
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2019

Learning Internal State Memory Representations from Learning Internal State Memory Representations from

Observation Observation

Josiah Wong
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Wong, Josiah, "Learning Internal State Memory Representations from Observation" (2019). Electronic
Theses and Dissertations, 2004-2019. 6718.
https://stars.library.ucf.edu/etd/6718

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F6718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6718?utm_source=stars.library.ucf.edu%2Fetd%2F6718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

LEARNING INTERNAL STATE MEMORY REPRESENTATIONS FROM OBSERVATION

by

JOSIAH MARK WONG
B.S. University of Central Florida, 2015
M.S. University of Central Florida, 2019

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Department of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2019

Major Professor: Avelino J. Gonzalez

c© 2019 Josiah Mark Wong

ii

ABSTRACT

Learning from Observation (LfO) is a machine learning paradigm that mimics how people learn

in daily life: learning how to do something simply by watching someone else do it. LfO has been

used in various applications, from video game agent creation to driving a car, but it has always

been limited by the inability of an observer to know what a performing entity chooses to remember

as they act in an environment. Various methods have either ignored the effects of memory or

otherwise made simplistic assumptions about its structure. In this dissertation, we propose a new

method, Memory Composition Learning, that captures the influence of a performer’s memory

in an observed behavior through the creation of an auxiliary memory feature set that explicitly

models the aspects of the environment with significance for future decisions, and which can be

used with a machine learning technique to provide salient information from memory. It advances

the state of the art by automatically learning the internal structure of memory instead of ignoring

or predefining it. This research is difficult in that memory modeling is an unsupervised learning

problem that we elect to solve solely from unobtrusive observation. This research is significant for

LfO in that it will allow learning techniques that otherwise could not use information from memory

to use a tailored set of learned memory features that capture salient influences from memory and

enable decision-making based on these influences for more effective learning performance. To

validate our hypothesis, we implemented a prototype for modeling observed memory influences

with our approach and applied it to simulated vacuum cleaner and lawn mower domains. Our

investigation revealed that MCL was able to automatically learn memory features that describe

the influences on an observed actor’s internal state, and which improved learning performance of

observed behaviors.

iii

To my beloved parents, Kathy and Daniel Wong, to my dear sister, Dee, and to my wonderful

poopers, Theo, Zacchaeus, Zeb, and Reph.

iv

ACKNOWLEDGMENTS

I am grateful to my parents, Kathy and Daniel Wong, for teaching me what it means to grow as a

person and to do my best in all things. I am thankful to my sister, Dee, for her encouragement and

voice of reason. I extend my appreciation to my friends (here and abroad) from the lab, JR, Awrad,

Vera, Ramya, Yuan, Kevin, Lauren, and Andres, who have inspired me down in the trenches to

never give up. Many thanks go to my family from Cru for bearing my burdens with me: Michael,

Patrick, Aaron, Jim, and Carol. I remain indebted to my committee for their guidance and life

lessons: Annie Wu, Paul Wiegand, Santiago Ontañón, Fei Liu, and especially my brilliant and

patient adviser, Avelino Gonzalez. Finally, I acknowledge and praise God Almighty for taking me

through thick and thin, for whose glory I present this research.

This research was partially supported by funding from the National Science Foundation (NSF) and

the National Training and Simulation Association (NTSA).

