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ABSTRACT 

Even though fiber-optic communication systems have been engineered to nearly approach 

the Shannon capacity limit, they still cannot meet the exponentially-growing bandwidth demand 

of the Internet. Space-division multiplexing (SDM) has attracted considerable attention in recent 

years due to its potential to address this capacity crunch. In SDM, the transmission channels 

support more than one spatial mode, each of which can provide the same capacity as a single-mode 

fiber. To make SDM practical, crosstalk among modes must be effectively managed. This 

dissertation presents three techniques for crosstalk management for SDM. In some cases such as 

intra-datacenter interconnects, even though mode crosstalk cannot be completely avoided, 

crosstalk among mode groups can be suppressed in properly-designed few-mode fibers to support 

mode group-multiplexed transmission. However, in most cases, mode coupling is unavoidable. In 

free-space optical (FSO) communication, mode coupling due to turbulence manifests as wavefront 

distortions. Since there is almost no modal dispersion in FSO, we demonstrate the use of few-

mode pre-amplified receivers to mitigate the effect of turbulence without using adaptive optics. In 

fiber-optic communication, multi-mode fibers or long-haul few-mode fibers not only suffer from 

mode crosstalk but also large modal dispersion, which can only be compensated electronically 

using multiple-input-multiple-output (MIMO) digital signal processing (DSP). In this case, we 

take the counterintuitive approach of introducing strong mode coupling to reduce modal group 

delay and DSP complexity. 
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CHAPTER ONE: INTRODUCTION 

Optical fiber communication is the fundamental infrastructure of Internet in contemporary 

society, meeting daily life and industrial requirements of people around the world. There are more 

and more bandwidth-demanding applications, like video streaming, online gaming, things of 

internet, all contributing to the exponentially growing data traffic in the optical fiber. In the past 

several decades, the capacity in the single-mode fiber (SMF) increases by a factor of 10 every 4 

years, which can catch up with fast growing capacity demand of society, as shown in Figure 1.  

 

Figure 1: The evolution of transmission capacity in optical fibers with state-of-the-art 
transmission demonstration [1]. 

However, nowadays the capacity in SMFs gradually approaches the Shannon’s capacity 

limit, which can be represented by [2, 3]: 

( )log 1C W SNR= +                                                         (1.1) 
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where W  is the bandwidth of the channel, and SNR is the signal-to-noise ratio. From Equation 

(1.1), to increase capacity, either bandwidth or SNR needs to be increased. For increasing SNR, 

the direct method is to increase the input power [4]. However, due to the nonlinearity of fiber, the 

input power cannot be too high. The effective area in SMF can be increased by proper index profile 

design, or the intrinsic loss of SMF can be reduced by pure silica core [5], to alleviate this problem, 

bringing larger received SNR. The Erbium-doped fiber amplifier (EDFA) is also an important 

technique to increase fiber capacity [6, 7], and transmission distance, since it can increase SNR by 

amplifying optical signal at the transmitter side, receiver side, or along the transmission fiber, 

making the signal-to-ASE noise the dominating noise rather than the thermal noise [8]. 

Another method to increase capacity is to enlarge the bandwidth of the fiber. Various 

degrees of freedom have been exhausted to increase the bandwidth, including wavelength, 

polarization, quadrature, which are enabled by wavelength-division multiplexing (WDM) [9, 10], 

polarization-division multiplexing (PDM) and high spectral coding with coherent detection [11], 

respectively. The combination of difference degrees of freedom can also enlarge the capacity 

further [12]. The only degree of freedom left is the space, thus space-division multiplexing (SDM) 

gradually acquires more attention from researchers [1, 13-16], which can use spatial modes in few-

mode fibers (FMFs), multi-mode fibers (MMFs), or multi-core fibers (MCFs). 

MCFs can be categorized as uncoupled-core or coupled-core MCFs. Uncoupled-core 

MCFs are similar to SMFs, with a larger core density [17-19], while coupled-core MCFs are 

similar to FMFs, with supermodes rather than core modes as the mode basis [20-22]. And MMFs 

can be also regarded as FMFs with a larger number of modes, so the focus is on FMFs here. 
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Figure 2: Transition from SMF to FMF by increasing the core diameter [14]. 

In step-index fibers, the fiber V number can be used to evaluate the quantity of supported 

modes, defined as  

2 2
1 2

2 ,V a n nπ
λ

= −                                                      (1.2) 

where λ  is the optical wavelength, a  is the core radius, 1n  and 2n  are refractive indices of core 

and cladding. Nowadays the most widely used fiber in optical communication system is the 

standard SMF, whose V number is smaller than 2.405, which means that it can only support the 

fundamental LP01 mode in each polarization. As the V number increases due to larger index 

difference or larger core diameter, the fiber can support more modes, as shown in Figure 2. 

Spatial modes are orthogonal to each other ideally in FMFs, which can deliver different 

signals as independent information channels. However, in realistic FMFs, modes are not perfectly 

orthogonal, due to unavoidable fiber parameter fluctuation, such as index profile fluctuation, 

diameter deviation, and microbending, induced by limited fabrication accuracy or random 

surrounding environment change [23-25]. Those fluctuations would lead to crosstalk between 

different spatial modes, meaning that the received signal of one mode would also include 

information from other modes.  
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Mode crosstalk needs to be effectively managed, to make SDM practical. To address this 

problem, we need to discuss it in different scenarios. In short-reach systems with a small number 

of modes such as intra-datacenter interconnects, even though mode crosstalk cannot be completely 

avoided, crosstalk among mode groups can be suppressed in properly-designed FMFs to support 

mode group-multiplexed transmission without multiple-input-multiple-output (MIMO) digital 

signal processing (DSP). Eliminating DSP is very helpful in short-reach systems, since power 

consumption is a big concern in practical deployment. 

However, in most cases, mode coupling is unavoidable. In free-space optical (FSO) 

communication, mode coupling due to turbulence manifests as wavefront distortions. Since there 

is almost no modal dispersion in FSO, we demonstrate the use of few-mode pre-amplified receivers 

to mitigate the effect of turbulence without using adaptive optics. 

In fiber-optic communication, MMFs or long-haul FMFs not only suffer from mode 

crosstalk but also large modal dispersion, which can only be compensated electronically using 

MIMO DSP after coherent detection. The DSP application-specific integrated circuits (ASICs) 

have been developed for impairment compensation in SMFs, enlarging the capacity of SMFs in 

the past [26]. Similar to PDM, SDM can also use DSP ASICs to recover independent information 

channels, if both amplitude and phase information can be received by coherent detection. Due to 

large velocity differences of different modes, larger equalizers are required in DSP, which will 

increase the complexity and cost of the whole system. In this case, we take the counterintuitive 

approach of introducing strong mode coupling to reduce modal group delay and DSP complexity. 

So far, there are several methods for reducing the group delay spread (GDS), including optimizing 

fiber index profiles and modal group delay compensation [27-29]. However, they are only effective 
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for a small number of modes. The most promising method proposed so far is strong mode coupling. 

When modes are weakly coupled, the GDS increases linearly with the transmission distance. When 

modes are strongly coupled, the GDS increases with the square root of the transmission distance, 

since each mode-division multiplexing (MDM) signal would have a nearly equal probability of 

traveling on different modes averaged over the transmission link [30]. 

In this dissertation, the main focus is on tackling the challenges of mode coupling in SDM 

systems. In chapter 2, FMFs with weak mode coupling is demonstrated, and the relationship 

between effective area of fundamental mode and effective index difference between first two 

modes is also studied. In chapter 3, mode-group multiplexing (MGM) transmission in FMFs is 

demonstrated in short-reach systems. In chapter 4, improving the power efficiency in FSO systems 

with mode coupling from turbulence, is demonstrated, with the help of few-mode pre-amplified 

receivers. In chapter 5, strong mode coupling using long-period gratings (LPGs) is demonstrated 

to reduce modal dispersion in MMFs, to improve the bandwidth of MMFs. In chapter 6, strong 

mode coupling is also demonstrated to reduce group delay spread in FMFs, to reduce DSP 

complexity. Chapter 7 summarizes this dissertation.  
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CHAPTER TWO: FMFS WITH WEAK MODE COUPLING 

2.1  Mode coupling in FMFs 

The optical fiber can guide light as information carrier due to the total internal reflection 

at the core-cladding boundary, since the refractive index of core is a little larger than that of the 

cladding around the core. The number of modes supported in the fiber is determined by the relative 

index difference between core and cladding, as well as the core diameter. Since the refractive index 

difference is small, vectorial fiber modes can be simplified by linear polarization (LP) modes under 

weakly guided approximation.  

In an ideal FMF, spatial modes are orthogonal to each other, so there is no crosstalk 

between different modes, which can be seen from the coupling coefficient calculation [31]: 

(x, y) e (x, y) e (x, y),
4kj k j
wK dxdy ε ∗

∞

= ∆∫∫
 

                                  (2.1) 

where w  is the angular frequency, ek
  e j
  are the transverse components of mode fields labeled k , 

j , and ε∆ is the dielectric perturbation. If there is no or uniform dielectric perturbation, the 

coupling coefficient is zero. It is the foundation of transmitting different signals in different modes 

as distinct channels in FMFs. However, those modes are easily coupled to each other in practical 

FMFs and non-ideal environment, when the dielectric perturbation is not uniform over the cross 

section of fiber, which affects the system performance of FMFs [32-34]. It may be due to fiber 

birefringence, core ellipticity, rotation, magnetic field, bending and twisting, which may also 

induce additional loss [35, 36]. The coupling between modes is also affected by the phase matching 

condition related to the effective index difference between modes, as shown in coupled-mode 

equations of two modes:  
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( )

( )

1
11 1 12 2 2 1

2
22 2 21 1 1 2

d exp

d exp

A iK A iK A i z
dz
A iK A iK A i z
dz

β β

β β

= + −  

= + −  

                                    (2.2) 

where 1A , 2A  are the amplitudes for two modes, 1β , 2β  are propagation constants of two modes, 

and coupling efficiencies 12K , 21K  change as ε∆ . From the coupled-mode equation, the coupling 

coefficients, which vary along the fiber, need to match the phase terms ( )2 1exp i zβ β± −    to 

produce sufficient amplitude change, so the dielectric perturbation or refractive index perturbation 

that meets the phase match condition brings effective mode crosstalk. Since the dielectric 

perturbation spectrum as function of longitudinal spatial frequencies has dominant components at 

low frequencies, increasing the propagation constant difference between modes can reduce the 

mode crosstalk significantly [37, 38]. To achieve that and ensure same number of modes supported 

in the fiber, both large index contrast between core and cladding and small core diameter are 

needed [39]. 

2.2  Effective area and index difference 

In fiber communication systems, large mode effective area benefits the system 

performance due to the reduced nonlinearity [40]. There were designs for large mode effective 

area, however [41, 42], they have limitations in SMFs [39], so FMFs attract more attention [43]. 

For an FMF supporting the same number of modes, increasing effective area needs the reduction 

of index contrast between the core and the cladding, which would reduce the effective index 

difference between modes. From previous section, smaller index difference would bring larger 
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mode crosstalk, so the relationship between effective area and effective index difference needs to 

be investigated. 

 

Figure 3: Effective index difference between the first two modes, as a function of the effective 
area of the fundamental mode, for different core indices with changed core radius for each core 
index, in (a) two-mode step-index fiber, and (b) two-mode graded-index fiber. Step-index fiber 

with 1.45 core index and a large range of core radius is plotted as the reference curve. 

