by employing the information

from both measurements. Stereo imaging system estimates 3D scene from measurements taken

from left and right views. Two pixels in these measurements are correspondent, if they refer to the

6



same element in the scene. In rectified epipolar geometry, corresponding pixels are on the same

row, and the location difference of these pixels is called disparity. The depth of an object in the

scene can be inferred from the disparity between these two measurements.

2.2.1 Forward Model

Figure 2.1 depicts our compressive stereo imaging system. Both left-view and right-view measure-

ments are synchronized and sampled at a low frame-rate. The left-view measurement IL captures

the summation of the high-speed scene within exposure time. On the right-view optical path, the

high-speed scene FRH is modulated by N high-speed pseudo-random patterns M(i, j,n) during the

exposure time, where (i, j) is the piexel coordinates of the right sensor. The modulated scene is

then relayed to Camera 2 forming the right-view measurement IR. Considering the stereo measure-

ments of each view has Nx×Ny pixels, the pixel (i, j) can be expressed as:

IR(i, j) =
N

∑
n=1

FRH(i, j,n)M(i, j,n) (2.1)

IL(i, j) =
N

∑
n=1

FLH(i, j,n) (2.2)

where i, ...,Nx, j, ...,Ny. FLH ,FRH are the high-speed scene from left-view and right-view,

respectively. As mentioned above, in the stereo imaging system, the high-speed depth information

lies in the correspondence between FRH and FLH . However, neither FRH nor FLH can we measure

directly since the frame-rate of FRH and FLH exceeds that of the cameras. Our contribution is to

estimate the high-speed scene from low frame-rate measurements IL and IR.

7



Figure 2.1: System schematic (a) On the left-view optical path, Camera 1 records low-speed mea-
surement IL. On the right-view optical path, high-speed right-view scene FRH are encoded by the
DMD with N distinct patterns M. The coded right-view scene is then relayed by lens Lrelay and
recorded by Camera 2 within the exposure time to form the right-view measurement IR. (b) A
photo of the setup

2.2.2 Reconstruction

After capturing the measurements shown in Equation 2.1-2.2, we aim to estimate the high-speed

scene as well as the depth. Let F(i, j,k,n) denote the high-speed 3D scene that we are interested,

where i, j symbolize the spatial indices, k signifies the depth information and n is the high-speed

frame index. The relation between the left- and right-view high-speed scenes can be expressed as

where H is a transformation matrix depending on the depth. Since we only need to estimate FRH

and H to obtain the high-speed 3D scene, the reconstruction problem can be formulated as

(F̂RH , T̂ ) = argmin
FRH ,T

∥∥∥∥∥IR−
N

∑
n=1

FRH ·M

∥∥∥∥∥+
∥∥∥∥∥IL−α

N

∑
n=1

FRH ·H

∥∥∥∥∥ (2.3)

8



where α is used to compensate the intensity difference between the two optical paths. Unfortu-

nately, Equation 2.3 is ill-posed. We add prior knowledge on FRH as regularizers to solve Equation

2.3. This leads to

(F̂RH , Ĥ) = argmin
FRH ,T

∥∥∥∥∥IR−
N

∑
n=1

FRH ·M

∥∥∥∥∥+λΦ(FRH)+

∥∥∥∥∥IL−α

N

∑
n=1

FRH ·H

∥∥∥∥∥+κΩ(H) (2.4)

where Φ and λ are the regularizer and weight for FRH , Ω and κ are the regularizer and weight for H

respectively. The two arguments are coupled since third term in Equation 2.4 is a coupled term of

FRH and H. In this paper, we ignore the impact of third term in estimating FRH and propose a two-

step algorithm to solve the high-speed video (FRH) first, and then estimate the high-speed depth

maps (H). This approximation works well in practice as our results shown. In the following, we

consider FLH ,FRH in the rectified epipolar geometry, and therefore T can be explicitly represented

by the disparity shown in Equation 2.6. The right-view high-speed scene FRH is first reconstructed

from the snapshot IR. Secondly, we solve the correspondence problem between single left-view

measurement IL and N-frame high-speed right-view scene FRH .

In the first step, we reconstruct high-speed scene FRH from the snapshot IR in Equation 2.1.

This is a video compressive sensing inversion problem. Since the DMD multiplexes N frames and

collapses into one measurement, this inversion problem is ill-posed. Here, we use the iterative

reconstruction algorithm TwIST to solve the optimization problem [13]

F̂RH = argmin
FRH

∥∥∥∥∥IR−
N

∑
n=1

FRH ·M

∥∥∥∥∥+λΦ(FRH) (2.5)

The TV regularizer is employed to promote piece-wise smoothness in estimates, since natural

scenes are usually sparse in spatial gradients [27]. After this step, we obtain N high-speed frames

FRH from right-view optical path, while only a single blurry measurement IL is available from the

left-view optical path.
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Figure 2.2: The flow chart of the reconstruction algorithm. The high-speed scene FRH is recon-
structed from the modulated measurement IR using video compressive sensing inversion algorithm,
TwIST. Then, the high-speed depth maps are estimated from IL and FRH by our one-to-N corre-
spondence algorithm based on Graph Cut.

The second step is to estimate correspondence between IL and FRH . Although various

correspondence algorithms [28, 29] exist to estimate the disparity map, they aim to find the one-

to-one correspondence between two measurements. In our system, IL does not correspond to any

single frame in FRH but to all N high-speed frames. To explicitly represent T in Equation 2.4,

let D(i, j,n) denote the disparity of pixel (i, j) in nth frame between the right-view high-speed

scene FRH and the corresponding left-view low-speed measurement IL. Considering the radiometric

difference, the un-occluded pixels in IL can be represented as

IL(i, j) =
1
α

N

∑
n=1

FRH(i+D(i, j,n), j,n) (2.6)

where α is the radiometric ratio between the two paths. In the experiments, we calibrate this α at

the beginning. Therefore, for simplicity, the following discussion will set α = 1. The depth Z(i, j,
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n) can be calculated by