v

TABLE OF CONTENTS

LIST OF FIGURES . xv

LIST OF TABLES . xxv

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: LEARNING FROM OBSERVATION AND RELATED RESEARCH 6

2.1 Learning from Observation . 6

2.1.1 Formalization of Learning Tasks and Learning from Observation 7

2.1.2 A Brief History . 14

2.1.3 Memory-Aware Learning from Observation 17

2.1.4 Summary . 22

2.2 Related Research . 22

2.2.1 Temporal-Based Learning . 22

2.2.2 Memory Models . 30

2.2.3 Context . 37

2.3 Imitation Learning from Observation . 47

vi

2.4 Summary . 57

CHAPTER 3: PROBLEM DEFINITION . 58

3.1 General Problem . 58

3.2 Specific Problem . 58

3.3 Hypothesis . 59

3.4 Limitations of the State of the Art Addressed by Dissertation Research 59

3.5 Contributions . 61

CHAPTER 4: BEHAVIORAL REPRESENTATIONS . 62

4.1 Behavioral Agents . 63

4.2 The XYZ Domain . 68

4.3 Case Based Reasoning Conventions . 73

4.4 Temporal Backtracking . 76

4.5 Memory Features . 88

4.5.1 Memory Features - Conceptual Description 88

4.5.2 Memory Features - Formal Description 95

4.6 Behavioral Representations Summary . 100

vii

CHAPTER 5: BASELINE CONCEPTUAL APPROACH 102

5.1 High Level Conceptual Approach . 102

5.2 Memory Feature Extraction . 109

5.2.1 Memory Feature Extraction Algorithm 109

5.2.2 Memory Temporal Backtracking Analysis 115

5.2.3 Memory Feature Extraction Example . 119

5.3 Memory Feature Refinement . 138

5.3.1 Memory Feature Refinement Algorithm 138

5.3.2 Memory Feature Refinement Example . 144

5.4 Trace Enhancement . 150

5.5 Assessment of MCLv0 Approach . 154

5.5.1 The Vacuum Cleaner Domain . 154

5.5.2 Experiments and Results . 156

5.6 Minimal Conceptual Approach Summary . 164

CHAPTER 6: COMPREHENSIVE CONCEPTUAL APPROACH 165

6.1 Baseline Approach Synopsis . 165

6.1.1 Memory Features . 166

viii

6.1.2 Memory Composition Learning, Version 0 169

6.1.3 Baseline Memory Feature Extraction . 171

6.1.4 Baseline Memory Feature Refinement . 173

6.1.5 Baseline Trace Enhancement . 174

6.2 Limitations of MCLv0 Approach . 175

6.3 MCLvN Approach Overview . 176

6.3.1 MCLvN Preprocessing Overview . 177

6.3.2 MCLvN Memory Feature Extraction Overview 179

6.3.3 MCLvN Memory Feature Refinement Overview 179

6.3.4 MCLvN Trace Enhancement Overview 180

6.3.5 MCLvN Holistic Overview . 181

6.4 Trace Preprocessing . 181

6.5 Improved Memory Feature Extraction . 182

6.5.1 Comparison of MF Extraction Methods 191

6.5.1.1 MCLv0 Memory Feature Extraction 191

6.5.1.2 MCLvN Memory Feature Extraction 198

6.6 Improved Memory Feature Refinement . 209

ix

6.7 Improved Trace Enhancement . 225

6.8 Comprehensive Approach Summary . 225

CHAPTER 7: PROTOTYPE IMPLEMENTATION . 226

7.1 System Inputs and Outputs . 226

7.2 Code Implementation . 230

7.3 Prototype Summary . 235

CHAPTER 8: EXPERIMENTS AND RESULTS . 236

8.1 Description of Experiments . 236

8.1.1 Success Criteria . 237

8.1.2 Specific Tests . 237

8.1.3 Experimental Setup . 238

8.2 Vacuum Cleaner Experiments . 239

8.2.1 Vacuum Cleaner Domain Description — Recap 239

8.2.2 Results — MCL Version 0 . 240

8.2.3 Results — MCL Version N . 241

8.2.3.1 Analysis of Learned Memory Features 242

8.2.3.2 Analysis of Learning Performance 245

x

8.3 Lawn Mower Experiments . 248

8.3.1 Lawn Mower Simulation Domain . 248

8.3.2 Test Procedures . 254

8.3.3 Experiments . 257

8.3.4 Results — MCL Version N . 261

8.3.4.1 Human AJ . 263

8.3.4.2 Human AK . 273

8.3.4.3 Human AW . 282

8.3.4.4 Human CA . 290

8.3.4.5 Human CH . 298

8.3.4.6 Human D . 306

8.3.4.7 Human G . 314

8.3.4.8 Human L . 323

8.3.4.9 Human P . 330

8.3.4.10 Human T . 339

8.3.4.11 Human W . 347

8.3.4.12 Comparison with Temporal Backtracking 355

xi

8.3.4.13 Overall Results . 365

8.4 Discussion . 374

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 375

9.1 Summary . 375

9.2 Issues Encountered . 379

9.2.1 Test Domain Selection . 379

9.2.2 Instructing Human Subjects . 381

9.2.3 Incorporating Context . 382

9.2.3.1 Defining Memory Contexts . 383

9.2.3.2 Capturing Correlated Memory Influence 384

9.2.4 Considerations for Continuous Data . 386

9.2.5 Memory Feature Extraction Hyperparameter Tuning 387

9.2.6 Feature Imbalance . 388

9.3 Conclusions . 389

9.4 Future Research . 391

9.4.1 Algorithmic Improvements . 391

9.4.1.1 Combining Extraction and Refinement 391

xii

9.4.1.2 Alternative Discretization Distributions 393

9.4.1.3 Improved Memory Feature Specialization 394

9.4.1.4 Incorporating Parallelism . 394

9.4.1.5 Feature Discrimination in Memory Feature Extraction 394

9.4.1.6 Alternative Casebase Representations 395

9.4.1.7 Automatic Hyperparameter Tuning 395

9.4.2 More Complex Memory Features . 396

9.4.3 Behavioral Analysis . 398

9.4.4 Informing Transfer Learning . 399

9.4.5 High-Density Applications . 403

9.4.6 Informing General Decision Making . 405

9.4.7 A New Learning from Observation Algorithm 407

9.4.8 Integration with Feature Construction . 410

9.4.9 Proving Memory Coverage . 411

9.5 Afterword . 412

APPENDIX A: ANALYSIS OF MEMORY FEATURE EXTRACTION ALGORITHMIC

COMPLEXITY . 413

xiii

A.1 MCLv0 Extraction Algorithmic Complexity . 414

A.2 MCLvN Extraction Algorithmic Complexity . 416

APPENDIX B: IRB LETTER OF APPROVAL FOR LAWN MOWER STUDY 419

APPENDIX C: DESIGN OF LAWN MOWER SIMULATION 421

APPENDIX D: LAWN MOWER STUDY SURVEY RESULTS 440

APPENDIX E: PERMISSIONS FOR REPRINTING FIGURES 458

LIST OF REFERENCES . 470

xiv

LIST OF FIGURES

2.1 The LfO framework, reprinted with permission from [58]. 8

2.2 Classification of LfD policy derivation methods, adapted with permission

from [4]. 11

2.3 A recurrent neural network (RNN), adapted with permission from [26]. . . . 25

2.4 An unfolded recurrent neural network, adapted with permission from [26]. . . 26

2.5 The vanishing gradient problem in RNNs, reprinted with permission from [26]. 27

2.6 LSTM neuron, reprinted with permission from [26]. 28

2.7 LSTM with preserved gradient, reprinted with permission from [26]. 29

2.8 CLARION architecture, reprinted with permission from [73]. 33

2.9 Memory systems in the brain, reprinted with permission from [38]. 34

2.10 An active context in CxBR, reprinted with permission from [24]. 38

2.11 Generic context hierarchy, reprinted with permission from [24]. 39

2.12 Sample CxBR context map, reprinted with permission from [24]. 40

2.13 Example Contextual Graph, reprinted with permission from [10] 42

2.14 The Cooperating Context Method, reprinted with permission from [33] 44

2.15 COPAC, reprinted with permission from [82]. 46

xv

4.1 XYZ Domain Finite State Machine . 68

4.2 Finite state machine for ABB example . 89

5.1 MCL Full Approach . 103

5.2 MCLv0 Pipeline . 106

5.3 Vacuum cleaner world, reprinted with permission from [58]. 155

5.4 Bayes Net Learning Performance . 157

5.5 J.48 Learning Performance . 158

5.6 Multilayer Perceptron Learning Performance 158

6.1 MCL Comprehensive Approach . 177

6.2 Memory Temporal Backtracking Plus — Flowchart 183

6.3 Tree Memory Temporal Backtracking Plus — Flowchart 189

6.4 Tree Memory Temporal Backtracking Plus — Addressing Rejected Cases . . 190

6.5 MCLv0 MF Extraction — Iteration 1, Recursion Level 1 191

6.6 MCLv0 MF Extraction — Iteration 1, Recursion Level 2 192

6.7 MCLv0 MF Extraction — Iteration 1, Recursion Level 3 193

6.8 MCLv0 MF Extraction — Iteration 2, Testing VMF 194

6.9 MCLv0 MF Extraction — Iteration 2, Testing TMF 194

xvi

6.10 MCLv0 MF Extraction — Iteration 2, Extracting Raw MF 195

6.11 MCLv0 MF Extraction — Iteration 3, Testing VMF 196

6.12 MCLv0 MF Extraction — Iteration 3, Testing TMF 197

6.13 MCLv0 MF Extraction — End Result . 197

6.14 MCLvN MF Extraction — Memory Singularity Principle, Part 1 199

6.15 MCLvN MF Extraction — Memory Singularity Principle, Part 2 200

6.16 MCLvN MF Extraction — MF Pruning by MSP, Part 1 201

6.17 MCLvN MF Extraction — MF Pruning by MSP, Part 2 202

6.18 MCLvN MF Extraction — Memory Singularity Principle, New Case 204

6.19 MCLvN MF Extraction — Tree Extraction, Part 1 205

6.20 MCLvN MF Extraction — Tree Extraction, Part 2 206

6.21 MCLvN MF Extraction — Tree Extraction, Part 3 207

6.22 MCLvN MF Extraction — Tree Extraction, End Result 208

6.23 MF Refinement without Context . 210

6.24 MF Refinement with Context . 210

6.25 MF Refinement Overview — Part 1 . 212

6.26 MF Refinement Overview — Part 2 . 214

xvii

6.27 MF Refinement — Flowchart . 215

6.28 MF Specialization Example — Part 1 . 218

6.29 MF Specialization Example — Part 2 . 219

6.30 MF Specialization Example — Part 3 . 219

6.31 MF Specialization Example — Part 4 . 220

6.32 MF Specialization Example — Part 5 . 221

6.33 MF Specialization Example — End Result 221

7.1 Class UML diagram for MCLS . 232

7.2 Sequence UML diagram for MCLS . 234

8.1 Vacuum Cleaner Bayes Network Learning Performance 246

8.2 Vacuum Cleaner J.48 Decision Tree Learning Performance 246

8.3 Vacuum Cleaner Multilayer Perceptron Learning Performance 247

8.4 Lawn Mower Simulation Game Play . 249

8.5 Sprinkler phases in Lawn Mower Simulation. 253

8.6 Pie wedges. 255

8.7 Combination of joystick inputs into one feature 256

8.8 LMS Results, Human AJ, Bayes Net, Cross Validation 269

xviii

8.9 LMS Results, Human AJ, Bayes Net, Train/Test Split 271

8.10 LMS Results, Human AJ, J.48 Tree, Cross Validation 271

8.11 LMS Results, Human AJ, J.48 Tree, Train/Test Split 272

8.12 LMS Results, Human AK, Bayes Net, Cross Validation 279

8.13 LMS Results, Human AK, Bayes Net, Train/Test Split 280

8.14 LMS Results, Human AK, J.48 Tree, Cross Validation 281

8.15 LMS Results, Human AK, J.48 Tree, Train/Test Split 281

8.16 LMS Results, Human AW, Bayes Net, Cross Validation 288

8.17 LMS Results, Human AW, Bayes Net, Train/Test Split 288

8.18 LMS Results, Human AW, J.48 Tree, Cross Validation 289

8.19 LMS Results, Human AW, J.48 Tree, Train/Test Split 289

8.20 LMS Results, Human CA, Bayes Net, Cross Validation 296

8.21 LMS Results, Human CA, Bayes Net, Train/Test Split 296

8.22 LMS Results, Human CA, J.48 Tree, Cross Validation 297

8.23 LMS Results, Human CA, J.48 Tree, Train/Test Split 297

8.24 LMS Results, Human CH, Bayes Net, Cross Validation 304

8.25 LMS Results, Human CH, Bayes Net, Train/Test Split 304

xix

8.26 LMS Results, Human CH, J.48 Tree, Cross Validation 305

8.27 LMS Results, Human CH, J.48 Tree, Train/Test Split 305

8.28 LMS Results, Human D, Bayes Net, Cross Validation 311

8.29 LMS Results, Human D, Bayes Net, Train/Test Split 312

8.30 LMS Results, Human D, J.48 Tree, Cross Validation 313

8.31 LMS Results, Human D, J.48 Tree, Train/Test Split 313

8.32 LMS Results, Human G, Bayes Net, Cross Validation 320

8.33 LMS Results, Human G, Bayes Net, Train/Test Split 320

8.34 LMS Results, Human G, J.48 Tree, Cross Validation 322

8.35 LMS Results, Human G, J.48 Tree, Train/Test Split 322

8.36 LMS Results, Human L, Bayes Net, Cross Validation 328

8.37 LMS Results, Human L, Bayes Net, Train/Test Split 329

8.38 LMS Results, Human L, J.48 Tree, Cross Validation 329

8.39 LMS Results, Human L, J.48 Tree, Train/Test Split 330

8.40 LMS Results, Human P, Bayes Net, Cross Validation 337

8.41 LMS Results, Human P, Bayes Net, Train/Test Split 337

8.42 LMS Results, Human P, J.48 Tree, Cross Validation 338

xx

8.43 LMS Results, Human P, J.48 Tree, Train/Test Split 338

8.44 LMS Results, Human T, Bayes Net, Cross Validation 345

8.45 LMS Results, Human T, Bayes Net, Train/Test Split 345

8.46 LMS Results, Human T, J.48 Tree, Cross Validation 346

8.47 LMS Results, Human T, J.48 Tree, Train/Test Split 346

8.48 LMS Results, Human W, Bayes Net, Cross Validation 353

8.49 LMS Results, Human W, Bayes Net, Train/Test Split 353

8.50 LMS Results, Human W, J.48 Tree, Cross Validation 354

8.51 LMS Results, Human W, J.48 Tree, Train/Test Split 354

8.52 LMS Results, Human AJ, Cross Validation, Cross-Methods Comparison . . . 356

8.53 LMS Results, Human AK, Cross Validation, Cross-Methods Comparison . . 357

8.54 LMS Results, Human AW, Cross Validation, Cross-Methods Comparison . . 357

8.55 LMS Results, Human CA, Cross Validation, Cross-Methods Comparison . . . 358

8.56 LMS Results, Human CH, Cross Validation, Cross-Methods Comparison . . . 359

8.57 LMS Results, Human D, Cross Validation, Cross-Methods Comparison . . . 360

8.58 LMS Results, Human G, Cross Validation, Cross-Methods Comparison . . . 360

8.59 LMS Results, Human L, Cross Validation, Cross-Methods Comparison 361

xxi

8.60 LMS Results, Human P, Cross Validation, Cross-Methods Comparison 362

8.61 LMS Results, Human T, Cross Validation, Cross-Methods Comparison 362

8.62 LMS Results, Human W, Cross Validation, Cross-Methods Comparison . . . 363

8.63 LMS Results, Human W, Cross Validation, Cross-Methods Comparison . . . 364

8.64 LMS Results, Human Overall, Bayes Net, Cross Validation 368

8.65 LMS Results, Human Overall, J.48 Tree, Cross Validation 368

8.66 LMS Results, Human Overall, Bayes Net, Train/Test Split 370

8.67 LMS Results, Human Overall, J.48 Tree, Train/Test Split 370

9.1 Analyzing Memory Features with Tree Structure 392

9.2 Convolutional Network. Reprinted with permission from [42]. 404

C.1 LMS Scenario 1. Simulation entity introduced: Grass. 423

C.2 LMS Scenario 2. Simulation entity introduced: Dark Grass. 424

C.3 LMS Scenario 3. Simulation entity introduced: Rocks. 426

C.4 LMS Scenario 4. Features grass, dark grass, and rocks. 427

C.5 LMS Scenario 5. Simulation entity introduced: Ground hogs. 428

C.6 LMS Scenario 6. Simulation entity introduced: Gold pots. 429

C.7 LMS Scenario 7. Simulation entity introduced: Snakes. 431

xxii

C.8 LMS Scenario 8. Features snakes. 432

C.9 LMS Scenario 9. Simulation entity introduced: Leprechauns. 434

C.10 LMS Scenario 10. Simulation entity introduced: Sprinklers. 435

C.11 LMS Scenario 11. Features sprinklers. 436

C.12 LMS Scenario 12. Simulation entity introduced: Fairies. 437

C.13 LMS Scenario 13. Features fairies. 438

D.1 Lawn Mower Survey – Gender . 442

D.2 Lawn Mower Survey – Age . 443

D.3 Lawn Mower Survey – Major . 443

D.4 Lawn Mower Survey – Joystick Experience 444

D.5 Lawn Mower Survey – Mowing Experience 444

D.6 Lawn Mower Survey – Naturalness of Controls 445

D.7 Lawn Mower Survey – Simulation Realistic Perception 446

D.8 Lawn Mower Survey – Ease of Understanding Mechanics 447

D.9 Lawn Mower Survey – Ease of Remembering Locations 448

D.10 Lawn Mower Survey – Manageability of Entity Quantities 449

D.11 Lawn Mower Survey – Required Memory Per Entity 450

xxiii

D.12 Lawn Mower Survey – Required Memory Overall 452

xxiv

LIST OF TABLES

4.1 Case Base for XYZ Agent . 74

4.2 XYZ Agent Case Base from Two Complete Runs 76

4.3 Temporal Backtracking XYZ Case Base . 80

4.4 Temporal Backtracking XYZ Example - Iteration 1 82

4.5 Temporal Backtracking XYZ Example - Iteration 2 83

4.6 Temporal Backtracking XYZ Example - Iteration 3 84

4.7 Temporal Backtracking XYZ Example - Iteration 4 84

4.8 Temporal Backtracking XYZ Example - Iteration 5 85

4.9 Temporal Backtracking XYZ Example - Iteration 6 86

4.10 Temporal Backtracking XYZ Example - Iteration 7 87

4.11 Simple Letter Sequence . 88

4.12 One-to-One Mapping From Internal Run Awareness to Next Observed Run

Perception . 95

4.13 Value-Back MF for ABB Example . 98

4.14 Time-Back MF for ABB Example . 99

5.1 XYZ Case Base: Unique Cases . 120

xxv

5.2 Memory Temporal Backtracking Iterations - Test Run: . . . a−→ X 121

5.3 Memory Temporal Backtracking Iterations - Test Run: . . . b−→ X 121

5.4 Memory Temporal Backtracking Iterations - Value-Back MF Test Run: . . . a−→

X . 123

5.5 Memory Temporal Backtracking Iterations - Time-Back MF Test Run: . . . a−→

X . 123

5.6 Memory Temporal Backtracking Iterations - Value-Back MF Test Run: . . . b−→

X . 124

5.7 Memory Temporal Backtracking Iterations - Time-Back MF Test Run: . . . b−→

X . 124

5.8 Memory Temporal Backtracking Iterations - Test Run: . . . Y 125

5.9 Temporal Backtracking XYZ Unique Cases 126

5.10 Memory TB Iterations for Test Run Ending with State Z 127

5.11 Memory TB Iterations for Test Run Ending with State Z 128

5.12 Memory TB Iterations for Test Run Ending with State Z with Value-Back MF 130

5.13 Memory TB Iterations for Test Run Ending with State Z with Value-Back MF 131

5.14 Memory TB Iterations for Test Run Ending with State Z with Time-Back MF 132

