
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2019 

Factors Affecting Systems Engineering Rigor in Launch Vehicle Factors Affecting Systems Engineering Rigor in Launch Vehicle 

Organizations Organizations 

Denton Gibson 
University of Central Florida 

 Part of the Industrial Engineering Commons, and the Systems Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Gibson, Denton, "Factors Affecting Systems Engineering Rigor in Launch Vehicle Organizations" (2019). 
Electronic Theses and Dissertations, 2004-2019. 6743. 
https://stars.library.ucf.edu/etd/6743 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd%2F6743&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=stars.library.ucf.edu%2Fetd%2F6743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6743?utm_source=stars.library.ucf.edu%2Fetd%2F6743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


FACTORS AFFECTING SYSTEMS ENGINEERING RIGOR IN LAUNCH VEHICLE 
ORGANIZATIONS 

 

 

 

 

by 

 

 

 
DENTON GIBSON 

Bachelor of Science in Electrical Engineering, University of Florida, 2003 
Master of Science in Industrial Engineering, University of Miami, 2006 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy 

in the Department of Industrial Engineering and Management Systems 
in the College of Engineering and Computer Science 

at the University of Central Florida  
Orlando, Florida 

 

 

 

Fall Term 
 2019 

 

 

 

Major Professor: Waldemar Karwowski 



 

 

ii 

 

ABSTRACT 

Systems engineering is a methodical multi-disciplinary approach to design, build, and operate 

complex systems.  Launch vehicles are considered by many extremely complex systems that have greatly 

impacted where the systems engineering industry is today.  Launch vehicles are used to transport 

payloads from the ground to a location in space.  Satellites launched by launch vehicles can range from 

commercial communications to national security payloads.  Satellite costs can range from a few million 

dollars to billions of dollars.  Prior research suggests that lack of systems engineering rigor as one of the 

leading contributors to launch vehicle failures.  A launch vehicle failure could have economic, societal, 

scientific, and national security impacts.  This is why it is critical to understand the factors that affect 

systems engineering rigor in U.S. launch vehicle organizations. 

The current research examined organizational factors that influence systems engineering rigor in 

launch vehicle organizations.  This study examined the effects of the factors of systems engineering 

culture and systems engineering support on systems engineering rigor.  Particularly, the effects of top 

management support, organizational commitment, systems engineering support, and value of systems 

engineering were examined.  This research study also analyzed the mediating role of systems engineering 

support between top management support and systems engineering rigor, as well as between 

organizational commitment and systems engineering rigor.  A quantitative approach was used for this.  

Data for the study was collected via survey instrument.  A total of 203 people in various systems 

engineering roles in launch vehicle organizations throughout the United States voluntarily participated.  

Each latent construct of the study was validated using confirmatory factor analysis (CFA).  Structural 

equation modeling (SEM) was used to examine the relationships between the variables of the study.  The 

IBM SPSS Amos 25 software was used to analyze the CFA and SEM. 
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CHAPTER I: INTRODUCTION 

1.1 Background 

Outsourcing of labor has been an effective strategy for many organizations.  An organization’s 

decision to outsource may be driven by reasons such as resource limitation, technical capabilities, cost-

effectivity, or even convenience.  Large and small companies alike outsource from time to time.  One of 

the things that many organizations outsource, is the development of complex systems.  This is especially 

true for the United States Government.  The U.S. Government rely heavily on contractors in some way, to 

develop most, if not all, of their complex systems.  The federal government spent over $20 billion for the 

development of complex space systems in 2018 ("Consolidated Appropriations Act 2018," 2018). 

When contracting out systems development, most organizations go through a bidding process 

where contractor candidates submit a proposal, bidding on the potential project.  In some cases, the 

contractor would have to meet certain criteria prior to submitting a proposal.  Once the qualified 

proposals are received, the hiring organization evaluates the proposals and selects a contractor.  This is a 

process not only used by many large companies, but also by the federal government.  The U.S. 

Government has one of the most extensive contract evaluation processes.  Proposals are examined using 

three evaluation categories:  cost evaluation, past performance evaluation, and technical evaluation 

(Office of Management and Budget, 2005).  The U.S. Government looks at six technical factors when 

evaluating contract proposals (Office of Management and Budget, 2005): 

1. Overall technical approach; proposed methodology; demonstrated understanding of the scope 

of work and requirements 

2. Previous demonstrated production experience and past performance 

3. Quality Control 
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4. Capability and Experience of Key Personnel 

5. Project Management and Corporate Support Capability 

6. Facilities and Equipment 

Five of the 6 technical factors could be considered elements of systems engineering (SE), which will be 

discussed in detail in Chapter II.  If very little or no prior experience exists with the contractor, how can 

the hiring organization accurately determine the risk associated with the organization that has been 

contracted to deliver a complex system?  Or what is the best way to evaluate whether this criteria is 

adequately met?  These are questions that must be explored. 

 

1.2 Problem Statement 

The National Aeronautics and Space Administration (NASA), United States Air Force (USAF), 

and the National Reconnaissance Office (NRO) all hirer contractors to deliver government satellites to 

orbit.  U.S. Government satellite cost can range from $10 Million to $10 Billion per satellite 

(Pawlikowski, 2010), and multiple satellites are launched every year.  The purposes of these missions 

range from science to national security.  This is why risk mitigation is imperative, and why these satellites 

are only entrusted to launch vehicle providers that the Federal government deems worthy.  For the 

purposes of this study, a launch vehicle is considered to be any vehicle that has the capability of 

delivering a payload to a desired location in space.  In 2011, USAF and NRO signed an agreement to 

follow NASA’s launch vehicle risk mitigation policy (USAF, NRO, & NASA, 2011).  NASA’s launch 

vehicle risk policy, aims to certify a launch vehicle prior to use for government satellites.  Certification is 

judged based on 13 elements that the contractor’s organization and launch vehicle is evaluated on 

(NASA, 2012).  The certification elements are: 
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• Management Systems 

• Flight Experience 

• System Design 

• Launch Service Contractor Design Reliability 

• Manufacturing & Operations and System Engineering 

• System Safety 

• Test and Verification 

• Quality Systems/Process 

• Flight Hardware & Software Qualification 

• Launch Vehicle Analysis 

• Risk Management 

• Integrated Analysis 

• Launch Complex 

The launch vehicle certification policy has been in place for over 15 years and largely remained 

unchanged during that time.  In 2012, one of the more significant changes were made to the launch 

vehicle certification policy.  The addition made in 2012 was to evaluate the launch vehicle provider’s 

systems engineering.  Even though many of the certification elements have components of systems 

engineering such as:  Management Systems, System Design, Manufacturing & Operations, System 

Safety, Test & Verification, Flight Hardware and Software Qualification, Launch Vehicle Analysis, Risk 

Management, and Integrated Analysis, there was nothing in the policy to enforce specifically evaluating 

system engineering prior to 2012.   
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Before continuing this discussion, it would be helpful to define systems engineering.  Systems 

engineering has been defined by many as a methodical interdisciplinary approach to design, build, 

operate, manage, and retire a system, where these systems must meet stakeholder requirements (BKCASE 

Editorial Board, 2014; Brill, 1999; INCOSE, 2011; NASA, 2007). Based on how systems engineering is 

defined, it is germane to the process of developing a complex system such as a launch vehicle.  The 

system engineering element was added the NASA’s certification policy, because NASA believes that 

since systems engineering affected almost every element of a launch vehicle’s ability to be successful, 

that it was imperative to evaluate as part of risk mitigation.  NASA’s systems engineering concerns with 

launch vehicle success was corroborated by several independent researchers, which is discussed in detail 

in Chapter II.  Even though NASA believes it is necessary to evaluate a launch service provider’s systems 

engineering, there is currently no existing framework for evaluating the systems engineering of launch 

vehicle organizations. 

The commercial space industry face similar launch vehicle risks that the Federal government has 

to contend with.  The cost of a launch failure that results in a loss of spaceflight crew, satellite, or launch 

vehicle has a significant impact on economic viability of the launch vehicle (Sauvageau & Allen, 1998).  

A launch failure would not only have a significant effect on the launch vehicle provider but could also 

negatively impact the commercial satellite owner.  Commercial satellites are used in everyday life for 

things such as communication, television broadcasts, internet, navigation, and weather forecasting.  A 

launch failure resulting in the loss of a commercial satellite could have a significant impact on the 

commercial company’s business operations and the U.S. economy (Gydesen, 2006). 

In 2001, J. Steven Newman performed a study at NASA, that evaluated 50 space systems failures 

and found that all 50 failures can be attributed to errors or deficiencies in the system engineer process 

(Newman, 2001).  In the study, 41 of the 50 space systems evaluated by Newman were launch vehicles.  
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Newman’s study underscores the need to understand the factors effecting systems engineering in launch 

vehicle organizations.   

1.3 Hypothesis 

One of the keys to understanding a launch vehicle organization’s ability to successfully complete 

a mission, is to understand some of the factors effecting the organizations systems engineering practices. 

There have been several studies that link systems engineering deficiencies to launch vehicle failures.  The 

relationship between systems engineering deficiencies and launch vehicle failures is discussed in detail in 

Chapter II. This study seeks to understand factors effecting systems engineering and that could potentially 

lead to systems engineering deficiencies.  By studying the factors effecting the implementation of systems 

engineering, one could gain insight in to the risk associated with a launch vehicle’s organization ability to 

successfully complete a mission.  To test the structural relationships between the constructs identified in 

this study, the hypotheses identified in Table 1.3-1 were developed.  The constructs of the hypotheses are 

described in detail in Chapter II and what the constructs can indicate is described in Chapter III. 

 

Table 1.3-1:  Research Hypotheses 

H1 Systems engineering culture has a direct effect on systems engineering rigor. 

H2 Systems engineering support has a direct effect on systems engineering rigor. 

H3 Systems engineering culture has a direct effect on systems engineering support. 

H4 Systems engineering support will mediate the relationship between systems engineering culture 
and systems engineering rigor. 

 

In order to determine the factors effecting systems engineering in a launch vehicle organization, 

several questions have to be answered.  These research questions are the motivation and drivers for 
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performing this research.  They identify specific problems to study.  These questions also provide 

guidance for the types of data to be collected and how to analyze and interpret the data (Leedy & Ormrod, 

2013).  The main (primary) research questions is as follows: 

“What are the effects of systems engineering culture and systems engineering support on systems 

engineering rigor in launch vehicle organizations?” 

The secondary questions that are used to guide the literature review that provide necessary information in 

addressing the primary questions are:   

• What factors effect systems engineering in an organization? 

• How does launch vehicle organizations implement their systems engineering? 

•  How does systems engineering effect launch vehicle failures? 

• What are systems engineering best practices? 

• What are the critical factors for implementing systems engineering? 

• Who is involved in implementing systems engineering? 

• What are the enablers of systems engineering? 

• What guidelines are used to implement systems engineering? 

• What systems engineering models are currently being used? 

1.4 Research Objectives 

Systems engineering deficiencies have been linked to numerous launch vehicle failures.  There 

has been little focus on looking at the underlying factors that affect systems engineering deficiencies.  

Launch vehicle failure investigations have looked at general organizational causes, however not specific 

to systems engineering.  The main objective of this research is to enhance and build a strong systems 
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engineering culture and support system to reduce launch vehicle failures and improve reliability.  The 

purpose of this research project is to develop the framework that could be used to evaluate systems 

engineering culture and support in launch vehicle organizations.   The model identifies the relationship of 

systems engineering culture and systems engineering support on launch vehicle problems and systems 

engineering rigor.   

1.5 Research Limitations 

Identifying the research limitations is important for establishing the boundaries of the research.  

For this study, launch vehicle organizations within the United States will be examined.  In addition, 

correspondence with U.S. organizations is more practical and language barriers would not be a factor.  

The data available for this study will come from the launch vehicle industry, which includes both 

government and private organizations.  There are numerous variations of systems engineering models, so 

to keep the study focused, the study will concentrate on the most frequently used SE (systems 

engineering) models.  Limiting the study to the most frequently used SE model types is done to define 

appropriate boundaries for the study.  However, results can be generalized to most SE models used in the 

aerospace industry. 

  



 

8 

 

 

1.6 Definition of Terms 

Table 1.6-1: Definition of Terms 

Term Definition 

Metric A standard of measurement of a process 

Organization Any entity that is tasked to develop a system.  This can be a private 
company, a non-profit organization, or a government agency. 

System For the purposes of this study, a system is defined as a collection of 
elements that work together to produce a result not achievable by an 
individual element alone.  These elements can include hardware, software, 
processes, people, information, facilities, or anything that supports the 
elements (BKCASE Editorial Board, 2014; INCOSE, 2011; Maier & 
Rechtin, 2009; Nicholas & Steyn, 2012). 

Systems Engineering Systems engineering is an interdisciplinary approach to enable the 
realization of successful systems. The approach focuses on holistically and 
concurrently identifying and understanding stakeholder needs; identifying 
requirements; and synthesizing, verifying, validating, deploying, sustaining 
and evolving solutions while considering the complete problem, from 
system concept exploration through system disposal. (BKCASE Editorial 
Board, 2014; INCOSE, 2011) 

Systems Engineer A practitioner of systems engineering as defined above 

Systems Engineering 
Best Practices 

Approaches or behaviors widely accepted by the systems engineering 
community as good things to implement during the systems engineering 
process 

Systems Engineering 
Culture 

The systems engineering values, beliefs, and normal practices of an 
organization (Carroll, 2016; Iivari & Huisman, 2007; NASA, 2003; SEBoK 
authors, 2016) 

Systems Engineering 
Support 

The tools, infrastructure, and resources used to aide, implement, or enforce 
the systems engineering process 

Systems Engineering 
Rigor 

Level of rigor in applying established systems engineering process and 
principles 
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1.7 Assumptions 

Leedy and Ormrod (2013) states that an assumption is a condition that the value of which is often 

underestimated, and without this condition, the research would be pointless.  Assumptions in research are 

tantamount to axioms in geometry (Leedy & Ormrod, 2013).  Leedy and Smith (20132) also identified 

two assumptions that can be implied in almost all research, (1) the phenomenon under investigation is not 

composed of completely random events and can be predicted, and (2) certain cause-and-effect 

relationships can account for patterns observed in the results of the research.  These two assumptions 

apply to this study as well.  Specifically, the major assumption of this study is that identifying the 

relationship between systems engineering culture, support, and rigor can be accomplished.  Another 

assumption of this study is that the results of the surveys that have been received accurately reflects the 

launch vehicle industry population. 

 

1.8 Significance of Study 

Launch vehicle failures is a constant concern in the launch vehicle industry.  Several studies show 

that numerous launch vehicle failures could be attributed to systems engineering failures.  This concern 

with launch failures led to government organizations’ desire to evaluate the systems engineering of launch 

vehicle providers.  The results of this study can be used to improve the ability to evaluate the systems 

engineering of launch vehicle organizations.  Although the population of the study will come from the 

launch vehicle industry, the results should be applicable to any organization that develops a highly 

complex system and are therefore generalizable.  Results from any survey or empirical data collected as 

part of this study can also be generalizable and applicable to any organization that applies SE.  

Identifying underlying factors that influence systems engineering rigor in a launch vehicle 

organization has a variety of uses.  These factors could allow launch vehicle customers to appropriately 
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evaluate the risk of using a particular launch vehicle provider.  Understanding these factors also would 

provide organizations looking to outsource the development of a system framework to evaluate the 

system development practices of the contractor.  This will in turn allow the contracting organization to 

adequately determine the risk of using a particular contractor.  Assessing the risk of a developer is 

especially crucial when complex, critical, or costly systems are being developed.  These systems 

engineering relationship factors would be useful in the contractor proposal phase as well, by aiding in 

evaluating the proposal, as well as auditing the contractor before and after a contract is awarded. 
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CHAPTER II: LITERATURE REVIEW 

This literature review will seek to identify answers to the research questions or identify gaps by 

examining the following areas: 

• Foundation of Systems Engineering 

o Value of Systems Engineering 

• Traditional Systems Engineering Approaches 

• Recent Systems Engineering developments/approaches 

• Systems Engineering Best Practices and Standards 

• Systems Engineering Metrics 

• Assessing Systems Engineering Practices 

• Critical Success Factors of Systems Engineering 

• Systems Engineering association with Launch Vehicle Failures 

 

2.1 Methodology of Review 

For this literature review, a scientific approach has been implemented.  The scientific method has 

been adopted as a guideline to determine which literature has been selected as part of this review.    To 

qualify for this literature review, the literature must answer one of the following questions positively: 

1. Does it describe or identify the factors that influence systems engineering in an 

organization? 

2. Does it describe or identify systems engineering best practices or methodology? 
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3. Does it identify any systems engineering lessons learned? 

4. Does it provide information on the value or usefulness of systems engineering? 

5. Does it describe how to implement systems engineering? 

6. Does it provide information on the critical success factors of systems engineering or 

related fields? 

7. Does it describe how to assess systems engineering in an organization? 

8. Does it describe how systems engineering is associated with launch vehicle failures? 

The majority of the literature that was chosen has come from peer reviewed journals.  The range of the 

dates of the research literature that has been chosen has been from 1985 and 2018, with the vast majority 

of the literature coming from the 2004 – 2016 timeframe.  

 

2.2 Foundation of Systems Engineering 

Before diving into the factors that influence systems engineering in organizations, it would be 

useful to understand the history of systems engineering and the background of the concept.  For many 

years, the International Council on Systems Engineering (INCOSE) has been one of the global leaders in 

identifying and developing Systems Engineering standards, best practices, and is considered by many to 

be the authority on systems engineering.  In 2009, INCOSE joined with two other influential systems 

engineering organizations, the Systems Engineering Research Center (SERC) and the Institute of 

Electrical and Electronics Engineers Computer Society (IEEE-CS), to create a project called the Body of 

Knowledge and Curriculum to Advance Systems Engineering (BKCASE).  BKCASE created what has 

come to be known by many as the systems engineering encyclopedia, called the Guide to the Systems 

Engineering Body of Knowledge (SEBoK).  The purpose of the SEBoK was to create a globally accepted 
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collection of systems engineering practices and knowledge that is regularly updated (BKCASE Editorial 

Board, 2014).  The SEBoK has proven to be a valuable systems engineering resource for understanding 

the foundations and history of systems engineering. 

The origins of the systems engineering concept as we know it, can be traced back to the post-

World War II time period (BKCASE Editorial Board, 2014; M. Emes, Smith, & Cowper, 2005; INCOSE, 

2011).   INCOSE and BKCASE mention a few isolated events that occur prior to World War II, but none 

of the events identified systems engineering as a discipline.  It wasn’t until after World War II when the 

term “systems engineering” came about.  None of the literature appears to agree on one specific event or 

date, however all agree that systems engineering discipline has its origins in the post-World War II time 

period. 

Bell Laboratories, in the 1940s, was the first to use the term “systems engineering” during its 

work on the Nike line-of-sight anti-aircraft missile system for the U.S. Army (Brill, 1999; INCOSE, 

2011). Following this time period, during the 1960s, there were a few individuals and organizations that 

wrote about systems engineering, however the USAF was the first organization to publish a 

comprehensive series of systems engineering documents.  The USAF documents that were published, 

detailed the systems engineering process.  This began the push for the defense industry, and its many 

complex systems, to practice systems engineering.  With the growing complexity, dynamism, and scale of 

systems being developed, by the 1990s the need for systems engineering grew more than ever.  In 1992, 

the USAF published the Systems Engineering Handbook, which was a comprehensive description of 

systems engineering and systems engineering management, including a template for a Systems 

Engineering Management Plan (SEMP).  That same year, INCOSE was founded to develop and 

disseminate systems engineering principles and practices and would later go on to publish a systems 

engineering handbook of their own.  In 1995, NASA would published the NASA Systems Engineering 
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Handbook.  The systems engineering principles developed by USAF, INCOSE, and NASA in the early 

1990’s became the foundation of what is not considered traditional systems engineering. 

2.3 Value of Systems Engineering 

There are many that question about the importance of or value of systems engineering.  After all, 

a lot of complex projects were completed before “systems engineering” was established.  The defense 

industry realized how important SE was and invested a lot of resources into developing the discipline.  

However, many engineers and managers have disputed the value of SE.  Due to this dispute, there have 

been studies performed to provide quantitative evidence on the impact of systems engineering.  

The National Defense Industrial Association (NDIA) has been the leader in studying the 

effectiveness of systems engineering. NDIA completed SE effectiveness studies in 2008 and 2012 in 

conjunction with IEEE Aerospace and Electronics Systems Society (AESS) and the Software Engineering 

Institute (SEI) of Carnegie Mellon University (Elm, 2012; Elm & Goldenson, 2012; Elm et al., 2008).  

INCOSE also performed a SE Effectiveness study of their own in 2004 (Eric C. Honour, 2004; Vanek, 

Jackson, & Grzybowski, 2008).  Research studying the value of SE were also done by a few other 

researchers such as Werner Gruhl, Joseph Elm, and Eric Honour.  Most SE researches have stated, the 

difficulties with performing an SE effectiveness study, is to effectively isolate the effect of SE from other 

effects and the limited amount of information about a particular project that can be published.  Another 

concern with this type of study is the divergence in SE definitions (Eric C. Honour, 2010).  The following 

is a summary of the studies on SE effectiveness found during the literature search: 

1. The study completed by Gruhl at NASA was one of the first studies to understand the 

effects of SE on a project.  Gruhl’s study examined the relationship between the 

investment on SE to the NASA program cost overrun (BKCASE Editorial Board, 2014) 

demonstrates the value of SE, as seen in Figure 2.3-1.  Gruhl’s analysis provided the first 
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quantitative data that shows how systems engineering affects a project.  It showed the 

relationship of systems engineering effort and project quality by comparing the cost 

overrun of 32 major NASA projects with cost spent on systems engineering activities 

(Gruhl, 1992; Eric C. Honour, 2004).  Gruhl’s analysis has since been used by many.  In 

most of the literature reviewed, researchers such as Eric Honour, Joseph Elm, Francis 

Vanek, and INCOSE, to show the value of systems engineering.  

 

Figure 2.3-1:  Program Budget Overrun vs Money Spent on Systems Engineering 

2. In the early 90s, Boeing performed a study on the development of three Universal 

Holding Fixtures (UHF).  UHFs were tools used to hold large assemblies for airplane 

manufacturing.  Each of the three UHFs were of different complexities. All three projects 

were started around the same time.  UHF1 was completed without using any SE 

practices.  UHF2 and UHF3 were completed using SE best practices.  Both UHF2 and 

UHF3 were completed in less than half the time of UHF1, and UHF3 was the most 

complex of the three (Eric C. Honour, 2004; Vanek et al., 2008). 
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3. As quoted by Francis Vanek in SE Metrics and Applications in Product Development, in 

1996, Kamal Malek completed a study on automobile proto-type development.  Malek 

found that prototypes were developed much faster than normal when a close relationship 

was established between the manufacture’s development team and engineering teams of 

the suppliers.  This was accomplished by collocating engineering teams, which increased 

communication amongst the teams.  This allow collaboration amongst the manufacturing 

and supplier teams early in the design life cycle (Vanek et al., 2008). 

4. In 2004 Kludze conducted a survey of NASA and INCOSE members that included 46 of 

the top engineering firms in the world such as:  Lockheed Martin, Canadian Space 

Agency, Motorola, Northrop Grumman, Ford Motor Company, Corning, Airbus, Boeing, 

IBM, Swales Aerospace, just to name a few.  Results of the survey showed that the 

majority of the respondents indicated that they saw a reduction in cost when systems 

engineering was applied (Kludze, 2004). 

5. Eric Honour, former president of INCOSE, has done extensive studies on the value of 

SE.  Honour’s first study examined the heuristic value of SE.   Honour identified six 

systems engineering qualities in which to evaluate a project’s SE practices such as:  cost, 

schedule, technical value, technical size, technical complexity, and technical quality.  

Honour’s study showed that SE improves development quality, optimum SE effort is 15-

20% of the total project effort, and that the quality of the SE mattered (Eric C. Honour, 

2004).  Honour’s second study focused on SE return on investment and focused on eight 

SE activities:  mission definition, requirements engineering, systems architecting, system 

implementation, technical analysis, technical management, scope management, and 

verification & validation.  The second study showed the significance/effect of each 
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individual SE activity.  The study provided quantifiable data that showed the relationship 

between SE effort and program success (Eric C. Honour, 2010).  

6. The more recent and significant study was completed by NDIA in conjunction with 

IEEE-AESS and SEI, led by Joseph Elm.  In this study, system developers were surveyed 

to identify SE best practices, collected performance data on their projects, and then 

determined the relationships between the application of SE best practices and 

performance of the project (Elm, 2012; Elm & Goldenson, 2012).  The results of the 

study showed that there are clear and significant relationships between SE best practices 

and project performance.  Project performance was measured on meeting budget, 

schedule, and technical performance.  Results of the study showed that when low level of 

SE best practices were applied, more than half of the projects showed low performance.  

When high level of SE best practices were applied, more than half of the projects showed 

high performance (Elm, 2012; Elm & Goldenson, 2012). 

All though the research that was conducted in the literature that was reviewed, studied different 

programs, employed different methods, and examined different aspects, all agree that the value of systems 

engineering can be seen in cost, schedule, and technical performance (BKCASE Editorial Board, 2014; 

Elm, 2012; Eric C. Honour, 2004, 2010; INCOSE, 2011; NASA, 2007).  Programs that apply SE best 

practices are better at meeting cost, schedule, and technical performance.  These studies show evidence 

that there is value in using SE best practices.  However, there are many that argue that there still is 

insufficient quantifiable data to justify the return on investment in SE.  Many studies have shown most of 

the world’s leading developers of complex systems practice systems engineering and believe that SE is 

important to developing a complex system.  One could draw the conclusion that the industry standard for 

developing a complex system is employing some form of systems engineering.  There may be detractors 

that say, “Just because everyone is doing it doesn’t mean that SE is useful.”  It’s not the fact that the 
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leading developers of complex systems employ systems engineering, it’s that the world leading complex 

system developers have had success using SE and believe that practicing SE is important to the successful 

development of a complex system. 

2.4 Systems Engineering Concepts 

There are many different approaches to systems engineering that was found in the literature that 

was reviewed.  Each approach had its own merit.  The majority had the same underlying concepts and 

themes.  The main concepts of systems engineering that have been identified in the literature reviewed 

from NASA, INCOSE, BKCASE, Emes, and Tremaine, are: 

Systems Thinking 

Holistic Lifecycle View (Systems Engineering Lifecycle) 

(BKCASE Editorial Board, 2014; M. Emes et al., 2005; INCOSE, 2011; NASA, 2007; Nicholas 

& Steyn, 2012; Tremaine, 2009). 

 

2.4.1 Systems Thinking 

These concepts are the main drivers behind the SE engine.  Systems thinking is described by 

Nicholas and Steyn as “being able to perceive the ‘system’ in a situation, to take a seemingly confused, 

chaotic situation and perceive some degree of order or harmony in it” (Nicholas & Steyn, 2012).  The 

ability to look at a system components and look at it as a whole organism, seeing how one component 

affects another is considered systems thinking.  (BKCASE Editorial Board, 2014; Nicholas & Steyn, 

2012).  This skill is essential to systems engineering (Smartt & Ferreira, 2010). 
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2.4.2 Holistic Lifecycle View 

The Holistic Lifecycle (M. Emes et al., 2005) is also called the Systems Engineering Life-Cycle 

(BKCASE Editorial Board, 2014; INCOSE, 2011; NASA, 2007).  The systems engineering life-cycle that 

has been identified in the majority of the literature reviewed consists of 7 phases: 

1. Exploratory Research 

2. Concept 

3. Development 

4. Production 

5. Utilization 

6. Support 

7. Retirement 

(BKCASE Editorial Board, 2014; Blair, Ryan, & Schutzenhofer, 2011; Brill, 1999; M. Emes et 

al., 2005; Jansma, 2010; NASA, 2007; Nicholas & Steyn, 2012; Pennell & Knight, 2005).  Although the 

naming of each phase or the number of phases may differ slightly in the literature that was reviewed, all 

agree on these phases in some form and the elements that compose the holistic life-cycle.  Figure 2.4-1 

below illustrates the logic model for a generic systems engineering life cycle. 
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Figure 2.4-1:  Logic Model for Generic Systems Engineering Life-Cycle 

 

2.4.2.1 Exploratory Research 

This is the beginning phase of the SE life-cycle.  Studies are done during this phase to explore 

new ideas, capabilities, and technologies.  User requirements analyses are also performed during 

exploratory research.  Feasibility studies are performed to determine if user requirements could be met 

based on current technology (NASA 2007, INCOSE 2011).  Requirements developed during this phase 

are considered top-level requirements. 
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2.4.2.2 Concept Phase 

During the concept phase, feasibility studies are done to determine best solutions to meet 

stakeholder’s needs. Refinement and broadening of studies and engineering models are done as well.  

Candidate concepts are evaluated during this phase.  This concept phase is the preparation to begin 

development 

2.4.2.3 Development Phase 

The development phase is considered by many to be the most critical phase of systems 

engineering, this is why a lot of research has been concentrated in this area of the systems engineering 

life-cycle.  This phase’s activities include planning, developing, and verification & validation activities. 

This initial phase in the SE life-cycle is the phase in which requirements are developed for the project. 

Numerous studies have shown that poor requirements development are the most costly, and can lead to 

cost overruns, project not being on schedule, and poor technical performance (Bijan, Yu, Stracener, & 

Woods, 2013; BKCASE Editorial Board, 2014; Blair et al., 2011; Gruhl, 1992; Head & Virostko, 2009; 

Eric C. Honour, 2010; INCOSE, 2011).  However, requirement mistakes caught during this phase of the 

SE life-cycle are less expensive to fix, than requirement mistakes caught in later phases.  

The requirements development or decomposition, which takes place during the Development 

Phase, is also the area where SE practitioners differ in requirements philosophy.  Requirements 

development approach can vary based on the systems architecting model approach such as waterfall 

(traditional approach), spiral, incremental, and agile.  Some researchers argue that the there is no real 

difference between systems engineering and systems architecting and that a consensus on the definition of 

systems architecting has yet to be reached (M. R. Emes et al., 2012).  For the sake of this literature 

review, we will look at the relationship of systems architecting and systems engineering similar to how 

the relationship of architects and civil engineers are viewed.  There is a lot of overlap between the two, 
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but systems architecting is more of art and systems engineering is more focused on science and heuristics.   

Each systems architecting approach has its pros and cons and their uses vary by industry and project 

(Maier & Rechtin, 2009)  For example, in the space industry a waterfall architecting approach may be 

preferred (NASA, 2007; Pennell & Knight, 2005), where as in the software industry, an iterative, or agile 

approach may be preferred (Maier & Rechtin, 2009).  The different systems architecting approaches or 

SE models will be discussed in detail in later sections of this literature review.   

 

2.4.2.4 Production Phase 

This is the phase where systems designs are finalized and the systems is built, inspected, 

integrated, and tested.  Once the hardware begins to be fabricated, the system designers may come across 

manufacturing issues that may require modification of the hardware.  This may require re-verification and 

re-validation of the system.  These issues should be resolved during this phase.  At the completion of the 

production stage, the hardware should be ready for customer use. (BKCASE Editorial Board, 2014; 

INCOSE, 2011; SEBoK authors, 2016) 

 

2.4.2.5 Utilization Phase 

The Utilization Phase is also called the Implementation Phase (NASA, 2007), Production and 

Execution Phase in some literature (BKCASE Editorial Board, 2014; INCOSE, 2011), and Operations in 

others.  Throughout this phase verifications to system requirements are made (Sage & Lynch, 1998).  

With the complexity of today’s systems continuing to increase, system integration has continued to 

become more of a concern (Madni & Sievers, 2014).  The naming convention for the intermediate steps 

vary in the literature reviewed, however, the types of task that are performed in this phase is consistent 

throughout the literature reviewed (BKCASE Editorial Board, 2014; INCOSE, 2011; Madni & Sievers, 
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2014; NASA, 2007; Nicholas & Steyn, 2012).  System requirements errors found during this phase of the 

SE life-cycle have proven to be most costly (BKCASE Editorial Board, 2014; Gruhl, 1992; Eric C. 

Honour, 2004, 2010; Nicholas & Steyn, 2012).   

2.4.2.6 Support Phase 

During this stage, the system of interest is providing its intended function and continued 

operation. Modifications may be proposed to resolve supportability issues. 

2.4.2.7 Retirement Phase 

In this stage, the system is removed from operation.  The primary focus of this stage is ensuring 

that the requirements for disposal are being met. 