Z(i, j,n) =
fcb

D(i, j,n)
(2.7)

where fc is the focal length of the camera lens, b is the baseline length; fc and b can be obtained

by calibration [30]. Computing the one-to-N correspondence between IL and N-frame video FRH

is the main challenge thus the vital ingredient of our algorithm. We formulate this as an energy

minimization problem, and propose a correspondence algorithm based on Graph Cut [31]. More

specifically, we estimate the disparity by

D̂ = argmin
D

Edata(D)+Eregularizer(D) (2.8)

where Edata and Eregularizer denote the data term and the regularization term of the energy func-

tion, respectively. In our system, Edata(D) is used to measure the similarity of the corresponding

pixels according to Equation 2.6. Since the measurements in different perspectives are rectified,

corresponding pixels are on the same row. Employing the absolute difference as metric, Edata(D)

is defined by a one-to-N assignment

Edata(D) = ∑
i, j

∣∣∣∣IL(i, j)−∑
n

FRH(i+D(i, j,n), j,n)
∣∣∣∣ (2.9)

In order to engineer diverse problems during the matching process in stereo imaging systems, the

regularization term Eregularizer is composed of three terms:

Eregularizer = Eocclusion +Euniqueness +Esmoothness (2.10)

Eocclusion is a penalty to the occluded pixels,

Eocclusion = KoccNocc (2.11)
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where Kocc is a constant and Nocc is the number of matchings labeled as occluded. Euniqueness is to

enforce the uniqueness of the matching in D,

Euniqueness = KuniquenessT (D) (2.12)

where Kuniqueness is a large constant, T (D) is used to detect the uniqueness of D. T (D) = 1 if any

pixel in IL and FRH is involved in more than one assignments, otherwise T (D) = 0. Esmoothness

promotes the piece-wise smoothness in D. For two adjacent pixels p,s in IL, if p and s have

different disparities, we give a penalty V . Let Dp and Ds denote the disparity at pixel p and s, the

smoothness term is defined as

Esmoothness = ∑
s,p∈ℵ,Ds 6=Dp

V (2.13)

(13) where ℵ is a neighborhood set and V is a constant. In our algorithm, a small constant V1 is

used when |IL(p)− IL(s)| is above a pre-defined threshold, otherwise a larger constant V2 is used.

The underlying rationale is to match the depth jump with the intensity jump. By using these graph

representable energy terms and an appropriate definition of the smoothness term, we can find a

strong local minimum of the problem in Equation 2.8 via Graph Cut [31, 32]. Empirically, we

have found that this definition has led to a strong local minimum of the problem in Equation 2.6,

which is sufficient for our applications.

The depth resolution can be derived from Equation 2.7. By taking derivative of both sides

of Equation 2.7, we have dZ = fcb
D2 dD By substituting D with fcb

Z in the denominator, the depth

resolution can be expressed as

dZ =
Z2

fcb
dD (2.14)

where dD is the spatial resolution of the images. In our setup, fc = 26mm, b = 174mm, the scene

is around 1.6 m away from cameras. The pixel size of the camera dD = 5.5µm. The calculated

theoretical depth resolution is around 3 mm. In our experiments, for computational efficiency, we
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down-sampled reconstructed FRH and left-view measurement IL by 8, and estimate the high-speed

depth map based on the down-sampled images. Therefore, the theoretical depth resolution in our

experimental results is around 2.4 cm.

2.2.3 Experimental Results

We built our prototype demonstrated in Figure 2.1b. The same camera lens (Nikon, 18-55mm)

and camera (JAI, GO 5000M) are used on both optical paths. The cameras are triggered and

synchronized by the data acquisition board (NI, USB6353). On the left-view optical path, the

camera is placed on the back focal plane of the camera lens. On the right-view optical path, the

high-speed scene is modulated by a DMD (Vialux, DLP7000), and then relayed to the camera by

the relay lens (Edmund Optics, 30mm, f/8). The pitch of the DMD is 13.7 µm with fill factor of

0.92. The DMD is working in 3 binning mode. To extend the working distance, we utilize another

relay lens to relay the intermediate images (on the back focal plane of the camera lens) to the

DMD.

In the first example, the cameras operate at 30fps. The compression ratio N equals to 10.

The left and right measurements are shown in Figure 2.3a. The different directions of motion blurs

on IL and IR indicate the varying depth of the ball within the exposure time. This is a challenging

problem for any existing stereo imaging systems and correspondence algorithms: estimating the

varying depth from motion blur without the knowledge of the shape of object. By contrast, we

address this using our proposed reconstruction framework.

Following the flow-chart of our algorithm, we first reconstruct 10 high-speed frames from

the right measurement IR and the calibrated DMD patterns M, with results shown in Figure 2.3b.

After this, we send these 10 frames along with the left measurement to the correspondence algo-

rithm we have built in Equation 2.6. The outputs of the algorithm are 10-frame depths as shown

in Figure 2.3c. Considering Nx columns in the measurement, NN
x different disparities are possi-

ble in one-to-N matching while only Nx possible disparities in one-to-one matching. The size of
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the searching space will be a challenge when N and Nx become large. In this example, Nx = 125

after down-sampling. Under the linear motion assumption in a short duration, we can decrease

the searching space size from NN
x to Nx ·Ns, where Ns is the number of possible velocities along z

axis that can be detected. The frame-rate of the reconstructed video is 300fps which is 10 times as

that of the camera. The overlay plot of the depth map in Figure 2.3d demonstrates the estimated

motion of the ball. The depth increment of adjacent frames is around 23 mm which approximately

corresponds to the theoretical disparity of one pixel, i.e., 2.4 cm. The estimated average velocity

of the ball along z axis is 6.7 m/s.

Figure 2.3: Reconstruction of a backward-moving ball. (a) Measurements from two optical paths
in our system. The different traces of the motion blurs indicate the varying depth of the moving
ball. (b) 1st , 6th and 10th fames of reconstructed high-speed video from single measurement IR.
(c) 1st , 6th and 10th fames of reconstructed high-speed depth map. (d) An overlay plot of 10 depth
maps within a single exposure. The gradient of the color implies that the ball is moving away from
our imaging system.

