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ABSTRACT 

A Surface Acoustic Wave (SAW) correlator built on a Lithium Niobate substrate is 

temperature compensated in order to maintain a constant center frequency. Frequency shifts as a 

result of temperature variations limit device performance. An Arduino®-based PWM temperature 

controller is developed to read the device temperature from a resistance temperature detector 

located on the SAW wafer and to regulate its temperature to a specified setpoint by providing 

current to a heater which is co-located with the temperature sensor on the SAW correlator 

substrate. The final temperature controller achieves frequency shifts of 0.013 MHz from room 

temperature with a worst-case PPM experienced over 30°C of temperature variation of 0.48 

PPM/°C. Linear and non-linear plant models are developed successfully to predict the device’s 

temperature based on any input setpoint. Although there are alternatives to limit temperature drift 

at different temperatures, this thesis presents a simple method that works on a standard Lithium 

Niobate substrate. 
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CHAPTER 1: INTRODUCTION 

This thesis presents the design considerations of temperature variations in the 

implementation of a SAW correlator used in communication-based applications. The velocity of 

the acoustic wave is dependent on the substrate material’s temperature coefficient of frequency 

(TCF) (Bruckner 2). Hence, temperature change results in a drift in a SAW Correlator’s center 

frequency. Despite their wide bandwidth, this can lead to poor correlator results under high or 

low temperatures (Brocato 17). This effect is even more prevalent when LiNbO3 substrates are 

used due to their large TCF of (94 ppm/°C) (Yurish 160). Figure 1 shows the shift in frequency 

of a SAW correlator when temperature changes as measured directly from a VNA. The light 

trace shows the S21 parameter data when the correlator is operating at 40°C. The darker 

waveform shows the S21 data when the correlator is at 25°C. The total shift in frequency is 

about 1.5 MHz. Higher temperatures lead to a decrease in center frequency and lower 

temperatures increase it. This change corresponds to a change of 89.82 PPM/°C. 
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Figure 1: Initial frequency shift demonstration. 

 

One way of reducing this shift in center frequency is by using St-Quartz substrates since 

they feature a negligible temperature coefficient (Yurish 160). However, LiNbO3 achieves better 

insertion loss performance due to its higher electromechanical coupling coefficient and low 

propagation loss (Brocato 18). Layering piezoelectric materials to produce a composite substrate 

with optimal characteristics has been shown to produce lower temperature coefficients while 

maintaining a high electromechanical coupling coefficient (Gong). 

This thesis explores an alternative way of improving temperature stability. The center 

frequency of a LiNbO3 SAW correlator can be kept constant by implementing a closed-loop 

system that reads the current device temperature and adjusts the power supplied in order to keep 
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the correlator at a fixed temperature. Figure 2 shows a diagram of the block components that 

make up a closed-loop system. 

 

 

Figure 2: Closed-loop temperature controller diagram. 

 

For this thesis, the PID control block of the control system is implemented through an 

Arduino®-based temperature controller PCB. The controller can adjust the setpoint and the PID 

terms for achieving the desired output response based on code uploaded through the Arduino® 

IDE. The heater and the temperature sensor are both implemented on the wafer along with the 

correlator. Both, the heater and temperature sensor are essentially resistors that rely on the 

temperature controller PCB for receiving power and reading the temperature sensor’s output. 

Connections from the heater and temperature sensor to the temperature controller are possible by 

soldering the SAW device’s package to a second PCB and using wire to connect them together. 

The design and programming of the PID controller PCB using the Arduino® IDE in Chapter 2. It 

is also programmed using a Simulink® block diagram to allow for real-time data acquisition and 

plotting, as well as on-the-fly tuning and setpoint changes of the controller. 
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MATLAB® System Identification ToolboxTM is used in Chapter 3 to derive both, linear 

and non-linear models, and predict the output based on a given input for the open and closed-

loop systems. Chapter 4 covers the experiment setup including all connections and the tuning 

and testing of the controller. 

By gathering and post-processing the device’s S21 data under different temperatures, its 

shift in center frequency can be calculated. This shift in frequency can be expressed as a PPM/°C 

value by examining how much PPM changes per degree Celsius. It is possible test how well its 

temperature is being regulated by the controller by taking a second S21 measurement with the 

controller regulating the SAW’s device temperature. This can be done by measuring how much 

PPM changes and using the measured PPM/°C value to obtain the error in the temperature 

readings. An ideal temperature controller would maintain the shift in frequency constant. Results 

pertaining to the shift in frequency with temperature, along with the required S21 processing, are 

discussed in Chapter 6. Further background information about SAW device theory and device 

packaging is also provided in this chapter.  
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CHAPTER 2: DESIGN OF A PID TEMPERATURE CONTROLLER 

Control Theory 

Maintaining a temperature constant using a heater requires the use of a feedback loop. A 

closed-loop system is continuously taking the difference between the setpoint temperature and 

the process variable (the sensed temperature) at a specified sample rate. The system’s goal is to 

maintain this difference, the error term, constant at 0. One way to control how the system 

behaves when there is error is through a PID algorithm. The output of a PID controller dictates 

how much power is applied to the actuator of the system (the heater). For example, if the error 

term is large and if the PID controller is tuned appropriately, the heater will power on at full 

power. This algorithm consists of proportional, integral, and derivative parameters and is 

represented mathematically by Equation 1 (Messner, PID Controller). The controller output u(t) 

is used to power an actuator based on the PID parameters and the error between the setpoint and 

the measured process variable. Kp is the proportional term, Ki is the integral term, Kd is the 

derivative term, and e(t) is the error. 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝐾𝑑
𝑑 𝑒(𝑡)

𝑑𝑡
 ( 1 ) 

 

The Laplace transform can be applied to transform Equation 1 into Equation 2, which 

gives an algebraic expression that can be easily used to generate a control system model. 

Equation 2 shows that the integral and derivative terms are functions of the proportional term Kp 

and the integral or derivative times Ti and Td (Haugen 44). 
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𝑈(𝑠) = 𝐸(𝑠)(𝐾𝑝 + 𝐾𝑖
1

𝑠
+ 𝐾𝑑𝑠) = 𝐸(𝑠)𝐾𝑝(1 +

1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) ( 2 ) 

 

The proportional element of the controller simply changes the output in proportion to the 

error e(t). The proportional band is the temperature range around the setpoint where the heater 

can be driven to duty cycles greater than 0% and lower than 100% (PWM). The controller 

behaves as an on-off controller outside this range. If the proportional band is too small (high P 

term), the controller will behave as an on-off controller that never reaches the setpoint 

temperature (Haugen 34-35). The integral term reduces the steady state offset from the setpoint 

that is not accounted by the proportional term. A shorter integral time (higher I term) allows the 

controller to reduce this error (Haugen 38). An integral time that is too short will result in 

overshoot that takes time to correct, while an integral time that is too long is avoided because 

offset should be eliminated quickly (Skogestad 295).  

The derivative element of the controller senses the change in error over a short time 

period and adds a portion of the error to the output (Haugen 40). This is the part of the controller 

that quickly adjusts the output closer to the set point in the case of an unexpected disturbance or 

overshoot (Messner, PID Controller). In other words, it keeps the output within the proportional 

band. A higher derivative term leads to a decreased response to disturbances (Haugen 92-93). 

However, if the term is 0, the controller will behave as a PI controller that does not try to correct 

for disturbances. 

The plant is the part of the system that is controlled; in this case, it is the heater. This 

block can be modeled using mathematical models, such as a transfer function, that describe a 

system’s output based on an input. This serves to characterize and predict the behavior of a 
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system. To close the loop, a sensor needs to repeatedly gather samples of the process variable. 

Without this, temperature is not regulated and the system changes to open-loop configuration. 

The PID algorithm, setpoint temperature, and feedback loop are all implemented in software 

written for the Arduino® temperature controller for this thesis. 

Board Schematic & Layout 

The temperature controller schematic design is based on the Arduino® UNO schematic 

since this is used for prototyping (Banzi). 5 volts (VCC) is used across the schematic for power. 

Additional components and connections are added to the Arduino® chip, the Atmega328PU, as 

required. The Arduino® chip connections are shown in Figure 3. 

 

 

Figure 3: Schematic showing Atmega328PU connections (Banzi). 
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An FT232RL USB to Serial UART interface allows external programming of the 

Arduino® chip (FTDI). It connects the data lines D+ and D- of the USB to the RX and TX pins on 

the Arduino® chip. LED lights for TX and RX activity are added. This portion of the schematic 

is shown in Figure 4.  