5.15 MemTB, Recursion Level 2, Test Run Ending with State Z 133

5.16 MemTB, Recursion Level 2, Test Run Ending with State Z 134

xxvi

5.17 MemTB, Recursion Level 2, Test Run Ending with State Z, Value-Back MF . 135

5.18 Memory TB Iterations for Test Run Ending with State Z, Time-Back MF . . 136

5.19 Extracted Memory Features, XYZ Example 137

5.20 Extracted Memory Features, XYZ Example 145

5.21 XYZ Example, Proportions in Case Base . 146

5.22 XYZ Example, Memory Feature Analysis 147

5.23 XYZ Example, Trace Sample . 152

5.24 XYZ Example, Memory-Enhanced Trace Sample 153

5.25 F1 Scores for MCLv0 Evaluation . 159

6.1 Example Trace with Two Features . 167

6.2 Example Trace with One Feature . 168

6.3 Example Trace with Value-Back Memory Feature 168

6.4 Example Trace with Time-Back Memory Feature 169

6.5 How MCLvN address limitations in MCLv0 181

7.1 Example header file contents . 227

7.2 Example data file contents . 228

xxvii

8.1 Vacuum Cleaner Agents . 240

8.2 MF Counts for Vacuum Cleaner . 244

8.3 Lawn Mower simulation entities . 251

8.4 Abbreviations for Lawn Mower Scenarios 257

8.5 Action-Based Memory Parameters – Human AJ 263

8.6 State-Based Memory Parameters – Human AJ 264

8.7 State/Action-Based Memory Parameters – Human AJ 265

8.8 Action-Based Memory Parameters – Human AK 273

8.9 State-Based Memory Parameters – Human AK 274

8.10 State/Action-Based Memory Parameters – Human AK 275

8.11 Action-Based Memory Parameters – Human AW 282

8.12 State-Based Memory Parameters – Human AW 283

8.13 State/Action-Based Memory Parameters – Human AW 284

8.14 Action-Based Memory Parameters – Human CA 290

8.15 State-Based Memory Parameters – Human CA 291

8.16 State/Action-Based Memory Parameters – Human CA 292

8.17 Action-Based Memory Parameters – Human CH 298

xxviii

8.18 State-Based Memory Parameters – Human CH 299

8.19 State/Action-Based Memory Parameters – Human CH 300

8.20 Action-Based Memory Parameters – Human D 306

8.21 State-Based Memory Parameters – Human D 307

8.22 State/Action-Based Memory Parameters – Human D 308

8.23 Action-Based Memory Parameters – Human G 314

8.24 State-Based Memory Parameters – Human G 315

8.25 State/Action-Based Memory Parameters – Human G 316

8.26 Action-Based Memory Parameters – Human L 323

8.27 State-Based Memory Parameters – Human L 324

8.28 State/Action-Based Memory Parameters – Human L 325

8.29 Action-Based Memory Parameters – Human P 331

8.30 State-Based Memory Parameters – Human P 332

8.31 State/Action-Based Memory Parameters – Human P 333

8.32 Action-Based Memory Parameters – Human T 339

8.33 State-Based Memory Parameters – Human T 340

8.34 State/Action-Based Memory Parameters – Human T 341

xxix

8.35 Action-Based Memory Parameters – Human W 347

8.36 State-Based Memory Parameters – Human W 348

8.37 State/Action-Based Memory Parameters – Human W 349

8.38 Baseline F1 scores . 367

xxx

CHAPTER 1: INTRODUCTION

Learning from Observation (LfO) of others is a natural form of learning. From a young age, we

learn how to perform a variety of tasks, from playing sports to operating complex machinery, by

watching others do it. The same kind of learning has been implemented in computer systems for

various applications, such as driving a car [18] [66] [70], controlling video game agents [50] [55],

flying an airplane [63] [84], learning dance movements in robots [51], learning how to construct

parts with machinery [85], and playing simulated soccer [20]. In each of these examples, an actor

entity (human or computer-controlled) performs a task or exhibits a behavior (based on potentially

numerous and complex external and internal influences) which a learning entity observes. Then,

the learning entity learns to perform the actions based on these observations and to subsequently

act in the same manner as the actor, even if the actor entity’s behavior was not optimal for achieving

the objective of the behavior. Thus, the actor does not need to be an “expert” at performing the

task.

LfO is an appealing learning method for simulated and robotic agents for several reasons. First,

LfO allows non-technical subject matter experts (SMEs) to impart their knowledge to a learn-

ing agent without having to specify the constraints and nuances in the knowledge in a machine-

readable representation; the formalization of such knowledge is transferred directly from the ac-

tor to the learning agent through the learning system [20]. Additionally, it may be difficult for

SMEs to articulate certain aspects of their knowledge; such implicit knowledge is more readily

shared through a demonstration of the task [66]. Furthermore, certain applications benefit from the

creation of agents that perform in a human-like manner rather than optimally or “by-the-book”,

such as military simulations where soldiers can suffer from suboptimal conditions such as fatigue

[18]. Finally, LfO can automate significant parts of the knowledge transfer process and lead to

a comparable outcome to that of the traditional knowledge engineering approach [22], where a

1

knowledge engineer interviews a SME and then manually codifies the SME’s knowledge into a

machine-understandable representation. This was shown by Fernlund et. al. [18] through a direct

comparison of LfO agents and hand-crafted agents. Thus, LfO has the potential to more efficiently

and more accurately transfer knowledge from an actor to a learning agent than traditional knowl-

edge engineering.

Various challenges in LfO have been investigated in the literature, such as learning high-level be-

haviors [72], extending LfO to team-based behaviors [35], using LfO to predict actor behavior [17],

and using LfO to bootstrap the experiential learning of high-performing and humanlike behaviors

[70]. However, all these LfO investigations have been limited to learning reactive behaviors; that

is, behaviors whose only input is the currently (observable) perception of the environment and

not any (unobservable) internal influences on the actor being observed. However, it is possible

for an actor’s behavior to be influenced by previously observed events or environmental features

that are recalled and processed internally by the actor. It is therefore essential for LfO algorithms

to account for unobservable internal influences, specifically memory of past events, in order to

accurately learn behaviors that rely upon this information.

To address this issue, a few studies have developed techniques to explicitly learn actor behaviors

that reason from environmental perceptions as well as from unobservable internal states. An actor’s

internal state is defined as “everything that the [actor] remembers from previous states” [58] and

it depends on “past events or actions that are not in the current perceptual state” [55]. However,

the way an actor processes previous states or how the actor represents their internal state varies

between studies. The first approach to learning behaviors that reason using an internal state (also

called state-based behaviors) uses Case-Based Reasoning (CBR) [20] [27]. This approach consults

a store of records of the actor’s behavior and uses the record that is most similar to a given situation

to determine how to behave next. The second approach to learning state-based behavior represents

the internal state explicitly in a probabilistic model [58] [76]. It represents conditional probabilities

2

for each time step and uses them to learn stochastic state-based behaviors.

The LfO studies in the literature that learn behaviors that require memory of events and actions

from an arbitrary number of time steps in the past are limited in two important ways. In the

CBR approach, reasoning is limited solely to what has been explicitly observed and “does not try

to learn what information influences the internal state. If this information was learnt, the agent

could attempt to maintain the state rather than infer it on every retrieval” in CBR [20, p. 140].

If the features influencing internal state were learned, then it would no longer be necessary to

reconstruct internal state through comparison of arbitrarily long history segments. Also, behaviors

with complex internal state structures may require large case libraries to properly learn, which

could be computationally expensive to search during CBR’s search and retrieval process [20].

In the probabilistic approach, the number of possible values that can be assumed by the internal

state of the model must be finite and discrete [58, p. 16, 33]. This is because the actor’s internal

state “is not observable, and thus, if no assumption is made on its structure, in the general case,

there is no direct way to learn its probability distribution” [58, p. 13]. Therefore, the set of possible

internal state values is defined a priori in the probabilistic approach. It would be better for a

learning agent to automatically infer the best representation for its internal state for learning an

observed state-based behavior. Then, the manner by which a learning agent processes events from

its history can be tailored to the reasoning process of a specific observed actor.

One example of memory influence in human behavior is that of seeking a supply of gasoline

while driving on an interstate highway. Suppose that a woman is driving on an interstate road and

notices that the gasoline gauge shows that the fuel tank is nearly empty. She must stop for gas, then

continue on her journey. Upon brief introspection, the woman remembers that two minutes ago,

she saw a sign that said, “Gas station — 5 miles”. She then proceeds to change lanes so that she

can make the next exit for the gas station. Even though the woman did not anticipate the need for

3

gas when she saw the sign, she filed it away in memory so that it could later be retrieved and used

in her decision to exit the interstate. To learn this behavior, a memory analysis tool would need

to determine that the signs for upcoming gas stations should be part of what to remember because

they had some utility for future decisions.

Another example of memory influence in human behavior involves submarine combat. Suppose

that a naval commander is in charge of a submarine on a mission in enemy waters. When the

submarine’s sonar readings indicate the presence of another underwater entity, possibly an enemy

craft, the commander orders the crew to go on high alert. A while later, the sonar readings no

longer detect the entity. However, the commander by no means lessens the alert level of the sub-

marine because the potentially hostile entity could still be there, temporarily undetected. Thus,

the memory of the sonar readings still bears significance for the commander’s subsequent actions,

even when the sonar readings have gone away. To learn this behavior, a memory analysis tool

would need to determine how long the sonar readings remained important to the naval commander.

To address the needs outlined above, we introduce our approach called Memory Composition

Learning (MCL), a memory analysis process that allows a learning agent to automatically infer

unobservable internal state information that approximates how an observed actor uses memory of

past events for reasoning. Given a set learning traces of an observed actor’s behavior, MCL learns

which features from previous environmental states have the greatest potential for informing the

actor’s decisions, how they should be remembered (represented), and for how long. MCL’s output

is a set of memory features that codify relevant memory influences on an observed actor’s behav-

ior, specifically what should be remembered and how it should be remembered, and these are used

to create a set of memory-enhanced learning traces with information from those memory features

at each time step. The enhanced traces and set of memory features can be used with preexisting

machine learning algorithms, designed for learning reactive behaviors, because the enhanced trace

and memory features remove the need for an agent to retrieve past feature information from its

4

history. Our approach, therefore, makes learning state-based behaviors conform to the Markov as-

sumption, that all information pertinent to decision-making is consolidated within the current state

and not distributed over any past states of the behavior.

This dissertation is structured as follows. In Chapter 2, we discuss the literature for LfO and related

research in greater detail. Then, our problem definition is outlined in Chapter 3. Next, we present

preliminary discussions concerning representations of behavior in Chapter 4. This is followed by

a description of our conceptual approach to our problem in Chapter 5, which sets the foundation

for our discussion of our comprehensive conceptual approach in Chapter 6 and the prototype that

implements our approach (Chapter 7). In Chapter 8, we evaluate our work to assess our hypothesis

through robust human subject testing. Finally, we present a summary, conclusions, and future work

in Chapter 9.

5

CHAPTER 2: LEARNING FROM OBSERVATION AND RELATED

RESEARCH

Learning from Observation (LfO) has made many strides toward automating the knowledge acqui-

sition process, traditionally carried out by a knowledge engineer [22]. One accepted limitation of

the LfO learning paradigm is that no amount of observation can reveal the precise machinations of

an observed entity’s internal cognition beyond speculative inference. Therefore, in addition to the

current trends in LfO, we discuss several fields of research that have provided insights into how

to maximize the inferential power of LfO techniques (e.g. leveraging memory). Such fields of

research include temporal-based learning, memory models, and contextual reasoning.

2.1 Learning from Observation

LfO is “a subfield of machine learning that studies how to learn behavior from observation or

demonstration” [58, p. 3]. The actions of learning and behaving are done by agents. An agent

is an entity that perceives the environment through sensors, and interacts with the environment

through affectors to achieve some goal [20]. Thus, LfO is the process of transferring knowledge

from an observed actor (possibly, but not necessarily a human) to a learning agent. LfO is also

referred to in the literature as Learning from Demonstration [4], Apprenticeship Learning [1], and

Programming by Demonstration [14]. However, in LfO, the actor is not assumed to be a knowing

or willing participant in the learning process, thus distinguishing LfO from other research areas

that are otherwise very similar. Ontañón, Montaña, and Gonzalez [57] differentiate LfO from

other forms of machine learning by stating that “[inputs] to the learning process are temporally

based. In supervised learning we have problem/solution pairs, in unsupervised learning, only

problems, and in reinforcement learning we have a reward signal. In LfO we have traces that

6

contain the evolution of the environment over time while the actor is executing actions to achieve a

task.” [57, p. 2]. In other words, LfO and standard supervised learning are very similar except for

how their inputs express cause-effect relationships between a problem and its solution. Standard

supervised learning uses training samples (assumed to be independent of each other) that encode

explicit cause-effect relationships in the form of problem/solution pairs. In LfO, any cause-effect

relationships are hidden implicitly and loosely within a trace of someone’s observed performance.

In LfO, a learning algorithm is expected to somehow either identify those problem/solution pairs

or to learn the procedural knowledge from the trace as a whole. It is in the context of the specific

needs of the LfO paradigm that our research is situated.

In order to summarize the state of the art in LfO and emphasize the novelty, difficulty, and signif-

icance of our research, we first formalize the learning tasks undertaken by LfO, then we present a

brief history of how LfO has evolved to its current standing, and finally we discuss the accomplish-

ments and limitations of the most relevant LfO works with regard to the specific problem addressed

by this research.