Usually effective areas of higher-order modes are larger than that of the fundamental mode, 

since they are less confined by the core [44]. And nonlinearity is more concerned when the optical 

power is large in long-haul systems, where quasi-single-mode (QSM) transmission plays an 

important role. So the effective area of the fundamental mode is calculated here. In QSM 

transmission, the index difference between the fundamental mode and the first higher-order mode 

is a very important evaluator of the mode crosstalk. For some other applications with graded-index 

(GRIN) FMFs, there are almost equal effective index differences between neighboring mode 

groups [45], so the effective index difference between the first two modes is computed here. 

 Figure 3 shows the effective index difference between first two modes, as a function of 

the effective area of the fundamental mode in the two-mode step-index (SI) or GRIN fibers. For 
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different core indices, core radius is changed in a range to ensure only two modes existing. The 

result of SI fiber with fixed core index of 1.45 and a larger range of core radii is plotted as the 

reference curve. Other curves are all overlapped with the reference curve, indicating that the 

multiplication of the effective index difference and effective area is a constant, no matter how the 

refractive index is varying. Figure 3(b) shows that the constant value for GRIN fiber is very close 

to and a little smaller than that for SI fiber. 

The multiplication of effective index difference and effective area seems to be a constant 

value for different fiber index profiles, which can be verified analytically. The Helmholtz equation 

for electrical field E  in a GRIN fiber can be written as  

2 2
2 2 2 2 2 2

0 02 2E ( ) 0.n k E E n k E
x y

β
 ∂ ∂

∇ + = + + − = ∂ ∂ 
                           (2.3) 

where n  is the refractive index represented as ( )22 2 2
1 12n n n r a= − ∆ , 2 2 2

1 2 12n n n∆ = − , a  is the 

core radius, 1 2n n  are refractive indices of core/cladding, 0k  is the wave number, β  is the 

propagation constant. The equation can be also written as [46] 

( )
22 2

2 2 2 21
12 2 2

2 ( ) .kE x y E k E
x y a

β
  ∆∂ ∂

− + + + = − ∂ ∂ 
                               (2.4) 

where 2 2
1 1 0k n k= . The solutions can be found as [47] 

( )
2

2 2 1
1 2

22 1 .x y
kk m m
a

β ∆
− = + +                                          (2.5) 

( ) ( )2
1 1 1

2 2 21 1 .x y x yk k m m k m m
a a

β ∆ ∆
= − + + ≈ − + +                  (2.6) 

So the effective index difference between two neighboring modes is  
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0

2n
ak
∆

∆ =                                                            (2.7) 

The fundamental solution of the electrical field can be represented as the Gaussian function 

2 2

22
0

x y

E Ae σ
+

−
= , where σ  is the standard deviation of the Gaussian function as 2

1

=
2

a
k

σ
∆

 [47, 48]. 

The integral of a Gaussian function can be written as 

2 2

2 22 d 2 ,
x y

Ae xdy Aσ π σ
+

−
=∫∫                                           (2.8) 

and the effective area of LP01 is calculated as 

( )22

2
4

1

2 =2 .
2eff

E dxdy aA
kE dxdy

πσ π= =
∆

∫∫
∫∫

                                (2.9) 

The multiplication of the effective area and index difference thus can be calculated as  

2
0

0 11

22 .
22eff

aA n
ak nk

λπ
π

∆
∆ = =

∆
                                     (2.10) 

It’s a constant with fixed core index and wavelength. When the constant is divided by the 

wavelength, the formula is only related to core index in the following form  

2
0 1

1
2

effA n
nλ π

∆
=                                                      (2.11) 

The value would be 0.1098 for 1.45 core index. The fitting curve is plotted in Figure 4(a), 

showing coefficient fitting result of 0.1097, which is almost same as the analytical result.  
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Figure 4: (a) Effective index difference vs. effective area curve fitting for graded-index fiber. (b) 
The multiplication constant as a function of wavelength for SI or GRIN fibers with 2 or 10 

modes. 

To verify the formula 2
0

effnA
λ

∆
 is constant at different wavelengths, the numerical simulation 

results as functions of wavelength for SI or GRIN fibers with 2 or 10 modes are plotted in Figure 

4(b). The curves for 2-mode fibers show that the simulated value decreases slowly as the 

wavelength increases, because it is closer to the cut-off condition at longer wavelength. Far away 

from the cut-off condition, the curves of SI or GRIN fibers with 10 modes demonstrate nearly 

constant values at different wavelengths. 

The previous simulation shows that the multiplication of effective index difference and 

effective area is always a constant for common SI and GRIN FMFs. To generalize the conclusion, 

various fibers with different index profiles shown in Figure 5(a) are simulated, including two-step 

fiber, GRIN fiber with a trench outside the core, triangular-size profile, and index profile 

proportional to the reversed LP11 intensity profile. The curves in Figure 5(c) show that the 

constants for those index profiles are always smaller than that of the SI fiber.  



12 
 

MCFs are also considered, with first supermode profiles for 3-core or 6-core fibers shown in 

Figure 5(b). The curves of effective index difference vs. effective area are plotted in Figure 5(d). 

Here the effective index difference is between the first two supermodes, and the effective area is 

for the first supermode. The results also verify the existence of the limit of the constant no matter 

what the index profile is. 

 

Figure 5: (a) Index profiles for two-step SI fibers (high or low index for the inner step), GRIN 
fiber with a trench, a triangular-index fiber, and a fiber corresponding to the reversed LP11 mode 
profile. (b) Mode profiles of the first supermodes in the 3-core or 6-core fibers. Effective index 
difference vs. effective area for (c) different index profiles in single-core fibers, and (d) MCFs. 
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Figure 6: (a) Effective index difference of the 1st and 4th supermodes, and (b) Effective index 
difference of the first two supermodes vs. the effective area of 1st supermode, for different core 

distances. 

For FMFs and MCFs with various index profiles, the multiplication of effective index 

difference and effective area cannot bypass the limit. However, in a 3-core MCF, if the first 3 

supermodes have similar effective indices, the effective index difference between them and the 

4th supermode may be larger than that limit, for certain effective area of the 1st supermode. The 

simulated index differences between the 1st supermode and 4th supermode or 2nd supermode with 

different core-to-core distances, are plotted in Figure 6(a) and 6(b), respectively. Figure 6(a) shows 

that the multiplication of effective index difference and effective area can be larger than the 

previous limit. To regard the first 3 supermodes as a mode group, the index difference between 

them needs to be very small, verified in Figure 6(b). When the core-to-core distance is larger, the 

index difference between them is smaller, because 3 cores can be regarded more as separate cores, 

rather than a coupled ‘supercore’ [49]. The results would benefit the nonlinearity study in fiber 

transmission system. In this case, both large effective mode area and large effective index 

difference can be achieved, with the cost of reduced channel number. However, for some 
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applications like QSM transmission, only one signal channel is needed, so the proposed supermode 

fibers that break the limit are promising. 
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CHAPTER THREE: MGM TRANSMISSION IN WEAKLY-COUPLED 
FMFS 

3.1  Low-crosstalk mode multiplexer 

In addition to low-crosstalk FMFs, low-crosstalk mode (de)multiplexers are also needed, 

for MGM transmission, since they combine modes carrying different optical signals in the 

transmitter side and separate modes in the receiver side, to make sure that fiber can transmit 

multichannel information effectively. There are two categories of mode multiplexers based on 

their mechanisms: transverse field profile matched multiplexers and longitudinal propagation 

constant matched multiplexers.  

One multiplexer based on matching longitudinal propagation constants is the fiber-based 

directional couplers [50, 51]. The mode in SMF can be coupled into the higher-order modes in 

FMF if their propagation constants are almost the same. However, it is hard to purposely couple 

SMF mode into one certain degenerate mode in normal directional couplers. One method is to use 

structured directional coupler pairs to multiplex degenerate modes [52], as shown in Figure 7(a). 

The bandwidth of directional coupler is also limited. 

 

Figure 7: (a) Structured directional coupler for mode MUX, and (b) MDM based on mode 
conversion in combination with passive combining [14]. 

(a) (b)
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Mode multiplexers based on matching transverse mode field profiles, are usually free-

space components. The simple one is mode conversion in combination as shown in Figure 7(b). 

Higher order modes can be converted by fixed phase plates or tunable spatial light modulators 

(SLMs) by matching spatial phase distribution [53-55]. However, mode conversion combination 

multiplexers have large loss due to passive combining loss of phase plates or SLMs, as well as 

coupling loss between free space and fiber. 

Spot-based multiplexer is another type of multiplexer based on matching transverse mode 

field profiles [56]. It directly matches the complex mode profile to several SMFs, the minimum 

number of which equals to the total number of fiber modes. The insertion loss is smaller without 

passive combining loss at the beam splitters. 

 

Figure 8: Schematic of photonic lantern [57]. 

The photonic lantern (PL) is the integrated-optics embodiment of the spot-based coupler, 

with an adiabatic transition region between SMFs and FMF [57]. A pair of PLs is shown in Figure 

8. A PL consists of several SMFs encapsulated inside a low refractive index glass capillary, which 

is tapered to match the transmission FMF. The mismatch between mode profiles of sparse spots 

and FMF can be slowly eliminated by the adiabatic tapered transition region. Mode profile of 

sparse spots from SMFs is first transformed into a supermode of the MCF in the middle stage and 
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then into the mode profile of the FMF. The ideal PL has a unitary coupling matrix which means 

no loss of this device. However, the arrangement of cores should be optimized carefully to achieve 

lossless coupling between SMFs and FMF. The PL can be symmetric or mode (group) selective. 

In a symmetric PL, the optical power from one input SMF is coupled into different modes in the 

output FMF since SMFs and cores in the adiabatic transition region are identical all the time. A 

mode selective PL has dissimilar input fibers and cores in the adiabatic transition region so that 

each input fiber only launches one mode (group) at the output FMF. In this case, MIMO DSP may 

be eliminated, together with low-crosstalk FMFs. 

 

Figure 9: Schematic of micro-structured preform with (a) double-clad PL, and (b) triple clad PL 
[58]. 

For the PL supporting more than 6 modes, the fabrication is more complex, since it is 

harder to place SMFs into the right positions by hand. Using preforms is a method to facilitate the 

process of PL fabrication. For N modes, the tapering length is proportional to N2, which also 

increases the fabrication difficulty. Meanwhile the preforms with larger cladding material would 

also make the fabrication more complex. Double-clad or triple-clad micro-structured preforms can 
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alleviate the adiabaticity complexity as shown in Figure 9 [58, 59], since they can reduce the rate 

of change of mode field, thus decreasing the adiabaticity requirement as shown as 

2
1

1 2

2 1dA
z

π
β β

∂Ψ
Ψ

− ∂∫ 

                                               (3.1) 

where 1β , 2β  are propagation constants for two modes, 1Ψ  and 2Ψ  are electrical fields of two 

modes. When the formula is very small, there is adiabatic mode conversion during the fiber 

propagation. On the contrary, nonadiabaticity means mode coupling. 