 

 

Figure 4: Schematic showing USB to serial interface and USB connector (FTDI). 

 

The part of the schematic used for the temperature sensor is a voltage divider with the 

RTD set to RRTD and a resistor of known value (1kΩ) set to R12. The voltage divider’s output is 

read by a 16-bit ADC, the ADS 1115 module, to allow for greater accuracy when compared to 

the Arduino® UNO’s built-in 10-bit ADC. Using a 16-bit ADC gives the Arduino® the ability to 

read 65,536 (216) discrete analog levels, whereas a 10-bit ADC only allows for 1,024 (210) 

discrete analog levels. For the temperature controller, this means being able to read changes of 

0.07°C instead of 2.5°C. This specific module is chosen because it uses the versatile I2C 
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interface, it is powered by 5 volts, and it has programmable gain (Earl). The connections between 

the voltage divider and the module are shown in Figure 5.  

 

 

Figure 5: Schematic for reading temperature (Earl). 

 

The part of the schematic used for powering the heater is based on a logic-level N-

channel MOSFET configured to be used as a switch, as shown in Figure 6. The drain of the 

MOSFET is connected to the heater, which is powered using 22 volts. The gate is connected to 

the output PWM signal (D3) and the source is connected to ground. This configuration works as 

a switch since power is supplied to the heater resistor only when the output PWM pin is toggled 

high by the PWM output. The duty cycle of the output controls the average power that is 

supplied to the heater.  
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Figure 6: Schematic for controlling power to heater. 

 

A 5-volt regulator is used for regulating the output voltage from the DC input connector. 

A switch is used to toggle whether the 5 volts for powering the PCB is sourced directly from the 

USB or from the regulator. The regulator and switch connections are shown in Figure 7. 

 

 

Figure 7: Schematic for power supply. 
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The temperature controller is a 2.170 x 3.175 inch FR4 Printed Circuit Board (PCB) with 

surface mount components, as shown in Figure 8. Previous iterations of the PCB included an 

LCD screen and rotary encoder where it was possible to change temperature setpoint using the 

PCB. These two components were removed for testing since setpoint changes are implemented 

directly from a computer connected to the controller. Changes from the original PCB include the 

addition of the 16-bit ADC for accurate temperature readings and the ability to change the source 

of the 5 volts for power supply via a switch. Connections from the PCB to the power supply and 

device are done using screw terminal blocks.   

 

 

Figure 8: PCB layout design. 
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Programming the Controller  

Programming and uploading code to the ATMEGA328-PU is done using the open-source 

Arduino IDE. External libraries for the PID algorithm and for interfacing with the ADS1115 16-

bit ADC are implemented. The PID library used allows for on-the-fly tuning and setpoint 

changes and a constant sample time (Beauregard). The ADS 1115 16-bit ADC uses I2C and 

allows for four single-ended readings to reach an accuracy of 0.125 mV for each additional bit 

(Earl). The code simply sets up the setpoint temperature and input (measured temperature) to 

obtain an output (duty cycle) using the PID algorithm (Beauregard). It repeatedly prints these 

values to the serial port for viewing. The function reading_to_temp is created to average ten 

ADC voltage readings and convert them to temperature each time the loop executes. The full 

code is shown in Appendix B.  

Using the Simulink® Support Package for Arduino® Hardware, it is possible to program 

the Arduino® to perform the same functions as the code in Appendix B for both, closed-loop and 

open loop-controllers (MathWorks, Simulink® Arduino®). This makes it simple to view and 

record all input-output data in real time and to examine the accuracy of any plant model. The 

Simulink® diagram developed, which is shown in Figure 9, gives the user the option to choose 

between open and closed loop configurations by means of a software switch. When the switch is 

configured to open-loop, a percent duty cycle is sent to the output PWM pin. This number is first 

multiplied by 2.55 to account for the fact that the maximum Arduino® PWM value is 255. When 

the switch is in the closed-loop configuration, the value written to the Arduino® digital pin is the 

result of summing the P, I, and D terms multiplied by 2.55. The input to the PID term blocks is 

the error, or the difference between setpoint and measured temperature. The block labeled 
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‘Query Instrument’ outputs the measured temperature for use in the closed-loop case. The 

measured temperature is plotted against the output of a linear or non-linear model that predicts 

temperature based on the controller PID terms and setpoint.  

 

 

Figure 9: Simulink® diagram used for programming controller. 

  



14 

 

CHAPTER 3: MODEL RESULTS 

Linear Model Results 

Obtaining Linear Model from Open-Loop Controller 

A diagram for the open-loop control system is shown in Figure 10. Since there is no 

feedback loop, the plant relies on the specified input to supply varying or constant power to the 

plant. Since the system uses a PWM-based controller, the input power is described as a duty 

cycle ranging from 0% to 100% and not a setpoint temperature.  

 

 

Figure 10: Open-loop diagram of control system. 

 

There are two ways to obtain plant models from an open-loop step response. The first 

method is to do it manually by obtaining gain, time delay, and time constant directly from a step 

response plot (Messner, System Analysis). The manual method for deriving a first-order transfer 

function from an open-loop step response starts by examining the general form of a first-order 

transfer function P(s).     

 

𝑃(𝑠) = 𝑒−𝑠𝑇 ∗
𝐾

(𝜏∗𝑠)+1
 ( 3 ) 
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K is the gain found by dividing the change in temperature by the change in setpoint temperature. 

τ is the time constant and it describes the speed at which the system’s response changes. For 

first-order transfer functions, it is described as the time at which the output is 63% of its steady-

state value (Messner, System Analysis). T is the time delay and it is calculated by finding the 

amount of time it takes for the temperature to start increasing when there is a step change in the 

setpoint temperature. Transfer function models should only be of high enough order to 

characterize the dynamics of a system to the needed degree of accuracy. Hence, being able to 

model the dynamics of the system using a first-order model would be the best-case scenario.  

This method is applied to the step response of the open-loop temperature controller. After 

applying the manual procedure and modifying the variables for best fit to the SAW correlator 

controller to account for measurement error, the plant transfer function obtained is shown in 

Equation 4. 

 

𝑃(𝑠) = 𝑒−𝑠∗0.3 ∗
0.447

(25∗𝑠)+1
 ( 4 ) 

 

Figure 11 shows a Simulink® diagram used to compare the step responses of the open-loop 

controller with the that of the first-order model for the plant. The time delay is added using 

Simulink® transport delay block (MathWorks, Transport Delay). 
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Figure 11: Simulink® diagram for first-order transfer function model. 

 

The second way to derive a linear model is through MATLAB® System Identification 

ToolboxTM. This facilitates the process of finding transfer function models that describe a 

system. In addition, it makes it much simpler to derive higher order models and to make 

comparisons between them to see which one is a better fit (MathWorks, Estimating Models). It 

also allows the merging of many different input-output relationships and estimating other model 

types such as state space and non-linear models. Below is the procedure of deriving a 4-pole 3-

zero transfer function model.  

First, the open-loop input and output measurements are imported into the System 

Identification ToolboxTM as input-output data objects with a sample time of 0.1 seconds. This 

type of object groups the input duty cycle data with its corresponding output temperature read, as 

shown in Figure 12 (Ljung 50; ch. 2). 
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Figure 12: Open-loop Measurements used to derive higher order transfer function model. 

 

After preprocessing the data by removing the starting delay, the toolbox is used to derive transfer 

function models of different combinations of poles and zeros. The best-fit to the open loop data 

is a transfer function with 4 poles and 3 zeros. The transfer function model in Equation 5 

matches the measured open-loop step response by 85.55%, as shown in Figure 13. Throughout 

this section, any writing specifying a linear transfer function refers to the one in Equation 5.   

 

𝑃(𝑠) =
0.5598 𝑠3 + 0.08757 𝑠2 + 0.0004332 𝑠 + 1.171𝑒−07

𝑠4 + 2.336 𝑠3  + 0.2098 𝑠2  + 0.0006743 𝑠 + 1.998𝑒−07
 ( 5 ) 

 

 Measured Temperature vs Time 

Output Temperature 

Input Duty Cycle 
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Table 1 shows the poles and zeros of the generated transfer function. Although the pole -0.00033 

and the zero -0.000287 are very close together, eliminating this pair in order to simplify the 

transfer function to a 3rd order one seems to shift and distort the output response significantly. 