2.1.1 Formalization of Learning Tasks and Learning from Observation

The LfO task is formally defined in [58]. For a given domain, the interaction of an actorC perform-

ing task T within an environment E, as shown in Figure 2.1, produces sequences of time-stamped

observations called traces that are accessible by a learning agent A. Each observation in a trace

consists of the set of perception variables X describing the environment, and the set of actions Y

executed in response by actor C. Given the traces [(x1, y1) . . . , (xn, yn)], learning agent A must

learn a behavior B that approximates actor C’s policy without having access to task T . Addition-

ally, at time t, the perception Xt may be affected by hidden states in the environment Et and the

action Yt may be affected by the actor’s unobservable internal state, denoted Ct. The authors define

7

Ct as an abstract representation of the list of past states (internal or environmental) that A chose

to retain, and it depends on Ct−1, Yt−1, and Xt. In their work, Ontañón, Montana, and Gonzalez

[58] use a discrete random variable to represent one of a few possible predefined unobservable

internal states. In contrast, our research seeks to automatically learn the most appropriate structure

for approximating the internal state, as it is informed by memory of past events.

Figure 2.1: The LfO framework, reprinted with permission from [58].

Reprinted from A Dynamic-Bayesian Network Framework for Modeling and Evaluating Learning
from Observation, 41/11, S. Ontañón, J. L. Montaña, and A. J. Gonzalez, Page 5214, Copyright
(2014), with permission from Elsevier.

Ontañón, Montaña, and Gonzalez [58] describe three levels of behaviors that can be learned by

LfO: strict imitation (Level 1), reactive behavior (Level 2), and memory-influenced behavior (also

called state-based behavior) (Level 3). In Level 1 of LfO (strict imitation), an agent learns to

imitate a fixed sequence of actions exactly. Once an actor’s behavior has been observed, the agent

must copy the behavior exactly without any feedback from the environment influencing its control

mechanism. An example of this is a robot learning to mimic perceived arm trajectories [34]. In

Level 2 of LfO (reactive behavior), an agent’s decisions at a given time step are influenced by the

current perception of the environment. Most LfO applications fall into this category and traditional

supervised learning techniques in isolation can only learn behaviors up to the second level of LfO

8

[58]. In Level 3 of LfO (memory-influenced behavior), an agent’s actions are influenced not only

by the current environmental perception but also by an unobservable internal state (Ct at time step

t in Figure 2.1). Under the assumption that all task-relevant features are present in the perception

of the environment or are predefined domain knowledge (such as explicit goals), the information

comprising the unobservable internal state of the observed actor can be retrieved entirely from a

subset of previous perceptions and action choices. Therefore, any LfO algorithm that can learn

memory-influenced behavior must learn from past perceptions and actions [58]. This third level

of LfO requires planning from memory of past states and even consideration for potential future

states [57]. Our research investigates how to improve LfO performance for Level 3 behaviors or

behaviors composed of a mixture of LfO levels.

A fourth LfO level (Level 4) encapsulates the second and third levels, and learns without prior

knowledge of the task to be learned or the domain of deployment [57] [20]. In this level of LfO,

learning is independent of rules governing the task or domain and is solely based on the actor’s

actions in reaction to the environment. However, this level of LfO is beyond the scope of our

research because it focuses on minimizing the inputs to the learning task so that it is possible to

“learn a variety of tasks from a variety of actors and in a variety of situations. . . [in a manner that

is] general-purpose and task-independent” [20, p. 2-3]. Our research focuses on expanding what

is extracted from an observed actor’s trace, specifically the actor’s internal state structure as it is

influenced by memory.

Floyd [20] describes one general framework for LfO, which consists of a cycle of four subtasks:

Modeling, Observation, Preprocessing, and Deployment. The first stage, Modeling, determines the

representation of inputs and outputs used by a black box — the actor under observation. The inputs

and outputs correspond to perception and action generation modules that can be separated from a

reasoning module that corresponds to the actor’s procedural knowledge. Observation, the second

stage, is the process of collecting sequences of interactions between the actor and the environment,

9

where each interaction is a state-action pair and where the state comprises the observable features

of the environment. Without explicit feedback from the actor during the learning that occurs during

this stage, the quality of learning is limited by the quality of the observations, which is subject to

actor error, the absence of certain situations of interest, and the absence of relevant environmental

features that were not included in modeling. The third stage, Preprocessing, handles the extraction

of inferential information about the actor’s behavior, such as the presence of nondeterminism,

stochastic behavior, or inconsistent actor behavior as a result of actor or observation error. In the

fourth stage, Deployment, the learning agent executes its learned behavior in the environment.

Floyd [20] does not include a separate “learning” or “training” stage in his framework because

his framework was designed for CBR, which by its nature, lacks a training stage. For learning

algorithms that do have a separate offline training phase, this training would occur during the

Preprocessing stage.

The LfO cycle in the general framework for LfO [20] works as follows:

1. Modeling stage: Define the inputs and outputs of the learning task.

2. Repeat the following:

(a) Observation stage: Collect observations of the actor behaving in the environment.

(b) Preprocessing stage: Infer effects of nondeterminism, stochasticism, or observation

error.

(c) Deployment: Allow the learning agent to interact with environment.

(d) If any of the prior stages (Observation, Preprocessing, Deployment) reveal errors in the

agent model, return to the Modeling stage. Otherwise, go to the Observation stage if

online observation gathering is allowed.

Floyd [20] allowed for interactions with the human observer to make corrections, an aspect of

10

learning which we elect not to explore in alignment with our more general definition of LfO and

its removal from communication with the observed entity. Within this general LfO framework, our

research best fits within the Preprocessing stage, the results of which improve performance during

the Deployment stage.

Figure 2.2: Classification of LfD policy derivation methods, adapted with permission from [4].

Reprinted from A Survey of Robot Learning from Demonstration, 57/5, B. D. Argall, S. Chernova,
M. Veloso, and B. Browning, Page 474, Copyright (2009), with permission from Elsevier.

Argall et. al. [4] classify Learning from Demonstration (LfD) methods in robotics by how the

learning agent obtains examples of a behavior to be learned from an actor, and how the learning

agent learns this behavior from these demonstrations. Regarding the latter (shown in Figure 2.2),

the authors describe three categories of policy derivation: learning a mapping function, using

a system model, or developing a plan. The first approach, approximating a mapping function,

maps a state to the appropriate action to take, given that state. This approach to learning allows a

learning agent to generalize solutions to situations that were not observed. Fernlund et. al. [18]

11

used this approach by allowing genetic programming to specify agent output for every situation

encountered because the mapping function evolved is a series of if-then-else statements in C code.

Figure 2.2 shows a further subdivision of this approach into Classification (for a discrete class set)

and Regression (for a continuous output spectrum).

The second approach, using a system model, contains a reward function through which action

selection within certain states can be evaluated. The fitness function can either be engineered

manually or learned automatically. The former choice of creating a fitness function manually was

used by Stein and Gonzalez [70] during the experiential learning phase of their technique. After

their agents had used observational learning to learn how to mimic the actors’ behavior, the agents

used experiential learning to further improve their performance at the task to be learned by using

a manually-created fitness function to objectively evaluate task performance. This approach was

an improvement over starting with a randomly behaving agent and using experiential learning to

make it competent.

The latter choice of automatically learning the reward function behind the actor’s behavior is used

by Inverse Reinforcement Learning (IRL) [52]. IRL determines what the intent of a behavior is,

given a description or observations of that behavior. IRL algorithms that use Markov Decision

Processes (MDPs) are discussed in [52] in the context of finite and discrete state spaces, infinite

and continuous spaces, and partially observable behaviors. The discovered reward function can

then be used in Reinforcement Learning (RL) [75]. However, “[one] of the main problems here is

that different reward functions may correspond to the observed behavior, and heuristics need to be

devised to only consider families of reward functions that are interesting” [58, p. 2].

The systems model approach should not be confused with the work on system identification. Sys-

tem identification [8] observes or interacts with a system of interest in order to model it with an

appropriate set of equations. Bongard and Lipson [8] proposed the use of various computational

12

operations to develop models of synthetic and physical systems. These models consisted of sym-

bolic differential equations. System identification seeks to understand how various features interact

with each other within a dynamical system of interest. In contrast, the system model approach to

policy derivation [4] seeks to exploit a learned (or manually created) model of how desirable or

“rewarding” various states are to an agent behaving within the system/environment to aid agent

learning.

The third approach, planning, uses actions to get from an initial state to a goal state, and actions

have pre-conditions and post-conditions. This approach sometimes requires guidance from the

demonstrator [4]. However, planning approaches requiring human interaction are not applicable to

domains where observation must be made non-intrusively, without any direct interaction between

the learning agent and the observed actor. In our research, we elect to use unobtrusive observation

without any interaction between the observer and the performing actor under observation.

Our research can enhance the performance of all three main branches of policy derivation methods

from [4]. This is because our research is not aimed at improving a specific learning algorithm

but rather, seeks to model the influence of memory on an observed actor’s behavior. Then, these

captured memory influences will be made available to an arbitrary machine learning algorithm that

will use the model of memory as additional input for better learning the observed behavior.

We have thus framed our research within the formalized LfO task. Our focus is improving learning

performance for memory-influenced Level 3 behaviors. Our research serves as a preprocessing

technique for extracting specific memory influences on an observed behavior and then explicitly

modeling them for latter use by a machine learning algorithm. We now describe the evolution of

LfO from its roots, and discuss the accomplishments and needs of the field.

13

2.1.2 A Brief History

LfO is more general than LfD because LfO does not require the actor to be a willing or even a

knowing participant in the learning process. In such cases, learning must be done via non-intrusive

observation alone. However, much work in LfO has involved willing actors in its relatively short

history. One of the earliest works in LfO was by Bauer [5], who created an algorithm that could

synthesize computer programs from observation of example program executions. Given a set of

sample instructions, Bauer’s work could create a procedure or function that generalized these in-

structions. Later, Michalski and Stepp [48] described conceptual clustering as a more intuitive

manner of classifying objects. They proposed using classifications based on conjunctive state-

ments rather than numerical metrics. However, their work defines LfO as “learning without a

teacher” [48, p. 2], and thus the authors inaccurately “define it merely as unsupervised learning”

[57, p. 1]. Then, Sammut et. al. [63] presented a LfO application that learns to fly an aircraft

through a specified flight plan after observing a human actor do it in simulation. The authors man-

ually divided the flight task into different situations and used the C4.5 induction tree algorithm to

capture the flight procedural knowledge and later fly the aircraft along the same flight plan. Wang

[85] presented OBSERVER, a learning from observation architecture that automatically learned

the preconditions and postconditions for operators based on expert traces and from practice prob-

lems for operator refinement during subsequent experiential learning. Van Lent and Laird [84]

presented Observo-Soar, a LfO architecture that learned operator preconditions and postconditions

in a complex flight domain, thus extending the work in [85] and [63] by using the more reactive

operator representation by the SOAR architecture as an improvement over the C4.5 induction tree

algorithm.

By this time, LfO research heavily emphasized behavioral cloning, the modeling of observed

behavior [76]. Sidani and Gonzalez [66] described the Situational Awareness Module (SAM),

14

which used Neural Network Knowledge Units (NNKUs) to learn modular behavioral components

in a car driving domain. Disagreements between the NNKUs about which action to perform were

resolved by an Action Resolver component that selected which NNKU should determine the next

action. SAM learned implicit knowledge that is easier to demonstrate than articulate. However,

this approach required that the actor experience the same situation repeatedly to capture variations

in the actor’s behavior, and it required the developer to manually program the Action Resolver

component. Fernlund et. al. [18] presented the Genetic Context Learner (GenCL), which used

Genetic Programming (GP) and Context-based Reasoning (CxBR) to facilitate the creation of car

driving agents that learned to drive by observing the actor drive a car simulator in specific situations

or contexts. GenCL’s CxBR component divided control of these agents into different contexts and

the agents were trained on each context separately. Then, transition rules were learned in the same

manner to recognize when a context should be activated to control the driving agent. The limitation

of this work was that Fernlund had to manually identify and partition observational segments in

the trace corresponding to each context for training.