3.2  MGM transmission 

With low-crosstalk FMFs and mode multiplexers descripted in previous sections, MIMO-

less MGM becomes feasible. In FMFs, degenerate modes are easily coupled to each other along 

transmission [60], so they need to be regarded as one channel and collecting power from all 

degenerate modes is essential for maintaining stable SNR or bit error ratio (BER). Stable 3x10 

Gb/s MGM transmission with direct detection, and the advantages of receiving all degenerate 

modes in each mode group at the receiver, are demonstrated experimentally here [61]. The SI FMF, 

which was designed with large effective index difference between mode groups, and low-crosstalk 

mode-selective PLs as (de)multiplexers used in the work enable a transmission distance of 20 km, 

much longer than previous MGM transmission demonstrations [62, 63]. 
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Figure 10: (a) Refractive index profile of FMF, and effective indices of LP modes. (b) Intensity 

profiles of each of the supported LP modes. 

The FMF was specifically designed to increase the effective index difference between the 

mode groups, reducing coupling between them. The FMF we used in this work supports 6 spatial 

modes at 1550 nm [64], and we used the first 5 modes as 3 mode groups to perform the 

transmission experiment. Figure 10(a) shows the index profile and effective indices of all 

supported modes; the effective index differences between mode groups is ≥ 2.3 × 10−3 . 

Simulated mode intensity profiles are also shown in Figure 10(b). 

Low-crosstalk mode multiplexer and mode demultiplexer are required to launch and 

receive different modes in the FMFs. Different components can be used as mode (de)multiplexers, 

among which the PL is lossless in theory, and has been shown to achieve excellent mode selectivity 

[65, 66]. A PL consists of several SMFs encapsulated inside a low refractive index glass capillary, 

which is tapered to match the transmission FMF. SMFs with different core sizes are used to 

fabricate a mode-selective PL, and the propagation constant of each SMF is matched to that of the 

corresponding mode in the FMF through an adiabatic taper. 
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Figure 11: Measured impulse response for (a) PL 1, (b) PL 2, and (c) PL 3. Each PL is spliced to 

a 20 km FMF. 

Three PLs were used in the work: one as the mode multiplexer, the second one as the mode 

demultiplexer, and the last one as the degenerate mode combiner at the receiver. Impulse responses 

of the PL spliced with FMF were measured to characterize the mode crosstalk of the PLs and the 

FMF, shown in Figure 11. A short pulse was launched into one input SMF of each PL to excite 

one mode in the FMF, and multiple pulses appeared due to mode crosstalk and group delays (GDs). 

After 20-km propagation, the mode crosstalk could be characterized from the amplitudes of the 

pulses at different GD times. The first PL has mode-group crosstalk lower than -9 dB at all ports 

except LP21a, so it was used as the mode multiplexer, and LP21b was used as the input port for LP21 

group transmission. The second PL has mode-group crosstalk lower than -9 dB at all ports, and it 

was used as the mode demultiplexer. The third PL has 5 working ports and mode-group crosstalk 

lower than -6.5 dB, which was used as the degenerate mode combiner after the mode demultiplexer. 

Stable 3x10 Gb/s MGM transmission with direct detection was demonstrated using the 

setup shown in Figure 12. A 10 Gb/s data stream of length 231-1 was split into three paths and 

decorrelated with different time delays. Each signal was connected to one SMF of the multiplexer 

PL to excite the corresponding mode group. After propagation through the 20-km FMF, the MGM 

signal was demultiplexed by the second PL. LP01 mode is directly detected by a receiver for BER 

(a) (c)(b)
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measurement, while two degenerate LP11 and LP21 modes are combined through the third PL to be 

detected by the receiver. The propagation delays of degenerate modes were compensated by 

adjusting the length difference of input SMFs between the second and third PLs. 

 
Figure 12: Experiment setup for MGM transmission. BERT: bit error ratio tester; EDFA: 

erbium-doped fiber amplifier; VOA: variable optical attenuator; PC: polarization controller; PL: 
photonic lantern; PD: photodetector. 

 
Figure 13: (a) Measured BERs as functions of transmitted power for detecting only one of 

degenerate modes or both degenerate modes of the LP11 and LP21 group. (b) Measured BERs as 
functions of received power for detecting only one of degenerate modes or both degenerate 

modes of the LP21 group for two different transmitting laser polarizations. 

Before presenting the results of 3-mode-group transmission, the advantages of combining 

degenerate modes are first shown in Figure 13. Figure 13(a) plots the BERs as functions of 

transmitted power for receiving only one or both degenerate modes of LP11 or LP21 mode group. 

It shows, as expected, that combining degenerate modes can improve the sensitivity by about 3 dB. 

In addition, combing degenerate modes can also alleviate polarization fluctuations. As shown in 
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Figure 13(b), as the polarization of the transmitter laser changes, there is always one degenerate 

mode with large power penalty, while combing degenerate modes removes this power penalty.  

 

 
Figure 14: Measured BERs as functions of transmitted power for 3 mode groups. Open symbols 
represent separate mode-group transmission, and solid symbols represent MGM transmission. 

Figure 14 plots the measured BERs when each mode group was separately transmitted or 

simultaneously transmitted. BERs below 10-12 could be achieved for separate transmission of each 

mode group. There is about a 10 dB power penalty between LP01 and LP11 or LP21, mainly due to 

mode-dependent loss (MDL) of the FMF and PLs. Variable optical attenuators (VOAs) were used 

to equalize the BERs of the three mode groups in MGM transmission. The measured BERs for 

MGM transmission were worse due to mode crosstalk in the FMF and the PLs, but can still reach 

the threshold for 7% FEC. Better PLs or other mode multiplexers with lower modal crosstalk are 

expected to improve the performance further. 
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CHAPTER FOUR: MODE COUPLING IN FREE SPACE WITHOUT  
MODAL DISPERSION 

In most cases, mode coupling is unavoidable. When there is almost no modal dispersion 

and only one signal channel, collecting the power of all modes can improve the receiver sensitivity. 

That’s the case in FSO. FSO communication offers an orders-of-magnitude increase in 

transmission capacity compared to that of the radio-frequency technology. Unfortunately, 

atmospheric turbulence distorts the wavefront, resulting in spatiotemporal amplitude and phase 

fluctuations at the detector [67]. Current FSO communication is dominated by the use of adaptive 

optics (AO) to correct wavefront distortions, followed by single-mode (SM) optically pre-

amplified receivers, as shown in Figure 15(a). If the wavefront correction is perfect, such a system 

can restore the ideal receiver sensitivity at 38.3 photons/bit for on-off keying (OOK) modulation 

[46]. However, AO FSO systems are expensive and have large size, weight, as well as power 

consumption. Yet, AO FSO systems still leave much to be desired in terms of performance and 

reliability. The splitting loss for wavefront sensing dictates that the above theoretical sensitivity 

limit cannot be achieved in practice. Furthermore, a single AO cannot correct both phase and 

amplitude distortions associated with moderate and strong turbulence. Since reliability is the key 

to widespread adoption of FSO communication, it is highly desirable to develop alternative 

approaches to combat turbulence and improve FSO reliability [68]. 

Figure 15(b) illustrates the schematic of our proposal, in which the complicated AO and 

the SM photodetector are replaced by a few-mode (FM) amplifier, which became available very 

recently due to advances in SDM, and the FM photodetector, respectively [69, 70]. The incoming 

distorted wavefront can be decomposed into the fundamental Gaussian mode and high-order 
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modes; the stronger the turbulence the more spatial modes. Fibers with larger numerical apertures 

(NAs) and/or larger cores can reduce coupling loss, so the signal contained in the distorted 

wavefront can be received in its entirety by a FM photodiode without pre-amplification. However, 

such a receiver would lose advantages of optical pre-amplification. Specifically, the sensitivity of 

receivers based solely on a FM photodiode will be thermal noise limited while that of an optical 

pre-amplified receiver will instead be limited by noises associated with amplified spontaneous 

emission (ASE). For SM OOK receivers, the thermal noise-limited sensitivity is >6000 photons/bit 

while the signal-ASE beat noise-limited sensitivity is 38.3 photons/bit at 10 Gb/s [71]. Therefore, 

the FM pre-amplifier in Figure 15(b) is essential for constructing a simplified receiver while 

maintaining high sensitivity. 

 
Figure 15: Schematic of FSO using (a) adaptive optics, (b) a FM pre-amplified receiver with (c) 

its sensitivity as a function of the number of modes. 
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4.1  Noise statistics and sensitivity of FM pre-amplified PD 

We first obtain the sensitivity of FM pre-amplified receivers based on the noise statistics 

of the photocurrent. For a FM pre-amplified photodetector, the total optical signal can be written 

as  

0

0

2
,

1
( , , t) ( , ) m

M
j v t j

v m m
m

S x y E x y e π θψ +

=

=∑                                         (4.1) 

where M  is the number of modes received by the detector, 
0 ,v mE  is the optical field amplitude for 

mode m in the signal, ( , )m x yψ is the mode profile of mode m, 0v  is the optical frequency, and mθ  

is the phase of mode m. Similarly, the total noise can be written as  

0
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1
( , , t) ( , ) e

M
j v t

v m m
m

e x y C x y πψ
=

=∑                                             (4.2) 

where 
0 ,v mC  is the optical field amplitude of the noise in mode m. Assuming that the electrical filter 

following square-law photodetection is an ideal integrate and dump circuit, the decision voltage is 

given by [71, 72] 

( ) ( ) 2

0

1(t) , , , ,
T

v dxdy S x y t e x y t dt
T

= +∫ ∫∫                                    (3.3) 

where T  is the bit period (or the symbol period for multilevel modulation formats). Since all the 

mode components are orthogonal to each other, the decision voltage in Equation (4.3) can be 

written as  
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where 
0 ,rv mC  and 

0 ,iv mC  are the in-phase (real) and quadrature (imaginary) noise components in 

mode m, which are zero-mean independent Gaussian random variables with a variance equal to 

noise power in mode m. Assuming that the photon number in each mode is the same, the decision 

voltage obeys the noncentral chi-squared distribution [73], with variance 2 = spn h G Tσ υ , 

noncentrality parameter 
0

2 2
,

1

4
E

M
p

c v m
m

n h G
m

T
υ

=

= =∑ , and degree of freedom 2n pM=  ( 1p =  when 

polarization filtering is used, otherwise 2p = ), where spn  is the population inversion factor 

( 1spn ≥ ) of the optical amplifier, pn  is the average received photon number per bit period, h  is 

the Planck constant, and G  is the gain of the amplifier, which is assumed to be the same for all 

modes.  

The probability density function (pdf) of noncentral chi-squared distribution is given by 

[73] 
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where /2 1nI −  denotes the modified Bessel function of order / 2 1n − . After normalization, the 

variance is 2
spnσ =  and the noncentrality parameter is 2 4c pm n= . Thus, the decision voltage of 

the ‘1’ and ‘0’ bits with polarization filtering can be written as 1( 2 , , 4 )sp pP x M n n  and 

0 ( 2 , ,0)spP x M n . The BER of intensity modulation with direct-detection (IMDD) is given by [71]  

( )thre

thre
1 00

1 (x)dx (x)dx
2

x

x
BER P P

∞
= +∫ ∫                                       (4.6) 
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where the decision threshold threx  is determined by equating 1 thre 0 thre( ) ( )P x P x= . The BER as a 

function of the received photon number per bit can be plot numerically, thus the sensitivity for 

achieving a certain BER can be obtained. Figure 15(c) shows the sensitivity at a BER of 91 10−×  

as a function of the number of modes. 