In the second example, we test our system with scenes containing more complicated mo-

tion by the cameras operated at a higher frame rate. The scene consists of a stationary box with
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letters “UCF”, a fast-moving triangular shuriken and a moving rectangular shuriken. The camera

is operating at 80fps, while the compression ratio is still 10. Thus, the expected frame-rate of

the reconstructed video is 800fps. As shown in Figure 2.4, the motion blur in the measurement

indicates that the motions of the shurikens are mixture of transformation and rotation. Similar to

the first example, we first reconstruct the high-speed video frames, now at 800fps, shown in the

top-right of Figure 2.4. Then our correspondence algorithm provides the depth maps for these 10

frames. An 800fps 3D video is reconstructed from 80fps measurements (See Visualization 2). The

rectangular shuriken rotated 30 degrees while the triangular shuriken rotates 20 degrees within the

exposure time.

Figure 2.4: Reconstruction of an 800fps high-speed scene with two flying “shurikens”. (a) Stereo
imaging measurements. (b) Selected frames of reconstructed 800fps video. (c) 3D rendering of
the high-speed scene. The rectangular shuriken rotated about 30◦ within the exposure time, and
the triangular shuriken rotated about 20◦

In summary, we have reported a high-speed compressive stereo imaging system, and a

two-step inverse algorithm. We have reconstructed a 3D video at 800 fps from coded stereo mea-

surements at 80 fps. Our system exploits the correlations of temporal, spatial and depth channels

of the information in passive depth sensing.
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2.3 Active Computational Range Imaging

2.3.1 Forward Model

We consider the high-speed three-dimensional (3D) video which can be modeled as an intensity

function f (x,y, t) and a depth map Z(x,y, t). The camera integrates the high-speed frames f (x,y, t)

within the integration time T into one measurement. To discern the range of the scene and re-

trieve the high-speed temporal frames, we have implemented the two-fold modulation using the

structured illumination. In our setup shown in Figure 2.5, we use a projector to project high-speed

pseudo-random binary masks onto the 3D scene. We establish the coordinates with the origin lo-

cated at the lens in the projector. Let h∗(x,y, t) denote the three dimensional high-speed masks

imposed on the scene Z(x,y, t). The measurement g(x′,y′) can be expressed as

g(x′,y′) =
∫ T

t=0
f (

z+ l0
fc

x′,
z+ l0

fc
y′, t) ·h∗(z+ l0

fc
x′,

z+ l0
fc

y′, t) (2.15)

where fc is the focal length of the camera lens, l0 is the distance between projector and camera

along z axis. In temporal domain, the camera integration time T limits the passband of the temporal

information acquired by the camera. However, the high-speed temporal masks h∗(x,y, t) alias the

higher frequency components of scene f (x,y, t) into the passband of the camera. Therefore, we

have a chance to reconstruct the high-speed frames through the inversion algorithms proposed in

Section 3.

One key contribution of our work is to reconstruct the depth information of the scene as

well as the temporal super resolution. Different from the previous method that modulates the range

of the scene with varied blur kernels [33], we take advantage of different scales and shift of the

masks. Let hz(x,y, t) denotes the ideal projected images of the original masks h0(x,y, t) projected to

the range z without any objects (e.g., a uniform white background). Considering the lateral offset d

(in x axis) between the camera and the projector as shown in Figure 2.6, the ideal projected masks
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can be expressed as

hz(x,y, t) = h0(
fp

z
x+

fp

z
d,

fp

z
y, t) (2.16)

where fp is the focal length of the lens of the projector. It is worth noting that hz is a plane located

at range z. With this structured illumination, we modulate the range with scaling factors fp
z and

the shift fpd
z which are both the functions of range z. The ideal projected masks hz can be obtained

by calibrations or simulations with the parameters f p,d, and the origin masks h0. Our goal is to

estimate f (x,y, t) as well as the depth map Z(x,y, t), given g(x′,y′) with prior of hz.

Figure 2.5: The forward model of our system. The projector projects high-speed masks onto the
scene. The scene is modulated by h∗(x,y, t), the variants of the original mask at different ranges.
The camera integrates the modulated high-speed frames into one measurement.

2.3.2 Reconstruction

We can discretize high-speed video f , projected masks h∗, and measurements g. Let Fk ∈ RNx×Ny

denote the kth discretized frame of the scene. For each pixel (m,n),m = 1, ...,Nx;n = 1, ...,Ny, we
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have

gm,n =
NT

∑
k=1

h∗k(m,n) · fk(m,n) (2.17)

where we consider NT discretized high-speed video frames within the integration time T . Let fk

be the vectorized form of Fk. The vectorized form of the measurement can be expressed as

g = H∗[f1...fNT ]
T (2.18)

The inverse problem can now be formulated as

(f̂,Ĥ∗) = argmin
f,H∗

‖g−H∗f‖+ τR(f) (2.19)

H∗ is the sensing matrix corresponding to the projected masks h∗, and R(f) denotes a regularizer

which can be used to impose the sparsity of the signal in the basis such as the wavelet, the dis-

crete cosine transformations (DCT) or the total variation (TV) operator.The regularizer penalizes

characteristics of the estimated f that would result in poor reconstruction. τ is the Lagrange pa-

rameter balancing the measurement error and the regularizer. There are two parameters to estimate

in Equation 2.4, which is non-convex. However, given one, the other one can be solved via ex-

isting algorithms[34, 35]. In the following, we solve the problem by alternatively estimate one

with the other one fixed. Although we cannot directly obtain the projected masks h∗, we know

that h∗ is a combination of different portions of the ideal masks hz at different z. Considering

the spatial information as well as the range resolution of the reconstructed results, we apply local

window to crop the measurement into small block, and slide the window in both horizontal and

vertical directions with sub-block increments δ to obtain a sequence of blocks [19] and estimate a

range ˆzblock for each block. Let Nz and {Hi|i = 1, ...,Nz} denote the number of discretized ranges

and the ideal sensing matrix corresponding to the ideal projected masks hz(x,y, t) at ith discretized

range, respectively. For each block, we can enumerate the ideal sensing matrices Hi and obtain Nz
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candidates of the reconstructed fraction of the scene f̂block as

f̂i
block = argmin

fblock

∥∥g−Hifblock
∥∥+ τR(fblock) (2.20)

where i= 1, ...,Nz. Equation (20) can be solved by a commonly used compressive sensing inversion

algorithms, for example, the TV based optimization algorithms[34] or the Bayesian algorithms

[36]. The second step is to select the one fitting the measurement best,

ẑblock = zi∗, i∗ = argmin
i

∥∥gblock−Hif̂i
block

∥∥ (2.21)

where zi∗ is the ith range. Empirically, we have found adding the regularizer on each block can

provide better results.