Stein and Gonzalez [70] investigated the ability of LfO to bootstrap learning before it was fine-

tuned by human-directed haptic feedback and then lastly by experiential learning. Their system

was called FALCONET (Force-feedback Approach for Learning from Coaching and Observation

Using Natural and Experiential Training). Stein and Gonzalez used neuroevolution to create their

agents and found that combining all three learning methods (i.e., observational, human-directed,

and experiential) resulted in comparable or superior agent performance in several domains. Lu-

otsinen and Lovlid (2015), like Stein (2009), created a framework that allows LfO to be combined

with experiential learning in their Data Driven Behavior Model (DDBM) system, though they

only evaluated both learning modules separately. LfO has also been used to create Contextual

Game Observation (CONGO) agents for the first-person shooter game, Quake II, by using Neural

Networks to learn from a human actor’s game play [50]. Ontañón [54] investigated CBR case

15

acquisition strategies in LfO for Real-Time Strategy (RTS) games. Stensrud and Gonzalez [72]

created the Fuzzy ARTMAP Template-based Interpretation Learning Engine (FAMTILE), which

sought to learn high-level behaviors given predefined low-level behaviors in maze-navigation and

poker domains.

LfO has also been applied to domains with multiple agents. Team Nemesis [53] used LfO to learn

team formations for RoboCup from the extraction of high-level behaviors from game logfiles.

Kamrani, Luotsinen, and Lovlid [36] used LfO to develop military simulated agents that perform

a bounding overwatch maneuver, where one agent moves forward while another provides cover.

Johnson and Gonzalez [35] combined behavior maps and collaborative CxBR to learn team-based

behaviors in bucket brigade and ship pursuit domains. The behavior maps, similar to CBR, memo-

rize perception-to-action pairings for a given context. This method relies heavily on proper context

definitions to remain scalable.

Observational learning techniques have also been applied to behavioral analysis of other entities.

Fernlund et. al. [17] used GenCL agents to evaluate human choices in controlling simulated tanks

for After Action Review (AAR). These agents were modeled after human “experts” controlling

these tanks and then used to determine when a human trainee deviated from what the “expert”

would have done. Ontañón et. al. [56] used CBR to evaluate teenage car driving behavior to

determine the driver’s skill level and predict their actions to advance research in crash prediction

systems. Similarly, Stanley et. al. [68] used Neuroevolution of Augmenting Topologies (NEAT)

to observe crash-prone simulated car drivers and learn models that predicted whether and when a

crash would occur.

Other earlier works in the LfO literature include training an air hockey robot [6], training an au-

tonomous land vehicle to follow a road [60], creating rule-based agents in a complex environment

[39], and teaching robots to execute dance moves [51].

16

The literature shows a diversity of investigations and applications in the LfO field that have broad-

ened the impact of this learning paradigm, whether or not the researchers at the time would have

classified their work as LfO. The objectives of LfO research have varied over the years, from

knowledge transfer to behavior cloning to behavior analysis, and the capabilities of LfO tech-

niques have expanded, from operator planning to behavior modeling in robotic and simulated en-

vironments to multi-agent learning and integration with reinforcement learning. These endeavors

emphasize what LfO can learn (its output) and how the resultant output (e.g. behavioral models,

procedural knowledge) can be used in various applications. However, the field lacks an emphasis

on what LfO learns from (its input). Purely observational learning, the focus of our research, is

limited by the quality of collected observations and the diversity of situations in which the observed

actor behaved. However, LfO need not be limited to learning solely from traces. It is possible to

model specific aspects of an observed behavior as a primer for learning the behavior as a whole.

Trinh and Gonzalez [82] preprocessed traces in order to discover the contexts experienced by an

observed entity; these contexts were then used by subsequent LfO (this work is discussed more in

depth in Section 2.2.3). Our research seeks to learn memory influences that can be used in subse-

quent LfO. This approach is different from prior approaches to learning memory-aware behaviors,

which are discussed next.

2.1.3 Memory-Aware Learning from Observation

In the LfO literature, there have been three approaches to learning memory-influenced behaviors:

1. Ignore the effects of memory or assume that no memory influence exists.

2. Predefine the range of memory influence or its internal structure.

3. Compute memory influence as needed for each decision without explicitly maintaining a

17

memory structure.

The first approach, ignoring memory, is the approach used in many research endeavors reported

in the literature. The advantage to ignoring memory is that learning is much simpler; individual

observations can be treated independently of each other and used as separate inputs for standard

supervised learning algorithms [58]. The creation of LfO-specific learning algorithms still remains

an open problem, but for Level 1 and Level 2 behaviors, such algorithms are unnecessary (though

perhaps still helpful). However, supervised learning algorithms are provably insufficient for eval-

uating or learning Level 3 behaviors [58]. Heninger et. al. [29] also discuss the shortcomings of

static evaluation metrics in dynamic environments, but only for reactive behavioral learning. The

inability of standard supervised learning to account for temporally-dependent behavior influenced

by memory is the main disadvantage of the first approach to learning memory-influenced behaviors

and the motivation behind the next two approaches.

The second approach to learning memory-based behaviors makes certain assumptions about the

structure of an observed agent’s internal state. There are two works that exemplify this approach.

The first work, by Tirnauca et. al. [76], used a probabilistic finite automata (PFA) to create three

types of behavior models:

1. A learning agent whose only input is the current perception.

2. A learning agent whose inputs are the current and previous perception.

3. A learning agent whose inputs are the current and previous perception and the last action

taken.

For a finite and discrete simulated vacuum cleaner domain, the PFA models were tested for profi-

ciency in behavioral recognition and behavior cloning tasks; PFAs were found to outperform other

18

machine learning techniques for behavior cloning. The third model was advantageous in that it

could recognize Level 3 behaviors, but it had some struggles differentiating between deterministic

and stochastic variants of the same agent in the behavioral recognition task. Overall, the second

and third models in [76] assumed that information from time steps beyond the previous time step

was unnecessary for the learning task. The disadvantages of the approach taken in this work are:

1. The assumption that memory influences prior to time step t− 1 are negligible may be false.

If this is the case, then the PFA models will be insufficient for reacting to these influences

and capturing the behavior of entities conforming to these influences.

2. There are three different PFA models. The application of the wrong model to learn the wrong

behavior can harm recognition and cloning performance, as observed in [76].

The second work to use the second approach to learning memory-based behaviors, by Ontañón,

Montaña, and Gonzalez [58], used Dynamic Bayesian Networks (DBNs) to model the conditional

probabilities at a given time step t between environmental perception Xt, agent action output Yt,

and agent internal state Ct; specifically, the following probabilities are learned [58, p. 13].

• Pr(C1)

• Pr(Yt|Ct, Xt)

• Pr(Ct|Ct−1, Xt, Yt−1)

Unlike [76], the internal state Ct is explicitly specified and it abstractly represents all relevant

influences from memory of past events. However, in order to use the Expectation Maximization

(EM) algorithm to train the DBN to learn memory-based behaviors, the internal state Ct must be

a finite, discrete random variable, which had a maximum of four possible values in [58] when

19

learning to replicate the behavior of various simulated vacuum cleaner agents (the rationale for

this value was not provided by the authors). This aspect of the research limits the usefulness of

this DBN approach in the following ways.

1. The maximum number of possible values N for Ct must be set and/or tuned manually. If N

is too low, then the full range of internal state expression cannot be fully realized. If N is

too high, then learning in the DBN may be unnecessarily burdened.

2. For each additional Ct value, the computational cost of training increases.

3. The specific human-understandable meaning behind each Ct value is not specified or elu-

cidated by the DBN, which does not allow for human verification or deeper human under-

standing into the behavior being learned.

The third approach to learning memory-based behaviors uses a lazy machine learning approach,

Case Based Reasoning (CBR), to infer the relevant memory influences for every decision during

runtime. (It is called a lazy approach because “learning” is done on the fly during run-time; there

is no training phase.) Floyd [20] created the Temporal Backtracking (TB) algorithm to execute

memory-based behaviors that had been captured in a case base. At every time step, the sequence

of interactions that a CBR learning agent has experienced (its run) is compared to runs of experts

stored in a case base; the action taken by the most relevant run in the case base is applied to

the CBR learning agent’s current situation. TB compares runs by iteratively going back in time,

comparing components of case base runs to the corresponding component in the CBR agent’s run,

further and further back in time until all similar remaining cases agree on the action to take. In

this way, TB only looks as far back in memory as necessary. TB is a significant inspiration for our

research and is discussed in more detail in Section 4.4.

The advantages of the TB are that no training is required (CBR is a lazy machine learning algo-

20

rithm) and that no assumption is made as to where memory influences exist in a run in progress.

Furthermore, the memory influences can differ from decision to decision and TB can adapt to these

differences. The disadvantages of the TB are:

1. The lack of a learned memory structure does not allow for human understanding of recurring

memory influence patterns. It also fails to capitalize on computations of memory influences

on previous decisions.

2. The greater the size of the case base, the harder it is for TB to deliver real-time decisions.

This is the effect of the first limitation.

TB has been evaluated and analyzed by other researchers. Ontañón and Floyd [55] compared

various case acquisition strategies for real-time strategy (RTS) games, including TB and Similarity-

Based Chunking; the former mimicked player behavior better, but the latter learned to play the

RTS game better. Gunaratne, Esfandiari, and Fawaz [27] analyzed TB as a specific instance of a

more general case-based memory-aware learning algorithm; TB assumes that more recent memory

influences are more relevant, but other learning assumptions were investigated in [27] with varied

results for each.

Our research addresses the limitations of each approach to learning memory-influenced behaviors

in that it seeks to create a model of an observed entity’s use of memory, a model that makes minimal

assumptions on the structure of memory and that is human-understandable. Furthermore, this

model of memory usage would be compatible with machine learning algorithms limited to learning

only up to Level 2 LfO behaviors, enabling them to capitalize on information about memory with

minimal (if any) alterations to the algorithm itself. The nature of our research is discussed further

in Chapters 5 and 6.

21

2.1.4 Summary

In summary, LfO is a versatile learning method that has been extensively explored in a short period

of time in the areas of agent control, actor emulation, task optimization, and behavior analysis.

The levels of behaviors that LfO can learn range from exact memorization of an action sequence to

behaviors that are dependent on memory of past events. Only a handful of LfO research endeavors

have explicitly investigated how to learn memory-influenced behaviors, but various limitations

with human understandability and simplistic assumptions on memory structure still remain. Our

research seeks to provide a way to automatically learn memory influences and model them in a

transparent manner to improve subsequent LfO. We now continue our literature review of various

fields that provide insight into how this research can be conducted.

2.2 Related Research

This section describes three fields of research with significance for our research. Those fields are:

temporal-based learning, memory models, and contextual reasoning.

2.2.1 Temporal-Based Learning

LfO is most similar to sequential learning, according to [58]. Sequential learning [13] is the pro-

cess of assigning a class label to every component of a time series. Given a sequence of inputs

{x0, x1, . . . , xn−1, xn}, a classifier must generate an output sequence {y0, y1, . . . , yn−1, yn}. Diet-

terich uses the problem of part-of-speech-tagging as an example of sequential learning: given the

input sequence “would you like fries with that”, a sequential learner should predict the parts of

speech output sequence (verb pronoun verb noun prep pronoun) [13].

22

The sequential learning problem differs from two similar problems:

• Time-Series Prediction: Given a subsequence of true output labels, {y0, y1, . . . , yt−1},

predict the next output label yt in the sequence. There may also be associated variables

{x0, x1, . . . , xt−1}. One example is the auto-complete feature of a search engine when a user

is typing.

• Sequence Classification: Given an entire input sequence {x0, x1, . . . , xn−1, xn}, predict a

single output label y that applies to the entire sequence as a whole. Dietterich uses the

problem of determining the author of a sample of written text as an example of sequence

classification [13]. (One possible sub-problem is determining when a sequence is complete

and ready for classification.)

LfO can be framed as a sequential learning problem in that the sequence of inputs are perceptions of

the environment over time and the output sequence is composed of the actions taken at each of those

time steps. Thus, a fully trained LfO agent will not have access to what its human trainer actually

did in a test scenario the LfO agent did not observe the human perform in when he/she experienced

those same perceptions, thus differentiating LfO from time-series prediction. Furthermore, a LfO

agent must make a decision at each time step, rather than classifying an entire sequence as in

sequence classification.

Dietterich [13] goes on to discuss several issues concerning sequential learning, such as loss func-

tions, feature selection, and computational cost; he also discusses five approaches to the sequential

learning problem: sliding windows, recurrent sliding windows, hidden Markov models (HMMs),

conditional random fields, and graph transformer networks. The issues for future research in se-

quential learning that Dietterich identified are:

1. Utilize correlations in sequential data (e.g. knowing that the letter ‘u’ almost always follows

23

letter ‘q’).