For SM pre-amplified receivers, signal-ASE beat noise dominates over ASE-ASE beat 

noise. As the number of modes supported by the FM amplifier increases to accommodate moderate 

and stronger turbulence, the contribution of ASE-ASE beat noises increases even though the 

signal-ASE beat noise for a fixed total signal power is independent of the number of modes due to 

orthogonality of spatial modes. Nevertheless, as can be seen from Figure 15(c), the sensitivity 

increases sub-linearly with the number of modes. The reason is that as the required number of 

photons/bit increases with the number of modes in the receiver, signal-ASE beat noise continues 

to dominate over ASE-ASE beast noise in the FM pre-amplified receivers. As a result, the 

sensitivity of a 50-mode (moderate turbulence) pre-amplified receiver has a sensitivity of 75 

photons/bit, which represents a <3 dB penalty compared to an ideal SM pre-amplified receiver.  

In the analysis above, we also assume that the gain for each mode is the same. Optimally, 

a FM pre-amplified receiver should adjust the gain of each mode to be proportional to the power 

contained in that mode, similar to the principle of maximum-ratio combining [74]. However, this 

would entail a complicated amplifier design and control mechanism, which is counter to the desire 

for simplicity and reliability. In the experiments to follow, we take the approach of ensuring 

equalized modal gain to balance sensitivity, simplicity and reliability. 
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4.2  FSO experiment 

We now describe our experimental results of FSO communication using the proposed FM 

pre-amplified receiver, in comparison with a SM pre-amplified receiver without AO, through an 

FSO channel with turbulence satisfying the Kolmogorov distribution. The schematic of the 10-

mode cladding-pumped EDFA used in the experiment, shown in Figure 16(a), has an Er-doped 

fiber (EDF) of core diameter 26 µm which can support 42 spatial modes for equalizing the gain of 

the 10 lowest-order modes [75]. The FM EDF has an outer cladding with lower refractive index 

and an inner cladding with higher refractive index. Pump light coming from a multi-mode laser 

diode (MMLD) is coupled into the inner cladding of the EDF using side pumping. To do so, we 

spliced the MMF pigtail of the MMLD to a coreless fiber and down tapered the coreless fiber from 

125 μm to 20 μm in a tapering length of 30 mm. At a pump power of 6.6 W, the average small-

signal gain of the amplifier is 15 dB and the mode dependent gain (MDG) is less than 2 dB. 

 
Figure 16: (a) Schematic of the FM preamplifier. (b) Phase function of the phase plate emulating 
turbulence. (c) Measured BERs as functions of transmitter power for SM and FM pre-amplified 

receivers. 
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To emulate turbulence with a Kolmogorov distribution, we fabricated phase plates by 

repeatedly spray-coating glass substrates with acrylic [76, 77]. We measured the phase structure 

function ( ) ( ) ( )( )2
D r r r rϕ ϕ′ ′= − +

  

, where ϕ  denotes the local phase, using phase-shifting 

interferometry, and r  is the distance between two phase positions. The Kolmogorov model has 

the specific form of the phase structure function ( )
5/3

0

6.88 rD r
r

 
=  

 
, where 0r  is the Fired 

parameter representing the coherence length. We subsequently calculate ( )3 5D r  as a function of 

r . The linear relationship shown in Figure 16(b) validates the Kolmogorov distribution of the 

phase plates. For the phase plate that we used for our FSO experiment, 0r  is calculated to be 5 mm. 

A 10 Gb/s OOK signal beam from a SM transmitter is expanded into a diameter d  around 

1 cm and propagated through the phase plate, resulting in wavefront distortion of approximately 

±4π across the beam. BERs were measured at different transmitter powers as shown in Figure 

16(c). The results indicate that the 10-mode pre-amplified receiver provided a 6 dB gain in power 

budget over the SM pre-amplified receiver. 

We now present the statistical property of the receivers based on simulations. In Figure 

17(a) we plot the coupling losses of the SM and FM receivers as functions of 0d r  for a fixed 

beam diameter of 1 cm, where different 0d r  values represent different turbulence levels. At each 

0d r  value, we generate 200 wavefront distortions that follow the Kolmogorov model. The shaded 

region represents the standard deviation of power fluctuation for different realizations of each 

turbulence condition. It is observed that the average loss and received power fluctuation for the 

10-mode receiver are much smaller than those for the SM receiver. In Figure 17(b), we combined 



30 
 

the results in Figures 15(c) and 17(a) to plot the gain in power budget for the FM pre-amplified 

receiver over that of the SM pre-amplified receiver as a function of the number of modes. The 

power budget for each case is set to ensure that the probability that the received power is below 

the sensitivity of the receiver is less than a desired outage probability. Based on the limited number 

of statistically realizations used in our simulation, we set the outage probability to 15.9%, that is, 

the received power is at most one standard deviation below the mean. As the number of modes 

increases, the (standard deviation of) received power (decreases) increases, which improves 

system performance. In the meantime, the receiver noise (sensitivity) increases (deteriorates). 

These two opposing dependences result in the existence of an optimum number of modes for each 

turbulence level. 

 

Figure 17: (a) Coupling loss of a distorted wavefront into a SM and FM fiber, as a function of 
0d r  and (b) Power budget gain of FM over SM pre-amplified receiver as a function of the 

number of modes. 

4.3  Comparison with adaptive optics 

As shown in previous section, FM pre-amplified receivers can increase the link power 

budget despite a penalty in received sensitivity as compared to that of SM pre-amplified receivers. 

(a) (b)
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This is because FM pre-amplified receivers can reduce the coupling loss to a larger degree than 

the penalty in sensitivity. As mentioned previously, adaptive optics is widely used to compensate 

wavefront distortions. It would be informative to compare the coupling efficiencies of distorted 

wavefronts into a FM pre-amplified receiver without AO and a SM pre-amplified receiver with 

AO. As shown in Figure 15, a lens is used to focus the free-space beam onto the facet of the fiber, 

and the focal length of the lens or the magnification of the imaging system affects the coupling 

efficiency [78]. For coupling a uniform field into the fiber, an optimum magnification can be 

calculated [79], which was adopted when simulating the performance of AO. When the turbulence 

level increases, the number of spatial modes contained in the distorted wavefront and in the 

receiving FMF also increase. In the meantime, the effective areas of free-space modes and fiber 

modes scale differently. As a result, an optimum magnification exists for coupling a certain 

number of free-space modes into the receiving FMF. For the results presented below, an optimum 

magnification corresponding to the number of free-space modes was used for simulating the 

performance of the FM pre-amplified receiver. This is reasonable because FSO systems will be 

designed for the worst-case scenario, i.e., the largest number of modes.  

For AO based on deformable mirrors (DMs), Zernike modes are widely used to decompose 

the distorted wavefront when the aperture is circularly symmetric [80]. This is because the 

convergence speed is faster when the Zernike coefficients instead of the entire pixelated data from 

the wavefront sensor are used to control all DM actuators [81]. So simulating coupling efficiency 

as a function of the number of corrected Zernike modes is very relevant. The results of coupling 

efficiency as a function of the number of corrected Zernike modes for SM fiber with AO or the 

number of fiber modes for the FMF without AO are shown in Figure 18, corresponding to weak, 
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moderate and strong turbulence, respectively. For AO, we include 1) ideal AO, in which wavefront 

distortion up to a certain order of Zernike modes are completely corrected, and 2) DM AO using 

a 12x12 deformable mirror. The input wavefront is generated using the power spectral density for 

turbulence in Kolmogorov’s model [82]: 

( ) 5/3 11/3
00.023rκ κ− −Φ =                                               (4.7) 

where κ  is the spatial frequency. All results in Figure 18 are averaged over 20 realizations with 

the same 0d r  values. 

 
Figure 18: Coupling efficiencies using ideal AO, DM AO, or the FM pre-amplified receiver, 

with different levels of turbulence for  (a) 0 =2d r ; (b) 0 5d r = ; (c) 0 15d r = . The intensity is 
assumed to be uniform across the beam. 

Under weak atmospheric turbulence ( 0 =2d r ) in Figure 18(a), all cases have similar 

coupling efficiencies for a small number of corrected Zernike modes or fiber modes (N<10).  For 

a larger number of modes, the coupling efficiencies for ideal AO and DM AO have a rather small 

difference, and FM pre-amplified receiver outperforms AO. Both AO approaches yield similar 

results because the distorted wavefronts under weak turbulence largely consist of lower-order 

Zernike modes. Under such conditions, the fitting errors using DM are small. The FM pre-

amplified receiver can outperform AO because a superposition of a large number of fiber modes 

can match the uniform intensity across the beam, in addition to the distorted phase, while AO can 

only match the phase distortion. Under moderate atmospheric turbulence ( 0 =5d r ) in Figure 18(b), 
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the differences in coupling efficiency between the two AO approaches become larger, since fitting 

errors for higher-order Zernike modes become larger using DM AO [83]. The FM pre-amplified 

receiver can outperform ideal AO for a large number of modes (N>40). This is because the mode 

spectrum in the fiber-mode basis is more spread out compared with Zernike modes. Under strong 

atmospheric turbulence ( 0 =15d r ) in Figure 18(c), the differences in coupling efficiency between 

ideal AO and DM AO become even larger, and the FM pre-amplified receiver cannot outperform 

ideal AO. However, for all turbulence levels, the FM pre-amplified receiver can always outperform 

AO using a 12x12 deformable mirror. 

 
Figure 19: Coupling efficiencies using ideal AO, DM AO, or the FM pre-amplified receiver 
including (a) the effects of phase distortion only, (b) the effects of both phase and amplitude 

distortions for an FSO system with a propagation distance of 1 km and 2
nC  value of 1210− . (c) 

The corresponding reductions in coupling efficiency due to intensity fluctuations across the 
beam. 

The above simulations are based on the assumption that there is only phase distortion, 

which is only valid for weak atmospheric turbulence [84]. We now include the effect of intensity 

fluctuation due to strong atmospheric turbulence. In particular, we investigate the effects of 

turbulence on an FSO system with a range of 1 km and a 2
nC  value of 1210− , which exists 

frequently near ground in the middle of the day. The Fried parameter 0r  is calculated to be 0.89 

cm [76] and the corresponding 0d r  value is 5.7 for a 2-inch receiving aperture. The intensity 
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correlation length 0ρ  can be calculated using 0 0= / 2.1rρ , which is valid for the high 2
nC  value 

and scintillation index [85]. 

Under the above turbulence condition, the coupling efficiencies as functions of the number 

of corrected Zernike modes or fiber modes are shown in Figure 19(b). The coupling efficiencies 

with the same phase distortions but ignoring intensity fluctuations are plotted in Figure 19(a). The 

reductions in coupling efficiency due to the presence of intensity fluctuation for three cases are 

also shown in Figure 19(c). The reductions in coupling efficiencies using AO are larger, since AO 

can only compensate distorted phase while the FM pre-amplified receiver is tolerant to both phase 

and amplitude distortions.  

In addition, perfect wavefront sensing has been assumed in above simulations for AO. 

However, in practice, the accuracy of Shack-Hartmann wavefront sensors degrades severely for 

moderate and strong turbulence due to scintillations [86]. Interferometric wavefront sensors are 

required in this case [82, 87], but are not yet commercially available. Turbulence can also cause 

beam wandering and associated fluctuations in received signal. An additional pointing and tracking 

system will be needed for both the FM pre-amplified receiver and the SM receiver with AO [88]. 