 

2.5 Traditional Systems Engineering 

For the purposes of this literature review, a traditional systems engineering would be described as 

the SE approach that was developed and refined during the time period of the “systems engineering 

revolution”.  This time period can be considered loosely to be from 1960 to 1990. The U.S. government 

was heavily involved in developing the traditional approach, since it was the US government was one of 

the largest developers and buyers of large complex systems.  The DoD and NASA also performed 

numerous studies during this time to refine SE approaches.  Two approaches that came out of the 

“systems engineering revolution” are the Waterfall model, and Vee Model. 
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2.5.1 Waterfall 

Waterfall is a plan-driven approach and is considered traditional systems engineering.  It is 

described as a waterfall due to its sequential steps in system development.  In the waterfall approach, the 

project is divided into sequential phases (Balaji & Murugaiyan, 2012; INCOSE, 2011).  Each phase of the 

waterfall must be completed before moving on to the next phase.  The waterfall approach satisfies each 

stage of the generic SE approach.  There may be some overlap of the phases.  The Waterfall model can be 

seen below. 

 

Figure 2.5-1: Waterfall Model 

 

The benefits of the Waterfall approach, is that (Balaji & Murugaiyan, 2012): 

• Requirements are clear before development begins. 

• A phase is completed in specified period of time, so the next phase begin 

• It is easy to implement. 

• Requires minimal resources to implement. 

• Each phase adequately documented and is followed to ensure the quality of the system 

development. 
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This approach is beneficial to the government because it focus on requirements being clear up 

front and it provides natural milestones where approval gates can be implemented.  A highly planned 

driven approach is also preferential when dealing with a large number of organizations coordinating to 

develop a large complex system.  Dividing up the development of a system amongst a number of 

organizations is often the case with government projects. 

 

2.5.2 Vee 

The Vee model is very similar to the waterfall.  Like the Waterfall, the Vee is considered a 

traditional systems engineering approach and is plan-driven.   However, in the Vee, the sequence is turned 

back up (hence Vee) and connects testing to each phase of development (Balaji & Murugaiyan, 2012; 

BKCASE Editorial Board, 2014; INCOSE, 2011).  In the Vee, development and testing can be done in 

parallel.  The Vee model is illustrated below. 

 

Figure 2.5-2: Vee Model 

Source:  http://en.wikipedia.org/wiki/V-Model 
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The benefits of the Vee approach, is that (Balaji & Murugaiyan, 2012): 

• Requirements are clear before development begins. 

• A phase is completed in specified period of time, so the next phase begin 

• It is easy to implement. 

• Requires minimal resources to implement. 

• Each phase adequately documented and is followed to ensure the quality of the system 

development. 

• Testing and verification is performed at each phase of development to ensure the system 

is meeting requirements at every phase 

• Although not desired, requirements changes are possible at every phase 

Similar to the Waterfall model, Vee model approach is beneficial to the government because it 

focus on requirements being clear up front and it provides natural milestones where approval gates can be 

implemented.  As already stated, planned driven approach is preferential when dealing with a large 

number of organizations coordinating to develop a large complex system.  Unlike the Waterfall model, 

requirements changes are possible at any phase, and requirements changes are sometimes unavoidable. 

 

2.6 Recent Systems Engineering Approaches 

Thus far in this literature review, what has been discussed was traditional systems engineering.  

The traditional systems engineering methodology was developed in the later part of the twentieth century.  

Since then, there have been new additions and variations of the systems engineering methodology.  In this 
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section, we will discuss a more recent systems engineering approaches.  Some of the recent development 

of systems engineering includes: 

• Lean Systems Engineering 

• Agile Systems Engineering 

• Model-Based Systems Engineering 

 

2.6.1 Lean Systems Engineering 

Lean Systems Engineering (LSE) is a marriage of Systems Engineering and Leans Six Sigma 

(LSS) (Snee, 2010).  LSE is the application of lean thinking to systems engineering (BKCASE Editorial 

Board, 2014; INCOSE, 2011; Oppenheim, Murman, & Secor, 2011).  We have already discussed what 

systems engineering is, thus literature had to be reviewed to understand Lean Six Sigma.  There has been 

extensive research performed on Lean Six Sigma and its parent, Six Sigma.  Since this literature review is 

focused on Systems Engineering, only a limited literature review on Lean Six Sigma was performed, to 

get an adequate understanding of how Lean Six Sigma relates to Lean Systems Engineering. 

The Six Sigma is a concept for continuous business improvement.  It was developed in the late 

80’s by Motorola (Snee, 2010; Welo, Tonning, & Rølvåg, 2013).  Lean manufacturing was a 

manufacturing concept of only maintaining what adds value and reducing everything else, was developed 

by Toyota in the late twentieth century (Welo et al., 2013).  In the early 2000s, lean manufacturing 

concepts was integrated into Six Sigma, strengthening the approach allowing improvements to be 

identified much faster of the traditional Six Sigma approach.  The newly formed Lean Six Sigma became 

a methodology to systematically improve process performance that would result in customer satisfaction 
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improve profit.  Some of the major principles of Lean Six Sigma are (Evans & Lindsay, 2014; Snee, 

2010; Tremaine, 2009; Welo et al., 2013): 

• Focus on the customer - Understand value as the customer defines it 

• Plan the value added tasks and eliminate waste 

• Plan only value added tasks and streamline – adding steps and processes, without idle 

time, unplanned rework, or backflow 

• Pursue perfection of all processes 

The major concept of Lean Six Sigma is “lean thinking”.  Lean thinking is considered to be the dynamic, 

heuristic, knowledge driven, customer-focused process through which all stakeholders in a defined 

organization continuously eliminate waste with the goal of creating value (BKCASE Editorial Board, 

2014; INCOSE, 2011; Oppenheim et al., 2011). 

Studies done by the Department of Defense shows that practitioners of Lean Six Sigma and 

Systems Engineering have many practices in common:  Such as (Tremaine, 2009): 

• Systems thinking.  Similar to how a Systems Engineer would view the Anti-aircraft 

missile weapons systems he is developing; the Lean Six Sigma practitioner views the 

organization he or she is trying to improve. 

• Carefully assess requirements and appropriately decompose them 

• Guide and unify interdisciplinary teams 

• Evaluating key processes 

• Employing analysis, control and performance tracking tools 

• Leveraging experience to solve problems 
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• Influence performance outcomes 

• Implement only necessary actions 

“So, what do you get when you mix together SE and LSS professionals... you get a comprehensive 

multidisciplinary collaboration team.  You get a natural blending of two camps with exceptional, 

unifying, and many common functional competencies.  You get a profitable merger of two camps steeped 

in disciplined yet creative problem solving processes.  You get a far-reaching problem prevention that can 

jointly mitigate design, production and fielding issues – early.” (Tremaine, 2009). 

With natural overlapping of the principles and skills of LSS and SE, the marriage of the two 

concepts was almost inevitable.  Lean Systems Engineering allows for more and better SE with higher 

responsibility, authority, and accountability, leading to better, waste-free workflow with increased 

mission assurance.  The goal of Lean SE is to deliver the most life-cycle value  for a complex system with 

minimal waste (BKCASE Editorial Board, 2014).  Under the Lean SE philosophy, mission assurance is 

non-negotiable, and any task that is legitimately require for success must be include, but it should be well 

planned and executed with minimal waste (INCOSE, 2011).  Under LSE, lean engineering is relevant to 

all of the traditional SE technical processes (BKCASE Editorial Board, 2014; INCOSE, 2011; 

Oppenheim et al., 2011).  The principles of Lean SE are (BKCASE Editorial Board, 2014): 

• Stakeholder value-based system definition 

• Accountability and Incremental commitment 

• Concurrent System definition and development 

• Decision making based on evidence and risk  



 

30 

 

Lean SE attempts to minimize over-processing, waiting, unnecessary movement, over-

production, transportation, inventory, and defects.  When applied to the systems engineering life-cycle, it 

attempts to reduce, prevent, or eliminate the following: 

• Number of handoffs of products 

• Unnecessary serial production 

• Excessive reforming or formatting 

• Wait time 

• Lack of direct access 

• Creation of unnecessary products 

• Communication issues 

• Overstock of inventory 

• Outdated information 

• Defects 

If these lean principles were applied to a traditional systems engineering approach, such as a waterfall, it 

would no longer look like a waterfall.  Many steps would no longer be sequential, and a lot of the formal 

products and wait times would be eliminated. 

 

2.6.2 Agile Systems Engineering 

In recent years, the software industry has that realized due to rapid changes in the software world, 

that a traditional systems engineering approach may not be favorable.  The orderly, hierarchical 

progression through system development, followed by a corresponding verification sequence could be a 

hindrance.  Recognizing that the development process would require more flexibility, the software 

engineering community collaborated and developed a tailored systems engineering approach to address 
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the inflexibility of a traditional systems engineering approach (Schapiro & Henry, 2012; Stelzmann, 

2012; Stelzmann, Kreiner, Spork, Messnarz, & Koenig, 2010).  In 2001, the world leaders in rapid 

software development gathered and created, which has become the foundation of rapid software 

development around the world, The Manifesto for Agile Software Development.  A summary of the 

principles identified in the manifesto is below (Beck et al., 2001; Frey & Valencia, 2010; Huang, Knuth, 

Kreuger, & Garrison-Darrin, 2012; INCOSE, 2011; Stelzmann et al., 2010; Turner, 2007): 

• Strong customer focus, with early and continuous involvement with customer in product 

development 

•  Requirements changes embraced and manage throughout all stages of development 

• Frequent delivery of incremental and useful products 

• Development teams should be motivated teams that cooperate closely and exchange 

information and ideas face-to-face regularly 

• Ownership of the development team of the product and processes 

• Functional product updates achieved through test-driven development is the primary 

measure of success 

These principles are the foundation of agile software development as well as Agile Systems 

Engineering (ASE).  Many concerns arise from adopting the agile software development principles into 

systems engineering.  The primary concern is the integration of hardware.  Since hardware is the major 

difference between software engineering and systems development.  Including hardware into agile 

development accelerates the increases in cost of changes as the system is being developed.  This issue is 

one of the primary reasons why traditional systems engineering was developed – to avoid late changes 
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(Frey & Valencia, 2010).  However many are starting to see the benefits that agile systems engineering 

will bring, such as flexibility, faster development times, potentially lower costs, and longer shelf lives.   

When it comes to Agile SE, the main difference between hardware and software is that hardware 

is difficult to develop in small cyclical steps.  However, research done by Ernst Stelzmann at the 

University of Technology, shows that agile systems development can be appropriate for the right 

hardware (Stelzmann, 2012; Stelzmann et al., 2010).  Stelzmann’s research shows that when hardware 

prototyping can be done quickly and cheaply, agile systems engineering is feasible.  Additionally, 

customer willingness to support this type of approach, market dynamism, level of innovation, and rate of 

change were also important factors for the use of agile system engineering in hardware development 

(Stelzmann, 2012; Stelzmann et al., 2010). 

Research done by Stelzmann et al, surveyed companies that are practicing ASE and found four 

main principles (Huang et al., 2012; Stelzmann et al., 2010): 

• The developers are just as, if not more important than the process itself.  Process is often 

more cared about than the people performing the process.  The developers are the 

brainpower and are doing the work.  It is wise to consider the process such that the 

developer can do their job in the best way. 

• Incremental development with close customer interaction 

• Iterative development increments 

• The product and processes should have a flexible design 

Based on the research completed by Stelzmann et al, the Agile Systems Engineering Model is as follows: 
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Figure 2.6-1: Stelzmann’s Agile Systems Engineering Action Model 

Source:  Agility Meets Systems engineering: A Catalogue of Success Factors from Industry Practice 

(Stelzmann et al., 2010) 

ASE focuses more on the developer as opposed to the process, which is a major departure from 

traditional systems engineering.  This is the largest concern that traditional systems engineering 

practitioners have with ASE.  Traditional SE practitioners believe that if you have a strong well 

documented process, then positive results can be repeatable.  Traditional SE practitioners concerns of 

ASE not adhering to process and lack of documentation are often a misconception.  Many engineers 
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misinterpret the The Manifesto for Agile Software Development, as the “advocation of process and tool 

avoidance, documentation aversion, bending over backwards to please the customer versus contractual 

commitment issues, and performing in ‘rogue engineering’ mode versus tracking to a schedule. However, 

a more accurate interpretation is to not allow these things get in the way of productivity, but to adapt and 

tailor the bureaucratic doctrine relative to project-specific needs in order to balance objectives” (Schapiro 

& Henry, 2012).  

Many SE practitioners believe that ASE is only adequate for smaller organizations (Balaji & 

Murugaiyan, 2012).  Individual research by Tudor, Kahkonen, and Schapiro has shown that ASE is 

possible in large organizations.  Tudor’s research showed that it is possible to convert a large organization 

with traditional practices to agile development practices with success (Tudor & Walter, 2006).  

Kahkonen’s research provided a methodology for implementing ASE in large organizations through 

establishing smaller cross-functional teams within a company called communities of practice, which 

would enable an agile approach (Kahkonen, 2004).  Schapiro developed a framework for implementing 

ASE in large, traditional organizations through making the system architecture modular to enable ASE 

(Schapiro & Henry, 2012).   Although ASE is a more recent systems engineering development, many 

launch vehicle organizations are beginning to adopt this approach (Gibson, 2019). 

2.6.3 Model-Based Systems Engineering 

Model-Based Systems Engineering (MBSE) is the application of modeling to support system 

requirements, design, analysis, verification and validation.  MBSE activities begins in the design phase 

and continues throughout later life-cycle phases.  MBSE aims to replace the document-centric approach 

(INCOSE, 2007; Piaszczyk, 2011; RAmos, Ferreira, & Barcelo, 2012).  This model-centric approach’s 

main artifact is a coherent model representing the desired system being developed instead of just 

documentation of the system (Bjorkman, Harkani, & Mazzuchi, 2012; Piaszczyk, 2011; RAmos et al., 
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2012).  The system model coalesces the requirements views of all stakeholders and provides a view of 

what the system looks like before committing to building hardware, which is unlike any other SE 

approach.  It allows stakeholders to see their vision of the desired system early, compared to other 

approaches. MBSE drives the validation process towards the beginning of the project.  The output of the 

MBSE design process is a model that contains all the information to build the system, instead of a series 

of documents.  Model-based metrics are used to monitor progress throughout the development.  MBSE 

can be compatible with many of the SE approaches previously described in this literature review.  MBSE 

is considered to be on the leading edge of SE practices.  Many organizations are starting to move to a 

model-based approach due to its benefits.   

2.7 Systems Engineering Best Practices and Standard 

Many SE best practices are the results of lessons learned during past projects.  To get a picture of 

SE best practices, it is critical to review the documented lessons learned from the development of 

complex systems over the years.  Systems engineering organizations such as INCOSE and NASA 

compiled extensive lists of SE lessons learned.  Both positive and negative lessons learned through the SE 

process are critical for future projects.  Experience gained from past projects can be critical in improving 

SE capabilities (BKCASE Editorial Board, 2014; Blair et al., 2011; Gill, Garcia, & Vaughan, 2005; 

INCOSE, 2011). “Applying lessons learned enhances the efficiency of the present with the wisdom of the 

past” (NASA, 2007).  After reviewing lessons learned captured in studies done by Gill, Garciea et al, 

Blair, Ryan et al, and NASA, the following representation of the themes that were common amongst the 

literature (Blair et al., 2011; Bruff, 2008; Gill et al., 2005; Kaskowitz, 1990; NASA, 2007; Slegers et al., 

2012): 

• Establishing the systems engineering infrastructure in the organization is critical 

• Requirements should be unambiguous, current, and vetted with all stakeholders 
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• An effective Systems Engineering Management Plan should be implemented in the 

earliest possible phase of a project 

• Failure to adhere to a sound engineering practice could lead to significant cost and 

schedule overruns 

• The people are the primary resource for successfully developing a system 

• Use lessons learned from previous development efforts to promote the success of current 

and future projects 

• Communication is critical to a project’s success 

Each of the lessons learned found in the literature could be grouped into the following categories: 

• Requirements 

• Management and Leadership 

• System Design/Architecting 

• Risk Mitigation 

• Verification & Validation 

• Technical Analysis 

Each one of these common themes among the lessons learned found in the literature that was reviewed 

could be broken into several elements.  For example, “Communication is critical to a project’s success” 

can be broken into elements such as:  proper requirements development, communication to and from all 

stakeholders, team collaboration, and so on.   

The lessons learned throughout the modern history of SE led to the development of systems 

engineering handbooks and standards.  The US DoD was one of the pioneers in the development of a 
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systems engineering handbook in the 1960s.  Since then, numerous systems engineering handbooks and 

standards have been developed.  Many of these standards and handbooks reflect systems engineering best 

practices.  Building on some of the work that was done by Honour and BKCASE, Table 1 is a comparison 

of SE Standards and Handbooks.  The handbooks and standards chosen for this comparison were from 

organizations known for developing complex systems or standards that are commonly used in the 

industry.  The list of standards chosen for this comparison is: 

• MIL-STD-499C – Systems Engineering (Pennell & Knight, 2005) 

o The DoD standard for SE mainly developed by the U.S. Air Force 

o The main focus of this military standard is government use and system 

acquisition  

• NASA Systems Engineering Handbook (NASA, 2007) 

o NASA is one of the leading developers of complex systems and has one of the 

most extensive lists of SE lessons learned  

o Very detailed SE guide tailored for NASA Missions, however is fundamentally 

applicable to any project, due to the wide range of projects NASA is involved in 

• IEEE-1220 – Application and Management of the Systems Engineering Process (ISO, 

2007) 

o Intended to be a standard for system development through the SE life cycle 

• ISO 90005 – Guidelines for the Application of ISO 9001 to Systems Life Cycle Processes 

(ISO, 2008) 

• EIA-632 – Process for Engineering a System (EIA, 1999) 
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o Purpose was to provide a fundamental set of integrated processes to assist in the 

development of a system 

o Focuses on requirements of each phase of system development 

• ISO/IEC 15288 – Systems and software Engineering System Life Cycle Process (IEEE, 

2008) 

o Purpose was to define a set of standards to facilitate communication among 

system stakeholders  

o Focusses on the system life cycle 

• INCOSE Systems Engineering Handbook (INCOSE, 2011) 

o Handbook developed by the words leading organization that promotes the 

development of SE  

o This handbook is very process focused and educational 

• Capability Maturity Model Integration for Development (SEI, 2010) 

o The focus is process improvement, however, identifies SE best practices, and its 

model is used by many organizations 

o Emphasizes improvement from the use of lessons learned 

There were a several other SE standards available, however most were focused on very specific areas of 

SE or a specific industry.  A comparison of the standards listed are found in Table 2.7-1.  As you can see, 

from looking at the comparison of the SE Standards and Handbooks, the same themes present in the 

lessons learned listed earlier in this section are also present in the standards and handbooks.  This gives 

confirmation that many of the SE lessons learned are reflected in the standards.  
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Table 2.7-1: Systems Engineering Standards Comparison 

  
Standards/Handbooks 

  
MIL-STD-499C NASA IEEE-1220 EIA-632 ISO/IEC 15288 INCOSE CMMI 

Ca
te

go
ry

 

Pu
rp

os
e To describe and 

require a 
disciplined systems 
engineering 
approach in system 
acquisition 

Provide general guidance 
and information on 
systems engineering that 
will be useful to the 
NASA community 

Provide a standard for 
managing a system from the 
concept phase through 
development, operations, 
and disposal 

Provide an 
integrated set of 
fundamental 
processes to aid a 
developer in the 
engineering of a 
system 

Provide a defined set of 
processes to facilitate 
communication among 
system acquirers, 
suppliers, and other 
stakeholders in the life 
cycle of a system 

Defines the 
discipline and 
practice of systems 
engineering for 
students and 
professionals 

Guidance for 
applying 
development best 
practices in an 
organization  

Re
qu

ire
m

en
ts

 

System 
requirements 
analysis shall be 
performed 
iteratively towards 
satisfy system 
requirements 

Requirements definition 
process transforms 
stakeholder expectations 
into validated technical 
requirements 
•  Communication and 
iteration with 
stakeholders are 
essential to develop 
proper requirements 
•  Requirements should 
describe all inputs, 
outputs, and 
relationships between 
inputs and outputs 

Requirements analysis shall 
be performed to establish 
system capabilities and 
define the following: 
•  Stakeholder expectations 
•  Project and organizational 
constraints 
•  External constraints 
•  Operational scenarios 
•  Measures of effectiveness 
•  System boundaries 
•  Utilization environment 
•  Life cycle process concept 
•  Functional requirements 
•  Design characteristics 

Emphasizes the 
use or 
requirements in 5 
areas: 
•  Acquisition and 
supply 
•  System Design 
•  Technical 
Management 
•  Product 
Realization 
•  Technical 
Evaluation 

Transform stakeholder 
view of desired services 
into technical view of 
the required product 
•  Specify required 
characteristics, 
attributes and 
functional and 
performance 
requirements 
•  Identify constraints 
that will affect system 
design 
•  Provide 
requirements 
traceability 
•  Provide a basis for 
system verification 

•  Requirements 
should be analyzed 
to transform 
stakeholder 
requirements-driven 
view of desired 
services into a 
technical view of a 
required product 
•  Requirements 
analysis builds a 
representation of 
the future system 
that will meet 
stakeholder 
requirements and 
has an 
understanding of 
any constraints 
•  Requirements 
should describe and 
reflect:  inputs, 
outputs, activities, 
controls, and 
enablers 

• Requirements 
development 
identifies 
customer needs 
and translates 
them into product 
requirements 
•  Requirements 
are the basis of 
the system design  
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  Standards/Handbooks 

    MIL-STD-499C NASA IEEE-1220 EIA-632 ISO/IEC 15288 INCOSE CMMI 

Ca
te

go
ry

 

Sy
st

em
 D

es
ig

n/
 A

rc
hi

te
ct

in
g 

The Systems Engineering 
Process shall be used to 
develop the system 

The system design is a 
highly iterative and 
recursive process that 
should result in a 
design solution that 
validates 
requirements.  The 
process involves 
developing: 
•  Stakeholder 
expectations 
•  Technical 
requirements 
•  Logical 
decompositions 
•  Design solutions 

•  A strategy for 
system 
development such 
as Waterfall, 
Incremental, 
Evolutionary, or 
Spiral should be 
explored 
•  Ability to change 
or enhance the 
system should be 
designed into the 
system 
architecture 

Layered development 
approach to provide the 
solution to the acquirer 
and stakeholder 
requirements 

Architecture Design 
provide a solution 
that satisfies system 
requirements 
•  Establish baseline 
architecture design 
•  Describe system 
elements that satisfy 
system requirements 
•  Incorporate 
interface 
requirements 
•  Provide tractability 
of architecture design 
to requirements 
•  Provides a basis for 
system element 
verification and 
integration 

•  Design should synthesize a 
solution that satisfies system 
requirements 
•  Design process is iterative 
and requires the 
participation of system 
engineer as well as relevant 
experts 
•  System architecture 
should meet the following 
criteria: 
-  Satisfies requirements 
-  Implements functional 
architecture 
-  Is acceptably close to the 
true optimum within time, 
budget and available 
resources 
-  Is within technical maturity 
and acceptable risk limits 

•  The technical 
solution to the 
requirements 
•  Requirements 
are converted into 
the product 
architecture 

Sy
st

em
 Im

pl
em

en
ta

tio
n Implementation shall be 

done iteratively in 
accordance with the 
systems engineering 
process to satisfy 
requirements 

Implementation is 
where plans, designs, 
analysis, 
requirements 
development, and 
drawings are realized 
into an actual product 
•  Product must 
satisfy design solution 

Engineering plan 
should be 
employed to 
resolve product 
deficiencies when 
system 
specifications or 
requirements are 
not met 

•  Convert requirements 
into a verified end 
product in accordance 
with stakeholder 
requirements  
•  validate system 
product and integrate 
system 
•  Verify the product 
against requirements 

•  Transform specified 
system behavior, 
interfaces and 
implementation 
constraints into 
fabrication actions  
•  Results in system 
elements that satisfy 
design requirements 
through verification 
and validation of 
stakeholder 
requirements 

•  Implementation designs, 
crates, or fabricates a system 
that conforms to the 
system's detailed description 
•  Implementation focuses 
on forming 3 forms of system 
elements:  hardware, 
software, and humans 

•  Interface 
verification is 
essential in the 
implementation 
process 
•  Validation is 
used to integrate 
the system in the 
operational 
environment 
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   Standards/Handbooks 
    MIL-STD-499C NASA IEEE-1220 EIA-632 ISO/IEC 15288 INCOSE CMMI 

Ca
te

go
ry

 
Te

ch
ni

ca
l A

na
ly

sis
 

Functional and logical analyses 
shall be performed iteratively 
throughout the life cycle 

Technical assessment is a 
crosscutting process used to : 
•  Monitor technical progress 
•  Provide information to support 
system design, product realization, 
and technical management decisions 

Analysis should be 
used to:  
•  Resolve 
requirements 
analysis, 
decomposing 
requirements, and 
allocating 
requirements 
•  Evaluate the 
effectiveness of 
alternative design 
solutions and 
selecting best 
design solutions 
•  Assessing system 
effectiveness 
•  Manage risk 

Technical analysis 
is used to: 
•  provide data 
for technical 
decision making  
•  Determine 
progress in 
satisfying 
requirements 
•  Support risk 
management 
•  Ensure 
decisions are 
made after cost, 
schedule, 
performance, 
and risk are 
evaluated 

Technical Analysis is 
used to: 
•  Define 
requirements of the 
system 
•  Transform 
requirements into 
an effective product 
•  Use of the system 
to provide required 
services 
•  Sustain the 
required services 
•  Dispose of the 
product when 
retired 

Technical process is 
used to: 
•  Define 
requirements 
•  Transform 
requirements into an 
effective product 
•  Permit consistent 
reproduction of the 
product 
•  Use the product to 
provide required 
services 
•  Sustain the 
provision of those 
services 
•  To retire the 
system 

•  Alternative solutions 
are examined to select 
the optimum design 
based on established 
criteria 
•  Emphasizes 
performing trade 
studies 

M
an

ag
em

en
t a

nd
 L

ea
de

rs
hi

p 

The work required to realized 
the system shall be managed by 
the developer such as: 
•  Requirements development 
•  Integration of the technical 
effort 
•  Planning and monitoring 
•  Decision making and control 
•  Risk Management 
•  Configuration management 
•  Interface management 
•  Data management 
•  Flow down of requirements 
and technical management of 
vendors and subcontractors 

Management is the bridge between 
the technical team and project 
management 
•  A System Engineering Management 
Plan needs to be establish prior to 
the start of the project 
•  Leadership tasks are crosscutting 
amongst all phases and areas of the 
project and include: 
-  Technical planning 
-  Requirements management 
-  Interface management 
-  Risk management 
-  Configuration management 
-  Data Management 
- Technical assessment 
-  Decision Analysis 

•  An engineering 
plan should be 
established to guide 
the project 
•  Plan should 
control data 
generated, 
configuration of the 
design solutions, 
interfaces, risks, 
and technical 
progress 

• Technical 
management 
process includes 
planning, 
assessing, and 
controlling of 
technical work.   
•  A strategy for 
implementing the 
management 
process prior to 
beginning the 
project 

Management 
should define, plan, 
assess and perform 
the following: 
•  Infrastructure 
Management 
•  Project 
Management 
•  Human Resource 
Management 
•  Quality 
Management 

Organizational 
management should 
direct, enable, 
control, and support 
the system life cycle.  
Management areas 
include: 
•  Life Cycle Model 
•  Infrastructure 
•  Project Portfolio 
•  Human Resources 
•  Quality 

Management tasks 
include: 
•  Integrated Project 
Management 
•  Project Monitoring 
and Control 
•  Project Planning 
•  Requirements 
Management 
•  Quantitative Project 
Management 
•  Risk Management 
•  Supplier 
Management 
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  Standards/Handbooks 

    MIL-STD-499C NASA IEEE-1220 EIA-632 ISO/IEC 15288 INCOSE CMMI 

Ca
te

go
ry

 

Ri
sk

 M
an

ag
em

en
t 

A risk management 
program shall be 
established and 
implemented.  Risk shall 
be assessed in the 
following areas: 
•  Products, process, and 
their relationships 
•  Contractually 
identified variations, 
uncertainties, and 
evolutions  

Risk management 
is crosscutting and 
is a well-organized, 
systematic 
decision-making 
process that 
proactively 
identifies, analyzes, 
plans, tracks, 
controls, 
communicates, 
documents, and 
manage risks 

•  Risk Management is 
one of the elements 
used to control the 
development of a system 
•  A risk management 
plan should be 
established 
•  Risk assessment and 
handling should be 
captured by the 
developing organization 

Risk analysis should be 
done to develop risk 
management strategies, 
support risk management, 
and decision making 
•  Risk management 
requires discipline 
•  Only useful to the degree 
that it highlights the need 
to take action 
•  Risk management is 
continuous 

Identify, analyze, address, 
and monitor risks 
continuously throughout 
the life cycle of the system 

Same as 
ISO/IEC 15288 

Identify problems 
before they occur to 
that risk handling 
activities can be 
planned and 
implemented as 
needed 
•  Define a risk 
strategy 
•  Identify and 
analyze risks 
•  Implement risk 
mitigation plan as 
needed 

Ve
rif

ic
at

io
n 

&
 V

al
id

at
io

n 

•  Verification of 
requirements shall be 
repeatedly performed 
throughout the system 
development to confirm 
that documented 
requirements are met 
•  Validation of the 
evolving system solution 
shall be done to provide 
objective evidence that 
they system when used 
as intended meets 
stakeholder expectations 

• The verification 
process ensures 
that the systems 
conforms to the 
requirements 
•  Validation 
ensures that the 
system will do 
what the customer 
intended it to do in 
the intended 
environment 

Verification is performed 
to assess completeness 
of system architecture in 
satisfying the validated 
requirements 
 
Validation evaluates 
requirements baseline 
to: 
•  Ensure it represents 
stakeholder expectations 
and internal and external 
constraints 
•  Determine whether all 
possible system 
operations and life cycle 
support concepts have 
been adequately 
addressed 

Verification ascertains that: 
•  System design is 
consistent with source 
requirements 
•  End products at each 
level of the system are 
implemented 
•  Ensure product 
development is 
appropriately progressing 
•  Enabling products that 
are required are available 
when needed 
Validation demonstrates: 
•  products satisfy 
requirements 

Verification: 
•  Confirms that design 
requirement are fulfilled by 
the system 
•  Provides information 
required to effect the 
corrective actions of non-
conformances that occur in 
the realized system 
Validation: 
•  Provides objective 
evidence that the system 
comply with stakeholder 
requirements and achieve 
its intended use in the 
intended operational 
environment 
•  Confirms that 
stakeholder requirements 
are correctly defined 

Same as 
ISO/IEC 15288 

•  Ensures that 
product meets 
specified 
requirements 
•  Incrementally 
validates products 
against customer 
needs 
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2.8 Systems Engineering Metrics 

The previous section looked at SE best practices and standards.  In this section we will look at 

ways to measure the SE process, namely metrics.  Metrics are defined by Merriam-Webster as a standard 

of measurement.  Metrics are used throughout just about every industry to measure different aspects of 

their business.  SE metrics date back to post World War II error, around the time the SE concept emerged 

(Vanek et al., 2008).  Some SE practitioners define SE metrics as measurements that characterizes the 

quality or performance of a systems engineering process (D. C. Brown, 1998; Gilb, 2008; INCOSE, 2010; 

Kitterman, 2005; Mahidhar, 2005; Roedler & Jones, 2005; Vanek et al., 2008).  Based on the literature 

reviewed, metrics serve several purposes (Carson & Zlicaric, 2008; Gilb, 2008; INCOSE, 2010; 

Kitterman, 2005; Mahidhar, 2005; NASA, 2007; Rhodes, Valerdi, & Roedler, 2009; Roedler & Jones, 

2005): 

• Monitoring the progress and performance of a process or activity 

• Adequately communicates throughout the project organization 

• Identifies problems 

• Can track specific program objectives 

• Support decision making  

Metrics are a tool to effectively communicate to the leadership of an organization information on 

the performance of the process or activities being measured (INCOSE, 2010). 

Most of the literature reviewed on metrics was consistent in the description of the process used to 

apply metrics to systems engineering activities.  INCOSE, IEEE, Kitterman, Roedler, Mahidhar, and 

Rhodes described a four-part process.  The measurement process identifies four iterative activities:  

establish, plan, perform, and evaluate the measurements (Carson & Zlicaric, 2008; IEEE, 2008; INCOSE, 

2010; ISO/IEC, 2007; Kitterman, 2005; Mahidhar, 2005; Rhodes et al., 2009; Roedler & Jones, 2005).  
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Their description of each of the four measurement activities may vary slightly, but the underlying 

activities were the same. 

Most literature, describes various types or dimensions of metrics.  Roedler and Jones describe 

metrics types as measures of effectiveness and measures of performance (Roedler & Jones, 2005).  