Both, the step response of the 4th order (green) and 3rd order (yellow) transfer functions are 

compared with the open-loop measurements (black). The figure shows that the pair of poles and 

zeros should not be eliminated for producing an accurate linear transfer function model. 

 

Table 1: Poles and zeros of 4th order transfer function. 

Poles Zeros 

-2.2431 -0.1513 

-0.0901 -0.00482 

-0.0030 -0.000287 

-0.00033  
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Figure 13: Open-loop step response of linear transfer functions. 

 

Open-Loop Controller Operation and Linear Model 

Figure 14 shows the temperature reached in steady-state when the controller is in open-

loop configuration for various duty cycles. For example, if the duty cycle is held constant at 

25.49%, the steady-state temperature is 40.2°C. This figure suggests that it is possible to make an 

accurate linear model since the relationship between duty cycle and temperature reached appears 

to be linear for the measured temperature range. 
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Figure 14: Temperature reached for constant duty cycles. 

 

Figure 15 compares the temperatures in the linear region from the open-loop controller’s 

measurements (yellow) and the 4th order transfer function model (blue) from Equation 5. In this 

case, the input duty cycle changes from 0% to 50% instantly at a time of 0 seconds. Once the 

temperature reaches 47°C, both the measurements and the model reach steady state. The model 

takes longer to increase during the first 50 seconds but reaches steady state quicker. In contrast, 

the measured value quickly rises in temperature, but stagnates after 50 seconds.   
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Figure 15: Open-loop step response of linear model and measurements. 

 

Figure 16 uses the same 4th order transfer function to test the system for a varying duty 

cycle input by plotting temperature in Celsius vs time. The predicted temperature from the model 

is shown in red and the measurements in black. In this case, the input duty cycle changes every 

100 seconds at eight different times.  The linear transfer function model is able to predict the 

output with an accuracy of 92.24%. Figure 16 shows that the model can predict the output 

accurately using just the linear dynamics of the system. However, the model struggles to predict 

the temperature after some transitions in input duty cycle.  

 

4th order Model 

Step Response 

(open-loop) 

Measured Step 

Response 

(open-loop) 
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Figure 16: Open-loop response of linear model and measurements. 

 

Closed-Loop Controller Operation and Linear Model 

Figure 17 shows the output temperatures of the closed-loop controller (blue) and the 

same 4th order transfer function model (yellow) from Equation 5. In this case, the input varies as 

a result of the PID parameters in order to maintain a setpoint of 50°C. When the controller is in 

closed-operation, it is the model that reacts faster to the step change in temperature setpoint. 

Both the model and measurement experience a very small amount of overshoot, but the 

measured plot reaches steady-state quicker than the model. 

4th order model 

(open-loop) 

Measured temperature 

(open-loop) 
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Figure 17: Closed-loop response of linear model and measurements. 

 

 Figure 18 shows that the closed-loop response of a linear model with varying duty cycle 

inputs (red) also matches the measurements (black) well. According to the best-fit percentage, 

there is a match of 92.49%. Upon visual inspection, the model does not appear to be as accurate 

as the open-loop response from Figure 16 at the upper and lower temperatures.  
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Figure 18: Closed-loop response of linear model and measurements with a varying input. 

 

Non-Linear Model Results 

Obtaining Non-Linear Model from Open-Loop Controller 

Non-linear models are used when a system’s output depends non-linearly on the inputs to 

the system. One non-linear Hammerstein Wiener non-linear block-structured model consists of 

one dynamic linear element between two static, or memoryless, non-linear elements connected in 

series. In this way, the model can represent both, the linear and non-linear aspects of the system 

(Ljung 13, ch.7). It essentially combines both, the Hammerstein and the Wiener non-linear 

models into one model (Ljung 13, ch.7). In a Hammerstein model, a static non-linear function is 

followed by a linear dynamic transfer function, whereas in a Wiener model, the linear dynamic 

Measured 

temperature 

(closed-loop) 

 

4th order model 

(closed-loop) 
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function is followed by a static non-linear function (Ljung 58, ch.7). The block diagram in Figure 

19 shows the Hammerstein-Wiener model (Ljung 57, ch.7). It describes how the outputs of the 

two non-linear blocks, w(k) and y(k), are non-linear functions of their inputs, u(k) and x(k). The 

non-linear functions of the input and output are f and h, respectively. The linear block is a linear 

transfer function formed by the ratio of the rational polynomials B(z) and F(z) (Ljung 57, ch.7). 

This non-linear model was chosen since it is part of the System Identification ToolboxTM (Ljung 

13, ch.7).  

 

 

Figure 19. Hammerstein-Wiener diagram (Ljung 57, ch.7). 

 

To represent the linear block, a discrete transfer function is used because the System 

Identification ToolboxTM does not allow continuous linear transfer functions when generating a 

non-linear model. The linear block is based on the general-linear polynomial model in Equation 

6, where y(k) is the system output, u(k) is the system input, e(k) is the system disturbance, n is 

the system delay, and A(z), B(z), C(z), D(z), and F(z) are all polynomials that use the backward-

shift operator z-1, and Z is the Z-transform variable (National Instruments). The coefficients of 

these rational polynomials are parameters determined from the provided input and output by 

using estimation procedures (Ljung 68, ch.4). The first ratio of polynomials represents the 

measured input-output relationship and the second ratio of polynomials represents the 
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relationship between the measured output and the disturbance (Ljung 11, ch. 1). Hence, F(z) 

determines the poles unique to the system dynamics and D(z) determines the poles unique to the 

disturbances (Mathworks, Polynomial). 

 

𝑍{𝑦(𝑘)} = [
𝐵(𝑧)

𝐴(𝑧)𝐹(𝑧)
] 𝑍{𝑢(𝑘 − 𝑛)} + [

𝐶(𝑧)

𝐴(𝑧)𝐷(𝑧)
] 𝑍{𝑒(𝑘)} ( 6 ) 

 

In practical applications, one or more of these polynomials is fixed to unity depending on 

the model structure applied to increase estimation efficiency and flexibility when modeling a 

system’s dynamics and noise (Ljung 42, ch.4). For example, a Box-Jenkins model uses 

polynomials B(z), F(z), C(z), and D(z), whereas the output-error model only uses B(z) and F(z). 

The reduced version of the general-linear polynomial model used by the System Identification 

Toolbox is the output-error model, meaning A(z), C(z), and D(z) from Equation 6 are all set to 

unity. This simplifies the problem by parametrizing the system’s dynamics, while ignoring the 

parametrization of disturbance (MathWorks, Polynomial). The resulting equation of the output-

error model and its block diagram are shown in Equation 7 and Figure 20 (National Instruments). 

The diagram shows how the output y(k) of the model is the input u(k) multiplied with the ratio of 

B(z) and F(z) polynomials and added with the disturbance term e(k).   

 

𝑍{𝑦(𝑘)} = [
𝐵(𝑧)

𝐴(𝑧)𝐹(𝑧)
] 𝑍{𝑢(𝑘 − 𝑛)} + 𝑍{𝑒(𝑘)} ( 7 ) 
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Figure 20: Output-error model diagram (National Instruments). 

 

The estimated B(z) and F(z) polynomials using the System Identification ToolboxTM are shown 

in Equations 8 and 9 (Ljung 40-48, ch.4).  

 

𝐵(𝑧) = −0.001155 𝑧−1 + 0.2171 𝑧−2 − 0.4259 𝑧−3 + 0.21 𝑧−4 ( 8 ) 

 

𝐹(𝑧) = 1 − 1.552 𝑧−1 − 0.1869 𝑧−2 + 1.058 𝑧−3 − 0.3361 𝑧−4 + 0.0171𝑧−5 ( 9 ) 

 

As shown in Figure 21, the output temperature of this polynomial model (pink) appears 

to be approaching the real system’s measurements (black). However, it is clear it does not fully 

characterize the system since the static non-linearities of the system, functions f and h, are not 

modeled. This is the best polynomial model that the System Identification ToolboxTM was able to 

obtain.  

 Z{u(k)} 
 

 

 
Z{w(k)} 

Z{e(k)} 

Z{y(k)} 

Linear Model 
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Figure 21: Polynomial model response (closed-loop). 

 

For finding the full Hammerstein-Wiener model, many open-loop measurements are 

recorded to give the Control System Toolbox a good understanding of how the system behaves. 