Figure 2.6: Schematics of our system. The lateral offset of projector and camera is d. The distance
between projector and camera along the z axis is l0. θ denotes the projection angle. The focal
lengths of the camera and the projector are not specified in the figure for concision.
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We assume that the depth map Z(x,y, t) does not change within one measurement, thus we

just enumerate Nz possible sensing matrices here. For the scenarios without this assumption, the

number of possible sensing matrices is NNZ
T , which grows exponentially with the compression rate

NT . After we select the best range for each block, we can get the corresponding reconstruction

for each block. This reconstruction is based on the inferred scale and shift of the original mask h0

and the measurement g. The final results can be obtained by fusing these reconstruction blocks.

However, due to the spatial correlation of different blocks. After getting the range for each pixel,

we can obtain the correct mask for each pixel. Equation 2.19 can now be solved via the video

compressive sensing algorithms, which considered both the global and local information.

Figure 2.7: Calibrated masks at different ranges. Same patterns of the 5th mask projected at differ-
ent ranges are highlighted with the red boxes. The shift of the red boxes indicates one modulation
on the range. The scales of the zoom in patterns is the other modulation on the range.
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2.3.3 Experimental Results

The schematic is shown in the Figure 2.6. The projector consists of a microscope lamp (Nikon,

D-LH), a Digital Micromirror Device (Vialux, DLP4100) and a camera lens (Nikon, 18-55mm).

A Digital Micromirror Device (DMD) is an array of the highly reflective aluminum micromir-

rors. Each pixel is an electro-mechanical element in which there are two stable micromirror states

(±12◦). The DMD with an adequate optical element can be used as a high-speed projector. The

maximum frame rate of the DMD is 22.7 kHz which is much faster than the camera. To modulate

the high-speed frames of the scene, the projector is used to project pseudo-random binary masks

onto the scene at 1000 frames per second (fps) while the camera is acquiring the measurement at

200 fps. Objects at different ranges are modulated by different parts of the mask with different

shift and magnifications. The shift is induced by the separation of the optical axis of the pro-

jector and the camera. It is worth noting that the feature size of masks acquired by the camera

depends not only on the distances to the projector Lp but also on the distance to the camera Lc.

The corresponding pixel size is proportional to the ratio of Lp
Lc

. If the baseline of the camera and

the projector are the same, the pattern feature on the camera would be the same regardless the

range of the objects, in which case the only modulation on the range is the shift. To better discern

the pattern at different ranges, we place the camera and the projector at different locations on the

z axes. The modulated objects are imaged by a camera lens (Nikon, 18-55mm) onto the camera

(JAI, GO5000M). The separation of the axes of the camera and the projector is d = 135 mm. The

focal length of the camera lens is 50 mm. To ensure the coding process remains time-invariant,

we write the pseudo-random patterns into the memory of the DMD prior to the display, and then

use an NI board (NI, USB 6353) to synchronize the camera and the DMD in the projector. The NI

board generates a pulse to start the DMD display, then generates a 200 Hz square wave to trigger

the camera. There is a fixed delay between the DMD and the camera control signals to ensure the

synchronization of these two. We use an active area of 296×325 detector pixels to account for the
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128x96-pixel pseudo-random patterns with additional zero-padding. To implement the algorithm,

we need to calibrate the ideal sensing matrix H i mentioned in Section 3. Firstly, we record each

pseudo-random mask projected on a white board located at ith range zi. Secondly, we record the

image from an all-on state DMD to correct the nonuniformity of the illumination. Thirdly, we

record the image of an all-off state DMD for subtraction of the background. After the corrections

to the images of the masks, we can extract H i. At last, we repeat the same calibration procedures

at discrete steps of 10 mm on the z axis. The whiteboard is translated by two motor-driven trans-

lation stages (Thorlabs, NRT100 and Newport, LTA-HS) which give us a 150 mm travel range in

total with stable and repeatable translation. Some calibrated masks at different ranges are shown

in Figure 2.7.

We now use the camera to capture a experimental high-speed 3D scene and reconstruct

it. The setup configuration is shown in Figure 2.6. Before acquiring the data, we calibrate the

camera with checker board pattern to correct the aberrations. We place two objects at different

ranges, one is a stationary white board S1 (68mm×28mm) which is located at z1 = 320mm away

from the projector and l0 + z1 = 1.63m away from the camera. The other object is a circular board

S2 (36 mm in diameter) which is fixed on a fan with a notch rotating at 30 rounds per second.

A black square tape (18mm× 18mm) is added to the surface of S2, serving as a reference mark.

S2 is placed at 360 mm away from the projector. The camera is operating at 200 fps, and we

reconstruct five frames for each measurement. Thereby, we can retrieve high-speed video frames

at 1000 fps with depth maps. The scene is shown in Figure 2.5 and we show one measurement and

reconstruction results in Figure 2.8. We set the block size to 16×16 pixels, and the increment of the

blocks δ is 8 pixels. It can be observed that not only can we reconstruct the scene at 1000 fps but

also provide the corresponding depth map. Our desktop with 8 gigabytes memory completes the

reconstruction for one measurement within 48 seconds. As our algorithm is based on blocks and

each block is reconstructed independently, parallel computing is ready to be used with a GPU. The

computing time can be reduced by orders of magnitude. There are some artifacts on the boundary
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of both objects because the resolution of the depth map depends on the size of the block and the

overlapping between the adjacent ones as mentioned in Section 3. Whenever there is a steep slope

in the block, the artifacts will appear. These can be improved by using blocks with more overlap

with compromised computation time.