Mahidhar describe the metric dimensions that were more general, such as: measure type, tense, and focus 

(Mahidhar, 2005).  In the Systems Engineering Measurement Primer, INCOSE describe two basic types 

of metrics:  measuring technical performance and measuring process (INCOSE, 2010).  Rhodes et al’s 

focus was on the tense of the metric (leading or lagging). NASA divides SE metrics into three categories:  

progress/schedule, quality, and productivity (NASA, 2007).   

From the literature that was reviewed, metrics can fall into two categories, leading indicators or 

lagging indicators.  Leading indicators predict what will happen.  Lagging indicators or measures 

characterizes what already happened (Evans & Lindsay, 2014; Mahidhar, 2005).  Most literature declare 

cost, schedule, and technical performance as indications of systems engineering performance (Elm & 

Goldenson, 2012; Gruhl, 1992; Eric C. Honour, 2004, 2010; Eric C. Honour, Axelband, & Rhodes, 2004; 

Son & Kim, 2012; Valerdi, 2005).  More specifically, cost, schedule, and technical performance describes 

the return on SE investment, which is a lagging indicator.  In the past 10 years, research has been directed 

more towards leading indicators.  There has been research performed by INCOSE, Mahidhar, and Rhodes 

et al in this area.  

Most of the literature generally discuss metrics but few give specifics on what metrics should be 

used to assess SE.  A few pieces of literature give specific examples of useful metrics.  Below in Table 2 

is a list of performance measures extracted from the literature of INCOSE, NASA, Rhodes et al, 

Mahidhar, Roedler & Jones, Bruff, Valerdi   

• Requirements Trend 
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• System Definition Change Backlog 

• Interface Trends 

• Requirements Validation Trends 

• Requirements Verification Trends 

• Work Product Approval Trends 

• Review Action Closure Trends 

• Risk Exposure Trends 

• Risk Handling Trends 

• Technology Maturity Trends 

• Technical Maturity Trends 

• Systems Engineering Staffing and Skills Trends 

• Process Compliance Trends 

• Measures of Effectiveness 

• Measures of Performance 

• Key Performance Parameters 

• Technical Performance Measures 

• Schedule Performance Index 

• Cost Performance Index 

• SE Effectiveness 

• Program Performance Index 

• Scope Performance Index 
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Most literature agree on the definition of metrics and what they are used for, however, there is a 

wide range of application tips, guidance, and lessons learned on the use of metrics.  Some of the literature 

give steps on how to implement SE metrics, while others just provide useful tips and lessons learned.  The 

following is a representative of the tips, guidance, and lessons learned on using SE metrics: 

• PACTS-21 (D. C. Brown, 1998):  Early research by a collaborative research program 

called PACTS-21, suggested that 

o Great effort should be put into choosing the right metrics 

o Metrics should only be used to compare processes that have similar inputs and 

outputs 

o Metrics should be used sparingly but should cover all key processes 

o Applying a few simple metrics can be beneficial, however using too many not 

be beneficial 

o Metrics should be related to an organization’s business drivers 

o Data collection of metrics should be automated when possible. 

• Technical Measurement Guide (Roedler & Jones, 2005): 

o Organization should factor SE measurements into decision making 

o Metrics must be available early enough to take action and reduce problems or 

risks 

o The measurement process and risk management should be closely aligned 

• A Structured Method for Generating, Evaluating, and Using Metrics (Kitterman, 2005): 

o Use measurements that adequately characterize the desired process 

o Use metrics that will be useful in decision making 
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o Selected metrics should be well-represented and need relatively little 

explanation 

• Using Performance-Based Earned Value for Measuring Systems Engineering 

Effectiveness (Carson & Zlicaric, 2008): 

o Metrics must present data that is useful to the organization and motivates 

action 

o Metrics must support organizational goals 

o Metrics should be well defined, simple, easy to understand, logical and 

repeatable 

o Data must be easy to collect 

• Systems Engineering Measurement Primer (INCOSE, 2010): 

o Limit metrics to those that can lead to better decision making 

o Project risks, concerns, constraints, and objectives should drive the measures 

and indicators selected 

o The core set of metrics should be kept small and limited to approximately 6 

o Assign an owner to the measurement process 

o Re-evaluate the metric program regularly 

o Have a defined measurement process before metrics are taken 

o Try to find a way to use metrics in a way such that the team views the use of 

the metrics positively 

o Utilize metrics that use data that is naturally available 

o Data collection for metrics should be automated as much as possible 
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As you can see from the lessons learned and guidance listed above, there are four themes that 

were consistent among the literature: (1) the metric selection process is very important and a lot of 

thought and consideration should be put into choosing the right metrics, (2) a small number of metrics 

covering key processes should be used, (3) data collection should be automated when possible, and (4) 

metrics should support organizational objectives. 

 

2.9 Implementing Systems Engineering 

Numerous researchers agree that implementing a systems engineering process in an organization 

would help to increase the chances of project success (Dean, Bentz, & Bahill, 1997; Eric C. Honour, 

2010; Eric C. Honour et al., 2004; NASA, 2007).  Researchers also suggest that to implement SE in an 

organization, there needs to be an awareness and understanding of SE (Czaja, Dumitrescu, & Anacker, 

2016; EIA, 1999).  Most literature found is very consistent on the purpose of implementing systems 

engineering, however, there was a large dispersion on the level of detail provided on implementing 

systems engineering in an organization.  There was very few pieces of literature found that provided great 

detail on how to implement systems engineering, this is likely due to that fact that the systems 

engineering processes are individually tailored by organizations for their specific application and needs. 

2.9.1 Planning, Controlling, and Assessment 

Most SE standards suggests that implementation of a SE process in an organization, requires 

some form of planning, control, and assessment of the SE process (EIA, 1999; INCOSE, 2011; ISO, 

2007; NASA, 2007; SEBoK authors, 2016).  EIA (1999) and NASA (2007) identifies the process of 

planning, controlling, and assessing systems engineering as technical management.  Whereas, INCOSE 

(2007) describes this process as Project Planning and Controls. Although standards may use different 

names, all agree that planning, control, and assessment of the SE process is essential. 
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2.9.1.1 Planning 

Planning the systems engineering process is considered by leading SE organizations, such as 

INCOSE, NASA, IEEE, and SEBoK to be one of the most important aspect of implementing a systems 

engineering process.  According to leading SE organizations, the purpose of planning the systems 

engineering process is to effectively communicate a workable guide for the systems engineering process 

(EIA, 1999; IEEE, 2008; INCOSE, 2011).  As previously identified as a SE best practice in Section 2.7, 

planning of the systems engineering process should occur as early as possible.  This sediment was echoed 

in much of the literature that was reviewed.  SEBoK authors (2016) warned that inadequate complete and 

rushed SE planning could cause significant impacts to project cost and schedule. 

The literature from leading SE researchers were very consistent in in stating that planning of the 

SE process should be documented prior to implementing systems engineering (INCOSE, 2011; NASA, 

2007; SEBoK authors, 2016).  However, the literature varies on the name of the documented plan.  Some 

researchers refer to the plan as the Systems Engineering Management Plan (SEMP), Systems Engineering 

Plan (SEP), Engineering Plan, or Technical Management Plan.  For the purposes of this research, the 

documented plan of the systems engineering process will be referred to as the SEMP.   Most major SE 

organizations agree that the major elements of the SEMP should: 

• Describe the system being developed 

• Describe the technical management of the project 

• Identify tailoring of the SE process and the life-cycle approach to be used 

• Describe integration of the technical disciplines into the SE process 

2.9.1.2 Control and Assessment 

Organizations such as EIA (1999), NASA (2007), IEEE (2008), and SEBoK authors (2016) 

identify assessment and control as another important aspect of implementing SE.  The purpose of 
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assessment and control is to determine the performance of the SE process on meeting cost, schedule, and 

technical requirements.   Most literature agree that this is accomplished through the various technical and 

SE life-cycle reviews, such as systems requirements reviews, preliminary design reviews, critical design 

review, and design certification reviews.  Details of assessing the SE process is described in Section 2.11. 

2.10 Enabling Systems Engineering 

Any organization that seeks to employ systems engineering has to make appropriate preparations 

to effectively implement a systems engineering process (SEBoK authors, 2016).  Three factors for 

enabling SE in an organization were identified in the literature reviewed: culture, SE competencies, and 

SE tools and infrastructure (INCOSE, 2011; Oppenheim et al., 2011; SEBoK authors, 2016).   The themes 

of these three factors for enabling SE were also present in the SE best practices identified in Section 2.7.  

This shows that there is consistency between enabling SE and best practices for SE.  The SE Tools and 

infrastructure which was identified as an enabler refers to the different systems engineering models, 

which were discussed extensively in Section 2.5 and 2.6. 

2.10.1 Systems Engineering Culture 

Organizational culture has been the topic of many studies to understand the psychology behind 

the behaviors of an organization (Schein, 1990).  All though there has been some differences on the exact 

definition of organizational culture, most researchers agree that organizational culture can be described as 

the common beliefs, values and behaviors shared throughout the organization (Alsowayigh, 2014; Hogan 

& Coote, 2014; Iivari & Huisman, 2007; Schein, 2004).  These organizational beliefs are buried behind 

various layers within the organization and has a strong influence on the behaviors of people within the 

organization.  It is important to study the beliefs and perceptions of the people in the organization to 

understand organizational culture (Alsowayigh, 2014; Hogan & Coote, 2014; Schein, 2004).   
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The culture of an organization forms the background in which the systems engineering process is 

executed (Iivari & Huisman, 2007). Culture, as it applies to SE is described by numerous SE researches, 

as the values, beliefs, and normal practices of an organization (Carroll, 2016; Iivari & Huisman, 2007; 

NASA, 2003; SEBoK authors, 2016).  Carroll and SEBoK authors describe culture as a critical aspect of 

implementing SE.  Oppenheim et al. (2011) had a very succinct definition of SE culture.  Oppenheim 

described SE culture as “a pervasive mental state and bias for systems engineering methods applied to 

problem solving across the development lifecycle and all levels of enterprise processes” (Oppenheim et 

al., 2011).   Researchers believe that a culture that promotes effective SE, encourages systems thinking.   

SE organizational culture is believed by some researches to be an aggregate of leadership, the industry of 

the organization, and relationship with competitors (SEBoK authors, 2016).  A healthy SE culture is 

described by the SEBoK authors as being strong in the following elements: 

• Leadership 

• Trust and morale 

• Cooperation and teamwork 

• Empowering employees 

• Confidence in the processes and practices 

• Job security 

SEBoK authors warn of two SE cultural shortfalls to avoid.  The first is referred to as “Risk 

Denial”.  Risk Denial is described as a cultural reluctance to recognize the true risk associated with the 

system.  An example or risk denial is considered by SEBoK to be the Space Shuttles Challenger and 

Columbia accidents, where there was a cultural reluctance to recognize the risk of launch.  The second 

cultural shortfall mentioned by SEBoK authors is referred to as the “Titanic Effect”.  This is described as 

the belief that a system is safe when in fact, the system is not.  The example of this is the Titanic ocean 

liner catastrophe. 
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There have been very few studies completed that focuses on systems engineering within the 

organizational culture.  However, numerous organizational culture studies have been completed that 

focuses on an area closely related to systems engineering.  In recent years, organizations in high risk 

industries, such as the launch vehicle industry, have focused on effect on organizational culture on safe 

operations (Gibbons, von Thaden, & Wiegmann, 2006).   Launch vehicle mishap investigations such as 

the Challenger and Columbia space shuttle accidents were partially attributed to safety culture (NASA, 

2003). 

Safety culture has been the focus of numerous organizational culture studies.  Much like systems 

engineering, safety has to be considered and evaluated all throughout the development life-cycle and 

requires a holistic view.  A large part of safety is risk management, and risk management is a very large 

part of systems engineering.  As you can see there is a lot of overlap between safety and systems 

engineering, which is why a lot of the principles of evaluating safety culture within organizations can be 

applicable to studying systems engineering culture.  Researches such as Schein (2004), Taylor (2010), 

and Patankar, Brown, Sabin, and Bigda-Peyton (2012) believe that there are layers to the safety climate of 

an organization.  Patankar and Sabin developed layered safety culture pyramid illustrated in Figure 

2.10-1. 

 

Figure 2.10-1:  Safety Culture Pyramid 
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The safety culture pyramid model consist of four layers.  Behaviors are at the top of the pyramid.  

In this model, behaviors are translated to performance.  The next layer of the pyramid are attitudes and 

opinions, which influences performance.  The third layer of the pyramid are organizational mission, 

leadership, history, norms, heroes and legends.  The bottom layer of the pyramid are underlying values 

and unquestioned assumptions (Patankar et al., 2012).  Patankar described the pyramid model as a multi-

dimensional reflection of the dynamic nature of safety culture.  The elements of the pyramid are common 

to all organizational cultures.  Given the commonality of these culture elements amongst organizations, 

the dynamic and multi-dimensional nature of systems engineering, and the overlap of systems engineering 

and safety, this safety culture pyramid model can be applied to systems engineering. 

2.10.2 Systems Engineering Competencies 

Systems engineering competency is described by Whitcomb, Khan, and White (2014) as the 

measure of the ability of a SE to appropriately apply knowledge, skills, attitude, and  abilities in order to 

successfully execute the systems engineering job.  Understanding SE competencies is critical for enabling 

SE in an organization.  It helps the organization to understand what training, education, and experience is 

needed to allow its personnel to successfully implement systems engineering (SEBoK authors, 2016; 

Whitcomb et al., 2014).  Many large systems engineering organizations such as Department of Defense, 

INCOSE, NASA, and CMMI, develop competency models that identify a list of competencies needed to 

practice good systems engineering.  Many of the systems engineering standards identified in Section 2.7 

discuss systems engineering competencies. 

2.11 Assessing Systems Engineering 

After review literature on SE metrics, literature was reviewed on how to assess systems 

engineering.  To assess systems engineering, one must understand what it takes to make systems 

engineering successful.  BKCASE Editorial Board (2014) determined that the purpose of assessing 
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systems engineering is to maintain sufficient insight into the project’s technical progress and risks.  Many 

believe that the way to assess systems engineering is to evaluate cost, schedule, and technical 

performance of the system that was developed.  This principle is what led Valerdi to develop the 

Constructive Systems Engineering Cost Model (COSYSMO).  However, COSYSMO was based on little 

systems engineering data from only successful programs and varying perceptions and definition of 

systems engineering (Bruff, 2008; Eric C Honour & Valerdi, 2006; Valerdi, 2005).   

Valerdi was not the only researcher to assess systems engineering by cost and schedule.  Elm & 

Goldenson; Gruhl, Honour et al, Son & Kim, and Componation et al made cost and schedule the focus of 

assessing systems engineering.  Research completed by Componation et al, using data from NASA 

projects, sought to link project success with the systems engineering process.  Componation’s research 

found a correlation, but the correlations were between cost and schedule, and not project technical success 

(Componation, Utley, Farrington, & Youngblood, 2009).  Robert Bruff at Walden University sought to 

link SE best practices with cost and schedule savings.  Bruff’s researched showed that SE best practices 

had a strong correlation to cost, schedule, and overall program performance (Bruff, 2008).  Cost and 

schedule was the focus of the majority of the literature associated with assessing systems engineering.  

Very little literature focused on specifically the technical performance. 

ISO (2007), IEEE (2008) and INCOSE (2011) published literature on the project assessment and 

control process as methods of assessing the project.  The objectives of the project assessment and control 

process is to evaluate the performance of the projects plans with respect to cost, schedule, and technical 

objectives.   Assessments are to be performed at various points throughout the project life-cycle.  These 

assessments should come in the form of technical reviews at all project milestones.  ISO (2007), IEEE 

(2008) and INCOSE (2011) suggested that a successful project assessment and control review would 

result in the following: 

• Adequate assessment of project performance including performance measures 
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• Assessment on if the roles, responsibilities, authorities, and resources allocated to the 

project are sufficient to achieve project success 

• Identification and evaluation of risks associated with the project 

• Informing all project stakeholders of project status 

These elements would allow decision makers to make informed decisions and direct project efforts as 

necessary.  ISO, IEE, and INCOSE’s literature provided a great overview of the project assessment and 

control.  Their literature was focused mainly on the project performance, and not the performance of the 

systems engineering process itself.  The NASA Systems Engineering Handbook and Systems Engineering 

Body of Knowledge built upon the work that was done by ISO, IEE, and INCOSE and expanded the 

assessment and control elements to include elements to improve the systems engineering process itself, 

and not just the particular project.  The NASA (2007) and BKCASE Editorial Board (2014) included 

elements such as: 

• Evaluation of project against the organization’s SEMP 

• Hold a review after the completed system is delivered to capture lessons learned to 

improve process moving forward 

2.11.1 Best Practices for Project Assessment and Control 

 Similar to other SE best practices, best practices are the results of lessons learned during past 

projects.  Experience gained from past projects can be critical in improving SE capabilities (BKCASE 

Editorial Board, 2014; Blair et al., 2011; Gill et al., 2005; INCOSE, 2011).  Systems engineering 

organizations such as INCOSE, NASA, and SEBoK have compiled lists of best practices for project 

assessment and control.  A consolidation of the key best practices for project assessment and access 

control are (BKCASE Editorial Board, 2014; INCOSE, 2011; NASA, 2007): 
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• Maintain an independent evaluation and recommendations on schedule, technical condition, 

resources, and risk guided by experience and tend analyses 

• Ensure technical reviews are decision gates that must be passed for work to proceed 

• Perform peer reviews of technical review products 

•  Make the action items and action item status visible to all stakeholders 

• Hold reviews after the system has been delivered to document lessons learned 

• Utilize project monitoring, configuration management, and risk management to identify critical 

areas 

• Only collect measurements used in decision-making 

Similar to the elements of project assessment, the best practices focus primarily on evaluating project 

performance of the project and not evaluating the actual systems engineering process itself. 

2.12 Critical Success Factors 

2.12.1 Project Management and System Engineering 

There is a symbiotic relationship between project management and systems engineering.  There is 

much overlap between the two (BKCASE Editorial Board, 2014; INCOSE, 2011; NASA, 2007).  

However, the overlap can vary based on the organization and project.  In some organizations, project 

managers and systems engineers have very little overlap and/or communications, whereas in others, both 

jobs are done by the same person (BKCASE Editorial Board, 2014).  Project management is responsible 

for the overall project, which includes planning, implementing, controlling, budget, schedule and status 

reporting (Fleming & Koppelman, 2005; Nicholas & Steyn, 2012).  Whereas systems engineering is 

focused on the technical aspects of the project(BKCASE Editorial Board, 2014; INCOSE, 2011; SEBoK 

authors, 2016). 
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Project management has been heavily targeted for critical success factors (CSFs) studies for 

decades, leading to an abundance of literature on the subject.  However, very little literature exists 

specifically studying the critical success factors of systems engineering.  Since there is much overlap 

between project management and systems engineering, literature of the CSFs of project management was 

reviewed to gain insight into the critical success factors of systems engineering.  Since this literature 

review is focused on Systems Engineering, literature review on CSFs of project management was not 

exhaustive, however sufficient literature was reviewed to gain an understanding of the CSFs of project 

management. 

2.12.2 Critical Success Factors of Project Management 

Belassi and Tukel (1996), considered pioneers on the critical success factors of project 

management suggested that vigorous research on the critical success factors of project management 

would need to distinguish between project success criteria and project success factors.  Project success 

criteria are those elements by which the success of the project is measured, such as cost schedule, 

required quality, and customer satisfaction (Belassi & Tukel, 1996; Fortune & White, 2006; Müller, 

Söderland, & Jugdev, 2012; Randt, Waveren, & Chan, 2014; Shenhar, Tishler, Dvir, Lipovetsky, & 

Lechler, 2002; Slevin, 1987; Westerveld, 2003).  Although many researchers agree that cost, schedule, 

required quality and customer satisfaction are project success criteria, there is little agreement that these 

are the only four dimensions of project success criteria.  Some researchers argue that there are other 

dimensions to the success criteria, since success means different things to different people, cut there is 

very little consensus on the other dimensions of project success criteria. 

Projects success factors are considered by many to be the elements that when influenced increases 

the likely food of success of the project.  Project success factors can be organization, environmental, 

and/or external to the project itself. (Belassi & Tukel, 1996; Fortune & White, 2006; Müller et al., 2012; 
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Randt et al., 2014; Shenhar et al., 2002; Slevin, 1987; Westerveld, 2003)  Numerous researchers have 

compiled extensive list of critical factors, many of the list varied in the number of factors identified.   
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Table 2.12-1:  Fortune and White's Compiled List of Project Critical Success Factors 

 

Rank by 
appearance  Project Critical Success Factors 

1 Support from senior management 
2 Clear realistic objectives 
3 Strong/detailed plan kept up to date 

4 Good communication/feedback 

5 User/client involvement 

6 Skilled/suitably qualified/sufficient staff/team 

7 Effective change management 

8 Competent project manager 

9 Strong business case/sound basis for project 

10 Sufficient/well allocated resources 

11 Good leadership 

12 Proven/familiar technology 

13 Realistic schedule 

14 Risks addressed/assessed/managed 

15 Project sponsor/champion 

16 Effective monitoring/control 

17 Adequate budget 

18 Organizational adaptation/culture/structure 

19 Good performance by suppliers/contractors/consultants 

20 Planned close down/review/acceptance of possible failure 

21 Training provision 

22 Political stability 

23 Correct choice/past experience of project management methodology/tool 

24 Environmental influences 

25 Past experience (learning from) 

26 Project size (large)/level of complexity (high)/number of people involved (too 
many)/duration (over 3 years) 

27 Different viewpoints (appreciating) 
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Fortune and White (2006) performed an exhaustive literature review of the critical success factors 

of project management and compiled a list of factors in order by frequency of appearance in literature.  

Not all literature reviewed identify all 27 factors listed in Table 2.12-1, however most of the literature 

agrees on the top three factors.  Project management CSF literature published after Fortune and White 

compiled the CSF list was reviewed, and the recent literature remained consistent with Fortune and 

White’s list.   

2.13 Systems Engineering and Launch Vehicle Failures 

There have been numerous pieces of literature discussing launch vehicle failures, however very 

few specifically examining how systems engineering impact launch vehicle failures.  Most failure 

analyses performed on launch vehicle failures seek to identify root cause of the failure, but usually does 

not look specifically to identify system engineering deficiencies.  In 2001, J. Steven Newman conducted a 

study at NASA taking a systems engineering look at 50 space systems failures.  Newman found that all 50 

failures could be attributed to deficiencies in some area of systems engineering (Newman, 2001).  The 

results of Newman’s findings are summarized in Table 1.3-1.  Gill et al. (2005) conducted a lessons 

learned and systems engineering application using space systems failures and agreed with many of 

Newman’s findings.  Other published research on launch vehicle failures have been completed by  Chang 

(1996), Isakowitz, Hopkins, and Jr. (2004), Harland and Lorenz (2005), and Leung (2014) may not 

specifically link the causes to systems engineering, but all failure causes identified were related to one or 

more of the areas of systems engineering identified in Newman’s research. 
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Table 2.13-1:  A Systems Engineering Look at 50 Space Systems Failures Summary 

Systems Engineering Element Contributing 
Cause 

Proximate 
Cause 

Total Percentage of 
Total Causes 

Requirements Development 0 0 0 0% 

Program Management 3 3 6 4% 

Systems Engineering Management 15 0 15 11% 

Design 10 21 31 22% 

Design Test & Verify 8 8 16 12% 

Software Design 1 2 3 2% 

Software Test & Verification 4 4 8 6% 

Production/Manufacturing 5 20 25 18% 

Prod/Mfg Test and Verification 25 1 26 19% 

Operational Planning 4 0 4 3% 

Pre-Op Test & Verification 0 0 0 0% 

Policy/Cost/Schedule 3 2 5 4% 

Total 78 61 139 100% 

NOTE:  A space system failure can multiple causes 

 

2.14 Gaps in Literature and Obstacles 

There are a number of SE standard and handbooks available in the SE community to give 

guidance to SE practitioners.  Each of the standards reflects years of SE experience and documented 

lessons learned.  Each standard gives a good description of what SE requires and provide overviews of 
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each step in the systems engineering process.  When it comes to SE implementation, the standards and 

handbooks are very general and only provide what the purpose or goal of SE implantation.  Very little 

treatment was given to SE implantation compared to the other elements of SE.  None of the SE standards, 

handbooks, or other literature reviewed provided information on the key factors of SE implementation.  

This is one of the major gaps noted during the literature review.  Understanding the detailed elements of 

implementing systems engineering would be helpful to many organizations trying to implement a systems 

engineering process, particularly since breakdowns in the SE process could be catastrophic for an 

organization. 

An obstacle identified with understanding SE implementation is that there are a wide variety of 

ways SE can be implemented in an organization.  Systems Engineering solutions are tailored to a 

particular industry or organization (BKCASE Editorial Board, 2014).  This would present challenges in 

understanding key elements of SE implementation.  In addition, there is a variety of system engineering 

models that would play a factor in addition to the customization of the SE process to a particular industry. 

Many SE documents focus primarily on evaluating how well the project is performing, but very 

little focus on evaluating an organization’s systems engineering processes itself.  None of the standards 

provide any guidance on how to assess the systems engineering practices of an organization.  This is a 

literary gap in SE literature that could prove useful.  Many organizations contract out the development of 

a complex system, and as part of selecting a viable contractor, understanding the quality of SE of a 

potential contractor is critical.  Guidance in international SE standards and handbooks on how to evaluate 

the systems engineering practices and abilities of a potential contractor could prove useful. 

In addition to very little literature being found on how to assess systems engineering practices of 

an organization, there was no literature found on whether or not an organizations systems engineering 

practices can be effective without having a dedicated systems engineer.  Many pieces of literature spoke 

about the value of systems engineering, but no literature could be found that discussed how the SE 
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process requires a person within the organization whose major purpose is to facilitate systems 

engineering.  Some organizations state that systems engineering can be done collectively as a group of 

discipline focused engineers and there is no need for a dedicated systems engineer or dedicated systems 

engineering group within the organization.  However, there was insufficient literature found to support or 

refute that claim. 

Another gap that was identified in the literature was in how SE metrics relate to the different SE 

models.  There is a lot of literature on how to develop and implement metrics and what metrics are useful.  

However, there is very little literature that shows how SE metrics relate to or should be used in specific 

SE models.  For Example, The Technical Measurement Guide (Roedler & Jones, 2005) discusses which 

phase of the Vee Model certain types of metrics should be taken, but only the Vee Model was discuss.  

With the emergence of non-traditional SE models guidance on how the various SE metrics relate to the 

various traditional and non-traditional SE models would be valuable.  There may be certain metrics that 

are more suitable for a particular type of SE model, understanding the relationships could be useful. 

There are two obstacles with the use of SE metrics found in the literature.  The first obstacle is 

that people do not like to be measured (INCOSE, 2010).  This may cause the team or employees to resist 

or put little effort into utilizing SE metrics.  The second obstacle is “gaming”.  Systems engineering 

organizations may play games or manipulate variables to make the SE metrics present their organization 

in a more favorable manor than it should (Eric C. Honour et al., 2004). 

When it comes to evaluating the systems engineering practices of an organization, much of the 

focus in the literature is on SE effectiveness, namely if the project was successful in meeting cost and 

schedule.  Most of the literature focus on cost and schedule but very little on the technical performance.  

More research in this area is needed.  Evaluating the SE practices of an organization could prove 

valuable.  Cost and schedule are major contributors for system developer selection, however, for some 

organization, technical performance is just as or even more important than cost and schedule.  The few 
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pieces of literature that look at technical performance focus on the system itself rather than the 

organizations SE practices.  In addition, another gap was found in assessing the risk of an organization’s 

SE practices.  There was literature available of assessing project risk at various stages of the life cycle, but 

nothing specifically on the assessing risk of an organization’s SE practices. 

There was one primary gap identified when literature was reviewed that linked systems 

engineering deficiencies with launch vehicle failures.  The bulk of the systems engineering approach to 

assessing launch vehicle failures was completed in 2001, which was 16 years ago.  Since that time, there 

has been numerous developments in the launch vehicle industry.  Many of the launch vehicles that were 

flying during that time period, and new launch vehicles, as well as new launch vehicle providers have 

entered the market since that time.  There has also been many developments in system engineering and 

systems engineering approaches since 2001.  The literature reviewed does not account for recent 

developments in the launch vehicle industry as well as recent developments in systems engineering 

approaches. 

There has been an abundance of studies examining the CSFs of project management, but very few 

looked at systems engineering specifically.  Even though there is overlap between systems engineering 

and project management, they are still two distinct disciplines.  Project management is focused on the 

overall project and focuses mainly on cost and schedule, whereas systems engineering focuses mostly on 

the technical aspects of a project.  Therefore, the lack of CSF studies specifically on SE is considered a 

literary gap.   

 

2.15 Literature Review Conclusion 

Organizations such as INCOSE, IEEE, DoD, and NASA are and continue to be world leaders in 

systems engineering.  The SE practices used across many industries stem from the work of these 
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organizations.  Lessons learned compiled over decades of complex system development have evolved into 

SE best practices, and the best practices are reflected in standards and handbooks.  Use of these best 

practices has shown to have a positive effect on cost, schedule, and project performance. 

When it comes to assessing SE practices of an organization much of the focus is on cost and 

schedule.  There are many methods available for assessing the effectiveness of SE to deliver as system 

within cost and schedule.  However, a method of specifically assessing the technical performance or the 

SE practices of an organization would have to be developed.  More specifically, methods found for 

assessing systems engineering focus on the project cost and schedule performance, and not the systems 

engineering process itself.  The ability to assess the critical factors associated with the implementation of 

SE within an organization would prove useful to any organization that needs to understand the critical 

factors for implementing systems engineering.  The use of metrics is a potential tool for assessing SE 

practices, however, much research would need to be done to understand the best SE metrics to use and 

how to use them.  Research would also have to be completed on which metrics or what type of metrics are 

more effective for the different SE models.  This would be useful in developing a method for assessing 

SE.  When examining how systems engineering applies to launch vehicle failures, the bulk of the research 

in this area is over 16 years old and should be updated. 

Hsu, Raghunathan, and Curran, summarized very well the state of systems engineering in today’s 

society that is very applicable to why the critical factors of implementing systems engineering is needed: 

“Modern society is characterized by complex networks and systems: e.g. transport systems, health and 

local government services, defense systems, communication systems, etc. Systems engineering is a 

structured approach to the management of such complex problems; it provides a framework for the 

integration of people, processes, tools, information, and technology. Thus, Systems Engineering is a core 

competence required by industry, government, and service providers, and the training of high quality 

Systems Engineers is a matter of competitive necessity” (Hsu, Raghunathan, & Curran, 2008).  These are 
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the reasons why understanding the critical factors in implementing the systems engineering in a launch 

vehicle organization is invaluable. 
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CHAPTER III: METHODS AND PROCEDURES 

3.1 Introduction 

The severity of the impact of launch vehicle failures has led to the emphasis on strong systems 

engineering in efforts to improve launch vehicle reliability.  For organizations seeking to entrust human 

lives, national security critical, or extremely expensive payloads to launch vehicles, it’s important to 

understand the factors effecting the systems engineering of the organizations developing and launching 

the launch vehicles.  Therefore, the focus of this research is to determine the significant factors that 

influence systems engineering in a launch vehicle organization by answering the following questions: 

• What influence does systems engineering culture have on launch vehicle problems? 

• What is the effect of systems engineering support on launch vehicle problems? 

• What effect does top management support have on systems engineering culture? 

• What effect does experience have on systems engineering culture? 

• What influence does systems engineering culture have on systems engineering rigor? 

• What is the effect of systems engineering support on launch vehicle problems? 

   

3.2 High-Level Research Method 

The high-level research method described in this section identifies the overall processes used to 

carry out this research.  It identifies the key elements used to identify the problem, develop the 

hypothesis, and test the hypothesis. Figure 3.2-1 below shows a diagram of the process.  This provides a 

high-level roadmap for the research. 
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Figure 3.2-1:  High-Level Research Methodology 

In the high-level research method, the first step is to identify the research problem.  This is the 

beginning phase of the study, which is detailed in Chapter I Section 1.1.  The need of this study was 

identified through a combination of literature review, first-hand observation by the researcher, and the 

need being directly communicated by government organizations.  There is great interest by the space 

community to understand the factors influencing systems engineering in launch vehicle organizations. 

The second step, is defining the goal and scope of the research.  The hypothesis of the research as 

well as the research questions and sub-questions are identified in Chapter I Section 1.2.  The research 

objective can be found in Chapter I Section 1.3.  The hypothesis, research questions, and objectives 

provide the goal and outline the scope of the research. This step also helps to determine the boundaries 

and limits of the research.  The research limitations can be found in Chapter I Section 1.4, 
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Performing a literature review is the third step of this research process.  This phase provides a 

look at literature and research related to the research topic.  The literature review is critical in identifying 

gaps in research.  The research gaps found in the literature aid in formulating the research process and can 

be found in Chapter II. 