A total of 15 input-output datasets recorded are inputted into the MATLAB® toolbox. However, 

adding even more data sets can improve the accuracy of the models obtained. Some examples of 

these input-output datasets are provided in Figure 22. Inputs u1 measured in duty cycle 

percentage are plotted below their corresponding outputs y1 measured in degrees Celsius. To 

model the dynamics of the system, inputs include a variety of square waves, triangle waves, and 

step inputs at different operating points.    

 

Polynomial model output  

Measured Temperature 
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Figure 22: Open-loop measurements taken to derive a non-linear model. 

 

The generated Hammerstein-Wiener model can be checked by using the input duty cycles used 

to generate the model as inputs into the generated model. The measured temperature in black is 

compared to the theoretical temperature in red for two different inputs in Figure 23. Both plots 

show that the model was generated successfully since both theoretical outputs match their 

corresponding measurements.  

 

Output Temperature Output Temperature 

Output Temperature Output Temperature 

Input Duty Cycle 

Input Duty Cycle Input Duty Cycle 

Input Duty Cycle 
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Figure 23: Hammerstein-Wiener model open-loop output response. 

 

This shows a better match compared to Figure 21 because input and output nonlinearities are 

added to the polynomial model. The derived model (red) has a 94.32% and 90.79% fit compared 

to some of the measurements (black) used to derive it. 

To generate the static non-linearities of the system, the System Identification ToolboxTM 

generates a linear polynomial model and uses a piecewise linear function parametrized by 

breakpoint locations to model the system’s non-linearities at the input and output of the system 

(Ljung 59, ch. 7). Basically, the input nonlinear block shown in Figure 19 maps the input 

nonlinearities as a function of the input data u(k) and the output nonlinear block maps the output 

nonlinearities as a function of the linear block’s output, x(k) (Ljung 57, ch 7). Both f and h non-

linear functions are static with no memory, meaning their outputs only depend on the input at a 

particular time (Ljung 58, ch 7).  

Figures 24 and 25 show the input and output data for both non-linear blocks in Figure 19 

when the toolbox generates a Hammerstein-Wiener model directly from the input-output data 

sets. Both plots show a linear trend, suggesting that the system can be approximated using a 

linear transfer function. 

Measurements Measurements Model 

Model 
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Figure 24: Hammerstein-Wiener input non-linearities. 
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Figure 25: Hammerstein-Wiener output nonlinearities. 

 

The MATLAB® System Identification ToolboxTM also offers the ability to implement the 

Hammerstein-Wiener model completely and learn both input and output non-linearities as well 

as the polynomial model, which is different than that of Equation 8 and 9. Although it is possible 

to create a Hammerstein-Wiener model from a specific linear model using non-linearity 

estimators created in the command line, MATLAB® does a better job in terms of modelling the 

complete Hammerstein-Wiener model (Ljung 64-86, ch.7). Figure 26 compares the output 

responses of all the elements of the Hammerstein-Wiener model generated directly from the 

toolbox with closed-loop measurements. The method used in Figure 26 for removing input 

and/or output non-linearities in order to produce a Hammerstein, Wiener or polynomial model is 

specified in the toolbox’s user guide (Ljung 79, ch. 7). The bad fit between measurements and 
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the new polynomial model extracted from the Hammerstein-Weiner model indicates that the 

process the toolbox uses to generate the polynomial model during this procedure is not the same 

as the process used to obtain the polynomial model in Equations 8 and 9. This is evident in 

Figure 26, where the polynomial model from Equations 8 and 9 has a fit of 87.34%, while the 

polynomial model used in the full Hammerstein-Wiener model implemented by the MATLAB® 

toolbox has a poor fit of -329.9%. However, when combined with input and output non-

linearities, the model reaches a fit of 91.43%. The non-linear results presented in this thesis are 

from the final Hammerstein-Wiener model, which reaches a fit of 91.43% in Figure 26. 

 

 

Figure 26: MATLAB® process for generating Hammerstein-Wiener Model   
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Open-Loop Controller Operation and Non-Linear Model 

The plant’s non-linearity is tested through the test shown in Figure 27. A function 

generator is used to generate a very low frequency (10 mHz) voltage as an input to the heater, 

instead of using the controller’s output PWM signal. The results suggest that the system is not 

purely linear because the output temperature does not increase in a perfect linear fashion when 

an input voltage is applied. The output response is also not symmetrical since the output does not 

decrease at the same rate it increases, even though the increasing and decreasing portions of the 

input have the same slope magnitude.  

 

 
Figure 27: Measured Temperature when triangular wave is used to power heater. 

 

Measured Voltage Measured Temperature 
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In figure 28, the Hammerstein-Wiener non-linear model output is compared against the 

measured open-loop output response. The open-loop temperature plot for non-linear model is 

shown in green and open-loop measurements in black. Similar to the linear model, there is a 

good match when the setpoint duty cycle changes. There is also a better prediction of the output 

temperatures after the duty cycle changes. This suggests that the system is primarily a linear 

system with some non-linearities as it approaches steady-state. 

 

 
Figure 28: Open-loop temperature for non-linear model. 
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Closed-Loop Controller Operation and Non-Linear Model 

The closed-loop temperature plot for non-linear Hammerstein-Wiener model (green) and 

measurements (black) are shown in Figure 29. There is also a good match when the setpoint duty 

cycle changes. The fit of this plot shows that the 4th order transfer function model and the non-

linear model results are approximately equal for the closed-loop controller. The only possible 

conclusions from this study is that the polynomial model did not perform as well as the transfer 

function model, but a Hammerstein-Wiener model was equivalent or better to the transfer 

function model. 

 

 

Figure 29: Closed-loop temperature for non-linear model. 
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CHAPTER 4: EXPERIMENT SETUP 

External Connections to SAW Device and Oven Setup 

The experiment block diagram in Figure 30 shows connections required for the 

experiment setup. The diagram shows all connections using arrows and the colored blocks are 

sub-sections of either the SAW device or the temperature controller. Other connections required 

are the VNA connections for measuring S21, the connection to a computer via USB for reading 

data and providing 5 volts, and the connections from the power supply to the circuit used for 

heating. Further details about all the necessary connections are mentioned in this section.  

 

 

Figure 30. Experiment Block Diagram. 
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A basic setup of the BK Precision 1666 Bench Switching Power Supply above the Sun Systems 

temperature chamber is shown in Figure 31 (BK Precision and Sun Systems). These are shown 

along with the HP 8753ES S-Parameter Network Analyzer used (Keysight).  

 

 

Figure 31: Experiment setup and equipment. 

 

A second PCB is needed to connect the pins of the SAW package to the controller. A 

FR4 board is etched using hydrochloric acid to form the four traces needed for these connections. 

The packaged device is soldered on top of this board, as seen in Figure 32. The on-device heater 

and RTD sensor are both wired to the controller using 22-gauge wire. The on-wafer heater is 

connected in series between the positive terminal of a power supply set to 22 V and the drain of 

the N-channel MOSFET. The RTD is connected in series with a resistor of known value (1 kΩ) 

to form a voltage divider with an output voltage proportional to temperature.  

Sun Micro-

Systems Oven 

Temperature 

Controller 

BK Precision 1666 Bench 

Switching Power Supply 

HP 8753ES S-Parameter 
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Figure 32: SAW device PCB traces. 

 

Placing the device inside the oven, as seen in Figure 33, allows for testing the controller’s 

ability to maintain the SAW device’s temperature stable under different ambient temperatures. 

The thermocouple regulating the temperature of the oven is placed close to the SAW device to 

ensure that oven temperature is similar to the temperature experienced by the device. The 

packaged SAW correlator is connected to the Vector Network Analyzer (VNA) using coaxial 

cables that enter the oven through a sealed opening on the side. These are soldered directly to the 

package pins bonded to the input and output transducers.  
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Figure 33: SAW device external connections. 

 

A 2-port calibration is performed at frequencies 920 to 970 MHz using SOLT calibration 

standards connected to the SMA cables. The input power is set to 10 dBm with a sweep time of 1 

second and 11207 points. While running VNA measurements, the oven is turned off to avoid 

distortions in the S21 response. The power supply, controller, and VNA are all placed outside of 

the oven.  