In conclusion, we propose and demonstrate FM pre-amplified receivers for FSO to achieve 

high sensitivity, simplicity and reliability by taking advantage of recent advances in SDM. In this 

paper, only results for OOK are presented, but the technique can be easily extended to other direct-

detection modulation formats, such as differential phase-shift keying (DPSK). Even though multi-

subaperture based digital coherent detection can potentially combat turbulence [89], the 

implementation is complex and costly. Comparison with adaptive optics using deformable mirrors 

also shows the coupling-efficiency advantage of the proposed method. The above reasons suggest 
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that the technique presented here likely represents an advantageous, practical method of combating 

turbulence in FSO.  
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CHAPTER FIVE: MODE COUPLING IN MMFS WITH  
LARGE MODAL DISPERSION 

MMFs and long-haul FMFs not only suffer from mode coupling but also large modal 

dispersion. When there are only one signal channel and simple IMDD like in MMF systems, large 

modal dispersion will bring inter-symbol interference, deteriorating signal performance. When 

there are multiple signal channels and coherent modulations, MIMO DSP can compensate the large 

modal dispersion. However, the DSP complexity is still proportional to the modal dispersion. So 

in both cases, modal dispersion or GDS needs to be managed and reduced effectively. 

5.1  Strong mode coupling in MMFs 

So far, several methods for reducing the GDS have been proposed. They include optimizing 

fiber index profiles [90], akin to dispersion-shifted fibers, and modal group delay compensation 

[29], akin to chromatic dispersion compensation in SMFs. However, both of these methods are 

effective only for a small number of modes [91]. The most promising method proposed so far is 

strong mode coupling [92, 93]. When modes are weakly coupled, the GDS increases linearly with 

the transmission distance. When modes in an FMF are strongly coupled, the GDS increases with 

the square root of the transmission distance. This is because each MDM signal would have a nearly 

equal probability of traveling on different modes averaged over the transmission link. A 

straightforward approach of introducing strongly mode crosstalk is to use a scrambler sandwiched 

between a mode multiplexer (MUX) and a mode demultiplexer (DMUX) [94]. This approach not 

only is expensive but also likely incurs losses much higher than what is required as described 

below. 
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Traffic in datacenters has dramatically increased in recent years to constitute a dominant 

fraction of the overall communication traffic [95]. Within datacenters, transceivers based on 850 

nm multi-mode (MM) vertical-cavity surface-emitting lasers (VCSELs) and GRIN MMFs 

currently represent the lowest-cost solution for short-reach applications. However, as line rates of 

datacenter traffic increase, VCSEL-based MMF links are increasingly threatened by SMF links so 

much so that Facebook has decided to eliminate MMFs in its new datacenters.  The reasons are 

twofold. First, high-speed VCSELs, although technically feasible [96], have lower output powers 

and are expected to be more expensive. Second, perhaps more importantly, high line rates call for 

the use of large-bandwidth OM4 fibers, with manually-selected optimized refractive-index profiles 

[97], which are about 4 times more expensive than SMFs. Several methods have been proposed to 

reduce the GDS and improve the bandwidth of GRIN MMFs, for example, using dispersion-

compensated MMFs [98]. However, all these methods are inflexible and complicated, therefore 

expensive as well.   

Strong mode mixing is another method to reduce the GDS and improve the bandwidth of 

MMFs [92, 99]. When mode groups in MMFs are strongly coupled, the majority of a signal pulse 

would have travelled on all mode groups with nearly equal probability, thus reducing GDS due to 

modal dispersion [30, 100]. The reduction of GDS alleviates inter-symbol interference and thus 

improves the BER performance at the receiver. Taking advantage of the unique distribution of the 

effective indices of parabolic GRIN MMFs, we propose to use one uniform LPG with a fixed 

grating period to achieve strong coupling among all mode groups [101]. The LPGs were placed 

along the MMF with approximately uniform spacings, leading to reductions in GDS. Theoretically 

the GDS is proportional to 1 N  (where 1N −  is the number of LPGs) when the total length is 
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the same [30]. We present experimental results demonstrating the conversion of an OM3 MMF 

(300 m at 10 Gb/s [102]) to an OM4 MMF (400 m at 10 Gb/s [102]) with a negligible excess loss 

of 0.2 dB using simple mechanical LPGs. The proposed approach can benefit from more densely 

populating LPGs along the fiber. These fibers can be easily manufactured by inscribing LPGs 

concurrent with fiber drawing [103]. 

5.2  Experimental setup and results 

We measured the performance of the MMF fibers using the experimental setup as shown 

in Figure 20(a). An evaluation board (EVB) was used as the electrical interface for the VCSEL-

based MM transceiver. A bit error rate tester (BERT) was used to generate a 10 Gb/s pseudo-

random bit stream (PRBS) of length 231-1 for intensity modulation of the VCSEL transmitter. The 

output of the VCSEL transmitter was connected to the spool of MMF. The output from the MMF 

fiber was fed into the receiving port of the transceiver which was connected to 1) the BERT to 

measure the BERs, and 2) an oscilloscope to measure eye diagrams. Several segments of fibers 

were extracted out through re-spooling to allow the application of the LPGs. The MMF in this 

work is a commercial OM3 fiber of length 300 m (the reach specification of OM3 fibers at 10 Gb/s) 

or longer. The LPGs were placed along the MMF with approximately uniform spacings. The 

spacings between 2 LPGs and the ends of 400 m-long (530 m-long) MMFs were 120, 120, 160 m 

(180, 160, 190 m); The spacings between 4 LPGs and the ends of 400 m-long (530 m-long) MMFs 

were 80, 100, 60, 80, 80 m (120, 120, 100, 80, 110 m). Although uniform spacing was preferred, 

the spacing disparities were the result of lack of control in our re-spooling process. The refractive 

index profile of the OM3 fiber was measured and plotted in Figure 20(b), along with the calculated 
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effective indices of the 18 mode groups (black lines) at a wavelength of 850 nm. The GRIN profile 

and the trench can reduce the GDS and bending loss. The effective index differences between 

neighboring mode group pairs, and the corresponding phase-matched LPG periods are nearly equal, 

as shown in Figure 20(c). As a result, a uniform LPG with a fixed grating period can be used to 

couple all mode groups in the MMF to reduce the GDS. In the current experiment, a mechanical 

LPG was used, which consists of a replaceable plate with gratings cut into it and an upper flat steel 

plate. The steel plate has an adjustable screw for applying pressure to the fiber [104]. With 

increased pressure, the coupling efficiency between neighboring mode groups increases due to 

increased index contrast of the LPG on the fiber, accompanied by a larger loss due to coupling into 

cladding modes. Since no pressure monitoring capability was provided by the grating manufacturer, 

we instead use the pressure-induced insertion loss of the grating(s) to indicate the strength of mode 

coupling.  

 
Figure 20: (a) Experimental setup. BERT: bit error rate tester, Scope: oscilloscope, LPG: long-
period grating. (b) Measured refractive index profile and calculated effective indices of the 18 

mode groups of the OM3 MMF at a wavelength of 850 nm. (c) Computed effective index 
differences between neighboring mode group pairs, and corresponding phase-matched LPG 

periods at a wavelength of 850 nm. 
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The native 300 m OM3 MMF can indeed support error-free transmission at 10 Gb/s, 

meeting the specification for OM3 fibers. However, when the length of the native OM3 MMF was 

increased to 400 m, BER increased to around 10-8; the corresponding eye diagram is shown in 

Figure 21(a). Therefore, the bandwidth of the native OM3 MMF is between 3000 and 4000 

*MHz km . After 2 mechanical LPGs were applied, error-free transmission was restored on the 400 

m OM3 MMF; the corresponding eye diagram is shown in Figure 21(b), revealing appreciable 

improvement over that in Figure 21(a). Similarly, the BER for transmission over a 530 m native 

OM3 MMF is around 10-3 but can be restored to error free with the application of 4 LPGs, revealing 

an improved bandwidth larger than 5300 *MHz km  with the help of LPGs; the corresponding eye 

diagrams are shown in Figures 21(c) and 21(d), respectively.  

 
Figure 21: Eye diagrams (a) without LPGs and (b) with 2 LPGs, for 400 m MMF.  Eye diagrams 
(c) without LPGs and (d) with 4 LPGs, for 530 m MMF. The width and height of eye openings 

as functions of the LPG-induced loss, for (e) 400 m MMF and (f) 530 m MMF. 

The eye diagrams in Figure 21 also show that the GDS can be greatly reduced with the help 

of LPGs. The width or height of eye openings can be used to infer the GDS of the MMFs. Larger 

GDSs would increase the temporal variance of rising and trailing edges, leading to smaller widths 
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or heights of eye openings. Figure 21(e) shows that the widths and heights of eye openings increase 

as the loss induced by LPGs, and thus mode coupling, increase when 2 LPGs and 4 LPGs were 

applied on the 400 m MMF. Compared with 2 LPGs, 4 LPGs can achieve the same width or height 

of eye openings with smaller losses. This is expected as more LPGs would curtail modal group 

delay more effectively. Similarly for the 530 m long OM3 MMF, as shown in Figure 21(f), the 

width of eye opening can be improved by nearly twofold using either 2 LPGs or 4 LPGs. 

 
Figure 22: (a) BER as a function of the received power for back-to-back, 300 m (without or with 
LPGs) and 400 m MMFs (without or with LPGs). (b) BER as a function of the loss induced by 
LPGs, for 400 m MMF and 530 m MMF. (c) BERs for different lengths of MMF, without, and 

with 2 or 4 LPGs. 

The BER of the signal received by the transceiver was also measured using a BERT. We 

first measured the back-to-back BER vs. received power as a reference. The BER performances at 

300 and 400 m transmission with and without applying LPGs are plotted together with the back-

to-back BER in Figure 22(a). It can be seen that the modal dispersion-induced power penalty at 

10-9 BER for the 400 m transmission is about 9.8 dB and error-free transmission was not possible. 

When 4 LPGs are applied, the above modal dispersion-induced power penalty was reduced to 

about 3.5 dB.  
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The BERs as functions of the total losses incurred by the LPGs to reduce the modal 

dispersion-induced power penalty are shown in Figure 22(b) at transmission distances of 400 and 

530 m with the transmitter power fixed at -1.5 dBm. The BER after 400 m MMF can be easily 

improved to below 10-12 using LPGs with a total loss smaller than 0.2 dB; using 4 LPGs can better 

improve the BER with smaller loss compared with using 2 LPGs. Similarly, for 530 MMF, 4 LPGs 

can improve the BER to below 10-12 with a loss of 2.4 dB loss. To achieve error-free transmission 

at 530 m, 4 LPGs must be used. The reason why 2 LPGs cannot achieve error-free transmission is 

that GDS of mode groups in the MMF was accumulated over too long a distance before mode 

groups are scrambled. Figure 22(c) compares the BERs as functions of the fiber length when 2 

LPGs or 4 LPGs are used with the transmitter power also fixed at -1.5 dBm.  