The fourth step of the high-level research methodology is data collection.  This research will 

follow a qualitative research design.  The more detailed model of the research approach will be described 

in later sections of this chapter. The fifth step is to collect data from relevant industry sources.  Step six is 

to perform an analysis on the data collected in step five.  The final step, step seven, is to develop a 

conclusion based on the analysis of the data collected in previous steps.  In step seven the research is 

summarized, and findings and recommendations identified. 

3.3 Research Design 

Developing a complex system can be a complicated process.  Identifying the factors that effects 

SE in a launch vehicle organization can be equally or even more complicated.  There are many factors 

that systems engineering researchers have to account for.  The complexity of systems engineering and its 

processes makes it difficult to perform quantitative research.  It is difficult to isolate variables and 

perform standard treatments of variables.  Since organizations typically customize their SE process 

unique to their company, many of the systems that are being developed are unique systems or only have 

been developed once.  This makes it difficult to identify a control case, replicate, and generalize results 

(Valerdi & Davidz, 2009).  

There are many individuals that are involved in implementing the systems engineering process, 

and each has a different role and perspective of the process.  A qualitative research approach is very 

similar to systems engineering.  Many researchers believe that qualitative research focuses on phenomena 

and all of its complexities.  In qualitative research, there are multiple perspectives by the individuals 
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participating in the phenomena, with each having an equally valid perspective.  Qualitative research 

involves combining questions and procedures, data collected in the natural setting, inductively building 

data from themes, and interpreting the data (Creswell, 2014).  This study follows a qualitative research 

approach. 

Research completed by Niazi, Wilson, and Zowghi suggests that most “Critical Success Factors” 

research has been conducted via surveys (Fortune & White, 2006; Niazi, Wilson, & Zowghi, 2005).  

Numerous researchers such as Segura Morales (2014), Chou and Ngo (2014), Gambi, Boer, Gerolamo, 

Jørgensen, and Carpinetti (2015), has conducted research using surveys as the primary data collection to 

in systems engineering related fields that examined various aspects of the organization using structural 

equation modeling.  Their approach and areas of inquiry are very similar to what was examined in this 

study, which is why a survey was used in this study.  Surveys are widely used throughout various areas of 

research to collect data.  Surveys provide a mechanism to acquire information from large groups of 

people—about their characteristics, experiences, practices, or opinions—through asking questions and 

compiling the data systematically (Leedy & Ormrod, 2013).  Surveys are one of the more efficient and 

practical ways of collecting data from a group of people.  The research design is illustrated in Figure 

3.3-1. 

 

Figure 3.3-1:  Research Design 
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3.4 Research Model 

In this section, the proposed research model is identified.  The research concept and model was 

developed following the high-level research methodology.  The research conceptualization was the 

process used to develop the constructs of this study; constructs are the ideas or notions that were 

investigated in this study.  Conceptualization is the process where meaning is given to the constructs or 

concepts of the study.  During this process, abstract definitions and theories are applied to each construct 

(Mueller, 2004).  The constructs developed in this study are formed based on the research questions and 

literature review.  It’s important to establish preliminary construct definitions, they will provide the 

researcher a starting point for the inquiry of a research investigation (Yin, 2009).  The constructs are 

refined after survey data is analyzed.  During this research study, these constructs are characterized and 

measured.  The research model is an illustration that shows the relationship between the constructs of this 

study and the research hypotheses.  The proposed research model evaluating the relationships between 

systems engineering culture, systems engineering support, systems engineering rigor and launch vehicle 

problems was formed.  An illustration of the proposed research model can be found in Figure 3.4-1 

below. 
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Figure 3.4-1:  Research Model 

 

3.5 Survey Approach 

Surveys are frequently used in research to provide numeric data about trends, opinions, or other 

information about a population by examining a subset of that population (Creswell, 2014; Leedy & 

Ormrod, 2013).  The survey was administered to a group of systems engineering managers and 

practitioners in launch vehicle organizations.  The survey is constructed such that each survey question is 

relevant to a research hypothesis or question.  From examining the various research tools, surveys are the 

ideal tool for reaching a broad population of people.  In conducting survey research, it’s better to have too 

large of a sample population than to have a sample population that is too small (Kitchenham & Pfleeger, 

2003).  The survey provides quantitative data that is used to statistically test the research hypothesis.  
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3.5.1 Research Variables 

The research variables in this study are the factors measuring systems engineering culture, system 

engineering support, and systems engineering rigor, top management support, and experience. Systems 

engineering culture, systems engineering support, and systems engineering rigor are all considered to be 

latent variables.  Systems engineering culture is the endogenous variable affecting systems engineering 

support and systems engineering rigor.  Systems engineering rigor was also the mediating variable 

between systems engineering support and launch vehicle problems.  Demographic information such as 

experience also factored in to the analysis.  Each variable is described in detail in the following sections. 

3.5.1.1 Top Management Support 

To effectively conduct this research, it was important to understand the leadership’s approach to 

implementing systems engineering.  For the objectives of this research, “Top Management Support” 

construct represents the aspects of organizational senior management that are critical for implementing 

systems engineering.  Organizational culture and leadership research completed by Schein (2004), Hogan 

and Coote (2014), and Chatman and O’Reilly (2016) showed that the leaders of the organization starts, 

embeds, and transmits their values, beliefs, and assumptions on the organization.  Particularly senior 

leadership of the organization that responsible for setting direction, strategy, and goals of the 

organization.  Development Dimensions International, an international executive development program 

performed research on the roles of senior leadership of organizations and found that effective senior 

leadership (Appelbaum & Paese, 2002; Hout & Carter, 1995): 

• Develops long term strategy for the organization 

• Remove obstacles 

• Use authority to resolve complex key issues 

• Actively align capabilities, resources, and stakeholders 
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• Cultivate passion and commitment toward a common goal 

• Manage political conflicts 

Based on Appelbaum’s and Hout’s research on the role of organizational leadership, it’s easy to see why 

evaluating top management support is important to gain insight in to systems engineering implementation 

in a launch vehicle organization. For this study, Top Management Support will include all engineering 

management and program management, up to and including the chief executive officer.  

Project critical success factors study show that the top critical factor for project success is senior 

management support (Belassi & Tukel, 1996; Fortune & White, 2006; Müller et al., 2012; Randt et al., 

2014; Shenhar et al., 2002; Slevin, 1987; Westerveld, 2003). Particularly in the launch vehicle industry, 

management support is critical.  Often, the systems engineering process will be producing a launch 

vehicle that costs anywhere from tens of millions of dollars to hundreds of millions of dollars.  In 

addition, these launch vehicles may be carrying people or payloads that can be worth billions of dollars.  

Therefore, it’s important to the systems engineering process to have management support to use their 

authority to resolve key issue, remove obstacles, manage political conflicts, and cultivate commitment 

towards a common SE goal.  Based on the literature review, Top Management Support is important to 

systems engineering implementation.  There are five items in the survey instrument that participants are 

asked to respond to that measures the survey participants’ perception of top management’s support of 

systems engineering. 

3.5.1.2 Organizational Commitment 

Organizational commitment is an indicator that measures how much the systems engineer is 

committed to the organization.  This provides an indicator of how loyal the systems engineer is to the 

organization, and how well they are willing to put in the extra effort to improve the organization’s 

systems engineering.  Several studies done on safety culture, a field similar to systems engineer, showed 
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that organizational commitment is a critical indicator when evaluating a cultural aspect of an organization 

(Alnoaimi, 2015; Alsowayigh, 2014; Fogarty, 2004).  There are six items on the survey instrument used 

to measure the degree to which an individual desires to remain a part of the organization.  Each of the six 

items were adopted from Fogarty (2004), Alsowayigh (2014), and Alnoaimi (2015). 

3.5.1.3 Value of Systems Engineering 

As mentioned previously SE culture is considered the values and beliefs of SE, this translates 

directly to confidence in the process element of SE Culture.  Particularly, the perceived value of SE.  It’s 

easy to conceive that if employees believe that a process brings value, they are more likely to have 

confidence in that process.  This is Value of SE is identified as a measure of SE Culture.  There are three 

survey items that participants are asked to respond to that measures participants’ perceptions of the values 

of systems engineering. These items were adapted from research questions developed by Eric C. Honour 

et al. (2004) investigating the value of systems engineering.  Honour’s studies have shown that it could be 

difficult to quantify the value of SE.  Being intimately involved with the SE process and having 

experience with the SE process is important to measuring this construct, which is why survey items 

related to experience and role in SE are included as indicators for this construct. 

 

3.5.1.4 Communication 

Cooperation and teamwork has also been identified as an element of a strong SE culture.  One of 

the underlying elements of cooperation and teamwork is communication. That is why Communication has 

been identified as a measure of SE Culture.  This indicator measures the degree to which communication 

about systems engineering is expected in the organization.  In particular, communication is examining if 

the SE practitioners are expected to communicate up, down, and across the organization.  Research 

completed by Reigle (2015) show that lateral and vertical communication is a key characteristic for 
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measuring organizational culture in a high technology organization.  Communication is critical to a 

project’s success (Gill et al., 2005), was a major SE lessons learned theme identified in Chapter II.  The 

survey instrument has six items for participants to respond to that measures communication.  These items 

were adapted from Fogarty (2004), Alnoaimi (2015), and Zheng (2005). 

3.5.1.5 Systems Engineering Culture 

As identified in Chapter II, Systems Engineering culture is described as the values, beliefs, and 

normal practices of an organization, which facilitates systems engineering.  SE Culture is described by 

numerous researchers as an enabler of systems engineering.  The literature review completed in Chapter II 

identified that a healthy systems engineering culture is strong in the following elements: 

• Leadership 

• Trust and morale 

• Cooperation and teamwork 

• Empowering employees 

• Confidence in the processes and practices 

• Job security 

For this study, the systems engineering culture construct represents the belief, values, and assumptions of 

the organization as it relates to systems engineering.  Systems engineering culture is hypothesized to 

influence systems engineering support and systems engineering rigor.   

3.5.1.6 Planning 

The “Planning” indicator measure the degree to which the planning of systems engineering 

occurs.  The elements of systems engineering planning that is being measured are: establishment of a SE 

infrastructure, SE approach (or model), how the technical effort will be controlled and managed, timing of 

the plan, and how the different technical disciplines are integrated.  The first step program management 
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should take before implementing systems engineering, is planning.  In most organizations, this is 

documented in a Systems Engineering Management Plan (SEMP, also called a Systems Engineering Plan 

or SEP).  A well-written SEMP provides guidance to the project on how the technical portion of the 

project will be organized, managed, and executed and managed (INCOSE, 2011; NASA, 2007).  A good 

SEMP also provides guidance on the how systems engineering is performed in the organization.   

The literature review identified planning as a CSF for project management, which is also 

applicable to systems engineering.  Planning is a critical aspect of management that is crucial to project 

success (Belassi & Tukel, 1996; Fortune & White, 2006; Müller et al., 2012; Randt et al., 2014; Shenhar 

et al., 2002; Slevin, 1987; Westerveld, 2003).  Two of the major SE best practices themes identified 

during the literature review was that establishing the SE infrastructure in the organization is critical, and 

that the SEMP should be implemented as early as possible.  To execute both of these SE best practices, 

would require planning by program management.  There are five survey items that measure the 

participants’ perception of the degree to which systems engineering planning has occurred in the 

organization.  These survey questions were adapted from systems engineering planning research done by 

NASA (2007) and INCOSE (2011). 

 

3.5.1.7 Personnel 

The Personnel construct is made up of two factors:  human capital and the training provided to 

them.  Personnel measure is used to assess the human capital resources that are provided for systems 

engineering implementation.  During the literature review sufficient staff, and well-allocated resources 

were identified as three of the top critical success factors of project management.  Given project 

management’s close relationship with systems engineering, it’s reasonable to conclude that these factors 

can be applied to systems engineering as well.  One of the SE best practices established by world leading 
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SE organizations, established that “The people are the primary resource for successfully developing a 

system”.  Research conducted on management commitment and software process improvement 

determined that the primary commitment required from management is the providing adequate resources 

(Abrahamsson, 2000).  Organizations not committed to a process or project usually dedicate little 

resources toward the project and usually do not focus on it. 

During the literature review in Chapter II, systems engineering competencies was identified as a 

systems engineering enabler.  Systems engineering competencies is described by some as the measure of 

the organization to appropriately apply personnel skills in order to successfully execute systems 

engineering.  The SE competencies helps the organization to understand what training is required to 

successfully implement systems engineering.  The Personnel construct also measures the dimensions of 

the organization’s systems engineering training.  Survey participants are asked to respond to three survey 

items that measure the dimensions of the systems engineering training. 

 

3.5.1.8 Tools and Infrastructure 

Tools and infrastructure was identified by INCOSE (2011) and SEBoK authors (2016) as one of 

the primary enablers of systems engineering in an organization.  Tools refers to the instruments provided 

by the organization to execute the systems engineering process.  Infrastructure refers to the background or 

framework in which the tools are applied.  Particularly, the infrastructure refers to the SE life-cycle model 

the organization employs.  Tools and infrastructure factor measures the survey participants knowledge of 

the organization’s systems engineering tools and infrastructure provided by the organization to execute 

the systems engineering process.  Survey participants were asked to respond to four survey items that 

measure the dimensions of tools and infrastructure. 
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3.5.1.9 Control and Assessment 

Leading systems engineering organizations identify assessment and control as an important 

aspect of implementing SE.  This factor measures the extent to which launch vehicle organizations are 

implementing control and assessment of their systems engineering.  Systems engineering standards from 

organizations such as ISO (2007), IEEE (2008) and INCOSE (2011) identified four items needed for 

successful assessment and control of the systems engineering process.  These four dimensions were 

identified during the literature review in Chapter II.  The four survey items participants were asked to 

respond to measured respondents knowledge of control and assessment of systems engineering in their 

launch vehicle organization, were derived from the four dimensions identified by ISO, IEEE and 

INCOSE. 

3.5.1.10 Systems Engineering Support 

The “Systems Engineering Support” construct is used to evaluate the level of support that the 

organization is providing for systems engineering.  The literature review completed in Chapter II, identify 

appropriate tools and infrastructure, timely planning, and appropriate personnel as systems engineering 

best practices (Blair et al., 2011; Bruff, 2008; Gill et al., 2005; Kaskowitz, 1990; NASA, 2007; Slegers et 

al., 2012).  Similarly, the critical success factors for a project that the literature review identifies are:  

sufficiently allocated resources, qualified and sufficient personnel, effective control and maintenance, and 

adequate training.  The systems engineering best practices and project management critical success 

factors both identify aspects of systems engineering support as being critical for project success.  

Allocation of resources and personnel, tools and infrastructure, training, control and assessment, are all 

components the organization can provide to support the systems engineering process. 
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3.5.1.11 Systems Engineering Rigor 

The “Systems Engineering Rigor” construct is used to evaluate the level of scrupulous adherence 

to the systems engineering process.  Upon completing research on launch vehicle failures, Newman 

(2001) described “rigorous systems engineering” as a high reliability trait an organization exhibited by 

implementing strong processes to circumvent human error and latent hardware and software defects.  

“Anything less than the full measure of systems engineering rigor will expose the project to failure” 

(Newman, 2001).   Goldberg (2009) described engineering rigor as being rigorous in applying a set of 

established laws or principles.  Goldberg’s definition of rigor specifically described in systems 

engineering, would be defined as rigorously applying established systems engineering process and 

principles.  In 2007, a group of researchers from Case Western Reserve University conducted a study on 

process compliance and determined that failure to adhere to documented processes can lead to 

workarounds, which can have unintended consequences and lead to system failure.  In addition, their 

research determined that failure to adhere to processes can also lead to organizational drift.  Adherence to 

documented processes are critical to process improvements as well (Berente, Ivanov, & Vandenbosch, 

2007). 

“Manufacturing Issues”, “Integration and Test Issues”, and “Operation Issues” are three variables 

that measure the frequency and severity of launch vehicle issues experienced by an organization.  

Research conducted by several researchers identified systems engineering deficiencies and lack of 

systems engineering rigor as a contributor to launch vehicle problems (Chang, 1996; Harland & Lorenz, 

2005; Isakowitz et al., 2004; Leung, 2014; Newman, 2001).  Launch vehicle issues generally occur in 

either the design phase, manufacturing phase, integration and test phase, or operations phase of the 

systems engineering life cycle.  Since design issues typically manifest during the manufacturing, 

integration and test, or operations phase, a variable for the design phase was not created.  Survey items 
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focus on the severity and frequency of the launch vehicle issues in the manufacturing phase, integration 

and test phase, and operations phases to measure SE Rigor.   

 

3.6 Pilot Survey Study 

Pilot studies are an excellent planning tool used by many researches.  Leedy and Ormrod (2013) 

define a pilot study as an exploratory investigation performed by a researcher to test particular 

procedures, instruments, or methods. “A brief pilot study is an excellent way to determine the feasibility 

of your study”, (Leedy & Ormrod, 2013).  The value of performing a pilot study is the lessons learned 

from the pilot survey that will be used to refine the research methods and procedures for more complex 

cases (Chenail, 2011; Yin, 2009).   

As suggested by Leedy and Ormond, a pilot survey was conducted as part of this research.  The 

survey instrument was included in the pilot study.  The focus of performing this pilot study was to 

identify any lessons learned and areas of improvement in the research methodology and survey 

instrument.  Once this information was collected, it was used to refine the survey instrument.   

Data collected from the pilot study was subjected to the data processing techniques identified as 

part of the planned research methodology of this study.  This was done to ensure the planned 

methodology could adequately analyze the data.  Any data analysis results was reviewed with 

stakeholders and colleagues to determine the validity of the results.  The results of the pilot study alone 

was not used to validate hypotheses of this research project.  Lessons learned resulting from the pilot 

study that was determined to be value added improvements were used to revise the survey instrument.  

The pilot study results were recorded and kept for record keeping, but are not published. 



 

82 

 

3.7 Validity of Research Methodology 

Leedy and Ormrod (2013) define validity of the research project’s “accuracy, meaningfulness, 

and credibility”.  Gauging the validity of the research methodology is a critical part of research.  Any 

research endeavor deficient in validity would be thought of as yielding questionable results, which could 

lead to improper utilization of results (Creswell, 2014; Valerdi & Davidz, 2009).   Studies done by 

researchers such as Yin (2009) and Leedy and Ormrod (2013) suggest that the validity of research 

methodology can be assessed through the following areas:  construct validity, internal validity, external 

validity, and reliability. 

3.7.1 Construct Validity 

Construct validity can be defined as how well the research project is measuring the concept that is 

being studied (Creswell, 2014; Valerdi & Davidz, 2009; Yin, 2009).  This is a very important concept for 

understanding the quality of the research project.  Valerdi and Davidz (2009) point out that construct 

validity can be particularly problematic in the systems engineering field due to lack of a consistent 

systems engineering definitions across the industry.  To mitigate this, researchers study multiple projects 

across a variety of organizations to gain construct validity through commonalties found in the constructs 

of these various organizations.  Allowing stakeholders to review the research results to provide feedback 

on how concepts are being evaluated provides further confidence in construct validation. In addition, 

collecting data from multiple data sources within each organization, increase internal validity of the 

research by allowing the researcher to identify common themes (Yin, 2009).  Converging on common 

constructs provides a research confidence that the observations are real and not simply an artifact of the 

data collection methods.   
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3.7.2 Internal Validity 

Internal validity can be defined as how well the research design will allow the researcher to draw 

accurate conclusions about causal relationships.  One could also consider internal validity the likelihood 

of ruling out variables not pertinent to the research (Creswell, 2014; Leedy & Ormrod, 2013; Valerdi & 

Davidz, 2009; Yin, 2009).  When there is a high likelihood of ruling out extraneous variables, the 

research project is considered to have a strong internal validity.  Triangulation through the use of multiple 

sources of data is a common method used to improve internal validity.  Multiple data sources are used 

with the expectation that the data will converge on a common construct (Creswell, 2014; Leedy & 

Ormrod, 2013; Yin, 2009).  This is the approach that this research utilized to improve internal validity.  

Data was collected through surveys from a wide variety of participants. 

3.7.3 External Validity 

External validity is described as the ability to apply research results outside of the study 

(Creswell, 2014; Leedy & Ormrod, 2013; Valerdi & Davidz, 2009).  Simply stated, how well the results 

can be used outside of the research project.  Valerdi and Davidz (2009) point out that external validity can 

be problematic within systems engineering field, since systems are adapted to their application which can 

make it difficult to apply in a context outside of what the research project was designed for.  Valderdi 

states that to mitigate these issues, choosing an adequate sample size, using a variety of research methods, 

and using field research.   

To improve external validity, it is suggested to use an adequate samples size.  The survey 

instrument was able to reach a large population.  An appropriate quantity of surveys was distributed to 

achieve an adequate sample size.  The appropriate sample size for this study is discussed in detail in 

Section 3.8.1.4. 
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3.7.4 Reliability 

Researchers describe reliability of a research project as the degree to which a research projects 

design and methodology can be repeated yielding the same results (Creswell, 2014; Thayer-Hart, Elver, 

Schaeffer, & Stevenson, 2010; Yin, 2009).  The objective of reliability is to reduce the amount of errors 

and biases of the research.  Since a single researcher was responsible for data collection and analyses of 

this research project, there could be some concerns about reliability.  Reliability concerns about a single 

research were mitigated by employing reliability best practices recommended by Yin (2009) and Chenail 

(2011).   

As recommended by Yin and Chenail, all procedures are well documented.  This would allow any 

subsequent researcher to repeat the work of this study.  Well-defined methods and procedures reduces 

variability in the results of the repeated research thereby demonstrating reliability (Yin, 2009).  To ensure 

participants anonymity and confidentiality, no personal or organization identifiable information was 

collected and results have been aggregated.  This could raise questions about the reliability of this study 

since organizations and participants cannot be directly identified from the data, this could be a barrier to 

reproducing the research (Chenail, 2011).       

Reliability in the survey questionnaire is critical to improving the overall reliability of this 

research project.  To improve reliability in the survey, questions were carefully considered to remove any 

ambiguity within the survey questions so that each subject interpreted the survey questions the same way 

(Thayer-Hart et al., 2010).   In addition, reliability of the survey instrument was calculated using the 

survey data.  Unfortunately, the survey had to be issued prior to being able to calculate the survey 

reliability using Cronbach’s Alpha.  Cronbach’s Alpha is a reliability statistic that can be calculated based 

on the internal consistency of the survey data and is used as a reliability indicator of the survey instrument 

(Santos, 1999).  From the data collected, indicators are grouped according to their association to a 

construct, and Cronbach’s Alpha is calculated.  If a Cronbach’s Alpha is calculated that shows 
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undesirable reliability for an indicator, then that indicator was considered for removal and was not 

recognized as a useful indicator of the construct. 

3.7.5 Potential Sources of Bias 

If a researcher is to consider the reliability of a research project, research bias must be 

acknowledged.  Given human nature, and the environment we live in, it is almost impossible to conduct 

research without any exposure to bias.  Bias in research can be considered an influence or condition that 

misconstrues the data (Leedy & Ormrod, 2013).  Potential sources of bias in this research project have 

been identified, and mitigations for each potential source have been implemented.   

The first potential source of bias identified, briefly mentioned earlier in this chapter, is the 

preconception bias.  Yin (2009) identified that researchers are prone to bias toward a preconceived 

position.   This type of bias is also called confirmation bias by some researchers (Chenail, 2011; Leedy & 

Ormrod, 2013; Rabin & Schrag, 1999).  Becker (1958) suggested that the reason researchers are prone to 

preconceived bias is because the research must have an understanding of the phenomenon being studied 

beforehand.  Particularly in my case, I have worked in the systems engineering field for over 15 years and 

have personally conducted systems engineering evaluations, so there is a potential for preconception bias.  

As suggested by Burnard (1991) and Yin (2009), the potential for preconception bias has been mitigated 

by reporting preliminary findings to at least two colleagues to produce contrary findings.  If the 

colleagues can document findings contrary to the preliminary findings, then the probability of 

preconception bias has been reduced (Yin, 2009).  Rabin and Schrag (1999) suggest that collecting data 

from multiple sources helps to reduce the risk of preconception bias.  In this study, data was collected 

from many different organizations as well as different people associated with the systems engineering 

implementation via surveys.  
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The next potential source of bias is from survey statements.  Bias could exist in the survey 

statements through the terms used in the statements as well as the way the statement is worded.  The use 

of terms unfamiliar or wording of survey statements could lead to “inappropriate” responses.  Although 

the use of unfamiliar terms or wording, are not biases, they can result in biased responses (Malhotra, Hall, 

Shaw, & Oppenheim, 2004).    To reduce the chances of this type of bias, survey statements should use 

plain or common language (Malhotra et al., 2004; Thayer-Hart et al., 2010).  The survey statements of 

this study used plain English when appropriate and language consistent with INCOSE, NASA, and 

SEBoK systems engineering handbooks when required.  In addition, survey statements were reviewed by 

an independent third party to mitigate this bias.  A third party examined survey statements to ensure that 

terms are unambiguous and do not lead the respondent in anyway.  A pilot study was also implemented to 

provide an additional opportunity to receive feedback and implement further refinement of survey 

statements. 

Sample selection is another potential source of bias.  Sampling bias is described as being present 

if the target population is not accurately reflected in the sample.  If certain members are either 

underrepresented or overrepresented in the target population, the sample is considered biased (Taylor-

Powell, 2009).  In order to avoid this type of bias, Myers and Newman (2007) suggests that respondents 

at various levels of the organizations be surveyed to mitigate this potential bias.  For this research project, 

various participants in the system engineering process as well as participant in various organizations were 

surveyed to address any sampling bias.  Taylor-Powell (2009) also stresses that it’s important to identify 

the differences between respondents when data is being reported.  For this research, differences between 

respondents is carefully documented and identified. 
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3.8 Data Collection and Analysis 

One of the great champions of the quality movement, W. Edwards Deming, once said, “Without 

data, you’re just another person with an opinion” and “In God we trust; all others bring data.”  Data is one 

of the most critical products of any research project.  Leedy and Ormrod (2013) described data as the 

pieces of information about a phenomenon.  And that the path to the underlying truth runs through the 

data.  This is what makes data collection and analysis a critical part of research.  This section of the 

research describes how the data is collected, documented, and analyzed. 

The goal of data collection is to gather information to help the researcher answer the research 

questions (Leedy & Ormrod, 2013).  More specifically, the goal of the data collection and analysis is to 

compile information relevant to the constructs of this research project to determine the validity of the 

hypotheses.   This phase of the research was made up of four parts.  As stated in previous sections, the 

data collection methods utilized a survey instrument. An overview of the method is listed in Table 3.8-1. 

 

Table 3.8-1:  Data Collection Approach 

Data Collection 
Approach 

Data Source Objective 

Surveys Systems engineering practitioners, 
managers, and participants within the 
organization 

Measure the constructs identified and 
examine the relationship amongst the 
constructs identified 

 

3.8.1 Survey Process 

A survey instrument was the primary tool for collecting data in this study.  A survey was used to 

reach a much wider population compared to face-to-face interviews and case studies.  The survey is used 
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to collect data about the trends, opinions, and other information of the much larger population as they 

relate to the hypotheses of this research by studying a subgroup of the population.  Surveys are frequently 

used in this manor for research to provide this type of data (Creswell, 2014; Leedy & Ormrod, 2013).  

The survey development process implemented for this research is as follows: 

1. Review survey examples from similar or related studies 
2. Select the survey population 
3. Develop the survey 
4. Pilot the survey and integrate findings into survey 
5. Administer the revised survey 
6. Collect and analyze responses 
7. Test the research hypotheses 

This survey development methodology was adopted from systems engineering related research completed 

by Kludze (2004), Bruff (2008), Elm et al. (2008), and (Bjorn, 2012). 

3.8.1.1 Review of Survey Examples from Similar Research 

Survey examples from research conducting within the systems engineering field were sought.  

The survey examples that targeted similar populations and similar types characteristic were desired.  

These survey examples aided in identifying good practices and lessons learned related to survey 

development in this field.  There were several survey examples that were found during the review of 

literature.   

The first survey example examined was from doctoral research completed at George Washington 

University.  The research investigated the impact of systems engineering at NASA (Kludze, 2004).  The 

survey targeted systems engineering practitioners and managers.  The survey for this research used a 

combination of 5-point Likert scale and multiple-choice questions. 

The next survey example reviewed was another doctoral research paper completed at Walden 

University by Bruff (2008).  Bruff’s research investigated using systems engineering best practices as a 

measure of successful outcomes in selected DoD aerospace programs.  The survey targeted systems 



 

89 

 

engineering practitioners in the government, as well as government contractors and subcontractors.  

Bruff’s survey largely used a 4-point Likert scale with a few free responses and multiple choice questions.   

The third survey example analyzed was from research done by the Software Engineering Institute 

and National Defense Industry Association.  The focus of this research was to investigate the 

effectiveness of systems engineering (Elm et al., 2008).  The survey questionnaire used in this research 

mainly used a 4-point Likert scale with a few multiple choice and free response questions.  Systems 

engineer managers and practitioners in the government and their contractors was the population chosen 

for this survey.    

The final survey example examined was from doctoral research completed at the University of 

Central Florida.  The research investigated the critical success factors of implementing a new acquisition 

strategy of complex systems in the DoD (Bjorn, 2012).  The population selected for this research were 

managers, systems engineers, and subsystem engineers.  A combination of 4-point Likert scale, multiple 

choice, open answer questions were used for the survey. 

3.8.1.2 Administering the Survey 

To reach the largest population for the survey, the most practical distribution method is to use 

email and online tools (Leedy & Ormrod, 2013).  An email was distributed to the survey sample 

population, which contains a link that takes the respondent to the survey instrument online.  The survey 

instrument is hosted on-line by Google Forms.  Google Forms provides tools for creating the various 

types of survey questions as well as collecting the data.  The surveys were emailed to participants after 

receiving Institutional Review Board (IRB) approval and contains a cover letter assuring respondents that 

data provided is used for the sole purposes of the study and individuals responding to the survey will 

remain anonymous.  In addition, several copies of the survey was printed out and distributed by hand at 
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two technical conferences attended by the target audience of this research.  The surveys were collected at 

the end of both conferences. 

3.8.1.3 Survey Population Selection 

A population that has knowledge of the systems engineering process and how systems 

engineering is implemented in the launch vehicle industry was critical.  Subjects with this knowledge 

provided valuable insight into the hypotheses and constructs identified in this research.  The statements of 

the survey aimed to identify the population’s perceptions of systems engineering culture, support, and 

rigor in the launch vehicle industry.  The survey targeted people that play a role in or manages the 

systems engineering process.  The survey population selection included:  project managers, systems 

engineers, subsystem engineers, technical managers, program managers, and any other person that played 

a role in the systems engineering process.  There were no restrictions on the size of the organizations 

selected for the survey.  Individuals involved in the systems engineering process within launch vehicle 

organizations in the United States were targeted for the survey to avoid any language barriers. 

 

3.8.1.4 Sample Size 

Sample sizes play a significant role when conducting research.  The general rule of thumb when 

conducting an empirical study is that the larger the sample size, the better (Leedy & Ormrod, 2013).  This 

is the general rule when conducting many statistical studies.  Structural equation modeling researchers 

suggest that a minimum sample size of 200 is adequate to reduce biases to an acceptable level (Boomsma 

& Hoogland, 2001; Fabrigar & Wegener, 2011; Kline, 2011).  The target population of this study has 

been estimated to be over 2000.  Therefore, a 10 percent response rate was adequate to achieve the 

desired minimum sample size.  Organizational research studies on survey response rates done by Baruch 

and Holtom (2008) show that the average response rate for individuals are 52.7 percent with a standard 
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deviation of 20.4 and responses from organizations are 35.7 percent with a standard deviation 18.8. Based 

on Baruch and Holtom’s research, assuming a survey response rate of 10 percent was conservative.  

3.8.1.5 Survey Development 

The survey instrument of this study was designed to collect information from the target 

population.  The survey aimed to gather information about the respondents’ background, perspective 

about the various constructs of the research model.  The process adapted from Bjorn (2012) used for 

developing the survey statements is illustrated in Figure 3.8-1. 

 

Figure 3.8-1:  Survey Development Process 

The first part of the survey instrument contained a description of the research being conducted, 

followed by a disclosure statement and a form requesting the respondent’s consent.  The second part of 

survey focused on the background of the respondent and the organization that he or she worked in.  These 
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include statements about the respondent’s roles and responsibilities, relevant experience, and information 

about the organization.  The survey background questions were used to determine if the respondent and 

the respondent’s organization reflected the target population.  The background survey questions were 

multiple choice and free response questions. 