2.4 Limitation and Outlook

We study the computational imaging applications in high-speed stereo vision systems. In the first

part, we have reported a temporal compressive passive stereo imaging system, and a two-step in-

verse algorithm. We have reconstructed a 3D video at 800 fps from coded stereo measurements

at 80 fps. Our system exploits the correlations of temporal, spatial and depth channels of the

information in passive depth sensing. From the hardware perspective, the temporal limit of our

system is the DMD refreshing rate. A faster modulation can lead to an even faster frame rate.

However, this does not mean the frame rate can be increased in this fashion. The faster frame rate

will also reduce the signal to noise ratio (SNR) of the measurement, which is detrimental to the

reconstructed images. The depth resolution of system is limited by the triangulation geometry of

the stereo imaging system, which is on the order of centimeter. Specifically, the depth resolution

depends on the spatial resolution of the images, the distance between the scene and the camera, the

focal length, and the baseline distance. In the compressive sensing system, the spatial resolution is

also affected by the matching between the pixel size of the camera and the feature size of modu-

lation pattern on DMD. On one hand, large feature size would result in low spatial resolution and

larger errors in depth triangulation; on the other hand, smaller feature size could result in a poor

calibration, which would inversely affect the reconstruction. Here we would like to mention the

option of using two spatial modulators, e.g. two DMDs, in both optical paths. The reconstruction

can be simply divided to 1) recovering the high-speed videos from both paths and 2) calculating the

corresponding depth maps. In addition to the obvious advantages of lower power consumption and
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lower system cost of our imaging setup, leaving one optical path unmodified maximizes the light

collection efficiency of the stereo imaging system. Our recent results show that this light-collection

improvement could lead to a superior reconstruction in the temporal compressive system with two

identical channels.

We envision an integrated reconstruction frame work that merges the current two recon-

struction steps. The depth estimation could be used to transform the left-view measurement as side

information to improve the high-speed reconstruction of the right-view. An iterative process of

updating the right-view reconstruction and depth map could thus be implemented. Different from

active illumination system which is sensitive to the ambient light, the reported method is suitable

for passive depth sensing system and can be directly implemented using a color camera, making

the RGBD sensing system more accessible

Figure 2.8: The top row presents one frame of a 200 fps measurement and the reconstructed 1000
fps reflectance frames. The object is a disk rotating at 30 rounds per second. The red box indicates
the position of the black tape in the first frame. The bottom row shows the ground truth of the 3D
scene and the reconstructed depth map. A video of 1000-fps frames has been reconstructed from
200-fps measurement

In the second part, we describe a novel temporal compressive active range imaging system
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that encodes both range and high-speed temporal information of a scene with a series of binary

random patterns projected by a high-speed DMD. We have demonstrated the imaging principle

by reconstructing a fast-varying scene. To solve the inverse problem, a block-wise alternating

algorithm has been developed to reconstruct high-speed temporal and range information. A 1000-

fps video of reflectance intensity with depth map is reconstructed from 200-fps measurements.

In this work, we describe a novel range imaging system that encodes both range and high-speed

temporal information of a scene with a series of binary random patterns projected by a high-speed

DMD. To solve the inverse problem, a block-wise alternating algorithm has been developed to

reconstruct high-speed temporal and range information. In our reconstruction algorithm, the range

resolution is determined by the sensitivity of the reconstruction error, which is inversely related

to the correlation of projected patterns at different ranges. The simulation has demonstrated a

range resolution better than 3.2 mm, which is in agreement with the range resolution calculated

from the triangulation method. To improve the range resolution, a finer projection pattern and

further optimization of the system geometry is needed. Our system is simple to implement and has

potential applications in high-speed range imaging.
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CHAPTER 3: COMPUTATIONAL IMAGING IN ADAPTIVE SENSING

3.1 Adaptive Sensing and Sensor Placement

Optimal sensor placement achieves the minimal cost of sensors while obtaining the prespecified

objectives. In this work, we propose a framework for sensor placement to maximize the informa-

tion gain called Two-step Uncertainty Network(TUN). Experiments on the synthetic data show that

TUN outperforms the random sampling strategy and Gaussian Process-based strategy consistently.

Sensor placement is widely studied in the areas of environment monitoring [37, 38], struc-

tural health monitoring[39] , security screening[40], and adaptive computed tomography[41]. The

optimal sensor placement maximizes the objectives with minimal cost of sensors. Given the model

that maps each possible set of sensor locations to the objectives, the optimal sensor placement can

be formulated as an optimization problem. However, the optimization is shown to be NP-hard[42].

Thus, approximate greedy algorithms of sequential sensor placement are proposed and then proved

to be near optimal under the assumptions that the criterion are monotone and submodular[43].

The diagram of a sequential sensor placement is shown in Figure 3.1a with the black ar-

rows. The agent inquires at a feasible location to the physical model in each step and obtains the

corresponding measurement. The obtained observations are used to make inference for specific

tasks. For instance, in security screening tasks the observations are used to predict the distribution

of the object’s label. To make an accurate inference, the agent often optimizes the information

gain in each step with respect to the feasible location. The corresponding objective is mutual

information which is approved to give near optimal approximations in sequential sensing[44, 43].

To optimize the objective, a model that estimates the potential information gain at each pos-

sible location is necessary. The most generic method to model the unknown spatial phenomenon

is Gaussian Process(GP) which incorporates the knowledge of observations and predicts the un-

certainty at the un-observed locations. However, the Gaussian model assumption in GP does not
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perform well on high dimensional data e.g. images as generative models. In addition, GP inher-

ently adapts the assumptions that the uncertainty at the un-observed locations is independent of the

obtained measurements, making the GP based sequential sensing an open-loop control[45]. An

alternative approach to this problem arises recently is Reinforcement Learning(RL)[46]. However,

the performance in RL is found to be of large variance and difficult to reproduce[47].

Figure 3.1: (a) The diagram of sensor placement (black arrows) and TUN(red arrows). TUN
consists of two steps: imagination step and inspection step to generate the possible measurements
and evaluate the task-specific information gain at un-observed locations. (b) Graphical models of
the two steps in TUN. Instances of measurement xk at un-observed locations are generated in the
imagination step. Then those generated measurements are used to evaluate the information gain
for the task in inspection step.