Relating Resistance to Temperature 

Connecting an RTD with a resistor in series creates a voltage divider with a temperature 

dependent output voltage. Hence, by applying a known input voltage to the RTD and measuring 

the output voltage at the node between both components, it is possible to obtain the RTD’s 

resistance. Using the voltage divider equation in Equation 10 is the simplest way of measuring 
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resistance using an Arduino® because it can only read voltage. Vin is the input voltage, Vout is the 

output voltage, R12 is a 1kΩ resistor, and RRTD (from Figure 5) is the current resistance of the 

RTD. 

 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ∗ (
𝑅12

𝑅12+𝑅𝑅𝑇𝐷
) ( 10 ) 

 

𝑉𝑜𝑢𝑡 = 5 ∗ (
1000

1000+𝑅𝑅𝑇𝐷
) ( 11 ) 

 

(1000 + 𝑅𝑅𝑇𝐷) = 5 ∗ (
1000

𝑉𝑜𝑢𝑡
) ( 12 ) 

 

𝑅𝑅𝑇𝐷 = 5 ∗ (
1000

𝑉𝑜𝑢𝑡
) − 1000 ( 13 ) 

 

In order to relate resistance readings to temperature, the device is placed inside the oven and a 

multimeter connected in parallel to the on-wafer RTD. Resistances are measured as oven 

temperature is increased from room temperature to 70°C. These results are plotted in Figure 34. 
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Figure 34: Resistance of SAW device inside oven at different oven temperatures.  

 

Figure 34 shows that there exists a linear relationship between RTD resistance and 

ambient temperature. This data was also measured using a second thermocouple to ensure 

accuracy. A linear equation of the line is obtained using Excel’s trend-line feature and solved for 

temperature. The resulting formula, Equation 14, shows how the RTD’s resistance RRTD can be 

converted to a temperature reading in Celsius.  

 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°C) =  
𝑅𝑅𝑇𝐷−705.51

1.1481
 ( 14 ) 

 

The disadvantage of this method is that the Arduino® 10-bit ADC limits the accuracy of the 

output voltage read because it only has the ability to detect 10-bits or 1,024 (210) discrete analog 
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levels. Each time the ADC senses a change of one bit or 4.9 mV, the measured temperature 

changes by 2.5°C. This is demonstrated by Table 2. The output of the voltage divider responsible 

for measuring RTD resistance is measured by the Arduino® built-in ADC and converted to 

temperature. This ADC is incapable of reading voltages in between those listed in Table 2. 

Voltage values are the result of one sample reading, not the average of many samples. 

 

Table 2: 10-bit ADC temperature reading accuracy (1-bit change). 

Voltage Read (V) Temperature (°C) 

2.8662 28.2221 

2.8613 30.6999 

2.8564 33.1862 

2.8516 35.6809 

2.8467 38.1843 

2.8418 40.6962 

2.8369 43.2167 

2.8320 45.7460 

2.8271 48.2840 

2.8223 50.8308 

2.8125 55.9509 

2.8076 58.5243 

2.8027 61.1067 
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Using a 16-bit ADC module allows the ADC to read voltage changes smaller than 1 mV 

and temperature changes lower than 0.08°C. The output voltage of the same voltage divider is 

again responsible for measuring RTD resistance. This time, voltage is read by the ADS 1115 

ADC and sent to the Arduino® processor. 

Using a 1kΩ resistor as R12 from (Figure 5) limits the voltage read to 2.7-2.9 V when the 

input voltage is 5 volts for the temperatures under test. This meets the ADS 1115 requirement 

that the input voltage should be no greater than 4.096 volts (Earl). The output voltage values 

listed in Table 3 are the result of one sample reading, not the average of many samples. By 

taking the average of several readings, it is possible to further increase the precision of the 

readings. For this experiment, the average of 10 samples was used.  

 

Table 3: 16-bit ADC temperature reading accuracy (1-bit change). 

Voltage Read Temperature (°C) 

2.876375 31.93242263 

2.87649993 31.86847686 

2.87662506 31.8044281 

2.87674999 31.74058914 

2.87687492 31.67669296 

 

Tuning the Controller 

Tuning the controller to achieve a desired output response is essential when it comes to 

implementing a PID controller in a closed-loop control system. Without proper tuning, the 
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actuator will provide too little or too much power when there is error between the setpoint and 

the measured SAW correlator temperature. Figure 35 shows how the temperature and duty cycle 

change for the temperature controller PCB when it is not tuned correctly. 

 

 

Figure 35: Untuned controller output response (SAW temperature). 

 

First, the Ziegler-Nichols tuning method was attempted following the process in PID 

Control by Finn Haugen (Haugen 94). This requires incrementing the proportional term until 

sustained oscillation is achieved. From this, the period of oscillation and the proportional term at 

which sustained oscillation is achieved are plugged into formulas to solve for the P, I, and D 

terms (Haugen 94). The root locus plot of the 4th order transfer function used to model the plant 

in Equation 15 is shown in Figure 36. The root locus reveals that the transfer function is stable 

Untuned Closed-Loop Plots of Duty-Cycle and Temperature Measurements vs Time  
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since all the poles are in the left-hand axis of the root locus plot and it is overdamped since all its 

poles are in the real axis. Hence, sustained oscillations or neutral stability are impossible to 

achieve since the root locus does not cross the imaginary axis (Cheever).    

 

𝑃(𝑠) =
0.5598 𝑠3 + 0.08757 𝑠2 + 0.0004332 𝑠 + 1.171𝑒−07

𝑠4 + 2.336 𝑠3  + 0.2098 𝑠2  + 0.0006743 𝑠 + 1.998𝑒−07
 ( 15 ) 

 

 

Figure 36: Root locus of 4th order transfer function. 

 

x: poles 

o: zeros 
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Instead of using the Ziegler-Nichols method, the PID parameters are tuned empirically 

using the simulated step response of the 4th order linear transfer function model in Equation 15. 

The step response for gains Kp= 1, Ki=0, and Kd= 0 is shown in Figure 37, along with very 

conservative constraints of a rise time lower than 5 seconds, a settling time of less than 10 

seconds, and a maximum overshoot of 10%. Only the plant and controller are modeled during 

this simulation since the sensor is assumed to be ideal.  

 

 

Figure 37: Step response for uncompensated linear transfer function. 

 

Then, the gains are adjusted by using MATLAB® PID Tuner, which is part of the Control 

System ToolboxTM (MathWorks, PID Tuner). By importing a 4th order linear transfer function 
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model of the plant, it is possible to plot the response time and transient behavior of the output 

response. Changing the response time changes how fast the output response reacts to a step input 

change, whereas changing the transient behavior adjusts the aggressiveness of the controller 

when it senses disturbances in the output response (MathWorks, PID Tuner). After toggling 

these two options, the output response achieves a rise time of 0.766 seconds and a settling time 

of 3.17 seconds with very minimal overshoot of just 0.456%, as seen in Figure 38. The PID 

parameters obtained are Kp=18, Ki=10.1, and Kd=0.02. These correspond to an integral time of 

1.78 seconds and a derivative time of 0.001 seconds.  

 

 

Figure 38: Step response for compensated transfer function. 
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The transfer function of the closed-loop system can be obtained by first deriving the 

transfer function of the closed-loop system diagram shown in Figure 39. Then, transfer functions 

for each block are substituted into this equation. The process for deriving the closed-loop system 

is shown below (Messner, PID Controller).   

 

 

Figure 39. Closed-loop block diagram.  

 

X(s) and Y(s) are the system’s input and output, respectively. H(s) represents the gain of 

the feedback path and G(s) is the open-loop gain. Equations 16 through 19 show the derivation 

of this closed-loop system. This is done by first setting the output Y(s) equal to the error 

multiplied by the gain. This equation is then solved for the ratio of the output Y(s) to the input 

X(s) to form the transfer function of the system (Gajic). 

 

𝑌(𝑠) = 𝐺(𝑠) ∗ (𝑋(𝑠) − (𝐻(𝑠) ∗ 𝑌(𝑠))) ( 16 ) 

 

𝑌(𝑠) = (𝐺(𝑠) ∗ 𝑋(𝑠)) − (𝐺(𝑠) ∗ 𝐻(𝑠) ∗ 𝑌(𝑠)) ( 17 ) 

 

𝑌(𝑠) ∗ (1 + (𝐺(𝑠) ∗ 𝐻(𝑠))) = (𝐺(𝑠) ∗ 𝑋(𝑠)) ( 18 ) 
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𝑌(𝑠)

𝑋(𝑠)
=

𝐺(𝑠)

1+(𝐺(𝑠)∗𝐻(𝑠))
 ( 19 ) 

In the temperature controller, G(s) is the multiplication of the PID controller transfer 

function, C(s), with the plant transfer function, P(s). The transfer functions C(s), P(s) and their 

multiplication are shown in Equations 20 through 23.  