The core of the survey contains questions that aimed at collecting data on the constructs of the 

research model.  The survey statements of each section evaluated the dimensions of each research model 

construct.  Since these constructs need to be evaluated on a continuum, a rating scale is recommended for 

use in the survey (Leedy & Ormrod, 2013).  A 5-point Likert scale was used for non-demographic 

questions of the survey.  The scale ranged from 1 (Strongly Disagree), 2 (Disagree), 3 (Neutral), 4 

(Agree), to 5 (Strongly Agree).  The rating scale used in this research is contained in Table 3.8-2.  This 

survey format is similar to survey format used in systems engineering effectiveness studies completed by 

Kludze (2004), Bruff (2008), and Elm et al. (2008) that were examined during the literature review in 

Chapter II.   

Table 3.8-2:  Survey Likert Scale 

Score Response 

1 Strongly Disagree 

2 Disagree 

3 Neutral 

4 Agree 

5 Strongly Agree 
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3.8.1.6 Piloting the Survey 

The survey was piloted before being officially administered to the survey sample group.  The 

survey was given to a group of systems engineering practitioners that are independent of the survey 

population to evaluate and provide feedback on the survey instrument.  A pilot group can identify 

ambiguity, misleading questions, and if the instrument is actually measuring what is intended to be 

measured (Leedy & Ormrod, 2013).  This allows for a much more effective survey instrument to be 

administered to the target sample population.  Feedback from the pilot group was incorporated into the 

survey instrument as necessary before being administered to the target survey population. 

One of the goals of this survey instrument was to keep the time required to complete the survey to 

less than one hour.  Feedback from survey respondents that Elm et al. (2008) received on their systems 

engineering survey research showed that individuals are less likely to respond to the survey if it takes 

more than an hour to complete.  This information was provided to the pilot team to provide feedback on 

the length of time it took to complete the survey and identify if the survey response time exceeds an hour.  

The pilot study team determined that the survey took approximately 10 minutes to complete. 

3.8.2 Survey Data Analysis 

There are several steps involved in analyzing survey data.  The survey data analysis can be 

divided into three phases:  survey response validation, survey reliability analysis, and data analysis.  The 

process used to analyze the survey data is illustrated in Figure 3.8-2. 
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Figure 3.8-2:  Survey Data Analysis Process 

 

3.8.2.1 Survey Response Validity 

 Once survey responses were received, the first step was to validate the response.  Surveys were 

examined to ensure that each survey statement received a valid response.  Any survey that was missing 

one or more responses, were considered invalid and were filtered out but archived for record keeping 

purposes.  Including surveys in the data set with missing responses would lead to different sample sizes 

for the constructs during data analysis, which are not suitable for correlation or regression data analyses 

(Centre, 2001; Kitchenham & Pfleeger, 2003). As the Statistical Service Centre (2001) and Kitchenham 
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and Pfleeger (2003) suggests, the invalid surveys were examined, to determine if any information can be 

inferred from the missing responses. 

3.8.2.2 Survey Reliability Analysis 

After filtering out invalid surveys, the survey instrument was evaluated to determine the 

reliability of the survey instrument.  When survey questions are able to return a stable response, the 

survey instrument is determined to be reliable (Santos, 1999).  To test the reliability of this survey 

instrument, Cronbach’s alpha was calculated for each variable of this study.  Cronbach’s alpha values are 

evaluated to determine the reliability.  If a survey question yields a low alpha value, the question was 

evaluated to determine if it was a reliable indicator of its associated construct.  During this evaluation, the 

question was examined to determine if it should be associated with another construct or if it was invalid 

and should be removed.  In confirmatory factor analyses, this is accomplished through calculating 

Cronbach’s alpha for the measurement model which is discussed in detail later in this chapter. 

3.8.2.3 Data Analysis 

After the survey responses have been validated and the survey instrument was determined to be 

reliable, analyses investigating the constructs of the research can begin.  Analysis of the survey data 

consisted of the following:  generating descriptive statistics, performing a confirmatory factor analysis, 

structural equation modeling, and hypothesis testing.  First, descriptive statistics of the data were 

generated.  Next, a confirmatory factor analysis of the data was performed to develop the measurement 

model.  The third part was to perform structural equation modeling, which tested the structural paths of 

the constructs in the model.  Then finally, performed hypothesis testing.  Researchers such as Bjorn 

(2012), Alsowayigh (2014), and Alnoaimi (2015), followed this data analysis process in systems 

engineering and safety culture research. 
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3.8.2.3.1 Descriptive Statistics 

The first step in the detailed data analysis process was to generate a set of descriptive statistics.  

The descriptive statistics helped to characterize the data collected by providing information such as 

sample mean, variance, standard deviation, etc.  Frequency tables of the control variables were also used 

to show the number and percentages of managers, systems engineers, sub-system engineers, analysts, 

experience, or industry.  In addition to the descriptive statistics, results were plotted to provide a visual 

representation of the survey results.  The graphs were reviewed to determine if any observations about the 

results can be made visually. 

3.8.2.3.2 Confirmatory Factor Analysis 

Next, an analysis evaluating the relationships between the variables and the constructs was 

completed.  Since adequate theories and observations existed in the area of systems engineering, a 

confirmatory factor analysis (CFA) was used.  A CFA is a data analysis technique used to evaluate the 

relationships between variables and constructs based on the researcher’s knowledge, theories, or 

observations (Byrne, 2016; Suhr, 2006).    Performing a CFA is appropriate when research in the area is 

relatively mature and basic measurement questions have been resolved.  The CFA was used to validate 

the concept model.  It provided an estimate of the correlation between the constructs and variables, which 

is used to evaluate the construct validity (Byrne, 2016; Kline, 2011).   

In the CFA, responses to the survey questions were considered to be the observed variables, and 

were represented by rectangles in the CFA model.  The unobserved constructs that are the primary targets 

of the study, are considered to be latent variables, and are represented by ovals in the model.  Latent 

variables can either be exogenous (independent) or endogenous (dependent).  The endogenous latent 

variables are not affected by the other variables in the model, whereas, the exogenous latent variables are 

affected by other variables in the CFA model.  The arrows of the CFA model represent the relationships 
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between the variables.  Each relationship (arrow) is assigned a factor loading.  The factor loading is the 

value representing the degree to which an observed variable can predict the latent variable.  The strong 

the relationships between observed and latent variables are, the higher the factor loading value will be.  

Research completed by Tabachnick and Fidell (2013) suggests the factor loading interpretation identified 

in Table 3.8-3. 

Table 3.8-3:  Factor Loading Interpretation 

Factor Loading Range Variance accounted for Interpretation 

0 – 0.32 10% Not interpreted 

0.32 – 0.45 10% Poor 

0.45 – 0.55 20% Fair 

0.55 – 0.63 30% Good 

0.63 – 0.71 40% Very good 

> 0.71 50% Excellent 

 

Early steps of performing a CFA is developing and evaluating the individual measurement 

models for each latent variable.  The measurement model is the part of SEM that shows the relationship 

between the observed variables (indicators) and the latent variables.  Evaluating the measurement model 

is widely considered by SEM researchers to be a method to avoid model identification problems (Hoyle, 

2012; Kline, 2011; Schumacker & Lomax, 2010).  As part of evaluating the individual measurement 

models, Cronbach’s alpha was calculated to determine the reliability of the survey instrument for that 

construct (latent variable).  A Cronbach’s alpha greater than 0.70 is considered to be adequate reliability 

for a CFA (Hair, Black, Babin, & Anderson, 2014).  If during this process an observed variable is 

considered to be unreliable, it was considered for removal. 
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Studies completed by MacCallum, Widaman, Zhang, and Hong (1999) and MacCallum, 

Widaman, Preacher, and Hong (2001) shows that adequate sample sizes for factor analyses has little to do 

with the ratio of sample size to variables.  Many researchers follow a general rule of using a sample size 

(N) of two and a half times the number of variables in the study.  For this research, every effort was made 

to achieve a sample size to number of variables ratio of 2.5, however is not required to complete a factor 

analysis. If the sample size achieved does not provide adequate degrees of freedom due to errors on 

individual questions, a CFA is performed individually on each construct.   

3.8.2.3.3 Structural Equation Modeling 

Structural Equation Modeling (SEM) is a comprehensive statistical methodology that combines 

multiple regression, factor analysis, and canonical correlation (Hoyle, 2012; Tabachnick & Fidell, 2013). 

SEM uses various types of models to illustrate the relationships between the observed and latent variables 

and provides a quantitative test of the hypothesized model.  It provides a method of testing the network or 

relationships between the variables (Schumacker & Lomax, 2010; Suhr, 2006).   The structural equation 

model identified how well the data collected in this study supports the research model in Figure 3.4-1. 

3.8.2.3.4 Testing Hypothesized Model 

To determine how well the data supports the hypothesized model, the goodness of fit was 

examined.  Upon completion of the CFA, model fit was evaluated using model fit indices.  Model fit 

indices can be used to measure how well the model fits the data.  Vandenberg and Scarpello (1990) 

recommends using multiple model fit indices to provide adequate support of model fitness.  This study 

used four different model fit indices:  chi-square, Comparative Fit Index (CFI), Tucker-Lewis index 

(TLI), and Root Mean Square Error of Approximation (RMSEA).  These model fit indices are discussed 

in detail in Section 3.8.2.3.5.    
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If model fit indices showed an adequate model fit, hypothesis testing was then completed based 

on the results of the CFA.  The factor scores produced from the CFA were used to test the hypotheses of 

the research.  The factor scores provides an estimate of the weight (or loading) of the constructs on the 

CFA structural model based on the survey data.  The factor loading from the CFA was used to test the 

hypotheses.  Performing a CFA on the data collected in this study transforms the data collected by the 

survey into a format that can be used in hypothesis testing. The statistical analysis IBM SPSS Amos 

software is used to perform the CFA and structural equation modeling. 

However, if indices did not show an adequate fit, and the CFA fails to identify significant factors 

between the paired constructs and variables, then an exploratory factor analysis (EFA) is completed.   An 

EFA is used to examine potential relationships between a set of constructs and observed variables without 

any preconceived notions of relationships between the constructs and variables (Suhr, 2006).  An EFA 

helps to identify the underlying construct structure.  Results of any EFA completed would be used to 

update the concept model of this study if necessary. 

3.8.2.3.5 Model Fit Indices 

There were four model fit indices used to evaluate how well the models fit the data.  The first was 

the chi-square (χ2) index.  The chi-square index is an indicator of how well the path model fits the data.  

This index also reflects the relationship between the correlation matrices of the original and reproduced 

path model.  Since chi-square can be sensitive to sample size, SEM researchers suggest using a ratio of 

chi-square (χ2)  to degrees of freedom (df).  A lower  χ
2

𝑑𝑑𝑑𝑑
  indicates a better fit of the model to the data.  

SEM researchers suggest that a χ
2

𝑑𝑑𝑑𝑑
 value of 5 or less indicates a good fit (Hoyle, 2012). 

Two other goodness of fit indices used were the Tucker-Lewis Index (TLI) and the Comparative 

Fit Index (CFI).  The TLI and CFI are goodness of fit indices recommended by SEM researchers (Byrne, 

2016; Hoyle, 2012; Schumacker & Lomax, 2010).  Both of these indices provides a comparison of the 
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hypothesized model to the null model.  In both the TLI and CFI a 0 indicates no fit and a 1 indicates 

perfect fit.  Values between 0.90 and 0.95 are considered a good fit. 

The Root Mean Square Error of Approximation (RMSEA) was the fourth model fit index used.  

RMSEA is an index that identifies the lack of model fit, where an RMSEA of 0 indicates a perfect fit.  

RMSEA can be considered the degree to which the model has been misspecified (Hoyle, 2012).  A 

RMSEA value of less than 0.05 is considered a good fit.  However, a RMSEA value between 0.05 and 

0.08 is considered acceptable.  RMSEA values between 0.08 and 0.10 are considered a mediocre fit.  A 

value of 0.10 or greater would be considered a poor model fit (Byrne, 2016; Hoyle, 2012; Kline, 2011; 

Schumacker & Lomax, 2010). 

  



 

101 

 

CHAPTER IV: RESEARCH FINDINGS 

This chapter discusses the findings based on analysis of the responses to the survey instrument.  

As described in Section 3.8.2, the data analysis has four phases.  The first phase was to perform 

descriptive statistics analysis.  In the second phase a confirmatory factor analysis of the data was 

performed to develop the measurement model.  The third phase was to perform structural equation 

modeling, which tested the structural paths of the constructs in the model.  Then finally, hypothesis 

testing was performed.    

4.1 Descriptive Statistics Analysis of Control Variables 

The target population of this study was launch vehicle organizations in the United States.  The 

survey instrument collected demographic data such as job position(s), career level, type of experience, 

organization size, and type of organization.  These are considered the control variables.  There were a 

total of 210 respondents to the survey.  However, seven survey responses had to be thrown out since the 

participant did not completely fill out the survey.  As seen in Figure 4.1-1, of the 203 responses the 

majority of respondents (42.4%) identified as holding a systems engineer job position.  There also 

appeared to be survey responses from a wide variety of job positions at varying levels of the organization.  

This variety of job positons addresses concerns of sampling bias.  

The next few demographic categories covered: career level (years of experience), number of 

projects worked on, and if experience is with something other than launch vehicles.  Approximately, 

40.9% of survey respondents had more than 20 years of experience.  Looking at the number of projects 

that the respondents participated in, 31% of respondents participated in 20 or more projects, however, the 

next largest group (24.1%) had only worked on 6-10 projects.  The majority (71.4%) of respondents’ 

experience was in the launch vehicle industry. 
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Figure 4.1-1:  Job Position Distribution 

Table 4.1-1:  Job Position Frequencies 

Job Position Frequencies 

 
Responses Percent of 

Cases N Percent 

Job Position Systems Engineer 86 27.7% 42.4% 

Project Manager 39 12.5% 19.2% 

Subsystem/Component Engineer 25 8.0% 12.3% 

Analyst 28 9.0% 13.8% 

Manager 33 10.6% 16.3% 

Design Engineer 11 3.5% 5.4% 

Manufacturing Engineer 8 2.6% 3.9% 

Operations Engineer 17 5.5% 8.4% 

Integration Engineer 27 8.7% 13.3% 

Test Engineer 12 3.9% 5.9% 

Engineering Support 25 8.0% 12.3% 

Total 311 100.0% 153.2% 

a. Dichotomy group tabulated at value 1. 
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Table 4.1-2:  Demographics Descriptieve Statistics 

 N Mean Std. Deviation 

Systems Engineer 203 .42 .495 

Project Manager 203 .19 .395 

Subsystem/Component Engineer 203 .12 .329 

Analyst 203 .14 .346 

Manager 203 .16 .370 

Design Engineer 203 .05 .227 

Manufacturing Engineer 203 .04 .195 

Operations Engineer 203 .08 .278 

Integration Engineer 203 .13 .340 

Test Engineer 203 .06 .236 

Engineering Support 203 .12 .329 

Career Level 203 3.52 1.510 

Number of Projects 203 3.00 1.584 

Launch Vehicle Experience 203 .71 .453 

Type of Organization 203 3.62 .667 

Organization Size 203 2.53 .624 

 

 
The survey collected information on the individual respondents as well as their organizations.  

The organizational information collected was organization size and type of organization.  The majority 

(71.4%) of the survey responses came from participants that identified as working for a government 

agency.  A little more than half (60.1%) of respondents identified as belonging to a large organization 

(1000 or more employees). 

4.2 Testing Assumptions 

Most analyses performed on statistical data assumes normality, linearity, homoscedasticity, and 

absence of multicollinearity.  It is important for any statistical based research to check these assumptions 
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prior to executing statistical analyses.  Failing to confirm these assumptions could lead to inferences that 

are less robust.  Each of the four assumptions are evaluated to enhance the analysis.  Below shows the 

variable abbreviations used for the observed variables. 

Table 4.2-1:  Variable Abbreviations 

 Variable Abbreviation 

1 Top Management Support TMS 

2 Organizational Commitment OC 

3 Communication Comm 

4 Value of Systems Engineering VSE 

5 Control and Assessment CA 

6 Personnel Per 

7 Tools and Infrastructure TI 

8 Training Trn 

9 Planning Pln 

10 Manufacturing Issues MI 

11 Integration and Test Issues ITI 

12 Launch Issues LI 

 

4.2.1 Normality, Linearity, and Homoscedasticity Check 

Normality is when each variable and each linear combination of variables has a normal 

distribution.    Homoscedasticity is when there is uniform variances across all values of predictors.  The 

normality, linearity, and homoscedasticity test can be completed by plotting the residuals.   The residuals 

are the differences between the predicted and observed variables.  A normality test was performed on the 
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data using SPSS Regression.  In the normal P-P plot, if the data is normally distributed, the points will 

follow the normal line.  In the residual scatter plot, if the data is homoscedastic, the data points will be 

equally distributed about the x- and y-axis.  The results of the normality, linearity, and homoscedasticity 

checks and plots are summarized in Appendix C.  All of the variables were found to be in violation of the 

normality, linearity, and homoscedasticity multivariate assumptions.  This is taken in to consideration in 

the remainder of data analyses.   

Many SEM researchers such as Kline (2011) and Hair et al. (2014) recommend using 

bootstrapping when data is not normal.  Bootstrapping is a statistical process of resampling or replicating 

the data over a large number of samples (Byrne, 2016; Hair et al., 2014; Kline, 2011; Tabachnick & 

Fidell, 2013).  Research completed by Byrne (2016) suggests that bootstrapping has little effect on 

factorial validity and validity can be achieved even though normality assumption is violated.  None the 

less, bootstrapping was used during the SEM portion of the data analysis in Section 4.4 to bolster results.   

 

4.2.2 Multicollinearity Assessment 

One issue that can arise when performing a CFA is called multicollinearity.  Multicollinearity is 

when one or more observed variables are strongly correlated.  Highly correlated observed variables could 

mean that the two observed variables are essentially measuring the same thing.  This could lead to under 

identification of the model.  In researching multicollinearity, Tabachnick and Fidell (2013) suggests that a 

correlation above 0.90 to be high.  A correlation of 0.90 was also considered as the cutoff for a highly 

correlated variables was used in similar research (Alnoaimi, 2015).  Highly correlated observed variables 

may contain redundant information and may not be need in the analysis.  A multicollinearity assessment 

was performed by constructing a correlation matrix of the indicators of each of the observed variables 
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using IBM SPSS Correlate.  The correlation matrices can be found in Appendix C.  A summary of the 

multicollinearity check can be found in Table 4.2-2. 

A Pearson’s Correlation matrix was generated for each of the observed variables.  The correlation 

between each indicator of each observed variable was determined to be statistically significant for all 

indicators.  The highest correlations were between TMS1-TMS2 and LI1-LI2 which were 0.867 and 

0.886 respectively.  There were no correlations that were greater than 0.90, which suggests that there is no 

multicollinearity amongst the indicators.  Since all correlations shown to be statistically significant, and 

no evidence or multicollinearity, there were no indicators recommended for removal for the confirmatory 

factor analysis. 
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Table 4.2-2:  Summary of Correlation Matrices Assessment 

Variable Correlation of all indicators 
statistically significant? 

Indicators with Correlation >0.90 

Top Management Support Yes None 

Organizational Commitment Yes None 

Communication Yes None 

Value of Systems Engineering Yes None 

Control and Assessment Yes None 

Personnel Yes None 

Tools and Infrastructure Yes None 

Training Yes None 

Planning Yes None 

Manufacturing Issues Yes None 

Integration and Test Issues Yes None 

Launch Issues Yes None 

 

4.3 Confirmatory Factor Analysis 

Confirmatory factor analysis is the technique used to evaluate the relationships between the 

observed variables and the constructs.  A CFA is used when some prior knowledge of the underlying 

relationship of the latent variables exist (Byrne, 2016).  The prior knowledge of these underlying 

relationships were developed through the literature review completed in Chapter II.  The CFA is one of 

the primary components of a structural equation model.  Kline (2011) suggest the following steps for 

performing a CFA: 

1. Specify the model 
2. Determine if the model was identified 
3. If model was adequately identified, determine if the model fit is adequate 
4. If model fit not adequate, revise model to achieve better fit 
5. If model fit adequate, validate the measurement model 

The steps listed above were used for performing the confirmatory factor analyses in this study. 
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Specification of the model is representing hypotheses in the form of a measurement model.  The 

measurement model illustrates the relationship between the observed variables (indicators) and the latent 

variable (T. A. Brown, 2006; Hoyle, 2012).  The three primary constructs of this study are represented by 

three latent variables in the model:  Systems Engineering Culture, Systems Engineering Support, and 

Systems Engineering Rigor.  Each latent variable had three or more indictors (observed variables).  In this 

study, Systems Engineering Culture is the exogenous variable and Systems Engineering Support and 

Systems Engineering Rigor are the endogenous variables.  Each of the latent variables had multiple 

indicators.  A measurement model was created for each latent variable. 

The second step to performing a CFA is to determine if the model is identified.  Model 

identification is considered to be when the analysis can identify a unique set of estimates for every model 

parameter (Byrne, 2016; Kline, 2011).  The measurement models were evaluated using the IBM SPSS 

Amos 25 software to determine parameter estimates.  In some cases models had to be revised. 

The third step was to evaluate model fit.  As stated in the previous chapter, model fit was 

evaluated using chi-square, CFI, TLI, and RMSEA.  The model fit was evaluated using the criterion 

outlined in Section 3.8.2.3.5.  The initially proposed model is revised until adequate model fit is achieved.   

In some cases, models had to be revised to achieve adequate model fit.  Model revision was based 

on the following:  statistical significance of indicator, modification indices, and covariance not accounted 

for.  The first criteria used for revising the model is to identify factor loadings that are not statistically 

significant.  A statistically significant factor loading was identified to be a factor loading that has a critical 

ratio magnitude greater than 1.96.   

The next model revision criteria used was the modification indices.  The modification indices 

identify the degree to which the hypothesized model is appropriately described (Byrne, 2016).  A 

modification index value greater than 10 was determined to be an adequate candidate for modification 



 

109 

 

since making modifications based on a modification index of less than 10 would result in little change to 

the overall model fit (Byrne, 2016).  Error covariance and cross-loading was identified in the modification 

indices.  Research by Hair et al. (2014) suggests that when a variable consistently shows cross-loading 

that means it does not represent a distinct concepts and should be considered for deletion.  Cross-loading 

was avoided whenever possible in this study.    

The final criteria used for model revision is identifying covariance terms not well accounted, 

which was determined by examining the Standardize Residual Covariance Matrix.   Any indicators that 

had large residuals in the matrix were candidates for removal since they are not adequately accounted for 

in the model.  Residuals with a magnitude greater than 2.58 were considered to be large and a good 

candidate for removal (Byrne, 2016).  

Research completed by Hair et al. (2014) suggests that ideally during model modification, a 

minimum of four indicators should be maintained per factor in the model.  However three is acceptable to 

provide adequate model identification and minimum coverage of the construct.  Hair also states that SEM 

is often completed with a single indicator representing a single factor.   This study strived to maintain a 

minimum of three indicators per factor whenever possible. 

Once adequate model fit was achieved, the next step was to validate the measurement model.  

The model was validated by assessing the internal consistency of the latent construct.  This was achieved 

by evaluating the reliability of the survey instrument by calculating Cronbach’s alpha for each of the 

measurement models.  A Cronbach’s alpha greater than 0.70 is considered acceptable reliability.  IBM 

SPSS Reliability Analysis was used to calculate Cronbach’s alpha. 

4.3.1 Exogenous Variables 

In this study, there was one primary exogenous variable.  The construct represented by the latent 

variable was Systems Engineering Culture (SEC).  SEC was conceptualized by four latent factors.  SEC 
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was conceptualized by:  Top Management Support, Organizational Commitment, Value of System 

Engineering, and Communication.  A CFA was completed for each of the factors of Systems Engineering 

Culture to validate the measurement model of these constructs. 

4.3.1.1 Top Management Support 

Top Management Support consists of five indicators (TMS1 through TMS5).  These indicators 

correspond to five survey instrument statements.  The survey instrument used a 5-point Likert scale 

ranging from “Strongly Agree” to “Strongly Disagree”.  The Top Management Support measurement 

model was validated by completing a CFA. 

The first step of the CFA was to specify the model.  The initial model that was specified can be 

seen in Figure 4.3-1.  The next step was to determine if the model was identified.  A CFA was ran on the 

proposed model, and the IBM SPSS Amos 25 was able to determine a unique set of parameter estimates. 

Next model fit was evaluated using the criteria outlined in Section 3.8.2.3.5.  All four of the model fit 

indices were outside of the desired ranges for the initial Top Management Support measurement model:  

χ2

𝑑𝑑𝑑𝑑
 = 37, TLI = 0.488, CFI = 0.744, RMSEA = 0.424.  The inadequacy of the model fit meant that the 

model needed to be revised. 

 

Figure 4.3-1:  Initial Top Management Support Model 
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The first step in revising the model was to evaluate the significance in the factor loading.  All 

indicators were statistically significant and had factor loading critical value magnitudes greater than 1.96.  

Also, the factor loadings had magnitudes of 0.44, 0.51, 0.77, 0.93, and 0.93.  Based on the factor loading 

criteria identified in Table 3.8-3, all but TMS5 were fair or better.  Since the factor loading for TMS5 was 

less than fair, it was a candidate for removal.  Next, the modification indices were evaluated to identify 

what modifications can be made.  The modification index showed a value above 10 for two covariance 

paths between e1-e5 and e4-e5.   Next, the Residual Covariance Matrix was evaluated and there was a 

large residual covariance between TMS4-TMS5, which suggest that it was not adequately accounted for 

in the model.  Since most of the model modification indicators centered on TMS5, it was removed from 

the model.  The revised model is illustrated in Figure 4.3-2. 

 

 

Figure 4.3-2:  Revised Top Management Support Model 
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Table 4.3-1:  Top Management Support Measurement Model Parameter Estimates 

Indicator 
Initial Model Revised Model 

Std. Estimate S.E. C.R. P Std. Estimate S.E. C.R. P 

TMS5 <--- Top Mgmt. Support 0.436 0.086 6.403 *** Deleted 

TMS4 <--- Top Mgmt. Support 0.514 0.078 7.855 *** 0.488 0.078 7.427 *** 

TMS3 <--- Top Mgmt. Support 0.773 0.058 14.670 *** 0.768 0.057 14.561 *** 

TMS2 <--- Top Mgmt. Support 0.930 0.048 21.769 *** 0.928 0.049 20.989 *** 

TMS1 <--- Top Mgmt. Support 0.927    0.936    

 

A CFA was conducted on the revised Top Management Support measurement model.  The model 

estimates can be found in Table 4.3-1.  In the revised model, all factor loading estimates range from fair 

to excellent.  Each factor loading estimate was statistically significant.  The revised model had the 

following model fit index values:  χ
2

𝑑𝑑𝑑𝑑
 = 2.194, TLI = 0.985, CFI = 0.995, RMSEA = 0.077.  All model fit 

indices satisfy the model fit criteria showed a good fit for the revised measurement model.  There was a 

substantial model fit improvement of the revised model compared to the initial model.   

The final step in evaluating the revised model for Tom Management Support was to calculate 

Cronbach’s alpha.  Cronbach’s alpha was calculated using IBM SPSS Reliability Analysis.  Cronbach’s 

alpha for the revised Top Management Support model was 0.856.  The 0.856 exceeds the recommended 

value of 0.7 indicating that there was good internal consistency and that the measurement construct was 

reliable. 

4.3.1.2 Organizational Commitment   

Organizational Commitment consisted of six indicators (OC1 through OC6).  These indicators 

correspond to six survey statements.  As previously stated, the survey instrument used a 5-point Likert 
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scale ranging from “Strongly Agree” to “Strongly Disagree”.  The Organizational Commitment 

measurement model was validated by completing a CFA.   

The first step of the CFA was to specify the model.  The initial model that was specified can be 

seen in Figure 4.3-3.  The next step was to determine if the model was identified.  A CFA was ran on the 

proposed model, and the IBM SPSS Amos 25 was able to determine a unique set of parameter estimates. 

The parameter estimates can be found in Table 4.3-2.  Next model fit was evaluated using the criteria 

outlined in Section 3.8.2.3.5.  The model fit indices for Organizational Commitment were:  χ
2

𝑑𝑑𝑑𝑑
 = 1.929, 

TLI = 0.978, CFI = 0.978, RMSEA = 0.068.  All of the recommended model fit criteria was satisfied 

which demonstrated a satisfactory model fit, therefor, the model did not need to be revised.   

 

 
Figure 4.3-3:  Organizational Commitment Measurement Model 
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Table 4.3-2:  Organizational Commitment Measurement Model Parameter Estimates 

Indicator Standardize 
Estimate S.E. C.R. P 

OC6 <--- Organizational Commitment 0.687 0.379 6.687 *** 

OC5 <--- Organizational Commitment 0.785 0.251 7.085 *** 

OC4 <--- Organizational Commitment 0.906 0.307 7.423 *** 

OC3 <--- Organizational Commitment 0.688 0.307 6.657 *** 

OC2 <--- Organizational Commitment 0.868 0.350 7.411 *** 

OC1 <--- Organizational Commitment 0.498    

 
 Since all model fit criteria was met, the next step was to validate the Organizational Commitment 

measurement model.  Cronbach’s alpha was calculated to measure internal consistency of the model.  

IBM SPSS Reliability Analysis calculated a Cronbach’s alpha of 0.871.  The Cronbach’s alpha exceeds the 

recommended 0.7, indicating that the Organizational Commitment measurement model had internal 

consistency and was a reliable measurement construct.   

4.3.1.3 Value of System Engineering 

The Value of Systems Engineering consists of two factors:  experience and value of SE.  The first 

factors is experience and made up of the following three indicators corresponding do demographic 

questions of the survey:  Systems Engineer, Career Level, and Number of projects.  The second factor of 

the Value of SE each made up of three indicators (VSE1 through VSE3) that correspond to three survey 

instrument statements.  As previously stated, the survey instrument used a 5-point Likert scale ranging 

from “Strongly Agree” to “Strongly Disagree” for non-demographic questions.  The Value of Systems 

Engineering measurement model was validated by completing a CFA. 
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The first step of the CFA was to specify the model.  The initial model that was specified can be 

seen in Figure 4.3-4.  The next step was to determine if the model was identified.  A CFA was completed 

on the proposed model, and the IBM SPSS Amos 25 was able to determine a unique set of parameter 

estimates. The parameter estimates can be found in Table 4.3-3.  Next model fit was evaluated using the 

criteria outlined in Section 3.8.2.3.5.  The model fit indices for Value of SE were:  χ
2

𝑑𝑑𝑑𝑑
 = 9.206, TLI = 

0.495, CFI = 0.697, RMSEA = 0.202.  None of the model fit criteria was satisfied which showed that the 

model does not fit the data well, and the initial model needed to be revised.   

 

Figure 4.3-4:  Initial Value of SE Measurement Model 

The first step in revising the model was to evaluate the significance in the factor loading.  There 

were two indicators (Number of Projects and Career Level) that failed to meet the statistically significant 

critical value criteria of greater than 1.96.  Based on the factor loading criteria, Career Level and Number 
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of Projects are candidates for removal.  Next, the modification indices were evaluated to identify what 

modifications can be made.  The modification index showed a value above 10 for the covariance path 

between e_cl and e_np.   Next, the Residual Covariance Matrix was evaluated and there was a large 

(greater than 2.58) residual covariance between Career Level and Number or Projects, which suggest that 

it was not adequately accounted for in the model.  Both Number of Projects and Career Level were 

removed from the model.  The revised model is illustrated in Figure 4.3-5. 

 

 

Figure 4.3-5:  1st Revised Value of SE Measurement Model 
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Table 4.3-3:  Value of SE Measurement Model Parameter Estimates 

Indicator 

Initial Model 1st Revised Model 2nd Revised Model 

Std. 
Estimate S.E. C.R. P 

Std. 
Estimate S.E. C.R. P 

Std. 
Estimate S.E. C.R. P 

VSE1 <--- Value of SE 0.871    0.883    0.872    

VSE2 <--- Value of SE 0.765 0.091 7.983 *** 0.727 0.091 7.786 *** 0.734 0.091 8.004 *** 

VSE3 <--- Value of SE 0.571 0.082 6.948 *** 0.566 0.083 6.750 *** 0.571 0.082 6.944 *** 

Systems 
Engineer <--- Value of SE 0.153 0.050 1.949 0.051 0.152 0.050 1.933 0.053 0.153 0.050 1.949 0.051 

Career 
Level <--- Value of SE 0.136 0.157 1.702 0.089 Deleted    0.134 0.155 1.698 0.090 

Number of 
Projects <--- Value of SE 0.015 0.161 0.188 0.851 Deleted    Deleted    

 
A CFA was conducted on the first revised Value of SE measurement model.  The model 

estimates can be found in Table 4.3-3.  All factor loadings except for Systems Engineer had a factor 

loading that was statistically significant, however the critical value of Systems Engineer was very close to 

the critical value cutoff (1.96).  The revised model had the following model fit index values:  χ
2

𝑑𝑑𝑑𝑑
 = 2.968, 

TLI = 0.978, CFI = 0.977, RMSEA = 0.099.  Chi-square, TLI, and CFI all satisfied model fit criteria.  