2. Use complex loss functions.

3. Identify long-distance interactions in sequential data.

4. Do sequential learning faster.

Our research in learning memory influences in observed behavior addresses the third issue specif-

ically. By learning long-distance interactions (e.g. knowing which events are worth remembering

and which remembered events should be recalled), LfO can learn to react to memory influences.

In contrast to Dietterich’s definition of sequential learning [13], Graves [26] relaxes the constraint

of assigning a label to every input element by describing the sequence labeling problem: given an

n-length input sequence {x0, x1, . . . , xn−1, xn}, generate an appropriate m-length output sequence

{y0, y1, . . . , ym−1, ym}, where n and m are not necessarily the same. The length of m and the

alignment of output labels to input labels produce three types of problems:

1. Sequence Classification: This is the same problem as that defined by [13]. Given an input

sequence, predict a single label Y for the entire sequence. In this case, m = 1.

2. Segment Classification: In this problem, the alignment of output labels to input labels is

known in advance; the subset of inputs to which each output label corresponds is given.

Graves [26] uses framewise phoneme classification, the attribution of text to individual

acoustic frames, as an example of segment classification.

3. Temporal Classification: In this problem, the alignment of output labels to input labels is

not known. The only constraint is that m ≤ n, because we assume that each output label

corresponds to at least one input, and each input corresponds to at most one output label.

24

LfO is an example of segment classification becausem = n; every perception in the input sequence

of the learning problem requires exactly one action (even if that action is to do nothing). However,

the problem of learning memory influences is a temporal classification problem. Here’s why:

1. The major difference between the case-based approach to learning memory-based behaviors

and the predefined memory structure approach (both of which are described in Section 2.1.3)

is that the former does not maintain an internal state while the latter does. Our research seeks

to represent internal state to overcome the limitations of the former approach. Therefore, the

value of that internal state may stay constant for several time steps.

2. Given that one internal state value may encompass several time steps, it is necessary for

our research to determine over which time steps an internal state value may preside. This

alignment of memory influence to input perceptions is not known in advance.

3. Because the output of our research is a model of how a performing entity uses memory over

time, the mapping of memory influences to specific input perceptions corresponds to the

temporal classification task.

Figure 2.3: A recurrent neural network (RNN), adapted with permission from [26].

Reprinted by permission from Springer Nature: Supervised Sequence Labelling with Recurrent
Neural Networks by Alex Graves c©2012.

25

Graves continues on by describing recurrent neural networks (RNNs) as a type of neural network

capable of mapping sequences to sequences. RNNs are basic neural networks that allow recurrent

connections or connections from a neuron to itself in a sort of loop; in this way, inputs from prior

time steps can exert influence on a neuron in future time steps via the recurrent connection instead

of just inputs from the current time step. As Graves [26] puts it, “an RNN can in principle map

from the entire history of previous inputs to each output.” Figure 2.3 shows a simple RNN —

all the hidden nodes have recurrent connections (such as the one indicated by a red arrow in the

figure), but otherwise the RNN resembles a regular feed-forward neural network.

Figure 2.4: An unfolded recurrent neural network, adapted with permission from [26].

Reprinted by permission from Springer Nature: Supervised Sequence Labelling with Recurrent
Neural Networks by Alex Graves c©2012.

Figure 2.4 is further illustrative of the power of RNNs. Here, a RNN is “unfolded” — the infor-

mation processed by the same set of neurons is seen over time (the time stamps in the figure are

ours). The same neural weights are used at each time step, but the input from time step t = 1 is

used as input to the hidden layer neuron at time step t = 2 via the recurrent connection (labeled

26

“w2”) from the hidden layer neuron to itself. Technically, the same input could exert influence

on the neuron all the way to time step t = N , but in practice, RNNs suffer from the vanishing

gradient problem, wherein the influence of an input from an early time step diminishes over time

such that long-distance relationships between elements of a sequence over long periods of time are

harder to capture; this was the third issue for future research in sequential learning that was raised

by Dietterich [13]. Figure 2.5 illustrates the vanishing gradient problem in an unfolded RNN. The

sensitivity of the neurons to the input from time step t = 1 decreases, as shown by the decreasing

intensity of black color of the neuron over time as new inputs from latter time steps interfere.

Figure 2.5: The vanishing gradient problem in RNNs, reprinted with permission from [26].

Reprinted by permission from Springer Nature: Supervised Sequence Labelling with Recurrent
Neural Networks by Alex Graves c©2012.

Fortunately, Graves [26] addresses that problem with a discussion of Long Short-Term Memory

(LSTM) deep neural networks. LSTMs overcome the vanishing gradient problem via an internal

memory cell within the neuron and multiplicative “gates” that can block incoming inputs and

preserve the contents of the memory cell for long periods of time.

27

Figure 2.6: LSTM neuron, reprinted with permission from [26].

Reprinted by permission from Springer Nature: Supervised Sequence Labelling with Recurrent
Neural Networks by Alex Graves c©2012.

Figure 2.6 shows a single LSTM neuron represented by a rectangular block. Incoming arrows

are inputs from neurons in the previous network layer. The input gate controls how much these

inputs affect the memory cell, represented in the center of the block by a bold circle. The forget

gate controls how much of the cell’s contents are retained for the next time step. The output gate

controls how much of the memory cell’s contents are transmitted to the rest of the network in the

current time step. The end result is the preservation of relevant inputs for long periods of time,

thus establishing long-distance relationships between temporally distant sequential elements. This

28

is seen in Figure 2.7, where open gates are small circles and closed gates are lines. The input,

forget, and output gates are below, left, and above the neuron. The sensitivity of the hidden layer

neuron is preserved from time step t = 1 to t = 6 because the input gate is closed for that duration

of time, blocking new inputs that would overwrite the memory cell contents.

Figure 2.7: LSTM with preserved gradient, reprinted with permission from [26].

Reprinted by permission from Springer Nature: Supervised Sequence Labelling with Recurrent
Neural Networks by Alex Graves c©2012.

The memory cells within LSTMs are an example of “internal memory”, but it is possible for deep

neural networks to utilize “external memory” (a memory structure external to the learning net-

work). Motivated by the need for “one-shot learning” (the ability to learn on the fly with one

attempt at a task), the work in [64] investigated the ability of memory-augmented neural networks

(MANNs) to engage in meta-learning. Deep neural networks typically require many data samples

to gradually learn how to perform a task and cannot learn quickly from new data without adjusting

all network weights (which takes a long time) or experiencing catastrophic interference [38] (the

collapse of all learned knowledge). Meta-learning can solve this — rapid task-specific learning is

done for new tasks, but gradual inter-task learning is done across tasks. Neural Turing Machines

29

(NTMs) are MANNs that combine a neural network (e.g. a LSTM) with an external memory

model. The neural network facilitates gradual learning across tasks while the external memory

model facilitates rapid learning for new tasks. This approach was evaluated in [64] on an image

classification task with excellent performance. However, we must note that the memory contents

of the external memory module are wiped after each task and any persistent memory that is incor-

porated into the neural network becomes inaccessible outside of the network. This differs from our

work in that we seek to learn a memory model that is persistent across tasks

The reason why sequential learning, sequence labeling, and LSTMs are important for our research

is because LfO tasks are temporally based, and the memory influences on behaviors that LfO seeks

to learn are also temporally based. We have learned that LfO is a segment classification problem,

when framed in the context of sequential learning, but learning memory influences is a temporal

classification problem when framed in the context of sequence labeling problems. Connectionist

solutions, such as LSTM networks, have the disadvantage of encoding procedural knowledge im-

plicitly in a manner that is difficult for humans to understand, something that we want to avoid in

our research. However, the mechanisms of the LSTM neuron are powerful for preserving temporal

distant memory influences and can be used in our research.

2.2.2 Memory Models

Memory is essential in everyday living; without it, we would be doomed to unnecessarily repeat

the same moments with no ability to learn from the past or plan for future events [43]. We would

only be capable of reactive behaviors. Furthermore, without memory, we could only reason with

the present moment’s perception of the environment. The role of memory in learning from the

past during observation is to represent past observations, actions, and decisions in a way that

facilitates reasoning from these observations. The role of memory in planning for the future during

30

deployment is to recall current objectives, gauge progress towards said objectives, and reason about

this progress to make the next decision.

Briefly, memory is defined by the Merriam-Webster dictionary [47] as “the power or process of

reproducing or recalling what has been learned and retained especially through associative mecha-

nisms” and as “the store of things learned and retained from an organism’s activity or experience as

evidenced by modification of structure or behavior or by recall and recognition” (Merriam-Webster,

2017). We disambiguate the different aspects of memory as follows:

• Memory contents (or just “memory”) – the record of past experiences that have been pre-

served for future reasoning.

• Memory recall mechanism – the process by which relevant contents from memory are re-

trieved for reasoning.

• Memory storage mechanism – the process by which memory is updated, either through the

incorporation of new contents or the forgetting of old contents.

A cognitive architecture is a framework that mimics the reasoning procedures of the human mind

in a computational system [37]. The ability of cognitive architectures to reason about current

knowledge and previous experiences to achieve goals necessitates the use of memory structures.

Three such cognitive architectures are Soar [40], ACT-R [3], and CLARION [73].

Soar [40] is a cognitive architecture geared to achieving general intelligence. It represents a task in

terms of a problem space that is searched for an appropriate solution. Problem-solving requires the

exploration of several states in the problem space. New states are generated from previous ones

via operators. Whenever progress towards a goal state is halted by an impasse, a new subgoal is

created.

31

There are two memory systems in Soar: a long-term production memory and a short-term working

memory. Working memory stores all information pertinent to the task at hand, such as active goals

and current states. Production memory stores information that Soar has learned over time from

previous computations. Production memory is able to add to or modify the contents of working

memory.

ACT-R (Adaptive Control of Thought - Rational) [3] is a cognitive architecture that is predicated

on the notion that human cognition consists of the application of simple procedures on a large

and complex body of knowledge. Similar to Soar, it separates procedural knowledge (represented

as production rules) from declarative knowledge (represented as data structures called “chunks”).

However, while Soar chooses to solve problems by exploring states in a problem space in hopes

of achieving a goal state, ACT-R chooses to solve problems by using production rules to derive

increasingly complex chunks from preexisting chunks, eventually creating a knowledge chunk that

represents the solution to a problem.

In ACT-R, memory is represented as a Bayesian process. The significance of a given knowledge

chunk (stored in memory) for a specific situation is affected by the presence of other chunks that

are highly associated with it. However, ACT-R explicitly does not factor in the influence of how

long ago in the past such associate chunks occurred, having ruled out such influences as trivial.

Thus, memory retrieval results in the activation of sufficiently relevant chunks, which can then be

modified and combined by production rules.

In the CLARION cognitive architecture [73], there are several types of memory, as shown in Figure

2.8. In Figure 2.8, there are two divisions of memory: procedural versus declarative and explicit

versus implicit. Procedural memory stores information on how to perform certain tasks or pro-

cedures. Declarative memory stores information not pertaining to tasks/procedures and can be

further subdivided into semantic memory and episodic memory. Episodic memory stores personal

32

experiences while semantic memory stores general information. Sun [73] also makes the distinc-

tion between explicit and implicit memory within each of the previously mentioned subsystems.

Explicit memory is easily understood, manipulated, and accessible; it can be represented symboli-

cally. However, implicit memory is less accessible and may be represented subsymbolically, such

as with a neural network. For clarity, we provide the example of riding a bike; explicit procedural

knowledge is knowing to stay upright on the bike while pedaling forward while implicit proce-

dural knowledge consists of the specific muscle contractions and neural transmissions needed to

keep one’s balance. In Figure 2.8, the flow of information first proceeds through procedural mem-

ory, then through declarative memory. Information flow is bidirectional and each memory module

facilitates communication between its explicit and implicit components.

Figure 2.8: CLARION architecture, reprinted with permission from [73].

Reprinted from Memory Systems within a Cognitive Architecture, 30/2, R. Sun, Page 231, Copy-
right (2012), with permission from Elsevier.

Complementary Learning Systems (CLS) theory [38] also creates a link between parametric im-

plicit memories and non-parametric instance-based memories, from a neuroscience perspective.

33

Specifically, CLS theory juxtaposes the roles of the hippocampus and the neocortex in learning.