 

𝐶(𝑠) = (𝐾𝑝 + 𝐾𝑖
1

𝑠
+ 𝐾𝑑 ∗ 𝑠)  ( 20 ) 

 

𝑃(𝑠) = (
0.5598 𝑠3 + 0.08757 𝑠2 + 0.0004332 𝑠 + 1.171𝑒−07

𝑠4 + 2.336 𝑠3  + 0.2098 𝑠2  + 0.0006743 𝑠 + 1.998𝑒−07
) ( 21 ) 

 

𝐶(𝑠) ∗ 𝑃(𝑠) = (
𝐾𝑑∗𝑠2+𝐾𝑝∗𝑠+𝐾𝑖

𝑠
)  ∗ (

0.5598 𝑠3 + 0.08757 𝑠2 + 0.0004332 𝑠 + 1.171𝑒−07

𝑠4 + 2.336 𝑠3  + 0.2098 𝑠2  + 0.0006743 𝑠 + 1.998𝑒−07
) ( 22 ) 

 

𝐶(𝑠) ∗ 𝑃(𝑠) = (
0.0112 𝑠5+ 10.08 𝑠4 + 7.231𝑠3+ 0.8923 𝑠2+ 0.004377 𝑠 + 1.183𝑒−06

𝑠5+ 2.336 𝑠4+ 0.2098 𝑠3 + 0.0006743 𝑠2 + 01.998𝑒−07 𝑠
) ( 23 ) 

 

The sensor of the system is assumed to be ideal, meaning that the output and input of the 

feedback path block are equal, resulting in a feedback path transfer function of H(s)=1. 

Comparing the derived closed-loop transfer function from Equation 19 and substituting the 

appropriate transfer functions, the closed-loop transfer function of the temperature controller 

becomes Equation 24. This is solved using MATLAB® and the resulting transfer function is 

shown in Equation 25.  

 

𝑌(𝑠)

𝑋(𝑠)
=

𝐶(𝑠)∗𝑃(𝑠) 

1+𝐻(𝑠)∗𝐶(𝑠)∗𝑃(𝑠)
 ( 24 ) 
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𝑌(𝑠)

𝑋(𝑠)
= (

0.0112 𝑠5+ 10.08 𝑠4 + 7.231𝑠3+ 0.8923 𝑠2+ 0.004377 𝑠 + 1.183𝑒−06

1.011 𝑠5+ 12.42 𝑠4+ 7.44 𝑠3 + 0.893 𝑠2 + 0.004378 𝑠+ 1.183𝑒−06
) ( 25 ) 

 

Similar to the plant model, the closed-loop system for the temperature controller is stable and 

overdamped since its root locus never crosses the imaginary axis and all the poles are real, as 

seen in Figure 40 (Cheever). The plot’s poles and zeros are shown in Table 4.  

 

Table 4: Poles and zeros for closed-loop transfer function. 

Poles Zeros 

-11.6526 -899.4385 

-0.4631 -0.5615 

-0.1567 -0.1513 

-0.0048 -0.0048 

-0.0003 -0.0003 
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Figure 40: Root locus for compensated transfer function. 

 

The same PID terms found are used in the temperature controller PCB to ensure that the 

output response behaves as expected. In contrast to Figure 35, Figure 41 shows the measured 

smooth duty cycle and temperature changes expected from the applied PID terms. As expected, 

the output reaches steady state at around 7 seconds and there is very minor overshoot. This 

shows that using the linear model to tune the non-linear system yields acceptable results. 

 

x: poles 

o: zeros 
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Figure 41: Closed-Loop measurements for tuned controller output response. 

 

Testing Temperature Controller PCB 

The first test involves ensuring that the temperature controller regulates temperature 

despite disturbances in external temperature. This is done by allowing the controller to reach 

steady-state and observing the change that occurs as the oven ambient temperature is increased 

from 25 to 55°C. Figure 42 shows that the controller returns to its original setpoint temperature 

of 60°C without ever exceeding 0.1°C of error.   

 

Tuned Closed-Loop Plots of Duty-Cycle and Temperature Measurements vs Time 

Output Temperature 

Input Duty Cycle 
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Figure 42: Measured controller behavior as oven temperature increases. 

 

The second test performed is measuring duty cycle manually to ensure the controller’s 

digital pin outputs the expected values. This is possible by connecting the output PWM pin to an 

oscilloscope and using the cursors to measure duty cyle while the contoller is regulating the 

temperature of the SAW device. Table 5 shows the duty cycle measurements recorded for 

ambient temperatures ranging from 25°C to 60°C. Duty cycle is calculated by measuring the 

times when the PWM output pin is toggled high (powering heater) and low (not powering 

heater). The columns labeled heater on and heater off are the times during which the controller 

was on and off, respectively. The duty cycle percent is calculated by dividing the total time the 

PWM is high by the total time and multiplying this by 100.  
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Table 5: Controller duty cycle measurements. 

Oven Temperature (°C) Heater On (ms) Heater Off (ms) Duty Cycle (%) 

25 42 9 82.35294118 

30 42 10 80.76923077 

35 42 10 80.76923077 

40 33 10 76.74418605 

45 41 10 80.39215686 

50 32 19 62.74509804 

55 10 40 20 

60 10 40 20 

 

The maximum power supplied to the on-device heater by using the controller is 

calculated using a multimeter connected in series to measure current. The measurements are 

taken as soon as the power supply is turned on because it is at this moment that the difference 

between the read temperature and the setpoint is the largest. The controller setpoint is 60°C. The 

measurements recorded are shown below in Table 6. 
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Table 6: Power supplied to the on-device heater for a controller setpoint of 60°C. 

Oven Temperature (°C) Maximum Power (mW)  

25  22 V x 25.35 mA = 557.75 

30  22 V x 25.38 mA = 558.44 

35 22 V x 24.94 mA = 548.78 

40 22 V x 22.77 mA = 500.94 

45 22 V x 20.19 mA = 444.13 

50 22 V x 15.38 mA = 338.33 

55 22 V x 10.33 mA = 227.24  

60 22 V x 4.76 mA = 104.65  

 

The results from Tables 5 and 6 confirm that the controller is working as expected. Table 

5 shows that the duty cycle decreases from 82.35% to 20% as ambient temperature increases. 

Similarly, Table 6 shows that when the oven temperature is 25°C, a power of 557.75 mW is 

reached, whereas only 104.65 mW is measured when the oven temperature is at 60°C. Both 

tables confirm that the controller needs to use less power to regulate temperature at the setpoint 

as the ambient (oven) temperature increases. Note that the duty cycle for the controller is not 

constant as temperature is being regulated, meaning the duty cycles listed in Table 5 are actually 

the averages of several duty cycles.  
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Comparing Arduino® and Simulink® Results 

The output temperatures recorded should be same whether the controller is programmed 

from the Arduino® IDE or from Simulink® as long both are set to the same PID parameters, 

setpoint and sampling time. Having similar results for this section is important because the 

transfer function models obtained using Simulink® should be similar to the case when the 

controller is programmed using the Arduino® IDE.  These two methods of programming the 

controller are compared for the open-loop controller during the linear-region of operation by 

changing the duty cycle from 30% to 35%.  

As expected, both output responses seen in Figure 43 are very similar. This simply 

indicates that both are sending the expected PWM output value to heater.  

 



58 

 

 

Figure 43: Open-loop comparison between Arduino® IDE and Simulink® (linear).  

 

Next, the closed-loop linear data between Arduino® IDE and Simulink® are compared in Figure 

44. These are obtained by changing the setpoint temperature from 30°C to 35°C at the same 

time. There appears to be a difference during the setpoint change. This is possibly due to 

differences in the PID implementation. The Arduino® measurements appear to be more accurate 

because each new measurement is the average of 10 different measurements. 

 

Arduino vs Simulink Comparison Between Open-Loop Linear Measurements 
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Figure 44: Closed-loop linear comparison between Arduino® IDE and Simulink® (linear). 

 

Figure 45 checks for differences in closed-loop and non-linear measured temperature 

when programming the controller using the Arduino® IDE compared to using Simulink®. This 

plot shows minimal differences between the two ways of programming the controller. 