However, RMSEA was between 0.08 and 0.10 model fit which suggests a mediocre fit of the model to the 

data. Since RMSEA was only showing a mediocre fit, this suggests that there is a degree of model 

misspecification.  To improve misspecification, an indicator that was previously deleted was added back 

in.  Career level was added back to the revised model.  The second revised model can be found in Figure 

4.3-6.   
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Figure 4.3-6:  2nd Revise Value of SE Measurement Model 

A CFA was conducted on the second revised Value of SE measurement model.  The model 

estimates can be found in Table 4.3-3.  As expected in the second revised model, only VSE1, VSE2, and 

VSE3 had factor loadings that were fair or better as well as critical values that were greater than 1.96.  

However, Career Level and Systems Engineer had to be retained in the model to improve model fit.  

There were no modifications suggested by the model fit indices.  Also, there were no values in the 

Residual Covariance Matrix of the second revised model greater than 2.58 which suggest that everything 

is adequately accounted for.  The revised model had the following model fit index values:  χ
2

𝑑𝑑𝑑𝑑
 = 1.613, 

TLI = 0.965, CFI = 0.982, RMSEA = 0.055.  All model fit indices satisfied the model fit criteria showing 

a good fit for the revised measurement model.  There was a sufficient model fit improvement of the 

second revised model compared to the initial model.   

Since there was adequate model fit with the 2nd revised model, the final step was to calculate 

Cronbach’s alpha.  Cronbach’s alpha was calculated using IBM SPSS Reliability Analysis.  Cronbach’s 
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alpha for the 2nd revised Value of SE model was 0.518.  The 0.518 is below the recommended value of 

0.7 indicating that there was not good internal consistency and measurement construct was not reliability.  

This exogenous variable was considered for removal from the overall model moving forward. 

 

4.3.1.4 Communication 

Communication consists of five indicators (Comm1 through Comm5).  Each indicator correspond 

to a survey instrument statements.  As previously stated, the survey instrument used a 5-point Likert scale 

ranging from “Strongly Agree” to “Strongly Disagree”.  The Communication measurement model was 

validated by completing a CFA.  The first CFA step was to specify the model.  Specified model can be 

observed in Figure 4.3-7.  The next step was to determine if the model was identified.  A CFA was ran on 

the proposed model, and the IBM SPSS Amos 25 was able to determine a unique set of parameter 

estimates. The parameter estimates can be found in Table 4.3-4.  Next model fit was evaluated using the 

criteria outlined in Section 3.8.2.3.5.  The model fit indices for Communication were:  χ
2

𝑑𝑑𝑑𝑑
 = 9.445, TLI = 

0.675, CFI = 0.838, RMSEA = 0.204.  None of the model fit criteria was satisfied which suggested that 

the model needed to be revised.   
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Figure 4.3-7:  Initial Communication Measurement Model 

 

Table 4.3-4:  Communication Model Parameter Estimates 

Indicator 
Initial Model Revised Model 

Std. Estimate S.E. C.R. P Std. Estimate S.E. C.R. P 

Comm1 <--- Communication .575    0.448    

Comm2 <--- Communication .637 0.150 6.355 *** 0.514 0.155 6.363 *** 

Comm3 <--- Communication .710 0.169 6.713 *** 0.789 0.312 5.167 *** 

Comm4 <--- Communication .668 0.184 6.522 *** 0.705 0.314 5.168 *** 

Comm5 <--- Communication .565 0.167 5.892 *** 0.517 0.259 4.468 *** 

 

The first step in revising the model was to evaluate the significance in the factor loading.  All 

Communication indicators were statistically significant and had factor loading critical value magnitudes 

greater than 1.96.  Based on the factor loading criteria identified in Table 3.8-3, all factor loadings were 

good or better.  So there were no indicators suggested for removal based on factor loading.  Next, the 

modification indices were evaluated to identify what modifications can be made.  The modification index 

showed a value above 10 for two covariance paths between e_comm1-e_comm2 (30.902) and e_comm3-
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e_comm4 (10.054).   Next, the Residual Covariance Matrix was evaluated and there was a residual 

covariance the criteria of 2.58 between Comm1 and Comm2 (2.890), which suggest that it was not 

adequately accounted for in the model.  Only the e_comm1 and e_comm2 covariance path was added to 

the model since the e_comm3 and e_comm4 path was not statistically significant.  The revised 

Communication model is illustrated in Figure 4.3-8. 

 

 

Figure 4.3-8:  Revised Communication Measurement Model 

A CFA was completed on the revised Communication measurement model.  The model estimates 

can be found in Table 4.3-4.  In the revised model, all factor loading estimates range from fair to 

excellent.  Each factor loading estimate is statistically significant.  The revised model had the following 

model fit index values:  χ
2

𝑑𝑑𝑑𝑑
 = 2.089, TLI = 0.958, CFI = 0.983, RMSEA = 0.073.  All model fit criteria 

was satisfied.  The revised model was considered an adequate fit.   

The final step in evaluating the revised model for Communication measurement model was to 

calculate Cronbach’s alpha.  Cronbach’s alpha was calculated using IBM SPSS Reliability Analysis.  

Cronbach’s alpha for the revised Communication measurement model was 0.764.  The 0.764 exceeded 
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the recommended value of 0.7 indicating that there was good internal consistency and that the 

Communication measurement construct was reliable. 

4.3.1.5 Systems Engineering Culture Model 

As previously stated, Systems Engineering Culture (SEC) consisted of the following factors:  Top 

Management Support, Organizational Commitment, Value of Systems Engineering, and Communication.  

In addition to the four factors mentioned there, demographics also play a part in Systems Engineering 

Culture.  The demographics of: organization size and type of organization are also factors that correspond 

to individual survey instrument statements.  A CFA was completed on Systems Engineering Culture to 

validate the measurement model.   

 

Figure 4.3-9:  Initial Systems Engineering Culture Measurement Model 
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The first step to performing the CFA was to specify the model.  The specified SEC measurement 

model is illustrated in Figure 4.3-9.   Next step was to identify the model.  A CFA was ran on the initially 

proposed SEC model, and the IBM SPSS Amos 25 was able to determine a unique set of parameter 

estimates.  The parameter estimates can be found in Table 4.3-5.  Next, the model fit was evaluated using 

the criteria outlined in Section 3.8.2.3.5.  The SEC model fit indices were compared to the criteria, and as 

illustrated in Table 4.3-6, TLI and CFI failed to meet the criteria.  The SEC model needed to be revised in 

order to improve the model fit. 

The first step in model revision is to evaluate the significance of each factor loading.  Value of SE 

and Type of Org were the only two factors that failed to meet a critical value of 1.96 or greater.  Both 

Value of SE and Type of Org were considered for removal.  In addition, the standardize factor loading of 

Communication was greater than 1.  Research completed by Deegan (1978) and Joreskog (1999) suggests 

that a standardize factor loading greater than one are either due to multicollinearity or are legitimate 

coefficient values.  The correlation matrix of all of the observed variables of the SE Culture model in 

Appendix C was revisited, and none of the bivariate correlations exceeded the criteria established in 

Section 4.2.2 of a correlation not to exceed 0.90.  The bivariate correlation of TMS1-TMS2 (0.870) was 

the only bivariate pair that was close to the criteria.   

  Next, the modification index was reviewed. With Value of SE being removed, modification 

indices showed significant cross loading with OC3, therefor it was deleted from the model.  The 

modification indices offered no insight in to the standardize factor loading of Communication was greater 

than 1.  Byrne (2016) suggests that in CFA cases where the standardize factor loading is greater than one, 

the factor can be deleted and the indicators of the deleted factor can be distributed to the construct that the 

factor was highly correlated with.  This approach was implemented to address Communication’s 

excessive factor loading, and the indicators were loaded directly on to SEC.  The revised model is 

illustrated by Figure 4.3-10. 
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Table 4.3-5:  System Engineering Culture Parameter Estimates 

Paths Initial Model Revised Model 
Estimate S.E. C.R. P Estimate S.E. C.R. P 

Value of SE <--- SEC 0.046 0.160 0.540 0.589  deleted   

Communication <--- SEC 1.103     deleted   

Top Mgmt. Support <--- SEC 0.589 0.324 4.043 *** 0.617 0.297 5.075 *** 

Org. Commitment <--- SEC 0.564 0.101 3.712 *** 0.575 0.097 4.286 *** 

VSE1 <--- Value of SE 0.866     deleted   

VSE2 <--- Value of SE 0.738 0.091 8.041 ***  deleted   

VSE3 <--- Value of SE 0.574 0.083 6.989 ***  deleted   

Systems Engineer <--- Value of SE 0.154 0.051 1.963 0.050  deleted   

Career Level <--- Value of SE 0.137 0.156 1.722 0.085  deleted   

TMS4 <--- Top Mgmt. Support 0.500 0.077 7.642 *** 0.500 0.077 7.638 *** 

TMS3 <--- Top Mgmt. Support 0.775 0.056 14.837 *** 0.775 0.056 14.832 *** 

TMS2 <--- Top Mgmt. Support 0.922 0.046 21.999 *** 0.922 0.046 21.978 *** 

TMS1 <--- Top Mgmt. Support 0.936    0.936    

Comm1 <--- Communication 0.440    0.444    

Comm2 <--- Communication 0.467 0.145 6.296 *** 0.475 0.144 6.388 *** 

Comm3 <--- Communication 0.741 0.270 5.706 *** 0.755 0.271 5.737 *** 

Comm4 <--- Communication 0.746 0.324 5.403 *** 0.748 0.314 5.545 *** 

Comm5 <--- Communication 0.599 0.275 4.963 *** 0.590 0.259 5.143 *** 

OC4 <--- Org. Commitment 0.898 0.293 7.575 *** 0.902 0.295 7.529 *** 

OC3 <--- Org. Commitment 0.703 0.300 6.841 ***  deleted   

OC2 <--- Org. Commitment 0.867 0.337 7.558 *** 0.869 0.338 7.545 *** 

OC1 <--- Org. Commitment 0.507    0.508    

OC5 <--- Org. Commitment 0.780 0.241 7.202 *** 0.789 0.243 7.213 *** 

OC6 <--- Org. Commitment 0.695 0.368 6.841 *** 0.682 0.365 6.764 *** 

Type of Org <--- SEC 0.076 0.128 0.974 0.330  deleted   

Org Size <--- SEC 0.176 0.125 2.160 0.031 0.187 0.137 2.280 0.023 
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Table 4.3-6:  Systems Engineering Culture Model Fit 

Model Fit Index Criteria Initial Model Revised Model 

χ2

𝑑𝑑𝑑𝑑
 

< 5 2.015 2.007 

TLI > 0.90 0.876 0.928 

CFI > 0.90 0.891 0.941 

RMSEA < 0.08 0.071 0.071 

 

 

Figure 4.3-10:  Revised Systems Engineering Culture Model 
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A CFA was completed on the revised SEC Model.  IBM SPSS Amos 25 was able to determine a 

unique set of parameter estimates.  The parameter estimates of the revised model can be found in Table 

4.3-5.  The model fit indices were evaluated for the revised SEC model.  As seen in Table 4.3-6, all model 

fit indices satisfied the criteria.  This showed that the data adequately fits the model and no further 

revisions were required.  Cronbach’s alpha was calculated for the SEC measurement model using IBM 

SPSS Reliability Analysis, and Cronbach’s alpha was 0.872.  This values satisfied the criteria of 0.7, 

showing that the SEC measurement model has good internal reliability. 

4.3.2 Endogenous Variables 

Endogenous variables are the latent, dependent variables.  The endogenous variable of this study 

are Systems Engineering Support (SES) and Systems Engineering Rigor (SER).  The endogenous 

variables of this study were assessed the same way that the exogenous variables were evaluated.  Systems 

Engineering Support was conceptualized by four latent variables:  Control and Assessment, Personnel, 

Tools and Infrastructure, and Planning.  A CFA was completed for each of the factors of Systems 

Engineering Support to validate the measurement model of these constructs.  A measurement model was 

also developed for each endogenous variable and evaluated using CFA.   

4.3.2.1 Control and Assessment 

The Control and Assessment construct consists of four indicators (CA1 – CA4) which correspond 

to a survey statements.  The Control and Assessment measurement model was validated by completing a 

CFA.  The first step was to specify the model.  Specified model can be observed in Figure 4.3-11.  The 

next step was to determine if the model was identified.  A CFA was ran on the initially proposed model, 

and the IBM SPSS Amos 25 was able to determine a unique set of parameter estimates. The parameter 

estimates can be found in Table 4.3-7.  Next model fit was evaluated using the criteria outlined in Section 

3.8.2.3.5.  The model fit indices for Control and Assessment were:  χ
2

𝑑𝑑𝑑𝑑
 = 0.605, TLI = 1, CFI = 1, 
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RMSEA = 0.  All of the model fit criteria was satisfied showing that the model adequately fit the data, 

therefore, no modification was required. 

 
Figure 4.3-11:  Control and Assessment Measurement Model 

 
Table 4.3-7:  Control and Assessment Parameter Estimates 

Indicator Standardize 
Estimate S.E. C.R. P 

CA1 <--- Control and Assessment 0.566    

CA2 <--- Control and Assessment 0.628 0.162 5.969 *** 

CA3 <--- Control and Assessment 0.704 0.161 6.242 *** 

CA4 <--- Control and Assessment 0.671 0.180 6.150 *** 

 
The final step in evaluating the model was to calculate Cronbach’s alpha.  Cronbach’s alpha was 

calculated using IBM SPSS Reliability Analysis.  The Cronbach’s alpha for the Control and Assessment 

measurement model was 0.732, which satisfies the recommended criteria of greater than 0.7.  This 

indicated that there was good internal consistency and that the measurement construct was reliable. 
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4.3.2.2 Personnel 

The Personnel construct consists of two factors: personnel (Per1 – Per3) and training (Trn1 – 

Trn3). Each indicator correspond to a survey instrument statements.  The Personnel measurement model 

was validated by completing a CFA.  The first CFA step was to specify the model.  Specified model can 

be observed in Figure 4.3-12.  The next step was to determine if the model was identified.  A CFA was 

done on the initially proposed model, and the IBM SPSS Amos 25 was able to determine a unique set of 

parameter estimates. The parameter estimates can be found in Figure 4.3-14.  Next model fit was 

evaluated using the criteria outlined in Section 3.8.2.3.5.  The model fit indices were:  χ
2

𝑑𝑑𝑑𝑑
 = 6.203, TLI = 

0.826, CFI = 0.895, RMSEA = 0.160.  None of the model fit criteria was satisfied which indicated that the 

model needed to be revised. 

 
Figure 4.3-12:  Initial Personnel Measurement Model 
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Table 4.3-8:  Personnel Model Parameter Estimates 

Indicator 
Initial Model Revised Model 

Std. Estimate S.E. C.R. P Std. Estimate S.E. C.R. P 

Per1 <--- Personnel 0.636    0.622    

Per2 <--- Personnel 0.800 0.134 8.821 *** 0.850 0.145 8.809 *** 

Per3 <--- Personnel 0.687 0.143 7.943 *** 0.685 0.147 7.918 *** 

Trn1 <--- Personnel 0.737 0.118 8.367 *** 0.738 0.121 8.354 *** 

Trn2 <--- Personnel 0.651 0.129 7.621 *** 0.641 0.139 7.105 *** 

Trn3 <--- Personnel 0.582 0.114 6.967 *** 0.511 0.115 6.183 *** 

 

First, the significance of the factor loading was evaluated.  All indicators were statistically 

significant.  Based on the factor loading criteria identified in Table 3.8-3, all factor loadings were good or 

better, therefor, no indicators were suggested for removal based on factor loading.  Next, the modification 

indices were evaluated to identify suggested modifications.  The modification index showed that the 

covariance path between e_Trn2 and e_Trn3 had a value of 31.241, which exceeded the criteria of 10. 

The modification index also showed a value of 9.051 for the covariance path between e_per2 and e_Trn2 

which is close to the criteria of 10.  Next, the Residual Covariance Matrix showed a value greater than 

2.58 between Trn2 and Trn3 (2.946), which was the only item that exceeded the criteria.  Based on the 

modification index and the residual covariance matrix a covariance path was added between e_Trn2 and 

e_Trn3.  Since the covariance path between e_per2 and e_Trn2 was very close to the criteria and there 

was a lot of degrees of freedom in the model, the covariance path between e_per2 and e_Trn2 was added 

to the model.  The revised Personnel measurement model can be found in Figure 4.3-13. 
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Figure 4.3-13:  Revised Personnel Measurement Model 

After revising the Personnel model, a CFA was completed.  The model estimates can be found in 

Table 4.3-8.  In the revised model, all factor loading estimates range from fair to excellent.  Each factor 

loading estimate was statistically significant.  The revised Personnel measurement model had the 

following model fit index values:  χ
2

𝑑𝑑𝑑𝑑
 = 2.266, TLI = 0.958, CFI = 0.980, RMSEA = 0.079.  All model fit 

criteria was satisfied.  The revised Personnel measurement model was considered an adequate fit.   

The final step in evaluating the revised model was to calculate Cronbach’s alpha.  Cronbach’s 

alpha was calculated using IBM SPSS Reliability Analysis.  The Cronbach’s alpha for this measurement 

model was 0.839, which satisfies the recommended criteria of greater than 0.7.  This indicated that there 

was good internal consistency and that the Personnel measurement construct was reliable. 

4.3.2.3 Planning 

The Planning construct consisted of four indicators (Pln1 through Pln4).  Each indicator 

correspond to a survey instrument statements.  As previously stated, the survey instrument used a 5-point 
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Likert scale ranging from “Strongly Agree” to “Strongly Disagree”.  The Planning measurement model 

was validated by completing a CFA. 

The first CFA step was to specify the model.  Specified model can be observed in Figure 4.3-14.  

The next step was to determine if the model was identified.  A CFA was ran on the initially proposed 

model, and the IBM SPSS Amos 25 was able to determine a unique set of parameter estimates. The 

parameter estimates can be found in Table 4.3-9.  Next model fit was evaluated using the criteria outlined 

in Section 3.8.2.3.5.  The model fit indices for Planning were:  χ
2

𝑑𝑑𝑑𝑑
 = 9.613, TLI = 0.692, CFI = 0.897, 

RMSEA = 0.206.  None of the model fit criteria were satisfied which suggested that the model needed to 

be revised.   

 

 
Figure 4.3-14:  Initial Planning Measurement Model 
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Table 4.3-9:  Planning Model Parameter Estimates 

Indicator 
Initial Model Revised Model 

Std. Estimate S.E. C.R. P Std. Estimate S.E. C.R. P 

Pln1 <--- Planning 0.673    0.830    

Pln2 <--- Planning 0.723 0.167 6.814 *** 0.621 0.143 5.543 *** 

Pln3 <--- Planning 0.561 0.135 6.073 *** 0.727 0.134 6.459 *** 

Pln4 <--- Planning 0.573 0.150 6.166 *** 0.532 0.134 5.198 *** 

 
The significance in the factor loading was evaluated as the first step in revising the model.  All 

Planning indicators were statistically significant.  Based on the factor loading criteria identified in Table 

3.8-3, all factor loadings were good or better.  So there were no indicators suggested for removal based on 

factor loading.  Next, the modification indices were evaluated to identify what modifications can be made.  

The modification index showed no values above 10, however there was a value of 8.553 for two 

covariance paths between e_pln1 and e_pln3.   Next, the Residual Covariance Matrix was evaluated and 

there was no values that exceeded criteria of 2.58. Since none of the model fit indices satisfied the 

criteria, and the only significant indicator of a modification was a covariance path between e_pln1 and 

e_pln3, it was added to the model.  The revised Planning measurement model can be found in Figure 

4.3-15. 

 
Figure 4.3-15:  Revised Planning Measurement Model 
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After revising the Planning measurement model, a CFA was completed.  The model estimates can 

be found in Table 4.3-9.  In the revised model, all factor loading estimates ranged from fair to excellent.  

Each factor loading estimate was statistically significant.  The revised Planning measurement model had 

the following model fit index values:  χ
2

𝑑𝑑𝑑𝑑
 = 0.478, TLI = 1, CFI = 1, RMSEA = 0.  All model fit criteria 

was satisfied.  The revised Planning measurement model was considered an adequate fit.   

The final step in evaluating the revised model for the Planning measurement model was to 

calculate Cronbach’s alpha.  Cronbach’s alpha was calculated using IBM SPSS Reliability Analysis.  The 

Cronbach’s alpha for this measurement model was 0.726, which satisfies the recommended criteria of 

greater than 0.7.  This indicates that there is good internal consistency and that the Planning measurement 

construct is reliable. 

4.3.2.4 Tools and Infrastructure 

The Tools and Infrastructure consists of four indicators (TI1 – TI4) which correspond to a survey 

instrument statements.  The Personnel measurement model was validated by completing a CFA.  The first 

CFA step was to specify the model.  Specified model can be observed in Figure 4.3-16.  The next step 

was to determine if the model was identified.  A CFA was ran on the initially proposed model, and the 

IBM SPSS Amos 25 was able to determine a unique set of parameter estimates. The parameter estimates 

can be found in Table 4.3-10.  Next model fit was evaluated using the criteria outlined in Section 

3.8.2.3.5.  The model fit indices for Tools and Infrastructure were:  χ
2

𝑑𝑑𝑑𝑑
 = 1.037, TLI = 0.999, CFI = 1, 
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RMSEA = 0.014.  All of the model fit criteria was satisfied showing that the model adequately fit the 

data, therefore, no modification was required. 

 

Figure 4.3-16:  Tools and Infrastructure Measurement Model 

Table 4.3-10:  Tools and Infrastructure Model Parameter Estimates 

Indicator Standardize 
Estimate S.E. C.R. P 

TI1 <--- Tools and Infrastructure 0.521    

TI2 <--- Tools and Infrastructure 0.882 0.194 7.259 *** 

TI3 <--- Tools and Infrastructure 0.776 0.182 7.072 *** 

TI4 <--- Tools and Infrastructure 0.698 0.176 6.725 *** 

 
The final step in evaluating the model was to calculate Cronbach’s alpha.  Cronbach’s alpha was 

calculated using IBM SPSS Reliability Analysis.  The Cronbach’s alpha for the Tools and Infrastructure 

measurement model was 0.802, which satisfies the recommended criteria of greater than 0.7.  This 

indicates that there was good internal consistency and that the measurement construct was reliable. 
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4.3.2.5 Systems Engineering Support Model 

Systems Engineering Support (SES) consists of four factors:  Planning, Personnel, Tools & 

Infrastructure, and Control and Assessment.  As previously stated, each factor corresponded to four or 

more separate survey statements.  Individual measurement models were evaluated for each of the four 

factors of SES.  A measurement model for SES was developed based on each of the four factors.  A CFA 

was completed on the SES measurement model to validate the model.   

The first step, the SES model was specified.  The specified SES model is illustrated in Figure 

4.3-17.   A CFA was done on the initial SES model.  IBM SPSS Amos 25 was able to determine a unique 

set of parameter estimates.  The initial SES model parameter estimates can be found in Table 4.3-11.  

Next the model fit indices of the initial model were evaluated.  The model fit index values can be found in 

Table 4.3-12.  All of the model fit indices violated the model fit criteria, which required the model to be 

revised to improve model fit. 
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Figure 4.3-17:  Systems Engineering Support Measurement Model 
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Table 4.3-11:  Systems Engineering Support Parameter Estimates 

Path 
Initial Model Revised Model 

Estimate S.E. C.R. P Estimate S.E. C.R. P 

Planning <--- SES 0.835 0.122 6.765 *** 0.709 0.116 6.882 *** 

Personnel <--- SES 0.975 0.147 6.775 *** 0.962 0.136 6.676 *** 

Tools & Infrastructure <--- SES 0.847 0.129 6.060 *** 0.902 0.134 6.251 *** 

Control & Assessment <--- SES 0.904  0.964  

CA1 <--- Control & Assessment 0.631  0.614  

CA2 <--- Control & Assessment 0.667 0.120 7.637 *** 0.680 0.129 7.659 *** 

CA3 <--- Control & Assessment 0.653 0.112 7.518 *** 0.607 0.113 7.073 *** 

CA4 <--- Control & Assessment 0.615 0.127 7.172 ***  deleted   

TI1 <--- Tools & Infrastructure 0.545  0.554  

TI2 <--- Tools & Infrastructure 0.867 0.166 7.958 *** 0.837 0.158 7.840 *** 

TI3 <--- Tools & Infrastructure 0.770 0.161 7.552 ***  deleted   

TI4 <--- Tools & Infrastructure 0.711 0.159 7.233 *** 0.725 0.159 7.285 *** 

Pln1 <--- Planning 0.674  0.778  

Pln2 <--- Planning 0.680 0.137 7.790 ***  0.128 7.956 *** 

Pln3 <--- Planning 0.771 0.156 7.244 *** 0.887 0.145 7.276 *** 

Pln4 <--- Planning 0.522 0.132 6.361 *** 0.484 0.138 4.882 *** 

Per1 <--- Personnel 0.601  0.596  

Per2 <--- Personnel 0.790 0.142 8.655 *** 0.803 0.150 8.572 *** 

Per3 <--- Personnel 0.680 0.153 7.829 *** 0.681 0.159 7.664 *** 

Trn1 <--- Personnel 0.783 0.128 8.629 *** 0.785 0.135 8.478 *** 

Trn2 <--- Personnel 0.641 0.138 7.429 ***  deleted   

Trn3 <--- Personnel 0.577 0.120 6.897 ***  deleted   
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Table 4.3-12:  SES Model Fit Indices 

Model Fit Index Criteria Initial Model Revised Model 

χ2

𝑑𝑑𝑑𝑑
 

< 5 2.873 2.020 

TLI > 0.90 0.832 0.919 

CFI > 0.90 0.859 0.937 

RMSEA < 0.08 0.096 0.071 

 

Table 4.3-13:  SES Modification Indices 

Covariance M.I. Par Change Regression Weights M.I. Par Change 

e_pln1 <--> e_trn2 11.632 0.118 Trn2 <--- Pln1 10.806 0.188 

e_TI3 <--> e_trn3 16.088 0.114 Pln3 <--- CA4 13.415 0.168 

e_TI3 <--> e_per1 19.299 -0.155 Pln2 <--- Trn3 10.852 0.190 

e_CA4 <--> e_pln3 16.879 0.146 TI3 <--- Per1 13.092 -0.154 

e_CA4 <--> e_pln1 10.219 -0.126 CA4 <--- Pln3 11.150 0.220 

e_CA2 <--> e_ti 10.328 -0.065 CA4 <--- Pln1 12.258 -0.228 

 

The first step in model revision is to evaluate the statistical significance of each factor loading.  

All factor loadings satisfied the greater than 1.96 critical value criteria.  Next, the modification indices in 

Table 4.3-13 were evaluated.  There were several error correlation and cross-factor loading that exceeded 

10.  CA4, TI3, and Trn2 were deleted to remove any error covariance.  Based on the variables that were 

removed, only the covariance between e_CA2 and e_ti needed to be added to the model.  Next, the 

Standardize Residual Covariance Matrix was examined.  Trn3 was the only covariance that exceeded the 

Standardize Residual Covariance criteria value of 2.58 that was not accounted for by the modification 

index.  The revised SES model is illustrated in Figure 4.3-18. 
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Figure 4.3-18:  Revised Systems Engineering Support Measurement Model 

A CFA was completed on the revised SES measurement model.  The model estimates of the 

revised model can be found in Table 4.3-11.  All factor loadings of the revised SES model remained 

statistically significant.  The model fit indices for the revised model can be found in Table 4.3-12.  All 

model fit indices satisfied the model fit index criterion, which demonstrated that the data adequately fitted 
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the revised SES model.  Cronbach’s alpha for the SES model was calculated using IBM SPSS Reliability 

Analysis.  Cronbach’s alpha was determined to be 0.898, which satisfied the criteria of greater than 0.7.  

A Cronbach’s alpha of 0.898 shows that there was good internal reliability with the SES model. 

4.3.2.6 Systems Engineering Rigor 

SER is made up of the following three factors:  manufacturing issues (MI1 and MI2), integration 

and test issues (ITI1 and ITI2), and launch issues (LI1 and LI2).  Each factor’s indicator corresponded to 

a survey instrument statement.  To validate the Systems Engineering Rigor measurement model, a CFA 

was completed.  The first step to performing the CFA was to specify the SER model.  The specified SER 

measurement model is illustrated in Figure 4.3-19.   Next, the model was identified.  A CFA was ran on 

the SER model.  IBM SPSS Amos 25 was able to determine a unique set of parameter estimates.  The 

parameter estimates can be found in Table 4.3-14.  Next, the model fit was evaluated using the criteria 

outlined in Section 3.8.2.3.5.  The SER model fit indices and criteria can be found in Table 4.3-15.  All of 

the model fit indices failed to satisfy the criteria.  The SER model needed to be revised in order to 

improve the model fit. 

 

Figure 4.3-19:  Systems Engineering Rigor Measurement Model 
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Table 4.3-14:  Systems Engineering Rigor Parameter Estimates 

Indicator 
Initial Model Revised Model 

Std. Estimate S.E. C.R. P Std. Estimate S.E. C.R. P 

MI1 <--- SER 0.779        

MI2 <--- SER 0.834 0.073 13.249 *** 0.753 0.055 19.021 *** 

ITI1 <--- SER 0.894 0.072 14.545 *** 0.855 0.080 14.359 *** 

ITI2 <--- SER 0.893 0.068 14.504 *** 0.941 0.075 13.759 *** 

LI1 <--- SER 0.904 0.066 14.754 *** 0.893 0.073 13.235 *** 

LI2 <--- SER 0.899 0.070 14.637 *** 0.870 0.078 13.162 *** 

 
 

Table 4.3-15:  Systems Engineering Rigor Model Fit Indices 

Model Fit Index Criteria Initial Model Revised Model 

χ2

𝑑𝑑𝑑𝑑
 

< 5 20.667 1.083 

TLI > 0.90 0.774 0.999 

CFI > 0.90 0.864 1 

RMSEA < 0.08 0.312 0.02 

 
The first step in revising the SER model was to evaluate the statistical significance of the factor 

loading.  All indicators had a critical value greater than 1.96, which meant that each factor was statically 

significant.  Comparing the factor loading to the criteria identified in Table 3.8-3, all factor loadings were 

excellent, therefor, none of the indicators were considered for removal based on factor loading.  Next, the 

modification indices were evaluated to identify suggested modifications.  Based on the modification index 

criteria of 10, the covariance paths in Table 4.3-16 exceeded the threshold and were considered for 

revising.  The Standard Residual Covariance matrix was also examined, and there were no values that 
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exceeded the threshold that were not already accounted for in the modifications made to the SER 

measurement model.  The revised SER measurement model can be found in Figure 4.3-20. 

Table 4.3-16:  Initial SER Model Modification Index Values Above 10 

Path M.I. 

e_li1 <--> e_li2 47.818 

e_iti1 <--> e_li2 12.239 

e_mi2 <--> e_li1 21.310 

e_mi1 <--> e_li2 17.223 

e_mi1 <--> e_mi2 69.403 

e_mi2 <--> e_iti2 11.043 

e_mi2 <--> e_iti1 14.866 

e_mi1 <--> e_iti1 12.314 
 

 

Figure 4.3-20:  Revised Systems Engineering Rigor Measurement Model 
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 A CFA was completed on the revised SER Model.  As seen in Table 4.3-14 all factor loadings in 

the revised model were statically significant.  The model fit indices were evaluated for the revised SER 

model, and all model fit indices satisfied the criteria.  A comparison of the model fit indices against the 

criteria can be found in Table 4.3-15.  A significant improvement in model fit of the revised model over 

the initial model can also be observed in the table.  Satisfying the model fit criteria showed that the data 

was a good fit for the revised SER model. 

The final step to validating the revised SER model was to calculate Cronbach’s alpha.  

Cronbach’s alpha was calculated using IBM SPSS Reliability Analysis.  The Cronbach’s alpha for the SER 

model was 0.947, which satisfied the recommended criteria of greater than 0.7.  Satisfying the Cronbach’s 

alpha criteria indicated that there was good internal consistency and that the SER measurement construct 

was reliable. 