It is important to confirm that performance improvements are indeed due to grating-

induced mode mixing, rather than due to mode filtering. The best way to do this is encircle flux 

testing to measure the mode power distribution. Due to lack of the equipment, we performed two 

additional tests to verify the cause of performance improvements. First, we used fiber bendings as 

mode strippers on the MMF and observed the resulting changes in the eye diagram and BER. Both 

the eye diagram and BER deteriorated with bending. Second, if the performance improvements 

using the LPG were due to pressure-induced mode filtering, the performance would be 

independent of the grating period. To this end, we changed the angle between the MMF and LPG 

from the optimum position and observed deteriorations in the eye diagram and BER. Based on the 

two tests above, we deduce that mode mixing is the cause of GDS reduction. 
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5.3  Fabrication tolerance 

Our method of converting OM3 to OM4 MMFs takes advantage of the nearly equal 

effective index differences between neighboring mode group pairs in GRIN MMFs. The effective 

index differences obviously depend on the refractive index profiles of these fibers, as does modal 

dispersion. For our method to be attractive, the tolerance on refractive index profiles must be less 

stringent than for OM4 fibers.  

For a GRIN fiber with a core index distribution, as shown in Figure 23(a), satisfying 

( )2 2 2
1 12n n n r a α= − ∆  (where 2 2 2

1 2 12n n n∆ = − , 1n  and 2n  are the refractive indices of the core 

and cladding, r  is the radial position, and a  is the core radius), the α  value is an important factor 

determining the effective index differences between neighboring mode group pairs. An index 

trench is usually added to reduce bending loss. Here we fix the width and the depth of the index 

trench at 5 mµ and 35.5 10−× , respectively, but vary the position of the trench and investigate how 

this position affects the effective index difference. First, we discuss the effect of the core index 

profile. Figure 23(b) plots the effective index differences between neighboring mode group pairs 

at a wavelength of 850 nm for different values of α with a trench immediately outside the core, 

which is the case for existing OM4 MMFs. As can be seen, for the optimum value 1.97optα = , the 

effective index difference is almost a constant between all neighboring mode group pairs, while 

the effective index difference either decreases or increases with mode order when 1.97α <  or 

1.97α > . Specifically, for 1.9α =  ( 2.1α = ), the range of effective index differences between 

neighboring mode group pairs from mode group 1 to mode group 18 is about 54.3 10−×  

( 56.8 10−× ). The black curve in Figure 23(c) shows the range of effective index differences or 
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corresponding matched LPG periods as a function of α for GRIN profiles of existing MMFs [black 

curve in Figure 23(a)]. It is important to determine the range of α  for which our method of using 

uniform LPGs to reduce modal GDS works efficiently, and to compare that range with what is 

required for OM4 fibers. As a reference, the tolerance on α for conventional OM4 fibers is around 

0.02 [105, 106]. 

 
Figure 23: (a) Refractive index profiles without or with trench shift. (b) Effective index 

differences between neighboring mode group pairs for 3 different α values, for the index profile 
without trench shift. (c) Range of effective index differences or corresponding matched LPG 

periods as a function of the α  value, without or with trench shift. (d) Coupling efficiency 
between two modes, as a function of effective index difference or corresponding matched LPG 

period, for 50 / mκ = , with perfect phase-matched index difference at 47.6 10−× . 

Next, we present the effect of the position of the index trench. To reduce the range of 

effective index differences, we varied the position of the trench and found that shifting the trench 
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away from the core by 1 mµ  yields the smallest range of effective index differences or 

corresponding matched LPG periods, as shown in the red curve in Figure 23(c). It was found that 

shifting the trench away from the core can reduce the effective index differences between higher-

order mode group pairs.  

The fabrication tolerance of α  depends on the acceptable range of effective index 

differences or corresponding matched LPG periods, which in turn depends on the coupling 

coefficient κ . Figure 23(d) plots the coupling efficiency between two modes as a function of the 

effective index difference or corresponding matched LPG period for a coupling coefficient of 

50 / mκ = ，with perfect phase-matched index difference at 47.6 10−× . This value of coupling 

coefficient is approximately the same as in our experiment in previous section, and was deduced 

from the impulse response, which indicated that complete mode coupling occurred over the total 

coupling length of 3.5 cm for the mechanical grating [45]. To achieve a coupling efficiency >50%, 

the range of effective index differences must be smaller than 52.7 10−×  or the range of LPG 

periods must be smaller than 40 mµ , as shown in Figure 23(d). This range of effective index 

differences or LPG periods corresponds to a tolerance on α  value around 0.11, which is >5 times 

greater than the tolerance on α for conventional OM4 fibers mentioned above.  

In conclusion, we experimentally demonstrate low-cost and low-loss conversion of OM3 

MMFs to OM4 MMFs using strong mode mixing by periodically embedding simple LPGs for 

datacenter applications. OM3 MMFs can be converted to OM4 MMFs with only 0.2 dB loss over 

400 m for 10 Gb/s transmission. Error-free transmission at 10 Gb/s can be extended to 530 m if 

higher losses can be tolerated. The experiment was done using a specific transceiver and on a 

specific OM3 MMF. So the improvement in bandwidth may be different with a different 
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transceiver or OM3 MMF. To verify consistent channel performance, additional tests using 

different transceivers and OM3 MMFs should be conducted. The proposed approach can benefit 

from more densely populating LPGs along the fiber. These fibers can be easily manufactured by 

inscribing distributed LPGs concurrent with fiber drawing [103] leading to better performances 

and lower costs. Better index profile designs can provide a large α  fabrication tolerance. 

Therefore, the approach presented in this paper could potentially extend the longevity of VCSEL-

based MMF links for datacenter applications. 
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CHAPTER SIX: MODE COUPLING IN FMFS WITH  
LARGE MODAL DISPERSION 

The DSP complexity of an MDM system is proportional to the modal group delay of the 

fiber link. Modal group delay can determine the temporal memory needed in MIMO time domain 

equalization (TDE), or the fast Fourier transform (FFT) block length in MIMO frequency domain 

equalization (FDE), of single carrier modulation. The increased DSP complexity can be accepted 

in short-reach systems, however, the MIMO DSP would bring large cost and energy consumption 

in long distance fiber communication systems. Thus it is very important to reduce modal group 

delay by various methods.  

Weak mode coupling occurs randomly and parasitically in FMFs, but strong mode coupling 

must be introduced intentionally. The LPG is one of the most effective structures to promote strong 

mode coupling. Since mode coupling induced by LPGs is a coherent, phase-matched process, a 

different grating is required for each pair of modes (or mode groups) [92, 100]. An intrinsic 

problem with this approach is that any LPG used for mode coupling can also couple the highest-

order guided mode (group) to a cladding mode in a phase-matched manner due to the high density 

of cladding modes. In addition to this intrinsic loss, each LPG also has extrinsic loss due to 

imperfections in the grating. Therefore, as the dimension of MDM increases, so does the number 

of LPGs. A large number of LPGs obviously adds complexity and cost, but a more serious 

drawback is the loss accumulated by each LPG. Because loss has the most direct impact on the 

capacity of a communication channel and even 0.01 dB/km of loss reduction is being sought for 

SMFs, the LPG used to induce strong mode coupling must also introduce extremely low losses, 
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preferably below 0.1 dB, to ensure that the transmission capacity of an MDM system is competitive 

with parallel SMF transmission systems.  

6.1  FMFs with equally-spaced effective indices 

As stated previously, since mode coupling mediated by LPGs is a coherent, phase-matched 

process, a different grating is required for each pair of modes. The only way to couple all mode 

groups using only one uniform LPG with a fixed grating period is to ensure that the effective 

indices of the mode groups are designed to be nearly equally spaced. Similar to parabolic quantum 

wells that allow equally-spaced energy levels, GRIN fibers with a parabolic index distribution are 

expected to support mode groups with nearly equally-spaced effective indices, from Equation (2.6). 

The design of FMFs with equally-spaced effective indices is scalable to a larger number of mode 

groups. As the number of mode groups grows in a parabolic GRIN fiber, the condition for equally-

spaced effective indices becomes better satisfied since most of the modes are well confined. 

In reality, evanescent fields do exist in the cladding. So, we adopt a nearly parabolic index 

profile for the core with a low-index trench in order to strongly confine the guided mode to the 

core. An optimized design is represented by the blue curve in Figure 24(a). We fabricated a GRIN 

fiber according to this design. The actual index profile of the FMF is represented by the magenta 

curve in Figure 24(a), along with the calculated effective indices of modes as black lines. With 

1 1.46,  0.0109,  16.4 ,  1.437trenchn a m nµ= ∆ = = = , the five mode groups (9 LP modes) at 1550 nm 

have almost the same effective-index differences ranging from 2.54×10-3 to 2.55×10-3 between 

successive mode groups for reasons explained above [107]. To characterize mode profiles of 

different mode groups, as shown in Figure 24(b), we employed the spatially- and spectrally-
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resolved imaging (S2) method [108, 109] as shown in Figure 24(c). A camera was used to record 

output images of the FMF when light of different wavelengths was launched. By using principal 

component analysis (PCA) and independent component analysis (ICA) [108, 109], we acquired 

profiles of all 9 LP modes in Figure 24(b). 

 

 
Figure 24: (a) Designed and measured index profiles of FMF, superimposed with calculated 

effective indices of the 5 mode groups of the measured index profile. (b) Mode profiles measured 
using the S2 method. (c) S2 experiment setup. 

6.2  Strong mode coupling and GDS reduction 

We first demonstrate enhanced mode coupling among all 9 LP modes using a uniform 

single-period LPG [45]. Subsequently, we use a series of such LPGs to reduce GDS. Figure 25(a) 

is the experimental setup for demonstrating strong mode coupling and the reduction of GDS. A 

data pattern from the pattern generator was used to modulate the light from a laser. The pattern 

generator produced a short pulse, which consisted of one bit 1 and a long series of bit 0s. After 

modulation, an impulse of light was launched into one of the input fibers of the PL, which was 

connected with the GRIN FMF by butt coupling. The 15-mode mode-selective PL made in-house, 
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although being state-of-the-art, cannot guarantee exciting exactly one mode group at a time. After 

propagation through the FMF, the signal was detected by a multimode InGaAs PIN+TIA receiver. 

The receiver was connected to the oscilloscope to record the impulse response waveforms. The 

pulse generator is Hewlett-Packard 70841B with 3 G bandwidth, the modulator is OKI EAM 

OM5753C30B with 30 G bandwidth, the receiver is Discovery R402 PIN-TIA with 10 GHz 

bandwidth, and the oscilloscope is Agilent Infiniium DSO81204A with 12 G bandwidth. 

The mechanical LPG consists of a lower replaceable plate with gratings cut into it and an 

upper flat steel plate over which an adjustable screw is used to apply pressure to the fiber 

sandwiched between these two plates [104, 110].  This mechanical grating has the same level of 

uniformity as LPGs fabricated using the arc method [104]. The relative angle between the fiber 

and the LPG can be adjusted to change the effective grating period. 