 

Arduino vs Simulink Comparison Between Closed-Loop Linear Measurements 
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Figure 45: Closed-loop non-linear data in Arduino® IDE and Simulink® (non-linear). 

  

Arduino vs Simulink Comparison Between Closed-Loop Non-Linear Measurements 
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CHAPTER 5: SAW RESULTS 

SAW Device Theory 

A SAW device uses two interdigital transducers (IDTs) on a piezoelectric substrate to 

convert an RF signal into an acoustic wave and back into an RF signal (Royer 59-60). SAW 

IDTs take advantage of the fact that the acoustic wave velocity is approximately 5 orders of 

magnitude slower than the speed of light in free-space in order to form compact delay lines 

(Brocato 14). In addition, its design versatility lends itself to other applications such as filters and 

signal processing (Brocato 9). An example of a SAW device is shown in Figure 46 (Morgan 5).  

 

  

Figure 46. Example of SAW device input and output IDTs (Morgan 5). 

 

 Both, the input and output IDTs are made up of inter-digitated metal electrodes connected 

to positive or negative bus bars. The RF input connects to the input IDT’s busbars, while the 

output connects to the output IDT’s busbars (Morgan 4). At the input, the applied voltage 

produces a periodic electric field, which produces a stress in the substrate material due to its 
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piezoelectric properties (Morgan 5). The output transducer’s bus bars connected to a load convert 

the acoustic wave back into an RF signal due to the piezoelectric effect’s reciprocity (Morgan 5).  

 The second-order effect of concern in this thesis is the effects of temperature variation in 

the device response. The delay can be described as the length between the input and output IDTs 

divided by the velocity of the wave, both of which depend on temperature variation (Morgan 

101). The velocity of the wave can be calculated using the temperature-dependent bulk constants 

of the substrate material, whereas the length is affected by thermal expansion (Morgan 101).  

SAW Device Packaging 

The SAW correlator is fabricated using the standard photolithography process shown in 

Appendix A. The fabricated devices are tested using the Cascade Probe and diced using a dicing 

saw. The device is glued onto a 20-pin package and wire-bonded using 1 mil gold wire to the 

package pins, as shown in Figure 47. The device embodiment consists of an input transducer and 

an output transducer surrounded by two aluminum thin film resistors. The RTD (red) is closer to 

the transducer and the heater (blue) surrounds the RTD. A coaxial cable is soldered to the pins 

connected to the input transducer in a common ground configuration. The signal, ground, signal 

outputs are connected to another coaxial cable. The packaged device is then soldered to the 

traces of the etched PCB using the pins on the package. Wires soldered to these PCB traces also 

connect the pins on the package to the temperature sensor and heater. 
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Figure 47: SAW correlator packaging and bonding. 

 

MATLAB® S21 Processing 

The transmission of the input RF signal is examined by first measuring S21 data in the 

expected frequency range of 850 MHz to 1050 MHz in Figure 48. It is possible to use the Vector 

Network Analyzer’s time-gating tool to process these measurements. However, doing this in 

MATLAB® provides more flexibility in manipulating the data for reporting. The measurements 

are done for oven temperatures ranging from 25 to 55°C and the controller kept off. The 

enclosed oven is turned off during the measurement to reduce measurement distortion. Figure 48 

shows that the non-gated frequency responses exhibit small ripples throughout a small range of 

frequencies. This is where the device response occurs.  

 



64 

 

 

Figure 48: S21 (dB) response of the SAW correlator for different oven temperatures (non time-

gated). 

 

The raw S21 data is first converted into time-domain using the inverse Fast-Fourier 

transform function in MATLAB® in Figure 49. Then, most of the electrical response is zeroed 

out through time-gating so that the device response remains.  The time data is zeroed from 0 to 

0.6 μs and then from 3 μs to the end. This essentially extracts the time period during which the 

device response occurs at and reduces RF feed-through or spurious reflections that occur outside 

this time period.   

 

Device Response 
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Figure 49: Time domain representation of S21 at 25°C (non time-gated).  

 

The next step is to convert the resulting time-domain response back into frequency domain using 

the Fast-Fourier transform. The resulting post-processed S21 frequency response is shown in 

Figure 50 for oven temperatures 25 to 55°C. At this step, it is now possible to observe the shifts 

in frequency that occur when a SAW correlator’s temperature changes. The frequency appears to 

decrease linearly as the temperature is increased from 25 to 55°C. These results are discussed 

further in the next section.  

 

Device Response 
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Figure 50: Post-processed S21 response of device for the different oven temperatures. 

 

Further post-processing can be applied to make the shift in frequency as temperature changes 

clearer. The typical method to identify changes in frequency is by cross-correlating the current 

frequency to a baseline frequency. Cross-correlation Φxy in the frequency domain is obtained for 

this experiment by using the following formula, where X(f) and Y(f) are the responses from 

Figure 50 at room and the temperature of interest, respectively. 

 

Φ𝑥𝑦 = 𝑋∗(𝑓)𝑌(𝑓), where * = complex conjugate ( 26 ) 
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For this experiment, cross-correlation in the frequency domain between each of the oven 

temperatures Y(f) and room temperature X(f) is performed in Figure 51.   

 

 

Figure 51: Cross-Correlated S21 for different oven temperatures. 

 

All of the post-processing shown in the steps above can be done using the lines of code shown in 

Appendix C. 

Frequency Shift as a Function of Temperature & PPM Calculation 

The shifts in frequency from the last section are recorded and plotted against temperature 

in Figure 52 for the controller off case. As expected, the plot shows a linear relationship between 

temperature and frequency shift. On average, the center frequency shifts 0.43 MHz for every 5°C 

increment in oven temperature. The maximum shift in frequency is 2.6 MHz.   
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Figure 52: Change in device center frequency when the controller is off. 

 

The S21 data is retaken for the case with the temperature controller on and regulating 

temperature at 60°C. The same post-processing procedure from the last section is repeated to 

produce Figure 53. As expected, there are minimal shifts in frequency. 
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Figure 53: S21 for different oven temperatures with controller on. 

 

The shifts in frequency are measured for seven different oven temperatures in order to evaluate 

the controller’s ability to maintain temperature stable at the setpoint. These are plotted against 

ambient temperature in Figure 54. The data is measured by first setting the oven to 55°C and 

letting it cool down slowly. These results show that the device’s center frequency is not a 

function of the oven temperature due to the controller maintaining a nearly constant temperature.  
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Figure 54: Change in frequency for closed-loop controller at different oven temperatures. 

 

The PPM change at each temperature is then calculated to describe the change in frequency in 

units of parts per million. This is done in Figures 55 and 56 from Figures 52 and 54 using 

Equation 27. In this equation, fcurrentT is the center frequency at the current temperature and froomT 

is the center frequency measured at room temperature.   

 

𝑃𝑃𝑀 =  
|𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇−𝑓𝑟𝑜𝑜𝑚𝑇|

𝑓𝑟𝑜𝑜𝑚𝑇
 ( 27 ) 
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Figure 55: PPM as a function of temperature when the controller is kept off. 

 

PPM varies mostly linearly as temperature of the device changes. The derivative of the line is 

found using Microsoft Excel to find a linear trendline in order to solve for PPM/°C. The 

generated equation of the line is shown in Equation 28 and its derivative results in 89.82 

PPM/°C, which is close to the expected value of 94 PPM/°C for Lithium Niobate (Yurish 160). T 

in Equation 28 is the x-axis of Figure 55 and PPM represents the y-axis. 

 

𝑃𝑃𝑀 = 89.82 𝑇 − 2291.3 ( 28 ) 
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By examining PPM with the controller on from Figure 56, it is possible to describe how 

well the controller regulates temperature. Changes in PPM/°C show the ability of the controller 

to maintain the device’s temperature stable as oven temperature changes. 

 

 

Figure 56: Closed-loop PPM as oven temperature changes. 

 

The worst-case PPM/°C occurs whenever the maximum change in PPM occurs. This occurs 

between 30°C, at 14.29 PPM, and 35°C at 4.48 PPM. PPM/°C is calculated in Equation 29 by 

finding the ratio of the largest PPM change over the temperature change it occurs on. 
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14.29−4.48 𝑃𝑃𝑀

35−30 °𝐶
=  

9.81 𝑃𝑃𝑀

5°C
= 1.962 𝑃𝑃𝑀/°C ( 29 ) 

Alternatively, this can be expressed as the worst PPM experienced over the entire range of 

temperature changes, as shown in Equation 30. 