4.3.3 Hypothesized Systems Engineering Culture, Support, and Rigor Model 

Prior to evaluating the model that was originally hypothesized in Section 3.4, each latent variable 

of the model was individually evaluated.  In evaluating the measurement of each latent variable, a CFA 

was completed to validate the measurement model of each construct.  The results of the CFA showed that 

each latent variable measurement model adequately fit the data.  Cronbach’s alpha was also performed on 

each of the measurement models to ensure good internal consistency.  The revised measurement model of 

each construct achieved a satisfactory Cronbach’s alpha. 

4.3.3.1 Evaluating the Hypothesized Model 

The measurement model of each construct was first evaluated individually to minimize 

complications in the evaluation of the hypothesized model.  After the measurement model of each 

construct achieved a satisfactory model fit and was validated, the individual models were combined to 

form the initial structural equation model that was hypothesized in earlier chapters.  The initial 



 

144 

 

hypothesized model can be found in Figure 4.3-21.  A CFA was conducted on the hypothesized SE 

Culture-Support-Rigor model using the same process that was used to validate the individual 

measurement models. 

The first step was to specify the model.  Model specification was completed by combining each 

of the individual measurement models (Figure 4.3-21).  Parameter estimates were calculated, and as 

observed in Table 4.3-18 there are strong positive correlations between all three of the latent variables.  

The correlations among the latent variables were statistically significant with critical ratios greater than 

1.96 at p < 0.001.  Next, the model fit was evaluated.  The model fit indices for the SE Culture-Support-

Rigor model and their criteria can be found in Table 4.3-19.  TLI (0.884) and CFI (0.895) were just below 

the model fit criteria (>0.9).  The model needed to be revised. 

 



 

145 

 

 

Figure 4.3-21:  Initial Hypothesized Systems Engineering Culture-Support-Rigor Model 

To revise the model, first, the factor loading for each parameter was evaluated.  All but one factor 

had a loading that was statistically significant.  Org Size (1.589) was the only factor that failed to achieve 

a critical value greater than 1.96 and was thus eliminated from the model.  The correlations among the 

latent constructs were also examined.  SEC and SES had a very high correlation (0.861).  This could 

prove problematic in later phases of SEM.  As many SEM researches have stated, a high correlation 
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between two latent variables suggests that the latent variables are representing the same construct.  A 

correlation of 0.861 between SEC and SES would likely get even larger once the model is revised to 

improve model fit.  Rather than combining the indicators of SEC and SES, leaving a SEM with only one 

exogenous and one endogenous variable, the decision was made to reduce the measurement model from a 

second order measurement model to a first order measurement model which is illustrated in Figure 

4.3-22.  This would allow each factor that composed the SEC and SES constructs to be evaluated 

individually within the model and identify where the SEC and SES constructs overlapped. 

 

Figure 4.3-22: Revised 1st Order Hypothesized Model 
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A CFA was completed on the revised hypothesized model.  TLI and CFI failed to satisfy the 

model fit criterial.  The model needed to be revised.  First, the factor loading for each parameter was 

evaluated.  All but one factor had a loading that was statistically significant.  Career Level (1.731) was the 

only factor that failed to achieve a critical value greater than 1.96 and was thus eliminated from the 

model.    

The modifications suggested by the indices are found in Table 4.3-17.  Review of the 

Modification Indices show that there were large error covariance and regression weight (factor loading) 

cross loading.  TMS3 and Per3 were removed from the model due to the cross loading.  TMS4 was not 

considered for removal to try to maintain a minimum of three indicators per factor.  The indicator level 

error covariance paths suggested by the modification index were added to the model.  The Standardize 

Residual Covariance Matrix was also reviewed to identify any variables that had values greater than 2.56.  

OC6, TMS4, and Tr3 were removed due to values exceeding 2.56 in the Standardized Residual 

Covariance Matrix.  Removing TMS4 would reduce Top Management Support to two indicators, 

however, due to the numerous large residual covariance values associated with TMS4, TMS4 was grossly 

unaccounted for and had to be removed.  Although Top Management Support would only have two 

indicators, research completed by Hair et al. (2014) suggest that SEM analyses are routinely completed 

with one indicator per factor and is acceptable as long as the indicator was carefully considered.  All of 

the indicators of the hypothesized model were carefully considered.   
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Table 4.3-17:  Modification Indices for Initial SE Culture-Support-Rigor Model 

Covariance M.I. Par 
Change Cross Loading M.I. Par Change 

e_oc2 <--> e_vse2 11.203 0.06 TMS3 <--- Personnel 10.835 0.264 
e_mi1 <--> Value of SE 10.274 0.068 TMS3 <--- Planning 11.206 0.283 
e_trn3 <--> Planning 10.431 0.048 TMS3 <--- Trn2 10.581 0.154 
e_trn3 <--> e_tms1 10.401 0.062 TMS3 <--- Trn1 11.143 0.179 

e_trn2 <--> Top Mgmt. 
Support 13.277 0.135 TMS3 <--- TI1 15.405 0.178 

e_per2 <--> e_per3 11.081 0.121 TMS3 <--- CA1 20.768 0.2 
e_TI2 <--> e_oc6 10.179 0.084 TMS4 <--- C&A 11.319 0.387 
e_TI2 <--> e_tms3 13.16 -0.083 TMS4 <--- CA4 13.052 0.246 
e_TI1 <--> e_comm3 11.696 -0.118 TMS4 <--- CA3 10.349 0.252 
e_CA4 <--> e_comm1 19.729 0.164 VSE1 <--- Comm1 12.544 -0.191 
e_CA4 <--> e_pln3 14.328 0.127 Comm3 <--- TI1 11.832 -0.139 
e_CA4 <--> e_pln1 15.117 -0.138 Comm1 <--- CA4 10.981 0.16 
e_CA2 <--> Personnel 10.62 0.057 TMS2 <--- Trn3 10.211 -0.126 
e_CA1 <--> e_tms3 14.351 0.15 MI1 <--- VSE3 12.528 0.139 

     Trn2 <--- TMS3 10.067 0.159 
     Trn1 <--- LI2 10.179 0.163 
     Trn1 <--- ITI2 11.493 0.177 
     Per3 <--- LI2 12.167 -0.266 
     TI2 <--- OC6 11.566 0.122 
     TI1 <--- Pln1 10.345 0.219 
     CA4 <--- Comm1 13.384 0.241 
     CA4 <--- Pln1 15.599 -0.249 
     CA1 <--- TI1 11.517 0.206 

 

 Next, the correlations between the latent constructs were reviewed.  The correlations between the 

latent constructs of the hypothesized model can be found in Table 4.3-18.  It can be observed from the 

Table 4.3-18 that Personnel has a very high correlation with T&I (0.859), Planning (0.857), and C&A 

(0.890), which is expected since a measurement model that achieved adequate model fit was previously 

evaluated in Section 4.3.2.5 where SES was the latent construct being measured by Personnel, T&I, 

Planning and C&A.  However, Communication also had a very high correlation with Personnel (0.827), 

Planning (0.845), and C&A (0.845).  Very high correlations between these five latent variables suggest 

that they are representing the same latent construct.  Communication appeared to be the overlap between 
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SEC and SES that was discovered earlier.  Based on this, the model was revised to reconstitute the SES 

construct with Communication, Personnel, Planning, C&A, and T&I as the indicators.  The revised model 

is illustrated in Figure 4.3-23. 

Table 4.3-18:  Correlations of Latent Variables of 1st Order Hypothesized Model 

 SER TMS OC Com Personnel Plan T&I VSE C&A 
SER ---         
TMS 0.346 ---        
OC 0.510 0.262 ---       

Com 0.619 0.631 0.563 ---      
Personnel 0.472 0.534 0.496 0.827 ---     
Planning 0.546 0.451 0.541 0.845 0.857 ---    

T&I 0.449 0.371 0.338 0.707 0.859 0.733 ---   
VSE 0.408 -0.048 0.295 0.088 0.081 0.259 0.025 ---  
C&A 0.536 0.454 0.532 0.845 0.890 0.795 0.726 0.159 --- 

SER = Systems Engineering Rigor, TMS = Top Management Support, OC = Organizational 
Commitment, Com = Communication, T&I = Tools and Infrastructure, C&A = Controls and 
Assessment 
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Figure 4.3-23:  2nd Revised Hypothesized Model 

A CFA was completed on the 2nd revised hypothesized model.  Only two of the four model fit 

indices satisfied the model fit criteria.  TLI and CFI fell below the model fit criteria.  The model needed to 

be revised.  First the factor loadings were evaluated for statistical significance.  Systems Engineer had 

such a low factor loading and was barely statically significant, it was deleted from the model.  The 

following covariance paths were deleted because they were not statistically significant:   TMS-VSE, 

VSE-SES, and e_pln2-e_pln3.  All other factor loadings had critical ratios greater than 1.96 and were 

statistically significant at the p <0.05 level.  Next, the modification indices were reviewed and covariance 
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paths between e_per1-2_trn2 and e_ca2-e_comm4 were added.  The standardized residual covariance 

matrix was reviewed next.  Based on values above 2.56 in the standardized residual covariance matrix, 

Comm5, OC1, and Per3 were deleted from the model.  The revised model is illustrated in Figure 4.3-24.  

 

Figure 4.3-24:  3rd Revised Hypothesized Model 
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Table 4.3-19:  Hypothesized Measurement Model Fit Indices 

Model Fit Index Criteria Initial Model 1st Revised 
Model 

2nd Revised 
Model 

3rd Revised 
Model 

χ2

𝑑𝑑𝑑𝑑
 

< 5 1.959 1.820 1.859 1.764 

TLI > 0.90 0.884 0.901 0.875 0.904 
CFI > 0.90 0.895 0.911 0.888 0.915 

RMSEA < 0.08 0.067 0.064 0.065 0.061 

  

A CFA was completed on the 3rd revised hypothesized model.  The model fit was evaluated.  The 

revised model satisfied all model fit criteria, which can be seen in Table 4.3-19.  All of the correlations of 

the remaining latent constructs had a critical ratio greater than 1.96 and was significant at a p <0.001 

level.  Descriptive statistics were calculated for the latent constructs.  Table 4.3-20 contains the 

descriptive statistics, Cronbach’s alpha, and correlations between the latent constructs of the hypothesized 

model.  The correlation between SES and SER was 0.583.  The scales for each of the latent constructs 

were greater than 0.7, which shows good reliability.   

Table 4.3-20:  Descriptive Statistics, Cronbach’s α, and Correlations of Latent Constructs 

 Mean Std. 
Deviation 

Cronbach’s 
α 

Correlation 
OC TMS VSE SES SER 

OC 4.550 0.690 0.883 ---     
TMS 4.195 1.006 0.930 0.274 ---    
VSE 4.173 0.808 0.762 0.226 deleted ---   
SES 3.767 0.897 0.917 0.521 0.546 deleted ---  
SER 4.098 0.772 0.947 0.494 0.364 0.355 0.549 --- 

SER = Systems Engineering Rigor, TMS = Top Management Support, OC = Organizational 
Commitment, Com = Communication, T&I = Tools and Infrastructure, C&A = Controls and 
Assessment 
* p < 0.001 
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4.3.3.2 Assessing Model Validity 

In structural equation modeling, validity is defined as the degree to which a model (or model 

results) accurately measures the construct it is intended to measure (Hair et al., 2014; Hoyle, 2012; Kline, 

2011; Schumacker & Lomax, 2010).  This concept can also be described as construct validity.  In systems 

engineering terms, validity can be considered the verification and validation of the model.  There are two 

types of construct validity that was evaluated in this study:  convergent validity and discriminant validity.  

4.3.3.2.1 Convergent Validity 

SEM researchers describe convergent validity as having evidence showing that there is adequate 

overlap of variables measuring a particular construct, demonstrated by having a large portion of variance 

in common (Hair et al., 2014; Hoyle, 2012; Kline, 2011; Schumacker & Lomax, 2010).  Identifying 

evidence of convergent validity is one part of validating the model.  Item reliability (or factor loadings), 

average variance extracted (AVE) must support these results, and construct reliability (CR) are all used to 

identify convergent reliability (Hair et al., 2014).   Indicator reliability was evaluated in Section 4.3.1 and 

4.3.2, however, it was re-evaluated based on the revisions made to the hypothesized model and is shown 

in Table 4.3-21.  The reliability of all indicators (factor loadings) were statistically significant at p <0.001 

level with critical ratios greater than 1.96. 
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Table 4.3-21:  Convergent Validity 

Construct Indicator Item Reliability 
(Factor Loadings) 

Cronbach's 
α CR AVE 

SE Rigor MI1 0.753 --- 0.947 0.748 
 MI2 0.848 ---   
 ITI1 0.941 ---   
 ITI2 0.896 ---   
 LI1 0.871 ---   
 LI2 0.880 ---   
      

SE Support Communication 0.881 0.740 0.949 0.790 
 Planning 0.868 0.726   
 Personnel 0.977 0.794   
 T&I 0.811 0.802   
 C&A 0.900 0.732   
      

Top Mgmt. Support TMS1 0.973 --- 0.933 0.874 
 TMS2 0.894 ---   
      

Org. Commitment OC2 0.834 --- 0.889 0.730 
 OC4 0.938 ---   
 OC5 0.783 ---   
      

Value of SE VSE1 0.840 --- 0.773 0.537 
 VSE2 0.749 ---   
 VSE3 0.586 ---   

NOTE:  All factor loadings were statistically significant at the p <0.001 level 

 

There are a few ways to evaluate convergent validity amongst measures of a construct.  The first 

way is to evaluate the factor loadings.  Standardize factor loadings that are statistically significant and 

above 0.5 (ideally above 0.7) show evidence of strong convergent validity (Hair et al., 2014).  It can be 

seen in Table 4.3-21 that all factor loadings were statistically significant at the p < 0.001 level and 

fourteen of the sixteen standardize factor loadings were above 0.5, with eleven out of the sixteen factor 
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loadings greater than 0.7.  A second way to evaluate convergent validity is to calculate AVE.  AVE is the 

mean variance of the items loading on a construct and is calculated using the equation (1) below.   

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝜆𝜆𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

           (1) 

Where λ is the standardize factor loading and n is the number of items.  An AVE value greater than 0.5 

suggests adequate convergent validity (Hair et al., 2014).   Table 4.3-21 shows that all AVE values were 

above 0.5 which shows good convergent validity.  The third way to assess convergent reliability is to CR.  

CR is calculated using equation (2) below. 

𝐶𝐶𝐶𝐶 = �∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

2

�∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

2+ �∑ 𝜃𝜃𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

          (2) 

Where λ is the standardize factor loading, θ is the error variance and n is the number of items.  It’s 

generally believed that a CR greater than 0.7 shows good construct reliability, however a CR value 

between 0.6 and 0.7 is acceptable if other indicators of construct validity is good (Hair et al., 2014).  As 

illustrated in Table 4.3-21, all CR values were 0.773 or greater, which demonstrated good convergent 

validity.  All methods of assessing convergent validity were satisfied, indicating that there was adequate 

overlap of variables measuring the constructs of this study. 

 
4.3.3.2.2 Discriminant Validity 

Many SEM and multivariate analysts describe discriminant validity as the degree to which a 

construct differs from other constructs (Hair et al., 2014; Hoyle, 2012; Kline, 2011; Schumacker & 

Lomax, 2010).  Discriminant validity is considered one of the components of construct validity.  For a 

construct to have a high discriminant validity, it suggests that the construct uniquely measures a 

phenomenon other constructs do not measure (Hair et al., 2014).  Hair describes a rigorous test of 

discriminant validity as comparing the square root of AVE of a given construct against its correlation with 
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another construct.   This was done for the hypothesized model of this study and the results are 

documented in Table 4.3-22.  The correlation between SES and SER was 0.577, which was less than the 

square root of the AVE for either construct.  This demonstrated good evidence of discriminant validity. 

 

Table 4.3-22:  Discriminant Validity 

Constructs VSE TMS OC SES SER 
VSE 0.733     
TMS -0.048 0.934    
OC 0.282 0.262 0.857   
SES 0.126 0.548 0.540 0.890  
SER 0.401 0.345 0.507 0.577 0.868 

Factor Correlations.  Square root of AVE on the diagonal. 
SER = Systems Engineering Rigor, TMS = Top Management Support, OC = Organizational 
Commitment, Com = Communication, T&I = Tools and Infrastructure, C&A = Controls and 
Assessment 

 

4.4 Structural Equation Modeling 

Confirmatory factor analysis was used to evaluate the measurement models of the latent 

constructs of the study.  Once adequate model fit and validity was achieved, the structural relationships 

between the latent constructs were examined.  The structural model of this study was evaluated using 

structural equation modeling (SEM).  The structural model was developed based on the hypothesized 

research model (Figure 3.4-1).  The structural model is illustrated in Figure 4.4-1.  Demographics (control 

variables) such as Organization Size, Organization Type, Career Level, Role, and Launch Vehicle 

Experience were added to the model to gain additional insight.   
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Table 4.4-1:  Hyper Model Selected Variable Summary 

Selected Variable Summary 

Observed, exogenous variables Organization Type  
Career Level  
LV experience  
Organization Size  
Number of Projects 
Role 
 

Unobserved, endogenous variables Systems Engineering Rigor 
Systems Engineering Support 
Control and Assessment   
Tools and Infrastructure  
Planning  
Personnel  
Organizational Commitment  
Communication  
Value of Systems Engineering  

Unobserved, exogenous variables Top Management Support 
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Figure 4.4-1:  Hypothesize Structural Model (Hyper Model) 

 

4.4.1 Validating the Structural Model 

A composite model from the hypothesize model was created to evaluate the structure of the 

model.  IBM SPSS Amos 25 was used to impute the observed variables of the model and developed a scale 

score for each construct.  The composite model was constructed using the imputed variables.  Using a 
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composite model in SEM is more efficient and effective in providing model fit compared to the hyper 

model (Landis, Beal, & Tesluk, 2000).  The composite model includes all endogenous and exogenous 

variables of the hypothesized model and is illustrated in Figure 4.4-2. 

 

Figure 4.4-2:  Hypothesized Structural Model (Composite Model) 

The hypothesized structural model in Figure 4.4-2 was tested.  Model fit indices were reviewed, 

and all four of the model fit indices satisfied the specified criteria.  However, after parameter estimates in 

Table 4.4-3 were reviewed.  There were several factor loadings that were not statistically significant 

(critical ratio was < 1.96).  All paths that were not statistically significant were removed from the model.  

LV Experience, Org Size, and Org Type were removed since they no longer had structural paths 

associated with them that were statistically significant.  The 1st revised model can be found in Figure 

4.4-3. 
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Figure 4.4-3:  1st Revised Hypothesized Structural Model (Composite Model) 

The 1st revised model was tested and model fit indices satisfied the model fit criteria.  The 

parameter estimates were reviewed and SE RigorRole (-0.804) and Value of SERole (1.594) had a 

critical ratio < 1.96 and was not statistically significant, thus Role (including its two structural paths) was 

removed from the model.  There were no modifications suggested by the modification indices that were 

greater than 3.  The standardized residual covariance matrix was also examined and all values were under 

the 2.56 threshold.  The 2nd revised model can be found in Figure 4.4-4. 
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Figure 4.4-4:  2nd Revised Hypothesized Structural Model (Composite Model) 

The second revised model was tested.  All model fit indices satisfied the criteria.  The parameter 

estimates were examined (Table 4.4-3), and all parameters had a critical ratio greater than 1.96 and were 

statistically significant at the p < 0.05 level.  The modification indices were reviewed, and there were no 

modification index values that exceeded 4.   The standardized residual covariance matrix was also 

reviewed, and there were no values that exceeded the 2.56 threshold. 

Table 4.4-2:  Structural Model Fit Indices 

Model Fit Index Criteria Initial Model 1st Revised Model 2nd Revised Model 
χ2

𝑑𝑑𝑑𝑑
 

< 5 1.247 1.335 1.025 

TLI > 0.90 0.968 0.977 0.999 
CFI > 0.90 0.983 0.987 0.999 

RMSEA < 0.08 0.035 0.041 0.011 
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Table 4.4-3:  Unstandardized Regression Estimates 

   Hypothesized Model 1st Revised Model 2nd Revised Model 
   Estimate S.E. C.R. P Estimate S.E. C.R. P Estimate S.E. C.R. P 

OC <--- OT -0.048 0.060 -0.799 0.424 Deleted Deleted 
OC <--- OS -0.025 0.065 -0.388 0.698 Deleted Deleted 

VSE <--- CL 0.088 0.035 2.490 0.013 0.083 0.029 2.889 0.004 0.083 0.029 2.872 0.004 
VSE <--- LVE 0.176 0.092 1.909 0.056 Deleted Deleted 
VSE <--- Role 0.029 0.014 2.079 0.038 0.021 0.013 1.594 0.111 Deleted 
OC <--- Role 0.006 0.013 0.442 0.659 Deleted Deleted 
OC <--- CL -0.048 0.034 -1.408 0.159 0.083 0.029 2.889 0.004 Deleted 
OC <--- NP 0.076 0.032 2.349 0.019 0.069 0.026 2.634 0.008 0.067 0.026 2.557 0.011 

VSE <--- NP -0.041 0.034 -1.204 0.229 Deleted Deleted 
SES <--- OT 0.025 0.039 0.645 0.519 Deleted Deleted 
SES <--- OC 0.381 0.044 8.566 *** 0.386 0.042 9.219 *** 0.386 0.042 9.209 *** 
SES <--- VSE 0.028 0.042 0.679 0.497 Deleted Deleted 
SES <--- TMS 0.280 0.030 9.423 *** 0.278 0.030 9.369 *** 0.278 0.030 9.374 *** 
SES <--- OS 0.046 0.042 1.108 0.268 Deleted Deleted 
SER <--- OT 0.047 0.046 1.021 0.307 Deleted Deleted 
SER <--- CL -0.046 0.025 -1.822 0.069 Deleted Deleted 
SER <--- LVE -0.005 0.069 -0.073 0.942 Deleted Deleted 

SER <--- Role -0.011 0.010 -1.164 0.244 -0.008 0.010 -
0.804 0.421 Deleted 

SER <--- TMS 0.067 0.042 1.583 0.113 Deleted Deleted 
SER <--- OC 0.168 0.062 2.699 0.007 0.165 0.063 2.631 0.009 0.161 0.063 2.572 0.010 
SER <--- VSE 0.364 0.052 7.006 *** 0.330 0.051 6.450 *** 0.326 0.051 6.403 *** 
SER <--- SES 0.459 0.083 5.531 *** 0.539 0.071 7.642 *** 0.543 0.071 7.682 *** 
SER <--- NP 0.012 0.024 0.509 0.611 Deleted Deleted 

CL = Career Level, LVE = Launch Vehicle Experience, NP = Number of Projects, OC = Organizational 
Commitment, OC = Organization Size, OT = Organization Type, SER = Systems Engineering Rigor, 
SES = Systems Engineering Support, VSE = Value of Systems Engineering 
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Table 4.4-4:  Standardized Estimates of 2nd Revised SE Support – SE Rigor Model 

   Standardized 
Estimate (β) S.E. C.R. P 

Organizational 
Commitment <--- Number of Projects 0.164 0.026 2.557 0.011 

Value of SE <--- Career Level 0.189 0.029 2.872 0.004 
SE Support <--- Organizational Commitment 0.457 0.042 9.209 *** 

SE Support <--- Top Management Support 0.466 0.030 9.374 *** 
SE Rigor <--- Organizational Commitment 0.162 0.063 2.572 0.010 
SE Rigor <--- Value of SE 0.334 0.051 6.403 *** 
SE Rigor <--- SE Support 0.459 0.071 7.682 *** 

 

To further scrutinize the model, additional model fit indices were evaluated.  The Goodness-of-

Fit Index (GFI) was added.  GFI is an index that provides an indication of the proportion of variance of 

the data that is explained by the model (Hair et al., 2014; Kline, 2011).  The next model fit index that was 

added is PClose.  PClose provides an indication of how close the model is to fitting the data and should 

exceed 0.5 (Byrne, 2016).  The confidence interval of RMSEA was also evaluated for added scrutiny of 

the model.  The criteria outlined in Table 4.4-5 is consistent with model fit criteria defined by SEM 

researchers such as: Schumacker and Lomax (2010), Kline (2011), Hoyle (2012), Tabachnick and Fidell 

(2013), Hair et al. (2014), and Byrne (2016). 
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Table 4.4-5:  Goodness of Fit Indices for SE Support-SE Rigor Structural Model 

Model Fit Index Criteria Final Revised 
Modal 

Chi-Square (χ2) low 11.279 

Degrees of Freedom (df) > 0 11 

Probability value (P) > 0.05 0.420 

χ2

𝑑𝑑𝑑𝑑
 

< 5 1.025 

Goodness-of-Fit Index (GFI) > 0.90 0.985 

Tucker-Lewis Index (TLI) > 0.90 0.999 

Comparative Fit Index (CFI) > 0.90 0.999 

Root Mean Square Error Approximation 
(RMSEA) 

< 0.08 0.011 

90% Confidence Interval (Lo90 – Hi90) < 0.05 – 0.08 0.00 – 0.075 

Probability of closeness of fit (Pclose) > 0.5 0.775 

 

The 2nd revised structural model of the systems engineering support – systems engineering rigor 

structural model showed the best model fit.  The χ2/df (1.025), TLI (0.999), CFI (0.999), and RMSEA 

(0.011) showed improvements over previous revisions of the model.  All four of these model fit indices 

satisfied model fit criteria.  The additional model fit indices (GFI, 90% Confidence Interval, and Pclose)   

also satisfied model fit criteria.  All goodness of fit indices satisfied model fit criteria which showed that 

the 2nd revised hypothesized model show an excellent fit of the data.  The goodness of fit measures 

support that the 2nd revised model was an adequate representation of the hypothesized constructs.  The 

standardized regression weights of the structural paths in Table 4.4-4 were used to test the hypotheses of 

this study. 
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4.4.2 Hypothesis Testing 

The structural model was validated and adequate model fit was achieved prior to testing the 

hypotheses.  The hypotheses identified in at the beginning of the study (Section 1.3) were as follows: 

• H1:  Systems engineering culture has a direct effect on systems engineering rigor. 

• H2:  Systems engineering support has a direct effect on systems engineering rigor. 

• H3:  Systems engineering culture has a direct effect on systems engineering support. 

• H4:  Systems engineering support will mediate the relationship between systems 

engineering culture and systems engineering rigor. 

Upon completing a CFA on the measurement model of the hypothesized model, it was discovered that 

there was very high correlation between hypothesized constructs of systems engineering culture and 

systems engineering support.  Communication, one of the latent factors that was originally hypothesized 

to be a factor of SE Culture, showed very high correlation with all of the factors that composed SE 

Support.   This high correlation would have posed significant challenges to completing a valid SEM 

study.  Based on the findings of the CFA, it showed that Communication was really a measure of the SE 

Support construct, thus was removed from the SE Culture construct and added as an indicator of SE 

Support.  The remaining factors (Organization Commitment, Top Management Support, and Value of 

SE), that were originally hypothesized to be indicators of SE Culture remained in the model as individual 

latent factors to be tested individual.  This adjustment to the hypothesized model led to a reciprocal 

refinement of the research hypotheses.  The hypotheses that originally had the SE Culture construct were 

replaced with the remaining components of SE Culture construct.  The adjusted hypotheses are as 

follows: 

H1a:  Organizational Commitment has a direct effect on Systems Engineering Rigor. 

H1b:  Top Management Support has a direct effect on Systems Engineering Rigor. 
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H1c:  Value of Systems Engineering has a direct effect on Systems Engineering Rigor. 

H2:  Systems Engineering Support has a direct effect on Systems Engineering Rigor. 

H3a:  Organizational Commitment has a direct effect on Systems Engineering Support. 

H3b:  Top Management Support has a direct effect on Systems Engineering Support. 

H3c:  Value of Systems Engineering has a direct effect on Systems Engineering Support. 

H4a:  Systems Engineering Support will mediate the relationship between Organizational 

Commitment and Systems Engineering Rigor. 

H4b:  Systems Engineering Support will mediate the relationship between Top Management 

Support and Systems Engineering Rigor. 

H4c:  Systems Engineering Support will mediate the relationship between Value of Systems 

Engineering and Systems Engineering Rigor. 

The direct, indirect, and total effects were calculated using IBM SPSS Amos 25 for the 2nd revised 

structural model.  The effects calculated in Table 4.4-6 showed that the direct effect of Organizational 

Commitment on SE Rigor was significantly positive (β = 0.162, p = 0.046).  This indicated that the more 

employees involved in the SE process are committed to the organization, the more rigor they apply the 

systems engineering process.  This confirmed that the data supported H1a.   

The effects of the revised structural model showed that there was no direct effect on SE Rigor by 

Top Management Support.  This suggested Top Management Support was not a predictor of SE Rigor, 

thus H1b was not supported.  However, the revised structural model showed that the direct effect of Value 

of SE on SE Rigor was significantly positive (β = 0.334, p = 0.008).  This positive relationship indicated 

that the more the employee recognizes the value of the SE process, the more rigorous and beneficial they 

perceive the SE process to be.  Hence, H1c was confirmed.  The model also showed that the direct effect 

of SE Support on SE Rigor was significantly positive (β = 0.459, p = 0.005).  This suggests that the more 
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support there is for the SE process, the more rigor is perceived to be applied to process.  As a result, H2 

was confirmed. 

Table 4.4-6 showed that the direct effect of Organizational Commitment on SE Support was 

significantly positive (β = 0.457, p = 0.011).  This relationship indicates that the more employee is 

committed to the organization, the more systems engineering support is applied.  Thus, H3a was 

confirmed.  The model also showed that the direct effect of Top Management Support on Systems 

Engineering Support was significantly positive (β = 0.466, p =0.012), indicating that the more top 

management supports the SE process, the more employees and organizations provide support for the SE 

process.  As a result, H3b was confirmed.  The final revised structural model did not show a direct effect 

of Value of SE on SE Support, thus H3c was not confirmed. 

Table 4.4-6:  Direct, Indirect and Total Effects 

 NP TMS CL OC SES VSE 
Estimate P Estimate P Estimate P Estimate P Estimate P Estimate p 

OC 
Direct 0.164 0.011 --- --- --- --- --- --- --- --- --- --- 

Indirect --- --- --- --- --- --- --- --- --- --- --- --- 
Total 0.164 0.011 --- --- --- --- --- --- --- --- --- --- 

SES 

Direct --- --- 0.466 0.012 --- --- 0.457 0.011 --- --- --- --- 

Indirect 0.075 0.007 --- --- --- --- --- --- --- --- --- --- 

Total 0.075 0.007 0.466 0.012 --- --- 0.457 0.011 --- --- --- --- 

VSE 

Direct --- --- --- --- 0.189 0.009 --- --- --- --- --- --- 
Indirect --- --- --- --- --- --- --- --- --- --- --- --- 

Total --- --- --- --- 0.189 0.009 --- --- --- --- --- --- 

SER 

Direct --- --- --- --- --- --- 0.162 0.046 0.459 0.005 0.334 0.008 
Indirect 0.061 0.003 0.214 0.005 0.063 0.001 0.210 0.012 --- --- --- --- 

Total 0.061 0.003 0.214 0.005 0.063 0.011 0.371 0.010 0.459 0.005 0.334 0.008 

CL = Career Level, NP = Number of Projects, OC = Organizational Commitment, SER = Systems 
Engineering Rigor, SES = Systems Engineering Support, TMS = Top Management Support, and VSE = 
Value of Systems Engineering. 
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Next, the mediation effects of SE Support was examined.  The mediation effects of SE Support 

are in Table 4.4-7.  From examining the table, the indirect effect of Organizational Commitment on SE 

Rigor was significantly positive (β = 0.210, p = 0.012).  When the direct effect of Organizational 

Commitment on Rigor without mediation (β = 0.172, p = 0.002), was compared to the direct effect of 

Organizational Commitment on SE Rigor with mediation (β = 0.162, p = 0.010), there was a decrease in 

the standardized regression estimate, which was also statistically significant.  This showed that 

Organizational Commitment was partially mediated by SE Support, which supports H4a.  

Table 4.4-7 shows that the indirect effect of Top Management Support on SE Rigor (β = 0.186, p 

= 0.004) was significantly positive.  Both the direct effect without mediator (β = 0.091, p = 0.073) and the 

direct effect with mediator (β = 0.090, p = 0.134) were not statistically significant.  This finding shows 

that there was complete mediation by SE Support of the relationship between Top Management Support 

and SE Rigor.  This implied that as Top Management Support increases, facilitation of SE support 

increases, which increases the rigor applied to the SE process.  Thus indicating that H4b was supported. 