In this work, we propose a framework for sensor placement to maximize the information

gain called Two-step Uncertainty network (TUN). The pipeline of TUN is shown in Figure 3.1

with red arrows. TUN consists of two steps, namely the imagination step and the inspection step.

TUN firstly "imagines" the possible measurements at the un-observed locations. Then it estimates

the task-specific information gain with the imagined measurements along with the previous obser-

27



vations in the inspection step. Both steps are deployed with the pre-trained neural networks. Given

the task-specific information gain at all the un-observed locations, the agent adapts a greedy algo-

rithm to select the optimal next location to inquire. This procedure emulates how we human think

in such tasks: given the observations, we firstly imagine the possible outcomes at un-observed lo-

cations, then inspect the information pertaining to the task based on those possible outcomes. We

will derive the proposed framework in the next section.

Figure 3.2: Example of the generation step on 1D spectrum dataset. The dashed line is the true
spectrum and the solid spots are the observations. The generated instances are in colorful solid
lines. Left: 10 imagined spectrums based on single observation. Right: 10 imagined spectrums
based on three observations. The variation in the generated samples is mainly from scales and is
independent of the task.

3.1.1 Objective Function in Adaptive Sensing

Consider a sequential sensing strategy, we denote locations as v and measurements as x. At the kth

step, we have the previous k− 1 observations Obs = {x1,v1, ...,xk−1,vk−1}, the optimal location

v∗k is the one maximizes the mutual information (MI) between the object’s label y and the possible
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measurement xk given the previous observations:

v∗k = argmax
vk

MI(y;xk|Obs,vk) (3.1)

The mutual information can be expressed as,

MI(y,xk|vk,Obs) = H (y|Obs)−EPr(xk|vk,Obs)H (y|xk,vk,Obs) (3.2)

where E is the expectation operator. In Equation 3.2, the first term is the uncertainty of labels con-

ditioned on the previous observations. The second term is the expected uncertainty conditioned on

observations and possible measurements xk at vk. The subtraction gives the uncertainty reduction

or the information gain at the location vk. It is worth noting that the first term is independent of vk,

and can be treated as a constant in optimizing Equation 3.2 with respect to vk. The second term in

Equation 3.2 can be approximated with Monte Carlo estimator as

MI(y,xk|Obs) =−
M

∑
m=1

1
M

H (y|xm
k ,vk,Obs)+Const. (3.3)

where

xm
k ∼ Pr(xk|vk,Obs) (3.4)

The summation in Equation 3.3 (without the negative sign) is the approximate remaining

entropy with the measurement at vk given. Maximizing the mutual information is equivalent to

minimizing the remaining entropy. Equation 3.4 is the conditional distribution of the measurement

at location vk.

Following Equation 3.3-3.4, it is natural to approach the remaining entropy in two steps :

(1), Generating instances of xk that follows the distribution in Equation 3.4. (2), Evaluating the

remaining entropy ∑
1
M H(y|xm

k ,vk,Obs) with the generated instances in step (1). The graphical
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models of the two steps are shown in Figure 3.1b. The design of our Two-step uncertainty network

(TUN) follows the same rationale. In the imagination step, TUN generates multiple instances with

a generative neural network. In the inspection step, a deterministic deep neural network is used

to estimates the label distribution, and thus to evaluate the information gain(or negative remaining

entropy).

3.1.2 Near Optimal Strategy:Two-step Uncertainty Network

The first step of TUN is to generate instances xk ∼ Pr(xk|vk,Obs). Modeling the distribution of

high dimensional data such as images is difficult and computationally expensive, even within a con-

strained family of distributions and simplified assumptions. Deterministic neural networks such as

convolutions neural networks have shown strong expressiveness[48], but can not be used as gener-

ative models. Recently, remarkable progress has been made on modeling complex distribution of

high dimensional data with generative neural network(GNN)[49, 50]. GNN maps the instances of

re-parameterizable distribution (for example, multivariate normal distributions) to the instances of

target complex distribution[51]. GNN is trained to maximize the log likelihood of the generated

instances,

logPr(xk|vk,Obs) = log
∫

Pr(xk|z,vk)Pr(z|Obs)dz (3.5)

where z is the latent variable of multivariate normal distributions. The log likelihood with the

integral is intractable. Thus, the evidence lower bond(ELBO) as an approximation is evaluated

instead,

ln
∫

Pr(xk|z,vk)Pr(z|Obs)dz≥ Eqφ (z) lnPr(xk|z,vk)−DKL[qφ (z); pθ (z)|xk,vk,Obs] (3.6)

The posterior distribution qφ (z|xk,vk,Obs) is conditioned on the previous k− 1 observations Obs

and the observed kth measurement in the training data. The prior distribution pθ (z|vk,Obs) is
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only conditioned on Obs. DKL is the KL divergence measuring the difference between the two

distributions. After training, we will have a generator network G(vk,Obs) that generates instances

of measurement xk. The generator network G is then employed in the imagination step of TUN.

The second step in TUN is inspection, which estimates the task-specific information gain(or

negative remaining entropy) at vk. With the generated M instances of xk in the imagination step,

the remaining entropy in Equation 3.3 can be expressed as

M

∑
m=1

1
M

H(y|xk,vk,Obs) =−
M

∑
m=1

1
M ∑

y
Pr(y|xm

k ,vk,Obs) logPr(y|xm
k ,vk,Obs) (3.7)

The remaining entropy is a function of the conditional distribution of the label Pr(y|xm
k ,vk,Obs).