The hippocampus engages in rapid learning of episodic memories, which store details of specific

experiences. Then, these memories are slowly integrated into the neocortex, which stores statistical

information about the environment, akin to a neural network. This process is called “systems-level

consolidation”, a process by which the neocortex learns to retrieve memories without help from

the hippocampus. Figure 2.9 shows the interactions between these complementary memory sys-

tems. The neocortex regions are connected via the green arrows, the hippocampus and surrounding

region are shown in gray and facilitate intracommunication paths shown with red arrows. Finally,

the neocortex and hippocampus communicate via blue lines.

Figure 2.9: Memory systems in the brain, reprinted with permission from [38].

Reprinted from What Learning Systems do Intelligent Agents Need? Complementary Learning
Systems Theory Updated, 20/7, D. Kumaran, D. Hassabis, and J. L. McClelland, Page 513, Copy-
right (2016), with permission from Elsevier.

34

The CLS theory is interesting because it relies both on parametric and non-parametric learning. It

is analogous to the combination of CBR (instance-based learning) and LSTM networks (implicit

procedural knowledge encoding). It combines the best of both worlds in forming memories. It is

also interesting how the hippocampus is useful for remembering particularly traumatic events (e.g.

encountering the lion at a watering hole [38]) without having to experience the event repeatedly,

as would be necessary for retention in the neocortex.

Given the classifications of memory by [73], “memory” and “learned knowledge” seem to be very

similar if not the same. In such a case, memory is just a repository of knowledge. However, we

argue that while knowledge is the sum of what one knows (memory contents), the recall and stor-

age mechanisms of memory control how this knowledge is represented, preserved, and summoned

during the reasoning process. The question thus becomes: how can the recall and storage mecha-

nisms of memory be trained and how should knowledge be represented in memory to facilitate the

construction of internal state? Fortunately, the literature contains several examples of memory in

facilitating decision making in social and learning settings.

Conversational agents and Intelligent Social Companions (ISCs) represent a field with extensive

use of memory and internal state. Elvir et. al. [15] explore the use of context in a conversa-

tional agent. Their system uses what the authors called Memory Interfaces to process requests to

memory, a Back-end Database for storing memories, a Contextualization process for managing

memories, and Analysis Services for analyzing memories and user input. Within their proposed

memory framework, the authors contribute a “gisting” algorithm for extracting main ideas from a

conversation. They found memory to be essential for recognizing elements of a question that are

unstated but implied. Ho et. al. [31] combine short-term memory (STM) and long-term memory

(LTM) for managing active goals and learning from goal outcomes. Their aim was to create a

memory system that allowed agent migration between different bodies. Lim et. al. [44] investi-

gate socially-aware memory in ISCs that can learn user preferences and keep information about

35

certain users secret from other users. Campos and Paiva [12] describe MAY (My Memories Are

Yours), which develops shared memory of the user’s conversations to bond with the user. It uses

Autobiographical Memory (AM), which divides memories into Lifetime Periods, General Events,

and Event-Specific Knowledge, where memories in one level may map to multiple memories in

higher, more abstract levels. Mohammed Ali [49] developed a conversational system that learned

knowledge from casual conversation. This system used a memory module to remember previous

interactions with a user, how many times aspects of the knowledge base have been modified, and

how confident the system is that aspects of its knowledge base are accurate. It learned to chat

normally with a user and then switch to learning mode when the user decides to say something

relevant to its knowledge base. Lim [43] presents a survey of memory models in Intelligent Social

Companions (ISCs). She discusses human memory and the application of memory in computer

systems, specifically ISCs. She identifies various needs for ISC memory research, such as investi-

gating forgetting mechanisms, emotions, and fabricating a life story.

Episodic memory is particularly important in several applications. Brom and Lukavsky [11] ini-

tiate a formal description of full episodic memory (FEM) requirements in the context of virtual

agents and claim that FEM can be applied to a variety of tasks from remembering past interactions

to learning to solve problems from memory of past attempts. Wenwen et. al. (2009) describe

electromagnetic adaptive resonance theory (EM-ART) for modeling episodic memory. EM-ART

uses three layers of fusion ART: the first layer contains activations for environmental variables; the

second layer recognizes single events; the third layer recognizes episodes or sequences of events.

Faltersack et. al. [16] present Ziggurat, a general episodic memory system that uses SOAR to

control agents that move about grid-like worlds in food-eating and navigation problems. Ziggurat

continuously records perception-action pairs that the authors call episodes. Sequences of episodes

comprise complex episodes and Ziggurat simplifies episodes to achieve the most efficient plan for

accomplishing a task. Ho, Dautenhahn, and Nehaniv [32] investigate different memory models

36

for Artificial Life (AL) agents: purely reactive, short-term, long-term, and short-term/long-term

memory. The STM+LTM agents lived the longest, and allowing communication between agents

about resources also increased agent longevity.

The goal of our research is to learn internal state representations that are used by an actor to exe-

cute behaviors requiring memory. Even though this internal state is unobservable, we have gained

insight into the structure of memory, how memory is used in reasoning frameworks in the litera-

ture, and how memory is used in conversational agents and ISCs. A common trend in the literature

is how memory is compartmentalized by type, purpose, and level of abstraction. We see that it is

not necessary to save all of memory, but only the most pertinent components [15]. Episodic mem-

ory has been particularly helpful in performing tasks where the current environmental state was

not enough for decision making [16] and where knowledge from the past became useful in future

computations [32]. However, behaviors requiring memory can be very complex and much uncer-

tainty exists around which aspects of history have the greatest potential utility in future decisions.

These needs can be addressed by context, which we discuss next.

2.2.3 Context

Context is the encapsulation of all information relevant to a given situation [24]. More specifically,

Trinh [81, p. 157] defines context as “any recognized situation defined by a set of similar practices

that can approximate the set of actions, procedures, and expectations employed by an actor within

the situation”. Reasoning with contexts narrows down the search for solutions in problem solving

[81] and it allows situation-specific assumptions to remain unstated, and yet be known [24]. An

intuitive example of context involves a pilot who can also cook well; while she’s flying an airplane,

she does not consult her cooking knowledge and while she’s cooking, she does not consult her

piloting skills [24]. A more comprehensive overview of context can be found in [9].

37

Context is the driving force behind the Context-based Reasoning paradigm (CxBR) [24], a frame-

work within which a tactical agent (one that acts in real-time) can interact within an environment

according to its contextual knowledge. In CxBR, a tactical agent is controlled by one of several

contexts. Each context encapsulates what the agent can do in a particular situation and it has three

parts:

1. Action Knowledge: This part of the context determines what the agent is supposed to do

when this context is selected to control the agent, as well as how to do it.

2. Transition Knowledge: This part of the context determines whether this context is appropri-

ate for addressing the agent’s current situation.

3. Declarative Knowledge: This part of the context contains information relevant to the agent

in this particular context.

Figure 2.10: An active context in CxBR, reprinted with permission from [24].

Reprinted from Formalizing Context-Based Reasoning: A Modeling Paradigm for Representing
Tactical Human Behavior, 23/7, A. J. Gonzalez, B. S. Stensrud, and G. Barret, Page 830, Copyright
(2008), with permission from John Wiley and Sons. Copyright c©2008 Wiley Periodicals, Inc., A
Wiley Company.

38

Figure 2.10 shows a snapshot of the active context within the CxBR framework. There can only

be one active context at a time and it is the context that controls the agent. In Figure 2.10, the

perception of the environment is used to update a global fact base, which stores all information

about the world at a given point in time. This information is made available to the context, which

first determines via its transition knowledge whether it is appropriate for the given situation. If it

is not, other contexts will be queried for possible activation. Whichever context is selected to be

active will use its action knowledge to dictate the agent’s next action, which is shown as the output

of the CxBR framework in Figure 2.10.

Figure 2.11: Generic context hierarchy, reprinted with permission from [24].

Reprinted from Formalizing Context-Based Reasoning: A Modeling Paradigm for Representing
Tactical Human Behavior, 23/7, A. J. Gonzalez, B. S. Stensrud, and G. Barret, Page 828, Copyright
(2008), with permission from John Wiley and Sons. Copyright c©2008 Wiley Periodicals, Inc., A
Wiley Company.

There are different types of contexts, as shown in Figure 2.11. Here, we see that the top context

39

is the mission context, which does not control the agent, but stores the agent’s objectives, planned

sequence of context activations, and other relevant information pertaining to the mission. The next

layer of contexts are major contexts, which have been described above. However, major contexts

can call sub-contexts to handle a specialized situation, which in turn can call sub-sub-contexts,

etc. When one such minor context finishes executing, it will return control to the major context

that activated it. In this manner, CxBR encourages reuse of sub-contexts among multiple major

contexts.

When the active major context’s transition knowledge deems the context inappropriate for handling

the agent’s situation, the active context relinquishes control of the agent and a more suitable context

is selected as the next active context. A context map is used to determine which context transitions

are legal. Figure 2.12 shows an example of a context map, wherein the arrows between major

contexts show the horizontal relationships between major contexts. For example, Major context 24

can relinquish control to Major context 31, but not vice versa.

Figure 2.12: Sample CxBR context map, reprinted with permission from [24].

Reprinted from Formalizing Context-Based Reasoning: A Modeling Paradigm for Representing
Tactical Human Behavior, 23/7, A. J. Gonzalez, B. S. Stensrud, and G. Barret, Page 830, Copyright
(2008), with permission from John Wiley and Sons. Copyright c©2008 Wiley Periodicals, Inc., A
Wiley Company.

CxBR has been used in several areas of research, including integration with Reinforcement Learn-

ing in a driving domain [2], implementation of a project manager agent in a collaborative process

40

[23], use in modeling hierarchical military agents [46], and in LfO [18] [71] [35] [72]. Fernlund

et. al. [18] specifically strove to create CxBR agents and used LfO to learn how to recognize and

perform in several manually segmented contexts in a driving domain. Stein and Gonzalez [71]

used CxBR to address the poor performance of a context-free LfO technique in a crane-controlling

domain. The authors achieved better performance after dividing the crane-controlling task into

natural contexts and applying their LfO technique to each context before combining agents created

from each context.

Turner [83] presented another context paradigm, Context Mediated Behaviors (CMBs). CMBs

represent knowledge as a set of contextual schemas (or just c-schemas) that can be “composed”

together to describe a particular situation faced by an agent and determine what to do. Turner [83]

uses an automous underwater vehicle (AUV) as an example: if the AUV has low power, is under

ice, is searching for a sunken ship, and has a malfunctioning sonar reader, then a set of c-schemas

describing each of those conditions should be put together to describe the AUV’s situation and

control its behavior.

The components of a c-schema are:

1. Features that should be present or absent for the c-schema to apply to the situation.

2. Features of the environment that are likely to be present if not yet confirmed.

3. Context-specific definitions of certain terms.

4. Agent goals and their priorities.

5. Procedural knowledge for achieving goals and reacting to unexpected situations.

A context manager composes the best c-schemas into a single context object that is used to control

the agent. New context objects are created as necessary to best fit the agent’s situation.

41

Brézillon [10] presents a third context paradigm, Contextual Graphs (CxGs). CxGs are based on

the idea that there are different ways to get from state A to state B, but the manner in which one

does is subject to the context. Brézillon [10] defines context as “a collection of relevant conditions

and surrounding influences that make a situation unique and comprehensible.” In this case, the

set of allowable procedures are represented by a directed acyclic graph or CxG and the unique

paths through the CxG are the specific practices or paths that suit the needs of a particular situa-

tion, the context. Brézillon [10] uses the example of a company setting allowable procedures for

accomplishing certain tasks, but the employees find the best practices or ways of following these

procedures to suit the specific needs of their situation.

Figure 2.13: Example Contextual Graph, reprinted with permission from [10]

Reprinted by permission from Springer Nature: Springer, CONTEXT, Context Dynamic and Ex-
planation in Contextual Graphs by P. Brézillon, c©2003, advance online publication, 01 August
2018 (https://doi.org/10.1007/3-540-44958-2 8).

Figure 2.13 shows an example of a CxG. The squares represent action nodes wherein a specific

action is taken. The contextual nodes are represented by circles with multiple output arrows —

42

the branch taken depends on the contextual element addressed by that node (e.g. whether a certain

condition is true or false) and the responsible contextual element becomes proceduralized (i.e.

directly relevant to the entity moving through the graph). When the specific goals of the branch

have been accomplished, it returns to a recombination node, shown in the figure as a bolded dot.

Several other node types exist in CxGs, which are not shown in Figure 2.13. Such node types are:

• Sub-graph node: This is a CxG within a CxG, which is feasible, given the acyclic nature of

CxGs, and is representative of intermediate goals within the overall mission of traversing the

whole CxG [10].