The effects of Value of SE on SE Rigor can also be found in Table 4.4-7.  The table shows that 

the direct effect of Value of SE on SE Rigor without mediation is significantly positive (β = 0.334, p < 

0.001).  The direct effect with mediation was also significantly positive (β = 0.332, p < 0.001).  However, 

the indirect effect was not statistically significant (β = 0.015, p = 0.409).  These findings showed that 

there was no mediation by SE Support on the relationship between Value of SE and SE Rigor.  H4c was 

not supported by the findings.  
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Table 4.4-7:  Mediation Effects 

Relationship 
Direct without Mediator Direct with Mediator Indirect 

Std. 
Estimate(β) p Std. Estimate p Std. Estimate p 

OCSESSER 0.172 0.002 0.162 0.010 0.210 0.012 
TMSSESSER 0.091 0.073 0.090 0.134 0.186 0.004 
VSESESSER 0.334 *** 0.332 *** 0.015 0.409 

OC = Organizational Commitment, SER = Systems Engineering Rigor, SES = Systems Engineering 
Support, TMS = Top Management Support, VSE = Value of Systems Engineering 
*** p < 0.001 

 

Table 4.4-8:  Hypothesis Testing Results 

Hypothesis Description β t Supported? 
H1a Organizational Commitment has a direct effect on 

Systems Engineering Rigor. 
0.162 2.572* Yes 

H1b Top Management Support has a direct effect on 
Systems Engineering Rigor. 

0.067 1.583 No 

H1c Value of Systems Engineering has a direct effect on 
Systems Engineering Rigor. 

0.334 6.403** Yes 

H2 Systems Engineering Support has a direct effect on 
Systems Engineering Rigor. 

0.459 7.682** Yes 

H3a Organizational Commitment has a direct effect on 
Systems Engineering Support. 

0.457 9.209** Yes 

H3b Top Management Support has a direct effect on 
Systems Engineering Support. 

0.466 9.374** Yes 

H3c Value of Systems Engineering has a direct effect on 
Systems Engineering Support. 

0.028 0.679 No 

H4a Systems Engineering Support will mediate the 
relationship between Organizational Commitment 
and Systems Engineering Rigor. 

Partial Mediation 

H4b Systems Engineering Support will mediate the 
relationship between Top Management Support and 
Systems Engineering Rigor. 

0.186 2.889* Yes 

H4c Systems Engineering Support will mediate the 
relationship between Value of Systems Engineering 
and Systems Engineering Rigor. 

No Mediation 

β = standardized path coefficient, t = critical ratio, *p < 0.001, **p < 0.01 
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Figure 4.4-5:  Final Structural Hyper Model 
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Figure 4.4-6:  Final Structural Composite Model 

A summary of the hypothesis testing can be found in Table 4.4-8.  Seven out of the ten 

hypotheses of this study were supported by the data and final structural model.  Only H1b, H3c, and H4c 

were not supported by the data.  Overall, the data and the model provided adequate information to test the 

hypotheses. 

The final structural model can be found in Figure 4.4-5 and Figure 4.4-6.  There were no changes 

from the 2nd revised model to the final model.  Each path of the model was significant. The model 

accounted for 53% of the variance of SE Support, 52% of the variance in SE Rigor, 4% of the variance in 

Value of SE, and 3% of Organizational Commitment.    
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CHAPTER V: DISCUSSION, LIMITATIONS, IMPLICATIONS, FUTURE RESEARCH, AND 

CONCLUSION 

The main focus of this study was to analyze the factors that affect systems engineering rigor in 

launch vehicle organizations in the United States.  Another objective of the study was to develop a model 

that explains systems engineering culture, systems engineering support, and systems engineering rigor.  

This chapter contains the discussion of the research results and conclusion.  Implications and suggestions 

for future research are also discussed in this chapter. 

5.1 Discussion 

Section 3.5.1  provided a description of each factor relevant to this study.  The construct of each 

variable was developed based on the literature review completed in Chapter II.  The responses to the 

survey instrument provided the data to analyze the relationships among the constructs of the study.  The 

primary constructs that were analyzed were Systems Engineering Culture, Systems Engineering Support, 

and Systems Engineering Rigor.  The Systems Engineering Culture construct was originally believed to 

be measured by four latent factors:  Top Management Support, Organizational Commitment, Value of 

Systems Engineering, and Communication.  The Systems Engineering Support construct was initially 

believed to be measured by the following latent factors:  Planning, Personnel, Tools & Infrastructure, and 

Control & Assessment.  The Systems Engineering Rigor construct was measure by six survey statements.   

Confirmatory Factor analysis results showed that Communication had a very high correlation 

with each of the four factors (correlations ranged from 0.707 to 0.845) of SE Support.  None of the other 

factors of SE Culture exhibited high correlations to the other factors of SE Support.  The CFA results 

suggested that Communication was a measure of the SE Support construct.  This was a surprising finding 

since communication is a fundamental component to cooperation, teamwork, SE culture, and 

organizational culture (Gill et al., 2005; Reigle, 2015; SEBoK authors, 2016).  This could likely be due to 
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the wording of survey statements that correspond to the Communication construct.  The survey statements 

focused on departments and not the individual.  The SE Support construct and SEM models were revised 

to include Communication as a factor of SE Support, and each remaining factor of SE Culture was tested 

individually in the model.  The research hypotheses were modified to reflect the updated model strategy.   

The influence of organizational commitment on SE rigor was the first hypothesis (H1a) that was 

tested.  The study results showed that organizational commitment had a significant influence on the 

perceived rigor applied to the SE process in reducing launch vehicle problems.  Indicating that the more 

an employee is committed to the organization, the greater the perceived benefit of applying a rigorous SE 

process.  Organizational commitment is a critical indicator when evaluating a cultural aspect of an 

organization (Alnoaimi, 2015; Alsowayigh, 2014; Fogarty, 2004).  Therefore, it is reasonable that a 

systems engineer who is more committed to the organization would apply more rigor to the SE process. 

The influence of top management support on SE rigor was the second hypothesis (H1b) that was 

examined.  The results of the study showed that top management support did not have a significant 

influence on perceived rigor in the SE process.  Indicating that top management support could not be used 

to predict systems engineering rigor.  Although SEBoK authors (2016) consider top management support 

an enabler of systems engineering in organizations and a key element to systems engineering culture, no 

literature could be found that directly correlates top management support to perceived SE rigor.   

The third hypothesis (H1c) that was examined was the influence of the value of SE on SE rigor.  

The study results showed that the perceived value of SE had a significant influence on SE rigor.  This 

implies that the more an employee perceives SE as being valuable, the greater the perceived benefit of 

applying a rigorous SE process.  Given the underlying relationship between the fundamental purpose and 

value of systems engineering is to reduce cost, maintain schedule, and increase technical performance 

(Eric C. Honour, 2004, 2010) and that SE value can manifests in the launch vehicle industry by reducing 

launch vehicle issues maintaining, it is comprehensible that value of SE influences SE rigor. 
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The influence of SE Support on SE Rigor was the next hypothesis (H2) that was tested.  The 

results of the study showed that SE support had a significant influence on SE rigor.  These findings imply 

that as SE support increases, the perceived benefit of applying a rigorous SE process increases.  SE 

researchers identified SE competencies, tools, and infrastructure as SE enablers (INCOSE, 2011; 

Oppenheim et al., 2011; SEBoK authors, 2016).  Each of these enablers were factors of the SE Support 

construct, which shows that the study results are consistent with INCOSE’s, Oppenheim’s, and SEBoK’s 

research. 

Organizational Commitment’s influence on SE Support (H3a) was examined in this study.  The 

results showed that Organizational Commitment had a significant influence on SE Support.  This implies 

that as systems engineering practitioners are more committed to the organization, the more support is 

provided to the SE process.  Multiple studies identified appropriate tools and infrastructure, timely 

planning, and appropriate personnel as critical to systems engineering (Blair et al., 2011; Bruff, 2008; Gill 

et al., 2005; Kaskowitz, 1990; NASA, 2007; Slegers et al., 2012).  Each of these critical items identified 

were factors of the SE Support construct, which shows the results of this study was consistent with other 

research.  It is conceivable that the more an employee is committed to the organization, the more support 

they would provide to planning, training, use of tools, and collaboration and teamwork.   

The sixth hypothesis (H3b) that was tested was the influence of Top Management Support on 

Systems Engineering Support.  Results of the study showed that Top Management Support has a 

significant influence on Systems Engineering Support.  What can be inferred from this is that the more 

senior leadership’s support for SE is perceived, the more support is provided to the SE process.  Research 

completed by Schein (2004), Hogan and Coote (2014), and Chatman and O’Reilly (2016) showed that the 

leaders of the organization starts, embeds, and transmits their values, beliefs, and assumptions on the 

organization.  This study shows that top management support for SE influences the SE support structure 

in the organization, which is consistent with the research completed by Schein, Hogan, and Chatman.   
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The influence of the value of SE on systems engineering support (H3c) was also tested.  Study 

results showed that value of SE does not have a significant influence on SE support.  This was a 

surprising finding.  Common sense suggests that the more valuable an employee perceive the SE process 

to be, the more support would be provided to the SE process.  Research completed Elm and Goldenson 

(2012) and Eric C. Honour et al. (2004) found that it is difficult for employees and organizations to 

understand the value of or effectiveness of SE because it’s difficult to isolate the effect of SE from other 

effects and that there is typically limited amount of information available about that demonstrates the 

effects of SE.  This difficulty could partially explain the study results of this study.  In addition, survey 

statements corresponding to value of SE focused on cost, schedule, and technical performance which 

survey participant may not have had access to that information.  The difficulty of isolating the effects of 

SE coupled with survey statements focused on cost, schedule, and technical performance could explain 

the study showing a lack of influence of value of SE on SE support. 

The eighth hypothesis (H4a) that was examined was the influence of organizational commitment 

on SE rigor through SE support.  Study results showed that organizational commitment had a significant 

effect on SE support, and this SE support had a significant influence on SE rigor.  This implied that an 

increase in employee commitment to the organization, increases support for SE, and this increase in 

support increases the perceived benefit of rigorous SE.  Research has shown that employee commitment 

to the organization is a critical aspect of organizational culture (Alsowayigh, 2014; Fogarty, 2004; Schein, 

1990, 2004).  Testing of hypothesis H1a also showed that organizational commitment had a direct effect 

on SE rigor without the mediation of SE support.  It is understandable that organizational commitment 

would have a significant influence directly on SE rigor and through SE support.  Research by Schein 

(2004) showed that the more committed an employee is to the organization, the more likely they are to 

participate in activities that are perceived as beneficial to the organization.  Schein’s research results are 

consistent with the findings of this study.   
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The influence of top management support on SE rigor through SE support (H4b) was tested in this 

study.  Study results showed that top management support had a significant effect on SE support, and this 

SE support had a significant influence on SE rigor.  Test results showed that there was complete 

mediation by SE Support.  This indicated that as perceived support from top management for SE 

increases, support for SE increases, and this increase in support increases the perceived benefit of 

rigorous SE.  Top management support is a key element to SE culture.  Senior leadership support and 

culture is are SE enablers (INCOSE, 2011; Oppenheim et al., 2011; SEBoK authors, 2016).  It’s only 

logical that as senior management’s support for SE is perceived by the organization, the organization 

provides increased support to SE, which in turn increases SE rigor. 

The tenth hypothesis (H4c) examined was the influence of value on SE rigor through SE support.  

Study results showed that had no significant effect on SE support.  This indicates that Value of SE was 

not mediated by SE Support.   Similar to what was discussed for H3c, the difficulty of employees to 

recognize the value of systems engineering due to the difficulty of separating SE from other factors may 

also explain the results of H4c testing. 

Study results also showed that demographics (control variables) had very little impact on any of 

the factors in the model.  It was originally hypothesized that demographics such as:  Role in SE, 

Organization Type, and Organization Size, would have played a significant influence on the factors in the 

model.  Research completed by Schein (2004) and Reigle (2015) suggest these demographic may play a 

role in the systems engineering culture factors, however this study found no significant effect on those 

factors.  This was another surprising finding in the study.  A possible explanation could be that survey 

statements for organization size categories may have been too broad.  Survey participants may have had 

difficulty choosing the right category for their organization since the organization type survey statement 

focused on level of government involvement. 
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5.2 Limitations 

Survey responses collected for this study were based on voluntary participants of launch vehicle 

organizations throughout the United States.  Responses that evaluated the factors of SE culture, support, 

and rigor were based on the perceptions of the participants in the SE process.  The responses may have 

been based on what the survey participants think is ideal or how it should be, and not what they actually 

believed or observed.  In addition, SE participants who may have had a negative attitude towards their 

management or organization may have been biased towards providing negative responses. 

Another limitation is that the survey did not take in to account the risk tolerance of each 

organization.  Each organization may have different risk postures which could affect the way that each 

organization implements the systems engineering process.  For example, organizations that have a roll in 

national security missions could have a different risk tolerance than that of an organization that is focused 

on low cost science missions.  This could lead to vastly different levels of SE rigor.  In addition, an 

organization’s risk posture may vary with each launch, possibly prompting a different level of SE rigor 

with each launch.  Survey responses could have been affected by the risk tolerance of the organization as 

well as the risk tolerance of the mission during the time the survey response was completed. 

5.3 Implications 

Despite the limitations identified in Section 5.2, the findings of this study may present a number 

of implications for both SE research in general and U.S. launch vehicle organizations.  This study 

identified significant factors that could influence the level of rigor applied to the SE process.  Previous 

research has shown that SE impacts cost, schedule, and technical performance (BKCASE Editorial Board, 

2014; Elm, 2012; Eric C. Honour, 2004, 2010; INCOSE, 2011; NASA, 2007).  Improving the factors that 

affect SE in launch vehicle organizations could improve the level of rigor applied to the SE process.  Prior 

research identified lack of SE rigor as a significant contributor to the cause of launch vehicle failures 



 

178 

 

(Chang, 1996; Harland & Lorenz, 2005; Isakowitz et al., 2004; Leung, 2014; Newman, 2001).  Improving 

the factors that influence SE rigor could reduce the number of launch vehicle failures encountered by a 

launch vehicle organization.  Reducing the number of launch vehicle issues and failures could ultimately 

result in cost and time savings and a more reliable launch vehicle. 

This research also identified key factors of systems engineering culture.  SE culture is a major 

enabler of systems engineering in organizations (INCOSE, 2011; Oppenheim et al., 2011; SEBoK 

authors, 2016).   In recognizing the factors of SE and organizational culture, leaders of organizations 

could make targeted changes to the organization to improve SE culture, which influences the level of 

rigor in the organization’s SE process.  The present study identified that perceiving leadership’s support 

for SE, employees being committed to the organization, and employees recognizing the value of SE have 

a significant impact on the SE framework and rigor applied to the SE process.  These are areas that launch 

vehicle organization leaders could target to improve, that could ultimately lead to cost and time savings 

while improving launch vehicle technical performance. 

Additionally, this study identified that SE support which consists of communication, personnel, 

tools & infrastructure, control & assessment, and planning, influence SE rigor.  These are also areas that 

an organization could target to improve the level of SE rigor in an organization.  Ultimately, the factors 

and model identified in this study could serve as a framework to evaluate the SE of an organization and 

identify areas that can be targeted to improve SE rigor.  This study provides empirical evidence of top 

management support, organizational commitment, and perceived value of SE as predictors of SE rigor. 

The model presented in this study may be generalizable and applicable to other industries considering 

organization type and size had no significant impact on the research results, and data for this study was 

collected from various different organization types and sizes. 
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5.4 Future Research 

This study examined the relationships of the factors of SE culture, SE support and SE rigor.  The 

assessment of SE rigor was based on survey respondents’ perception of SE rigor in reducing launch 

vehicle issues.  Future research should seek to anchor the SE rigor construct to observed launch vehicle 

issue statistics of the subject organizations.  This could ground the model in observed events rather than 

perception.   

Future research should also seek to include an organizations risk tolerance in similar studies.  An 

organization’s risk tolerance could influence the culture of an organization and the level of rigor the 

organizations applies to SE.  Studies should seek to explore the relationships between risk tolerance SE 

culture, rigor, and support.  Including the risk tolerance factor in future research could provide additional 

fidelity to the model. 

Researchers such as Schein (2004), Hogan and Coote (2014), and Reigle (2015) showed that 

organizational structure has an impact on the culture of the organization.  Future research should include 

organizational structure.  The influence of organizational structure on SE culture, support, and rigor 

should be explored.  Including organizational structure could improve the fidelity of the model presented 

in this study. 

 

5.5 Conclusion 

A launch vehicle is a very complex system that often requires a meticulous and methodical 

interdisciplinary approach to develop, build, and operate.  Often, the systems engineering approach of the 

launch vehicle organization may be as complex as the launch vehicle itself.  There are many different 

ways that systems engineering can be implemented in an organization.  Regardless of the systems 

engineering model or approach, organizational factors have been identified to influence systems 
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engineering rigor in launch vehicle organizations.  Lack of systems engineering rigor has been identified 

as a contributor to many launch vehicle failures.  Therefore, it is critical to identify the factors that may 

enhance the level of systems engineering rigor.   

This study assessed the factors that affect systems engineering rigor in U.S. launch vehicle 

organizations.  A systems engineering rigor model was developed to examine the relationships among 

perceived organizational commitment, top management support, value of systems engineering, and 

systems engineering support.  The measures of systems engineering support were communication, control 

and assessment, personnel, planning, and tools and infrastructure.  Study results showed that 

organizational commitment and value of systems engineering both directly and independently play a 

significant role in enhancing the perceived systems engineering rigor.  The results of the study also 

showed that both organizational commitment and top management support have a significant influence on 

systems engineering support.  The significant influence of top management support on systems 

engineering rigor was completely mediated by systems engineering support.  Systems engineering support 

was also found to partially mediate the relationship between organizational commitment and systems 

engineering rigor.  The data used in this study was taken from various organizations throughout the U.S. 

launch vehicle industry, therefore results are generalizable.  The model developed in this study accounts 

for 52% of the variance in systems engineering rigor, 53% of the variance in systems engineering support, 

4% of the variance in the value of systems engineering, and 3% of the variance in organizational 

commitment. 

The model presented in this study was an initial attempt to explore the links among systems 

engineering culture, systems engineering support, and systems engineering rigor.  The direct effects of 

organizational commitment, perceived value of systems engineering, and systems engineering support on 

perceived systems engineering rigor has not been previously reported in research.   Also, the direct effects 

on organizational commitment and perceived top management support on systems engineering rigor has 
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not been previously reported in research.  Lastly, the mediation by systems engineering support for the 

relationships between organizational commitment and perceived systems engineering rigor and the 

relationship between perceived top management support and perceived systems engineering rigor has not 

been reported in prior research. 

In conclusion, the results of this study emphasize the role of organizational factors on rigorous 

systems engineering.  Leaders of launch vehicle organization must emphasize support for systems 

engineering, illustrate the value of systems engineering, enhance systems engineering support, and 

improve employees’ commitment to the organization, which in turn would lead to rigorous systems 

engineering and potentially improving launch vehicle success. 
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APPENDIX A: SURVEY INSTRUMENT 
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The purpose of this research is to develop a model of the relationships between systems 
engineering culture, systems engineering support, and systems engineering rigor in launch 
vehicle organizations.  

For the purposes of this study, systems engineering is defined as a methodical interdisciplinary 
approach to design, build, operate, manage, and retire a system, where these systems must meet 
stakeholder requirements.  

All data obtained from this study is completely anonymous and survey results are aggregated so 
individuals or organizations cannot be identified. The survey is very brief and will take less than 
10 minutes to complete.  

Please respond to each question to the best of your knowledge. 

1. Which position most closely describes your role in systems engineering in your organization? 
(Select all that applies)  

�  Systems Engineer  
�  Project Manager  
�  Sub-system or component level engineer  
�  Analyst  
�  Manager  
�  Design Engineer  
�  Manufacturing Engineer  
�  Operations Engineer  
�  Integration Engineer  
�  Test Engineer  
�  Engineering Support  
�  Other: ___________________________ 
 

 
2. How many years of experience have you had in or supporting systems engineering?  
Mark only one box. 

�  1 - 5 years     �  5 - 10 years      �  10 - 15 years      �  15 - 20 years      �  20 years or more  
 
 
3. How many projects have you worked on?  
Mark only one box. 
 
�  1 - 5 projects   �  6 - 10 projects   �  11 - 15 projects   �  15 - 20 projects �  20 or more 
projects  

 
 
4. Has most of your systems engineering experience come in the launch vehicle industry?  
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Mark only one box. 

�  Yes      �  No  

 
 
 
5. Choose the answer which more closely describes your organization.  
Mark only one box. 

 
�  Private company with very little government involvement  
�  Private company with some government involvement  
�  Private company with a lot of government involvement  
�  Government agency  
�  Other: _______________________________ 
 

 
6. Choose the answer that best describes the size of your organization.  
Mark only one box. 

�  Small (100 employees or less)     �  Medium (101-999 employees)     �  Large (1000 
employees or more)  

 
7. Senior management strongly supports the systems engineering process.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
8. Senior management believes a strong systems engineering process adds value to the 
organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
9. Senior management communicates its support for systems engineering to the organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  
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10. Senior management supports skipping a systems engineering step if it will help the 
organization save money.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
11. Senior management supports skipping a systems engineering step if it will help the 
organization meet schedule goals.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
 
 
 
12. Practicing good systems engineering reduces launch vehicle cost.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
13. Practicing good system engineering reduces launch vehicle schedule delays.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
14. Practicing good system engineering improves launch vehicle performance.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
15. My organization emphasizes effective communication between departments such as design, 
manufacturing, and operations.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  
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16. My organization emphasizes effective communication among the various engineering 
disciplines (disciplines such as avionics, structures, propulsion, environments, software, etc).  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
17. Management has an open door policy for discussing systems engineering issues.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
18. There is good communication about systems engineering items in the workplace.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
19. Documenting detailed rationale for technical decisions is highly encouraged.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
20. I am willing to put in a great amount of effort beyond what is normally expected in order to 
help my organization be successful.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
21. I speak highly of this organization to my friends and family as a great place to work.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
22. I find that my values and my organization's values are very similar.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree 
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23. I am proud to tell others that I work for this organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
24. I really care about the fate of this organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
25. This is the best launch vehicle organization to work for.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
26. My organization has a documented plan on how systems engineering should be implemented.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
27. My role in systems engineering is clearly identified.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
 
 
28. My organization identifies how all technical engineering disciplines are integrated.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
29. There was a systems engineering plan in place at the beginning of launch vehicle 
development.  
Mark only one box. 
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�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
30. My organization understands the skills needed to successfully execute systems engineering.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
31. My organization provides access to systems engineering training.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
32. Training provided by my organization has prepared me well for my systems engineering 
duties.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
33. My organization follows an established systems engineering model such as: Waterfall, V 
Model, Spiral, Agile, or Iterative.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
34. I have appropriate tools to successfully execute systems engineering in my organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
35. Appropriate training and guidance are provided for the systems engineering tools.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  
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36. The systems engineering tools provided are regularly used by my organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
37. My organization has employees whose sole responsibility is to facilitate the systems 
engineering process.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
38. My organization has the right people involved to successfully implement systems 
engineering.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
39. My organization has sufficient number of people to successfully implement systems 
engineering.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
40. There are performance measures or metrics used to evaluate the performance of systems 
engineering in my organization.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
41. Technical reviews are held at regular intervals to evaluate the performance of the systems 
engineering process. Such as system requirements reviews, preliminary design reviews, critical 
design reviews, etc.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
42. All stakeholders are informed of the project's progress.  
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Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
43. Resources allocated to a project are evaluated to determine if they are adequate to achieve 
project success.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
44. Applying a thorough systems engineering process in my organization reduces the number of 
launch vehicle manufacturing problems.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
45. Applying a thorough systems engineering process in my organization reduces the severity of 
launch vehicle manufacturing problems.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
46. Applying a thorough systems engineering process in my organization reduces the number of 
launch vehicle integration and test problems.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
47. Applying a thorough systems engineering process in my organization reduces the severity of 
launch vehicle integration and test problems.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
48. Applying a thorough systems engineering process in my organization reduces the number of 
launch vehicle problems during flight.  
Mark only one box. 
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�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  

 
49. Applying a thorough systems engineering process in my organization reduces the severity of 
launch vehicle problems during flight.  
Mark only one box. 

�  Strongly disagree      �  Disagree       �  Neutral       � Agree       �  Strongly agree  
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APPENDIX B: IRB APPROVAL 
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APPENDIX C: ASSUMPTIONS CHECK PLOTS 
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Correlations:  Top Management Support 

 TMS1 TMS2 TMS3 TMS4 TMS5 

TMS1 Pearson Correlation 1 .867** .711** -.435** -.343** 

Sig. (2-tailed)  .000 .000 .000 .000 

N 207 207 207 206 206 

TMS2 Pearson Correlation .867** 1 .685** -.459** -.385** 

Sig. (2-tailed) .000  .000 .000 .000 

N 207 207 207 206 206 

TMS3 Pearson Correlation .711** .685** 1 -.433** -.416** 

Sig. (2-tailed) .000 .000  .000 .000 

N 207 207 207 206 206 

TMS4 Pearson Correlation -.435** -.459** -.433** 1 .806** 

Sig. (2-tailed) .000 .000 .000  .000 

N 206 206 206 206 205 

TMS5 Pearson Correlation -.343** -.385** -.416** .806** 1 

Sig. (2-tailed) .000 .000 .000 .000  
N 206 206 206 205 206 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Correlations:  Value of Systems Engineering 
 VSE1 VSE2 VSE3 

VSE1 Pearson Correlation 1 .646** .526** 

Sig. (2-tailed)  .000 .000 

N 207 206 206 

VSE2 Pearson Correlation .646** 1 .440** 

Sig. (2-tailed) .000  .000 

N 206 206 205 

VSE3 Pearson Correlation .526** .440** 1 

Sig. (2-tailed) .000 .000  
N 206 205 206 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations:  Communication 
 Comm1 Comm2 Comm3 Comm4 Comm5 

Comm1 Pearson Correlation 1 .614** .420** .296** .348** 

Sig. (2-tailed)  .000 .000 .000 .000 

N 207 206 207 207 207 

Comm2 Pearson Correlation .614** 1 .436** .321** .426** 

Sig. (2-tailed) .000  .000 .000 .000 

N 206 206 206 206 206 

Comm3 Pearson Correlation .420** .436** 1 .570** .436** 

Sig. (2-tailed) .000 .000  .000 .000 

N 207 206 207 207 207 

Comm4 Pearson Correlation .296** .321** .570** 1 .441** 

Sig. (2-tailed) .000 .000 .000  .000 

N 207 206 207 207 207 

Comm5 Pearson Correlation .348** .426** .436** .441** 1 

Sig. (2-tailed) .000 .000 .000 .000  
N 207 206 207 207 207 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations:  Organizational Commitment 
 OC1 OC2 OC3 OC4 OC5 OC6 

OC1 Pearson Correlation 1 .417** .305** .408** .416** .343** 

Sig. (2-tailed)  .000 .000 .000 .000 .000 

N 205 205 204 204 203 200 

OC2 Pearson Correlation .417** 1 .630** .776** .623** .659** 

Sig. (2-tailed) .000  .000 .000 .000 .000 

N 205 205 204 204 203 200 

OC3 Pearson Correlation .305** .630** 1 .619** .470** .599** 

Sig. (2-tailed) .000 .000  .000 .000 .000 

N 204 204 204 203 203 199 

OC4 Pearson Correlation .408** .776** .619** 1 .736** .596** 

Sig. (2-tailed) .000 .000 .000  .000 .000 

N 204 204 203 204 202 199 

OC5 Pearson Correlation .416** .623** .470** .736** 1 .472** 

Sig. (2-tailed) .000 .000 .000 .000  .000 

N 203 203 203 202 203 198 

OC6 Pearson Correlation .343** .659** .599** .596** .472** 1 

Sig. (2-tailed) .000 .000 .000 .000 .000  
N 200 200 199 199 198 200 

**. Correlation is significant at the 0.01 level (2-tailed). 

Correlations:  Planning 
 Pln1 Pln2 Pln3 Pln4 

Pln1 Pearson Correlation 1 .473** .259** .458** 

Sig. (2-tailed)  .000 .000 .000 

N 204 204 204 198 

Pln2 Pearson Correlation .473** 1 .473** .334** 

Sig. (2-tailed) .000  .000 .000 

N 204 205 205 199 

Pln3 Pearson Correlation .259** .473** 1 .380** 

Sig. (2-tailed) .000 .000  .000 

N 204 205 205 199 

Pln4 Pearson Correlation .458** .334** .380** 1 

Sig. (2-tailed) .000 .000 .000  
N 198 199 199 199 
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Correlations:  Training 
 Trn1 Trn2 Trn3 

Trn1 Pearson Correlation 1 .461** .363** 

Sig. (2-tailed)  .000 .000 

N 204 204 203 

Trn2 Pearson Correlation .461** 1 .631** 

Sig. (2-tailed) .000  .000 

N 204 205 204 

Trn3 Pearson Correlation .363** .631** 1 

Sig. (2-tailed) .000 .000  
N 203 204 204 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Correlations:  Tools and Infrastructure 
 TI1 TI2 TI3 TI4 

TI1 Pearson Correlation 1 .440** .412** .402** 

Sig. (2-tailed)  .000 .000 .000 

N 205 205 204 202 

TI2 Pearson Correlation .440** 1 .684** .618** 

Sig. (2-tailed) .000  .000 .000 

N 205 205 204 202 

TI3 Pearson Correlation .412** .684** 1 .522** 

Sig. (2-tailed) .000 .000  .000 

N 204 204 204 201 

TI4 Pearson Correlation .402** .618** .522** 1 

Sig. (2-tailed) .000 .000 .000  
N 202 202 201 204 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations:  Personnel 

 Per1 Per2 Per3 

Per1 Pearson Correlation 1 .492** .450** 

Sig. (2-tailed)  .000 .000 

N 205 205 204 

Per2 Pearson Correlation .492** 1 .616** 

Sig. (2-tailed) .000  .000 

N 205 205 204 

Per3 Pearson Correlation .450** .616** 1 

Sig. (2-tailed) .000 .000  
N 204 204 204 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Correlations:  Control and Assessment 
 CA1 CA2 CA3 CA4 

CA1 Pearson Correlation 1 .390** .363** .361** 

Sig. (2-tailed)  .000 .000 .000 

N 204 204 204 204 

CA2 Pearson Correlation .390** 1 .429** .406** 

Sig. (2-tailed) .000  .000 .000 

N 204 205 205 205 

CA3 Pearson Correlation .363** .429** 1 .492** 

Sig. (2-tailed) .000 .000  .000 

N 204 205 205 205 

CA4 Pearson Correlation .361** .406** .492** 1 

Sig. (2-tailed) .000 .000 .000  
N 204 205 205 205 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations:  Manufacturing Issues 

 MI1 MI2 

MI1 Pearson Correlation 1 .830** 

Sig. (2-tailed)  .000 

N 203 203 

MI2 Pearson Correlation .830** 1 

Sig. (2-tailed) .000  
N 203 204 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Correlations:  Integration & Test Issues 
 ITI1 ITI2 

ITI1 Pearson Correlation 1 .836** 

Sig. (2-tailed)  .000 

N 205 205 

ITI2 Pearson Correlation .836** 1 

Sig. (2-tailed) .000  
N 205 205 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Correlations:  Launch Issues 
 LI1 LI2 

LI1 Pearson Correlation 1 .886** 

Sig. (2-tailed)  .000 

N 205 205 

LI2 Pearson Correlation .886** 1 

Sig. (2-tailed) .000  
N 205 205 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlation Matrix for SE Culture Model 
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TMS1 1              
TMS2 0.870 1                         

TMS3 0.719 0.705 1                       

TMS4 0.438 0.455 0.446 1                     

Comm1 0.226 0.187 0.265 0.176 1                   

Comm2 0.140 0.147 0.224 0.226 0.583 1                 

Comm3 0.399 0.391 0.380 0.393 0.364 0.400 1               

Comm4 0.503 0.454 0.541 0.361 0.287 0.326 0.570 1             

Comm5 0.401 0.397 0.330 0.392 0.261 0.374 0.376 0.441 1           

OC1 0.085 0.108 0.143 0.144 0.217 0.287 0.350 0.205 0.354 1         

OC2 0.202 0.152 0.273 0.234 0.284 0.258 0.388 0.332 0.359 0.457 1       

OC4 0.233 0.195 0.261 0.207 0.293 0.265 0.450 0.300 0.311 0.418 0.787 1     

OC5 0.267 0.261 0.235 0.207 0.246 0.142 0.379 0.286 0.241 0.411 0.660 0.740 1   

Org Size 0.099 0.114 0.106 0.124 0.071 0.025 0.178 0.158 0.066 0.060 0.105 0.058 0.043 1 
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