We approximate this conditional distribution with a deterministic neural network, the inspector

network D(xk,vk,Obs). Then the remaining entropy is evaluated as Equation 3.7. The most infor-

mative location to inquire is the one with the lowest remaining entropy. It can be shown that the

true parameters of the model can be recovered by symptomatically maximizing a proper scoring

rule[52]. A proper scoring rule S rewards the true distribution p more than any other distributions

p̂ on the training data d as ∫
d

p(d)S(p̂,d)≤
∫

d
p(d)S(p,d) (3.8)

It is shown that optimizing the softmax cross entropy loss function in the case of multi-class clas-

sification is equivalent to optimizing a proper scoring rule[53]. Thus, the inspector network D is

trained with the softmax cross entropy loss. It is worth noting that the inspector network D takes

different number of observations at different steps. To accept arbitrary number of observations,

each observation is encoded separately with a shared-weight encoder, and the encoded vectors renc

are aggregated to a fixed-length vector before the succeeding networks. To enforce the commuta-

tive property in the sequential sensing problem, we adapt a "mean operator" as the aggregator in

TUN, which takes the average of the input vectors. We take random number of observations at the
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randomly selected locations in the training stage.

Figure 3.3: Left: x-ray security screening system. 8 different directions(locations) uniformly dis-
tributed within 180◦ are available to illuminate the object . The object is randomly rotated along z
axis with an obstacle. Additive Gaussian noise is adapted on the measurements. Right: examples
of measurements at 8 locations.

3.1.3 Results and Discussion

To evaluate the feasibility of TUN, we experimented with synthetic datasets. In the first experi-

ment, we visualize the imagination step in TUN with simple 1D spectrum dataset. The spectrum

dataset is generated from the spectrums of five minerals including Augite, Allanite, Xenotime, Bik-

itaitem and Pseudobrookite. We re-sampled the spectrums from 0.2µm to 0.6µm with 100 points

and normalized them. The normalized spectrums are then scaled by a random factor ranging from

0.025 to 2.5 and corrupted by a zero-mean Gaussian noise with standard deviation of 0.03. The

random scaling creates the intra-class uncertainty in the dataset. We prepared 5000 instances in

the training dataset and 500 instances in the test dataset. The generator network G was trained to

generate the instances of the spectrum with several observations given. The number and locations

of the observations are randomly selected in the training process. In the test stage, we show 10

generated instances in colorful solid lines in Figure 3.2 with different observations. The observa-

tions are indicated as filled circle, and the true spectrum is shown in the dashed line. Given the

single observation, the generated instances vary in both mineral types(inter-class uncertainty) and
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scales(intra-class uncertainty). With three selected observations, the imagined spectrums mainly

vary in scales. The intra-class uncertainty in the latter case is task-independent information indi-

cating that the generator network G believes that not much information of label is remaining, given

the observations. In other words, taking more measurements may not benefit the label prediction

much. Thus, the agent may stop inquiring to avoid redundant inquiries. We will show more quan-

titative results of the evaluation of the task-specific information gain in the inspection step of TUN

in high dimensional dataset.

To quantitatively evaluate the information gain(or uncertainty reduction), we created a high

dimensional synthetic dataset from x-ray baggage scanning system in security screening. The

physical model is shown in Figure 3.3. The objects to be screened are 3D digits with an obstacle

that partially blocks the objects. The existence of the obstacle results in significant variation of

information among different locations. There are 8 locations(angles) to illuminate the x-ray onto

the object (ranging from 0◦ to 157.5◦). Inquiry on each location returns a 2D projected image.

The goal is to recognize the label of the object confidently with least number of inquiries. Before

any inquiries, a randomized rotation is applied on the object along z axis. An additive Gaussian

noise n ∼ (0,0.02) is adopted on the observed images. TUN is trained on 5000 objects with ran-

dom locations, effectively making the training dataset much larger. TUN is tested on 3000 set of

observations generated from 1000 held-out un-seen objects. The generator network G firstly en-

codes the information of one or more observations into a fixed length representation vector. Then

it generates M instances of possible measurements at the un-observed locations. based on the rep-

resentation vector. In our model, M = 10. We show this process in Figure 3.4. In Figure 3.4 Left,

the first measurement at location 4 is observed. We can see a corner feature in the measurement in

the yellow box. Obviously the information from the observation is insufficient to reconstruct the

3D object, needless to mention the label of the object. We show three generated instances from

the generator network at location 6 and 7 which are different in labels(digit 7 and 0) and fonts,

yet consistent with the observation. In Figure 3.4 Middle, measurements at location 4 and 5 are
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both obtained. The generated samples at location 6 and 7 are more convergent to the ground truth

as more information in observations are extracted. The generator network in this situation almost

collapses to a deterministic neural network. This shows that our generator network generates the

samples following the distribution xk ∼ Pr(xk|vk,Obs).

Figure 3.4: The imagination step of TUN on high dimensional dataset. Left: The 3 instances of
the generations at location 6 and 7 given the observations at location 4. The generated instances
are different in labels(digit 0 and 7) and fonts, but they all keep the corner feature occurred in the
observation.Middle: The generations given two observations at location 4 and 5. The generated
instances are much more convergent as more information is extracted from the observations. Right:
The ground truth of the measurements at location 6 and 7.

In the second step of TUN, the generated samples are fed into the inspector network D,

which estimates the probability of the labels Pr(y|xk,vk,Obs) and evaluates the task specific in-

formation gain. We will perform both qualitative and quantitative analysis on the task specific

information gain with TUN in the following paragraph. Firstly, we visualize the intermediate

feature space in the initial sensing step of an example shown in Figure 3.5 Left. The obtained

observations at location 5 is non-informative. We generated 100 instances at each location and fed

them into the inspector network and visualized the feature space in the inspector network using

t-SNE[54]. We select the vector at the layer before logits in the inspector network to visualize.

The feature space is colored by locations and divided into three regions. The region 1 covers the

features of the generated instances from exact observed location (location 5). Region 2 covers the
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features from the locations close to the observed one (location 4 and 6). Region 3 contains the

features from the locations far from the observed location. Clearly the features get more disperse

as the distance to the observed location increases. This indicates that rich information lies in the

locations in region 3. Although this is a qualitative analysis on the feature space, it justifies the

necessity to sample multiple instances from the generator network. We will perform quantitative

analysis of this example with the inspector network in next paragraph.