 

14.29 𝑃𝑃𝑀

55−25 °𝐶
=  0.48 𝑃𝑃𝑀/°C ( 30 )  
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CHAPTER 6: CONCLUSION 

 A PWM-based PID controller for regulating temperature of a SAW correlator was 

implemented successfully using an on-wafer heater and RTD resistors. The accuracy of the 

controller is shown by its stability in the measured temperatures and by the low variation in 

frequency shift that amounted to a worst-case PPM experienced over 30°C of 0.48 PPM/°C. The 

developed linear and non-linear plant models were both shown to be good models of the plant. 

As shown in Table 7, the results did not show which is the better model. Therefore, using a linear 

model of at least 4th order is recommended because of simplicity and for easier implementation 

with other tools that may not allow for a Hammerstein-Wiener non-linear model.  

 

Table 7: Linear and non-linear model fit to measurement data. 

 Linear Model Non-Linear Model 

Closed-Loop 92.49% 91.43% 

Open-Loop 92.24% 94.29% 

  

 Future work would include developing a method of cooling the SAW correlator when it 

is in a hot environment. Combining the presented method of heating the device with a method 

for cooling would result in a controller capable of regulating temperature under any environment. 

One easy way of accomplishing this is by placing a Peltier device in proximity to the correlator 

and using another output PWM pin to drive it. The threshold for changing between heating and 

cooling is all controlled in programming.  
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Another possibility for future work is to develop a Graphical User Interface using 

MATLAB® App Designer (MathWorks, App Designer). Programming and editing the 

temperature controller using Simulink® requires installation of the program and basic know-how. 

Packaging an app designed in App Designer would fix both problems. A prototype for this is 

shown in Figure 57.  

 

 

Figure 57: GUI for temperature controller. 

 

 Although the thesis required measuring the temperature experienced by the SAW 

correlator, the method implemented is not the best way to measure temperature. Electronics in 

the temperature controller limit the environment temperature of this system. A more practical 
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method for temperature sensing involves using an antenna to transmit the device response using 

a SAW temperature sensor. The response, as shown throughout this thesis, can be used to sense 

temperature quite accurately after signal processing.  

  



77 

 

APPENDIX A: FABRICATION OF SAW DEVICE 
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1. The LiNbO3 wafer is prepared by rinsing it with deionized water, acetone, and methanol to get 

rid of contaminants. The mask is cleaned using acetone and methanol. Both are dried using 

Nitrogen.  

2. The wafer is placed on a spinner and adhesion promoter (hexamethyldisilazane) is added 

uniformly across the top using a disposable pipettes. It is important to ensure there are no 

bubbles before setting the spinner to 4000 RPM for 40 seconds.  

3. Positive photoresist is applied uniformly and the spinner is set to 4000 RPM for 40 seconds. A 

foam swab damped with acetone is used to remove the bead around the wafer before it stops 

spinning.  

4. The wafer is placed on a hot plate pre-heated to 100°C for 90 seconds. After 90 seconds, the 

wafer is placed on a metal plate while it cools down.  

5. The wafer is placed on the Karl Suss mask aligner with the flat side of the wafer aligned to the 

chuck. The substrate is exposed to UV light for 30 seconds.  

6. Once exposed, PLSI Type 2 is poured on a petri-dish. This is a 11:1 solution of 1 part PLST to 

11 parts deionized water. The wafer starts developing once it comes into contact with the 

developer. The petri dish is agitated in circular motions for 30-45 seconds until the wafer is 

developed. Once the features clear out, the substrate is rinsed with deionized water and dried 

with N2.  

7. The wafer is verified under a microscope for any flaws. After discarding the developer, the 

wafer is placed in the plasma cleaner for 30 seconds.  

8. The wafer is placed in the Electron Beam machine’s planetary for metallization. Step by step 

instructions for operating this machine are listed next to it.  
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9. The wafer is placed in an acetone-filled petri dish and the petri-dish in the ultrasonic bath with 

water. The petri-dish is removed once the excess metal comes off.  

10. The wafer is removed from the petri dish slowly while it is rinsed with acetone to ensure the 

excess metal does not stay on top of the wafer.  

11. The wafer is cleaned with methanol, dried with N2, and examined under microscope.  
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APPENDIX B: PID CONTROLLER ARDUINO® IDE CODE 
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#include <PID_v1.h> //PID library 

#include <Adafruit_ADS1015.h> //ADS 1115 ADC library 

Adafruit_ADS1115 ads(0x48);  

 

int PWM_pin = 3; //PWM output pin used to power heater  

float Voltage = 0.0;  

double Setpoint, Input, Output; //variables needed for PID library 

double time; //tracks time. Used for processing the data. 

 

int16_t adc0; //creates 16-bit integer for 16 bit ADC 

int analogPin= 0; 

float raw= 0.0; 

 

//Voltage Divider variables 

float Vin= 5.02; //Vin measured with DMM  

float Vout= 0.0; //Vout instantiated 

float R12= 994; //R12 measured with DMM 

float Rrtd= 0.0; //RTD instantiated 

 

float buffer= 0.0; 

float sensedtemperature= 0.0; //same as temperature_read 

float temperature_read = 0.0; //same as sensedtemperature 

 

double Kp=18, Ki=10.1, Kd=0;  //PID constants 

 

//create PID using corresponding variables 

PID myPID(&Input, &Output, &Setpoint,Kp,Ki,Kd, DIRECT);  

 

void setup() { 

  Serial.begin(9600);  

  ads.begin(); //call ADC library 

  ads.setGain(GAIN_ONE); //input reading range of +/-4.096V 

  pinMode(PWM_pin,OUTPUT); //set pin 3 as an output 

  Setpoint = 50; //sets setpoint 

  Input = temperature_read;   

} 

 

void loop() { 

  time = millis(); //counts time   

 

  temperature_read = readThermcouple(); //reads the temperature 

  Input = temperature_read;   

  myPID.Compute(); //Computes the PID results using current i/o values 

  analogWrite(PWM_pin,Output); //Write duty cycle to output PWM pin 
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  Serial.print(Input); //Prints temperature read to serial 

  Serial.print("\t"); 

  Serial.print(Output); //prints PWM duty cycle to serial 

  Serial.print("\t"); 

  Serial.println(time); //Prints time to serial 

  } 

} 

 

float reading_to_temp() { //function that converts reading to temperature 

float rawsum=0; //used to store sum of multiple readings 

for (int j=1; j<=10; j++) //averages 10 ADC readings for higher accuracy 

 { 

 rawsum += ads.readADC_SingleEnded(0);  

 } 

 raw=(rawsum/10); //average of 10 readings 

 

  Vout= (raw * 0.125)/1000; //output voltage measured using voltage divider 

  buffer= (5.02/Vout) -1; //obtains multiplication factor used to find Rrtd 

  Rrtd= R12 * buffer; //calculates RTD or R12 resistance  

  sensedtemperature=  (Rrtd-705.51)/(1.1481); //gets temperature using Rrtd 

  return sensedtemperature; 

  } 
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APPENDIX C: S21 PROCESSING MATLAB® CODE 
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pathNameIn = 'C:\' //folder containing file 

 

fileNameIn_25deg = sprintf( '25.txt' ); %store VNA data in variable 

headerLength = 1; %size of header in text file 

fid = fopen( [pathNameIn, fileNameIn_25deg] ); %open file in path 

txtData_25deg = textscan( fid,'%f %f %f %f %f %f %f %f %f’,'HeaderLines',headerLength, 

 'Delimiter',',' );  %imports data into columns  

fclose( fid ); %close the file that is open  

 

S21_25deg = (txtData_25deg{:,6})+1j*(txtData_25deg{:,7});%store columns 6 & 7 (s21) 

s21_25deg = ifft(S21_25deg); %convert frequency-domain data to time-domain data 

s21_25degFilt = s21_25deg; %copy variable contents 

s21_25degFilt(1:43) = 0; %sets to 0 undesired portion in time-domain data 

s21_25degFilt(178:end) = 0; %sets to 0 undesired portion in time-domain data 

S21_25degFilt = fft(s21_25degFilt); %convert back to frequency domain 

 

plot(freq,db(S21_25degFilt)) %plot S21 
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