 
Figure 25: (a) Experimental setup for measuring the impulse response. λ: wavelength of tunable 

laser, Λ: period of LPGs, MG: mode group. (b) Measured impulse response waveforms with 
different pressures, when the main power is initially in MG 1, MG 2 and 3, MG 4, MG 5, 

respectively. (c) Measured impulse response waveforms with and without the LPG for different 
wavelengths, and for different grating periods. The insets in (b) and (c) show the percentage of 

power in the dominant input MG for different pressures. 
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To investigate mode coupling, a single uniform mechanical LPG was applied at the 

beginning of the FMF. Because of the relatively large effective index difference between mode 

groups, coupling between mode groups is negligible without the LPG. The PL was used for 

selective excitation of a dominant mode group when no pressure is applied to the LPG. After 

applying pressure on the LPG, new modal contents are generated from mode coupling mediated 

by the LPG. Modal dispersion in the GRIN FMF was exploited to separate different modal groups 

in the time domain. Therefore, the differences in the powers of each mode group in the impulse 

responses of the GRIN FMF with and without pressure on the LPG can be used to characterize 

mode coupling mediated by the LPG. It should be pointed out that, even though the FMF has 

equally-spaced effective indices, the group indices are, in general, not equally spaced. It turns out 

that the modal dispersion between the second and third group is rather small for this particular 

GRIN FMF, so these two mode groups are lumped together. Figure 25(b) demonstrates that a 

single uniform LPG can indeed induce mode coupling between all mode groups. Taking the top 

left plot as an example, when no pressure was applied on the mechanical LPG, there was one main 

peak in the impulse response, representing that the power was mainly in the LP01 mode. When 

pressure was applied on the LPG, more modes/peaks appeared in the waveform, signifying that 

the power in the LP01 mode had been coupled into other mode groups. The red and green lines 

show the effect of mode coupling as the pressure on the mechanical LPG was successively 

increased. The inset shows the percentage of power in the dominant input LP01 mode for different 

pressures. It is observed that mode coupling increases with applied pressure. The rest of the plots 

in Figure 25(b) show the impulse response waveforms when the initial power was mainly in other 

mode groups. They indicate that power in each mode/peak can always be coupled into not only its 
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neighboring modes but also next-to-neighbor modes with one LPG. Similarly, the insets show the 

percentage of power in the dominant input MG for different pressures. When the dominant input 

is in MGs 2 and 3, the percentage of power in these two groups did not change monotonically with 

pressure, likely because the power in MG 1 is coupled back into MG 2. It can be concluded that a 

uniform single-period LPG can couple all the LP modes of the 5 mode groups.  

The use of parabolic GRIN fiber also allows the uniform LPGs to achieve strong mode 

coupling for a broad range of wavelengths. The phase matching condition for coupling between 

two modes is [111] 

.nπ π
λ
∆

=
Λ

                                                            (6.1) 

where n∆  is the effective index difference between the two modes, λ  is the wavelength in free-

space, and Λ  is the grating period. To evaluate the bandwidth of coupling due to the LPG, effective 

indices of LP01 and LP11 at different wavelengths and subsequently, the left-hand side of Equation 

(6.1), A nλ λπ λ= ∆ , were calculated. Taking both material dispersion and waveguide dispersion 

into consideration, the difference in Aλ  at 1520 nm and 1580 nm is -4
1580 1520 1 3 10r A A= − = ×  , 

which is small enough to maintain phase matching condition with this wavelength range as shown 

in the top row of Figure 25(c). The top three plots in Figure 25(c) show that the impulse response 

waveforms are similar at three different wavelengths, signifying efficient, broadband mode 

coupling even with a fixed grating. The insets verify that mode coupling is efficient over a 

broadband. To verify that the broadband coupling was due to the grating rather than simply the 

applied pressure, the grating period was tuned to observe the change in the impulse-response 

waveform. As can be seen from the bottom three plots and the three insets in Figure 25(c), mode 
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coupling is efficient only for certain grating periods that satisfy the phase-matching condition. The 

grating period only affects the right-hand side B πΛ = Λ   of Equation (6.1), and the relative 

difference between the minimum and maximum effective periods is -2
611 637 1 4.3 10r B B= − = ×  

large enough to annihilate the phase matching condition as shown in the bottom row of Figure 

25(c). The total insertion loss (IL) when the effective grating period doesn’t satisfy the phase 

matching condition for the guided modes was measured, using the setup in Figure 25, to be less 

than 0.06 dB. The loss can be considered as the extrinsic non-resonant microbending loss of the 

LPG. 

One of the strengths of the method for enhanced mode coupling proposed here is its 

scalability to a larger number of modes, including modes with high azimuthal numbers. It should 

be recognized that what is required is for the mode with a high azimuthal number 𝑀𝑀  (with 

azimuthal dependence e jMϕ ) to couple to its neighbor having an azimuthal number M+1 or M-1 

(with azimuthal dependence ( 1)e j M ϕ+  or ( 1)e j M ϕ− ). The asymmetry in the grating having a 

component e jϕ± , required to couple modes with a high or low azimuthal number to its neighbor 

is exactly the same, and independent of 𝑀𝑀. 

We then demonstrate the reduction of GDS using multiple LPGs distributed along the 4.3 

km FMF. The lateral offset between the PL and FMF was adjusted to excite all modes at different 

GDs with almost equal power. For each waveform measured under different pressure/mode-

coupling efficiency, the RMS pulse width representing the GDS of the FMF was calculated using 

the following formula [46] 

22t tσ = −                                                            (6.2) 



54 
 

where ( )1n nt t I t dt
N

∞

−∞
= ∫  , ( )N I t dt

∞

−∞
= ∫  , and ( )I t   is the measured intensity waveform. 

Meanwhile, for each applied force, the loss induced by the LPGs was also measured. The RMS 

widths as functions of the measured loss induced by two or four LPGs are shown in Figure 26. The 

insets are the impulse response waveforms at different losses/pressures. At low pressure (low loss), 

the optical power remained evenly distributed among the 4 peaks. When a strong force was applied 

on the grating plate, 4 peaks in the impulse response merged into an almost symmetric single peak 

centered at the average group delay. The RMS width decreased as the average loss/applied pressure 

increased. As expected, when four LPGs were used along the FMF, the GDS was reduced further 

compared with using only two LPGs, because GDS was accumulated over a shorter distance before 

modes are scrambled. Theoretically, the RMS width is proportional to N ( 1N −  is the number 

of LPGs) [30] when the length of fiber between two LPGs is the same. Thus when the total length 

is the same, the RMS width is proportional to 1 N . The fluctuations in RMS width and loss are 

due to environmental changes such as temperature and fiber deformation. 
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Figure 26: RMS pulse width as a function of average loss per LPG for the cases in which two 
and four LPGs were used along the 4.3 km FMF. Insets are waveforms corresponding to 

different losses/pressures for 2 LPGs or 4 LPGs. Horizontal and vertical error bars are calculated 
from the standard deviation of RMS pulse widths and losses measured under the same condition. 

6.3  Reducing intrinsic loss and MDL 

We now turn our attention to reducing the intrinsic loss and MDL. We use the RMS of log-

unit MDL here, which is the statistically important parameter for characterizing MDL in the strong 

coupling regime [112]. Figure 26 shows that significant mode mixing can be achieved using LPGs, 

accompanied by an average loss of 0.6 dB. It is desirable to further reduce this loss. The main 

source of the loss is due to the seemingly unavoidable power transfer from the highest-order mode 

group into cladding modes. This also means that the resulting MDL is large. In order to alleviate 

this problem, we propose the use of a specially designed fiber for the LPG, which supports at least 

one more mode group than that supported by the fiber for transmission. The rationale is explained 

in Figure 27 by comparing two different fibers used in the grating section for the same transmission 

fiber that supports five mode groups. The fiber in Figure 27(a) is a trench-assisted GRIN fiber, and 
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it supports five mode groups. The index profile is adjusted to make the effective indices of the five 

mode groups equally spaced to ensure efficient mode coupling, and the use of a trench was found 

to be necessary. The fiber in Figure 27(b) is a GRIN fiber with a pedestal at the core-cladding 

boundary, and it supports six mode groups, one more group than that supported by the transmission 

fiber. The index profile is adjusted to make the effective indices of the first five mode groups 

equally spaced, and the effective index difference between the fifth and sixth mode groups much 

smaller than the average index difference between the first five mode groups. Eliminating the 

trench and adding the index pedestal was found to be necessary. We used the finite-element method 

(FEM) for the mode solver. The two fibers in Figures 27 (a) and 27(b) have the same core/cladding 

indices but different radius values of 16.4 µm and 12.75 µm and α  values of 2.0 and 1.986, 

respectively. The pedestal has a width and height of 0.55 µm and 0.0035, respectively.  

 
Figure 27: (a), (b) Index profiles of the 5-mode-group fiber and the 6-mode-group fiber. Black 
lines represent effective indices of each mode group. K is average refractive index difference 

between two neighboring mode groups that are nearly equally spaced, 𝐾𝐾1 < 𝐾𝐾 < 𝐾𝐾2. (c) Index 
differences between mode groups in the 5-mode-group fiber and the 6-mode-group fiber, 
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respectively. The last blue point represents the index difference between the highest-order core 
mode group and the cladding index. (d), (e) IL and MDL vs. wavelength for LPGs written in the 
5-mode-group fiber and the 6-mode-group fiber, respectively. (f) Normalized GDSs as functions 

of the number of spans using LPGs written in the 5-mode-group fiber and the 6-mode-group 
fiber, compared with the cases of intragroup coupling and completely random coupling. 

The black lines in Figures 27(a) and 27(b) represent the effective indices of mode groups 

in these two fibers. It can be seen that the effective index difference between the highest-order 

mode group and the cladding index is always smaller than the average index difference between 

the neighboring core mode groups for both index profiles. Figure 27(c) plots the effective index 

differences between neighboring mode groups. The last blue point in Figure 27(c) represents the 

index difference between the highest core mode group and the cladding index in the 5-mode-group 

fiber. So, when an LPG phase matched for core mode coupling is applied on the 5-mode-group 

FMF, the highest-order mode group would be easily coupled to some cladding modes, incurring a 

large intrinsic loss.  

This seemingly unavoidable intrinsic loss can be eliminated using the fiber in Figure 27(b) 

that supports one more mode group than the 5-mode-group transmission fiber. As can be seen in 

Figure 27(b), the index difference between the last two mode groups (K1=2.51×10-3) is much 

smaller than the average effective index difference between successive core mode groups 

(K=2.65×10-3) as shown in Figure 27(c), while the effective index difference between the second 

highest-order mode group and the cladding index (K2=2.73×10-3) is much larger than K. In this 

case, it will be inefficient for the first 5 mode groups to couple into either the highest-order mode 

group or the cladding modes. So when signals are contained in the first 5 mode groups in the 6-

group FMF, the intrinsic loss of the LPG can be significantly reduced. 
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The reduced IL and MDL of the proposed method have been verified by numerical 

simulations. Our method relies on the properties of the FMF in which the grating is applied, more 

so than the particular types of gratings that are used. In our simulations here we assume tilted index 

gratings rather than mechanical gratings were used. We assume that the MDM signal is carried on 

a transmission fiber that supports 5 mode groups and LPGs are used periodically to enhance mode 

coupling. LPGs written in a 5-mode-group GRIN FMF and a 6-mode-group GRIN FMF, as 

described above, are compared. The GDSs for these two cases are computed from the eigenvalues 

of the group delay operators, which, in turn, are computed from the transfer matrix of the fiber link 

[113].  

To provide a fair comparison of IL and MDL, we adjusted the parameters of the LPGs for 

these two cases so that the reductions of GDS for these two cases are statistically identical. To do 

so, we plot the ensemble average of the standard deviations of the group delays, normalized by the 

group delay of one span for 100 instances of the random intragroup coupling matrices and the span 

lengths as a function of the number of spans. The nearly identical GDSs for these two cases, as 

shown in Figure 27(f), were achieved with a grating length of 3.5 cm, tilt angle of 85o, and index 

contrasts of 5.5×10-5 and 6×10-5 for the index LPGs written in the 5-mode-group GRIN FMF and 

a 6-mode-group GRIN FMF, respectively. Tilting is necessary because different spatial modes are 

orthogonal to each other, and there would be no coupling between different modes without tilting. 