Figure 3.5: Task-specific feature distribution. We visualize the initial intermediate feature distri-
bution in the inspector network using t-SNE. Clearly the features become more disperse at further
locations from the observed location. The feature space is colored by locations. Region 1: Features
of generated instances at the observed location. Region 2: Features at locations that are close to
the observed location. Region 3: away from observed location. Region 3: Features at locations far
from the observed locations.
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The information gain is evaluated from the averaged entropy in Equation 3.7 from M sam-

ples. The averaged entropy indicates the estimated remaining uncertainty of the labels after we

obtain the observation at location vk. Our strategy is to pick the location with least remaining un-

certainty, which equivalently maximizes the mutual information in Equation 3.2 (note the negative

sign before the entropy). We show this quantitatively in the example in Figure 3.6. This is the

same example as described in Figure 3.5. The first observation is at location 5 shown in yellow

box in Figure 3.6a bottom, which is a non-informative observation. The averaged entropy for next

step is shown in Figure 3.6a top.

Figure 3.6: Entropy estimation: (a) The remaining entropy at un-observed locations given a single
observation at location 5. The optimal next location in this step is location 2 at which the expected
remaining entropy is least. (b) As we obtain the measurement at location 2 following TUN, the
estimated remaining entropy at all the un-observed locations are almost zeros, indicating that the
model is quite confident about the label with those observations.

The entropy plot estimates the potential remaining uncertainty at the un-observed locations,

thus the less remaining uncertainty the better the location is. The entropy is averaged from 10

samples, and the standard deviation is shown as bars in Figure 3.6.
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The entropy plot at the initial step indicates that our model believes there is less remain-

ing uncertainty after we obtain the measurement at location 1,2, or 8 than that at location 3,4,6,

or 7. Thus the next location selected by TUN is location 2 (which has least averaged remaining

entropy). The successive estimation for the entropy is shown in Figure 3.6b in which the agent

inquires and obtains the observation at location 2 following TUN. With the observations at loca-

tion 2 and 5, the remaining entropy is very low with neglectable variance. This entropy plot shows

TUN is quite confident on the label of the object, and believes there is not much information left

at un-observed locations. A threshold can be used as a stopping criterion in practice. We compare

TUN with random sampling strategy(RS) and Gaussian Process(GP) strategy. We adapt squared

exponential kernel in GP and employ the 2D coordinates and the projection angle [x,y,cosθ ,sinθ ]

as features. The GP model is fitted with training data and performs the prediction of measurement

at un-observed locations. To evaluate the strategies, we trained classifiers with different number of

the observations. The training data for the classifiers are generated from 5000 held-out objects with

random noise and rotation. All the observations in training the classifiers are taken from random

sampling strategy. The performance in both accuracy and entropy(confidence) with different sens-

ing budget are shown in Figure 3.7. The first location is randomly selected in all three strategies,

thus, the performances are the same for all strategies. Start from the second step, TUN outperforms

other strategies consistently with higher accuracy and less uncertainty.

3.2 Limitation and Outlook

In this work, we present a task-driven sensor placement framework to maximize the information

gain. The proposed framework (TUN) is able to perceive and understand the observation, approx-

imate the conditional distribution of the object, and estimate the information gain pertaining to the

task. In the security screening experiment we demonstrated, TUN outperforms random strategy

and GP strategy consistently. The limitation of the method is the requirement of sufficient data
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and computing resource to train the neural networks. We trained the networks in our two NVIDIA

GPUs(RTX 2080 ti) for 36 hours. On the other hand, it takes seconds to run the trained model in

test time, which has the potential in real-time applications.

Figure 3.7: Accuracy and entropy at different numbers of inquiries for TUN, Gaussian process(GP)
based and random sampling(RS) strategies. The advantages of sensor placement strategies starts at
two observations. The proposed framework, TUN, outperforms GP and RS strategies consistently.
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CHAPTER 4: CONCLUSION

4.1 Summary of Contributions

In conclusion, we have presented 1) the methods to improve temporal resolution in active and pas-

sive range imaging; 2) the method to estimate the object distribution as well as the task-specific

information gain in adaptive sensing(sensor placement) tasks. These methods employ modified op-

timization frameworks and neural networks to surpass the limits of the conventional computational

imaging methods. We summarize our contributions below.

To passively image the high-speed 3D scenes, we propose a novel stereo imaging system

in which the projected high-speed frames on one of the perspectives are modulated by DMD. We

also propose a novel two-step framework to reconstruct the high-speed 3D scenes. In the first

step, the projected high-speed frames from the modulated perspective are reconstructed by TwIST

algorithm. In the second step, the depth of each pixel in the reconstructed high-speed images are

estimated with modified graph cut method. We show the reconstructed 3D frames of a moving

baseball at 800 fps with the cameras operating at 80 fps.

To actively image the high-speed 3D scenes, we propose a novel structured light imaging

system in which the illumination is high-speed pseudo-random binary patterns. Different from the

conventional structured light systems, our system is capable of recording the temporal information

at the frequency higher than the sampling rate of the camera, and the depth information of the

scene. We propose a novel alternating optimization framework to reconstruct the depth of the

scene with the carefully calibrated system. We show the reconstructed 1000 fps 3D frames with

the camera operating at 200 fps.

To maximize the information gain in each step of sensor placement tasks, we propose

a novel two-step framework. In the first step, we build generative neural networks to capture the

distribution of objects conditioned on the observations. In the second step, we build the deep neural
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networks to extract the task-specific information gain from the generated objects. The experiments

on the synthetic dataset of security screening task show that our proposed framework outperforms

random strategy and Gaussian process based strategy in both accuracy and confidence(entropy).

4.2 Future Outlook

We have presented a set of frameworks to overcome the limitations of conventional computational

imaging methods. Future work may include applying the frameworks to other practical applica-

tions. For instance, our range imaging systems in Chapter 2 shows 5-10 folds improvement on

temporal resolution and the capability of 3D imaging. A possible direction is to apply our modula-

tion path and reconstruction framework into camera array systems for high-speed imaging which

inherently records multiple perspectives of the scene. The adaptive sensing framework in Chapter

3 is capable of selecting the most informative location to sense by modeling the distribution of

objects from large amount of data. One possible direction is to apply this framework in brain CT

scanning which is very dose sensitive and is not expensive to obtain sufficient labeled data.
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