The GDSs for these two cases increase approximately with the square-root of the number of spans 

(or propagation length) due to strong mode coupling mediated by both types of LPGs. The GDSs 

as a function of the number of spans for the case of intragroup coupling only and completely 

random coupling among all modes are also shown for comparison. 
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From the coupling matrices of the LPGs used for Figure 27(f), we use singular-value 

decomposition to compute the IL and MDL as functions of wavelength for the two types of LPGs 

[112]. Using LPGs in an FMF with the same number (5) of mode groups as the transmission fiber, 

the IL and MDL are in the 0.6 dB and 1 dB range, as shown in Figure 27(d). On the other hand, 

using LPGs in an FMF with one more mode group than the transmission fiber, the IL and MDL 

are reduced to below 0.05 and 0.06 dB respectively, as shown in Figure 27(e). As can be seen, 

using LPGs in an FMF supporting one more mode group than the transmission fiber significantly 

reduces the loss and MDL over the entire C band. 

In the simulations to demonstrate the reduction of loss using LPGs written on FMFs that 

support one more mode group, we obtain the transfer matrix of the link by multiplying the 

propagation matrix, including the effect of random intragroup coupling, of each transmission fiber 

span and the coupling matrix of each LPG. Completely random coupling between degenerate 

modes in a mode group, represented by a random unitary matrix, is assumed as this indeed occurs 

in real fibers. An extra length of fiber uniformly distributed between ± 1m is added to each span 

to account for the imprecise positions of the LPGs. To obtain the coupling matrix of the LPGs, we 

first compute the mode profiles of core modes and cladding modes of the GRIN FMFs, and then 

the coupling coefficients among all modes. Subsequently, we use the coupled-mode equations to 

calculate the coupling matrix of the LPGs [31, 114, 115] among core modes as well as cladding 

modes. To ensure the calculated loss is accurate, 4 cladding mode groups are included. 

In conclusion, we propose and experimentally demonstrate the reduction of GDS using 

LPGs with very low insertion loss and mode-dependent loss. By designing an FMF with equally-

spaced effective indices on which the LPG is applied, all mode groups in the FMF can be 
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efficiently coupled using just one uniform LPG with a fixed grating period, instead of a different 

LPG for each mode group pair. In addition, by applying the LPG in an FMF that supports at least 

one more mode group than the transmission fiber, insertion loss and mode-dependent loss due to 

coupling from the core mode to the cladding mode can be largely suppressed. These strategies lead 

to the lowest intrinsic and extrinsic losses as well as mode-dependent loss to date, for inducing 

strong mode coupling using LPGs. Furthermore, we have verified that low-loss strong mode 

coupling could be achieved over a broad range of wavelengths. By periodically applying these 

LPGs along the transmission fiber, GDS increases as the square root of the transmission distance, 

rather than linearly without strong mode coupling. These results illustrate that simple LPGs can 

serve as a practical tool to reduce the GDS in FMFs, thus overcoming the MIMO DSP complexity 

issue, which is one of the most critical challenges for the practical implementation of mode-

division multiplexed systems.  

6.4  Strong mode coupling in MCFs 

MCFs can be regarded as special FMFs when cores are coupled to each other, since 

supermodes can be the mode basis of the coupled-core MCFs. Thus, increasing mode coupling is 

also needed here to reduce DSP complexity. In MCFs, the coupling between cores can be weak or 

strong depending on the distance between cores. When core distance is large enough, separate 

cores can carry separate information, which need no DSP MIMO in the system. However, the large 

core distance can reduce the core density in the cladding area with the limited size, so coupled-

core MCFs with smaller core distance attract attention in recent years. In this case, similar to mode 

crosstalk in FMFs, there is also mode crosstalk in coupled-core MCFs, even when supermodes are 
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used as the basis. Unlike FMFs or MMFs, the supermodes in MCFs with both bending and twisting, 

can be different at different positions [116, 117], so the crosstalk between them can be large when 

the bending radius is small or the twisting rate is large.  

 

Figure 28: (a) Diagram of bend and twisted 2-core fiber [116]. (b) Diagram of effective index as 
a function of twist angle for different core pitches. 

Figure 28(a) shows the diagram of bend and twisted 2-core fiber, where D is the core 

distance between two cores, R is the bending radius, and θ  is the twisting to bending angle (TBA). 

There are two supermodes: even mode and odd mode, which have different effective indices, as 

shown in Figure 28(b). TBA=90 degrees makes the effective index difference between two 

supermodes minimum. This is the location where most efficient mode coupling occurs, and 

decreasing core pitch would increase the minimum effective-index difference. 
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                                                        (6.3) 

Equation (6.3) is the adiabatic criterion for the two-supermode MCF [118], where 1β , 2β  

are propagation constants of two supermodes, 1Ψ  and 2Ψ  are electrical fields of two supermodes. 

When the formula is very small, there is adiabatic mode conversion during the fiber propagation, 
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on the contrary nonadiabaticity means mode coupling. From Equation (6.3) small β∆  and large 

overlap integral would benefit the mode coupling. In the following, we simulate the adiabatic 

criterion as a function of TBA for different core pitches. Used parameters are shown as: bending 

radius R 80mm= , core radius a 4.5 mµ= , core radius difference 0.2 ma µ∆ = , index contrast 

0.35%∆ = , working wavelength 1550nmλ = , and simulation step 0.01oθ∆ = . First we do the 

simulation for identical cores, then for different cores with 0.2 ma µ∆ = . 

Figure 29(a) shows the effective index as a function of TBA for different core pitches. 

Similar to previous explanation, larger core pitch brings smaller effective index difference between 

two supermodes, which would increase the adiabatic criterion. Figure 29(b) shows the overlap 

integral as a function of TBA for different core pitches, from which the overlap integral is larger 

at the TBA of 90 deg., also benefiting the increase of the adiabatic criterion. Taking these two 

terms into consideration, Figure 29(c) demonstrates the adiabatic condition value as a function of 

TBA for different core pitches, from which larger core pitch would bring larger adiabatic condition 

value. However, for larger core pitch, when TBA is away from 90 deg., the adiabatic condition 

value is smaller, so accumulated adiabatic condition value needs to be calculated, as shown in 

Figure 29(d). The maximum accumulated value is at the core pitch of 18 mµ , which means that 

at the optimized core pitch, the mode coupling is largest, with the same bend radius and twist rate. 
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Figure 29: (a) Effective index, (b) overlap integral, (c) adiabatic condition value as a function of 
TBA for different core pitches, for identical cores. (d) The accumulated adiabatic condition value 

as a function of the core pitch. 

We do the simulation again with different core radiuses 0.2 ma µ∆ = . Figure 30(a) shows 

the effective index as a function of TBA for different core pitches. Similarly, larger core pitch 

brings smaller effective index difference between two supermodes. However, the location of the 

minimum index difference changes for different core pitches. Figure 30(b) shows the overlap 

integral as a function of TBA for different core pitches, from which the overlap integral is larger 

for larger core pitch, which can bring large overlap integral. Taking these two terms into 

consideration, Figure 30(c) demonstrates the adiabatic condition as a function of TBA for different 

core pitches. Figure 30(d) shows the accumulated adiabatic condition value as a function of the 

core pitch, which shows that the mode coupling is largest at the optimized core pitch of 16.25 mµ . 
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Figure 30: (a) Effective index, (b) overlap integral, (c) adiabatic condition value as a function of 
TBA for different core pitches, for different cores, with 0.2 ma µ∆ = . (d) The accumulated 

adiabatic condition value as a function of the core pitch. 

From above simulation results, the optimal core pitch is different for various core 

differences. To verify that, accumulated adiabatic condition values as functions of core pitches for 

various core differences, are simulated as shown in Figure 31(a). Similarly, various core sizes, 

index contrasts and bending radii can also affect the optimal core pitch for mode coupling. The 

corresponding simulations are done as shown in Figures 31(b)(c)(d). The results show that when 

core radius difference is larger, core size is smaller, index contrast is larger, or bending radius is 

smaller, the optimal core pitch is smaller for the best mode coupling. Usually for smaller optimal 

core pitch, the accumulated adiabatic condition value is smaller. For practical MCF parameter 

design, those results are helpful to get both stronger mode coupling and larger core density. 
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Figure 31: Accumulated adiabatic condition values as functions of core pitch, for (a) various core 
radius differences, (b) core sizes, (c) index contrasts, (d) bending radii. 
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CHAPTER SEVEN: CONCLUSION 

In this dissertation, we demonstrate different ways to manage the mode coupling in 

different scenarios. In short-reach fiber systems with a small number of modes, coupling among 

mode groups can be reduced to be negligible, with large effective index differences between mode 

groups, eliminating DSP. In most other cases, mode coupling is unavoidable. In FSO 

communication systems with turbulence, the initial launched fundamental Gaussian mode would 

be coupled to other modes. Since there is almost no modal dispersion, few-mode pre-amplified 

receiver can be used to mitigate the effect of turbulence without using adaptive optics. MMFs or 

long-haul FMFs also suffer from large modal dispersion, which can only be compensated by DSP. 

Here strong mode coupling is introduced as a counterintuitive approach to reduce modal group 

delay and DSP complexity. These different ways are summarized as follows: 

1.  We experimentally demonstrate 3x10 Gb/s mode-group multiplexed transmission over 

a 20km FMF with large effective index difference between different mode groups, and using 

photonic lanterns as low-crosstalk mode multiplexer and demultiplexer. OOK modulation and 

direct detection without MIMO DSP are applied. A third PL is used to combine degenerate LP11 

or LP21 modes to verify the advantages of combining degenerate modes. These results illustrate 

that mode-group multiplexed transmission with direct detection can play a role in intra-datacenter 

networks and other short-reach applications. 

2.  We experimentally demonstrate few-mode pre-amplified receivers to achieve high 

sensitivity, simplicity and reliability by taking advantages of recent advances in SDM, in FSO 

communication where there is crosstalk to higher-order modes from fundamental Gaussian mode 

due to turbulence. Comparison with adaptive optics using deformable mirrors also shows the 
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coupling-efficiency advantage of the proposed method. The above reasons suggest that the 

technique presented here likely represents an advantageous, practical method of combating 

turbulence in FSO. 

3.  We experimentally demonstrate the reduction of GDS using LPGs with very low 

insertion loss in graded-index MMFs and FMFs with equally-spaced effective indices, so all mode 

groups can be efficiently coupled using just one uniform LPG with a fixed grating period. OM3 

MMFs can be converted to OM4 MMFs with only 0.2 dB loss over 400 m for 10 Gb/s transmission, 

and error-free transmission at 10 Gb/s can be extended to 530 m if higher losses can be tolerated, 

using strong mode mixing by periodically embedding simple LPGs for datacenter applications. 

Better index profile designs can provide a large α  fabrication tolerance. In addition, by applying 

the LPG in an FMF that supports at least one more mode group than the transmission fiber, 

insertion loss and mode-dependent loss due to coupling from the core mode to the cladding mode 

can be largely suppressed. Furthermore, we have verified that low-loss strong mode coupling can 

be achieved over a broad range of wavelengths. By periodically applying these LPGs along the 

transmission fiber, GDS increases as the square root of the transmission distance, rather than 

linearly without strong mode coupling. The strong mode coupling in MCFs is also simulated, with 

bending and twisting, and the optimal core pitch in different MCFs is calculated.  
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