• Parallel Action Grouping node: This node contains several contextual elements which all

must be addressed, in any order, before proceeding.

• Activity node: This is a more complex action node that takes into account various contextual

elements.

A fourth context method, which combines elements of the prior three methods, is called the Coop-

erating Context Method (CCM) [33]. CCM, like CMBs, has the capability of combining multiple

contexts to solve a set of tasks. However, it also possesses the recursive nature of CxGs’ activity

nodes and utilizes transitions between contexts like in CxBR. A context in CCM posseses three

elements:

1. Descriptive knowledge — the list of tasks that this context can address.

2. Prescriptive knowledge — the know-how behind how to solve tasks, even recursively invok-

ing CCM if necessary.

3. Contextual knowledge — which other contexts are contextually relevant to this context and

which ones are irrelevant.

43

CCM was originally applied to the domain of narrative generation, but its approach to solving tasks

is a general-purpose one. Figure 2.14 illustrates the process by which CCM updates the contexts

in play to solve tasks in real-time.

Figure 2.14: The Cooperating Context Method, reprinted with permission from [33]

Reprinted by permission from J. Hollister: A Contextual Approach to Real Time Interactive Nar-
rative Generation by J. Hollister, c©2016.

In a loop, CCM performs the following actions:

1. First, CCM analyzes the situation at hand (e.g. a story in progress) and compiles a list of

tasks that need to be completed (e.g. filling in certain story elements).

2. Next, CCM analyzes a predefined list of contexts to determine which contexts are possible

solutions for the tasks that must be accomplished. It does this by analyzing the descriptive

44

knowledge of each context.

3. Given the list of potential contexts, an initial search is performed to separate the contexts into

a high priority list (HPL) and low priority list (LPL). The HPL contains the list of contexts

that were previously labeled “contextually relevant” and which can solve at least one of

the tasks. The LPL contains the list of contexts that were previously labeled “contextually

irrelevant” and which can solve at least one of the tasks.

4. Given the HPL and LPL, a deep search is performed to compile the list of contexts that

can solve the list of tasks. The HPL is searched first, followed by LPL. The deep search is

conducted until all tasks are completed or all contexts have been exhausted. Then, a future

active list (FAL) of contexts is compiled. These are the contexts that will be active in the

next iteration of CCM.

5. Based on the contexts that are in the FAL, the list of contextually relevant and contextually

irrelevant contexts is updated, based on the contextual knowledge of each context.

6. Finally, the prescriptive knowledge of each context in the active context list (ACL) is invoked

to solve the compiled list of tasks. In the next iteration of CCM, the contexts in the FAL will

comprise the ACL.

We have now discussed four major context paradigms, which have different methods of assessing

a given situation and addressing its circumstantial needs. However, all these paradigms seek to

exploit the power of context, the inherent divide-and-conquer nature of explicit context definitions

[83]. The problem becomes how to best construct the contexts used by any given paradigm.

Trinh and Gonzalez [82] presented the Contextual Partitioning and Clustering (COPAC) method

for learning the contexts that were experienced by an observed actor; these contexts can then be

used to create CxBR agents through a subsequent LfO algorithm, such as GenCL [18] (which

45

was described in Section 2.1.2). This process of discovering and partitioning contexts in a trace

would normally require a developer to manually identify the various contexts in a trace of observed

behavior for a desired behavior to be learned.

Figure 2.15: COPAC, reprinted with permission from [82].

Reprinted by permission from IEEE: Discovering Contexts from Observed Human Performance
by V. Trinh and A. J. Gonzalez c©2013 IEEE.

Figure 2.15 illustrates how COPAC works. Given a sequence of observations (the trace of an actor’s

behavior), COPAC first partitions the trace into segments by finding points in the trace where the

actor had a sudden change in behavior in reaction to a salient change in the environment. Then,

these segments are clustered by the similarity of the actor’s behavior within, per Trinh’s definition

of context [81]. These clusters comprise the various defined contexts and the segments within

each cluster are executed contexts or instances of the defined context. The temporal relationships

between executed contexts belonging to different defined contexts inform the context map (the set

of legal context transitions).

The work by Trinh and Gonzalez [82] is very relevant to our research and shares several of the

same challenges. Instead of applying a predefined context hierarchy to the LfO task for context-

46

based methods, Trinh and Gonzalez [82] sought to discover a context map that was tailored to a

specific observed actor. This was a difficult task because the identity and structure of an observed

actor’s active context is unobservable and often cannot be easily articulated. The same can be

said for internal state based on memory. What an observed actor chooses to remember, how such

memories are used in decision-making, and how long the memories persist are all unobservable and

not always easily articulated. Additionally, contextualization of an observed actor’s trace served

as a preprocessing step to the LfO task to better inform the learning process. Similarly, inferring

the specific internal state structures that influence an observed actor’s behavior as a preprocessing

step to the learning task can eliminate unnecessary and potentially erroneous assumptions about

an actor’s internal state that would otherwise have to be predefined prior to learning. Finally, given

the potentially large variety and complexity of memory-influenced behaviors, it is advantageous

to use context to divide the task of discovering internal state structures that influence an observed

actor’s behavior into smaller context-specific subtasks.

Thus, we emphasize here that our research does not seek to improve the learning process. Rather,

it seeks to model a specific aspect of the observed behavior as a preprocessing step that provides

additional input to a machine learning algorithm. Similar to how COPAC [82] learns a context

map, our research seeks to learn a model of memory usage that accounts for influences of memory

on an observed behavior; the structure of this model and the process by which it is obtained is

covered in Chapter 6.

2.3 Imitation Learning from Observation

As of the writing of this dissertation, the latest works on LfO have been done under the label of

“imitation learning”. The general idea behind imitation learning is the same as that for LfO in

that a learning agent learns to perform a task by observing another actor doing it. More precisely,

47

imitation learning is defined as “the process by which one agent tries to learn how to perform

a certain task using information generated by another, often more expert agent performing that

same task” [79]. Even though this dissertation prefers the use of “learning from observation”, we

will use the label “imitation learning” in this section to conform to the terminology of the works

referenced here and to avoid confusion with “imitation learning from observation”, which will be

discussed later.

The works in imitation learning are heavily influenced by the constraints surrounding the use of

physical robots. In the early days of imitation learning, Schaal [65] discussed the potential of

imitation learning to create appropriate control policies for humanoid robots. He proposed imita-

tion learning as an alternative to reinforcement learning, which would learn relatively slowly due

to having to explore the large action space available to robots with many degrees of freedom in

movement. In contrast, imitation learning would provide a more focused exploration of the ac-

tion space (e.g. concentrated exploration around reasonably competent behaviors demonstrated by

experts) in pursuit of suitably generalizable control policies for robots. Even as early as Schaal’s

work [65], the need for using proper learning to link perceptions to appropriate actions in the robot

was recognized.

The two main approaches to imitation learning according to [79] have been behavior cloning and

inverse reinforcement learning. In behavior cloning (BC), a supervised learning algorithm is used

to derive a control policy for a learning agent. BC can be achieved relatively quickly because

the learning agent can derive a policy from the observation data without having to interact with

its environment — the learning agent need only learn how to predict the observed actor’s actions

given the perceived world state. However, BC can be subject to the “covariate shift” problem,

which deserves attention here.

The covariate shift problem [79], in the context of imitation learning, is the reliance on the false

48

assumption that the distributions for the training data (from which the learning agent learns) and

the testing data (on which the learning agent is evaluated) are the same. This often is not the case

because if the learning agent deviates from the observed actor’s policy even just a little bit, it will

encounter a completely new set of situations which the expert never encountered during his run.

Ross et. al. [62] developed an imitation learning technique to mitigate the effects of covariate shift

by allowing a learning agent to query an expert for the next action during the learning process. This

accomplished the dual objectives of 1. teaching the learning agent how to recover from mistakes,

and 2. gradually transitioning the learning agent’s policy to that of the expert’s with minimal

deviations (also known as “regret”). However, the authors were only able to bound the effects

of covariate shift, not eliminate it completely. Furthermore, the reliance on querying the experts

strays from the general spirit of learning from observation alone.

In the second approach to imitation learning, inverse reinforcement learning (IRL) [52], the reward

(a.k.a. goal or intent) of the observed actor is inferred so that reinforcement learning techniques can

be used to maximize the inferred reward. Thus, IRL techniques are grounded in Markov Decision

Processes (MDPs), which are briefly discussed here.

MDPs are a family of problems that are composed of the following components [1]:

• States S - a finite set of states that may be perceived by a learning agent

• ActionsA - a finite set of actions that may be executed by the agent to change the world state

• Transitions T - a set of probabilities of transitioning to each state, given the previous state

and the agent’s choice of action

• Discount factor γ - the amount by which rewards decrease over time

• Initial state distribution D - the possible set of initial states

49

• Reward R - the function that dictates how much reward an agent receives for being in a

certain state. For certain problems, it is assumed that the reward function can be expressed

in terms of the features through which the world state is expressed.

In MDPs, the learning agent wishes to learn a policy π that maximizes its reward. Algorithms that

learn such policies through trial-and-error are reinforcement learning algorithms [75]. However,

it is often difficult to manually specify an appropriate reward function for certain behaviors. In

such cases, it is necessary to infer an appropriate reward function from demonstrations of desired

behavior. This is accomplished through IRL.

In [1], “apprenticeship learning” is proposed as way to infer a reward function. Under the as-

sumption that the reward function is simply a function of the perception features, apprenticeship

learning uses a technique similar to those of support vector machines to find appropriate feature

vectors to express the reward function. A learned policy is iteratively modified according to the

following algorithm:

1. Initialize a random policy and random reward function.

2. Compute the deviation of the current policy from the observed policy.

3. If the deviation is sufficiently minimal, you’re done.

4. Use reinforcement learning to find a policy that best fulfills the current reward function.

5. Update the reward function and go to step 2.

This process finds a reward function that approximates the (unknown) reward function that the

observed actor is supposedly trying to maximize, but the true reward function remains unknown. It

should be noted that this work seeks an agent that is competent at the task at hand, and not an agent

50

that performs as similarly to the observed actor as possible. However, the agent’s performance

will be similar to that of the observed actor because the actor’s performance is the only notion of

correct behavior available in this problem context.

The recent interest in deep learning techniques has sparked new works in imitation learning. For

example, within the BC approach, imitation learning was applied to teaching a learning agent to

steer a physical car using a convolutional neural network (CNN) [7]. This work was in response to

a challenge by the Defense Advanced Research Projects Agency (DARPA) to create autonomous

vehicle controllers. The authors wanted to do so without extensive feature engineering and thus

elected to use a CNN, which can learn its own features via image processing. Admittedly, the

authors had to augment their dataset of human driving images with synthetic images of a car going

offroad, so that their CNN could learn how to recover from mistakes. One should note that this

work by NVIDIA is a more recent version of Pomerleau’s work with ALVINN [60], which used a

shallow neural network.

Also along the lines of the BC approach to imitation learning, a quadcopter or Micro Aerial Vehicle

(MAV) was trained to navigate forest trails using a deep neural network that was trained on images

of forest traversals generated by a human with head-mounted cameras [21]. The authors tackled the

problem by converting it into a three-class classification problem where the quadcopter’s response

to each image was the command to turn left, go straight, or turn right.

However, in conformity to the IRL approach to imitation learning, a few works have used deep

adversarial nets, which we briefly cover here.

Generative adversarial networks (GANs) are deep neural networks that seek to learn to generate

samples from a distribution of interest, given examples of true samples from said distribution

[25]. GANs train two neural networks, a generator and a discriminator, which learn together. The

generator learns to mimic the distribution by generating fake samples. The discriminator learns to

51

distinguish between true samples from the distribution and fake samples from the generator. These

networks can be considered “adversaries”. As both networks improve at their respective tasks, the

generated samples eventually become indistinguishable from the real samples.

The seminal work in [30] introduced a generative adversarial imitation learning (GAIL) technique

that learns a policy from demonstrated behavior with a GAN as an alternative to traditional IRL. It

learns effectively with only a few demonstrations of desired behavior, but still requires a learning

agent to interact with the environment, as do all IRL approaches.

However, the limitation with all the imitation learning works discussed thus far is that all these

works assume that an observer has access to the specific actions taken by the observed actor. In

reality, an observed action taken by an expert/teacher/demonstrator does not clearly translate to a

specific action that should be taken by a learning agent (e.g. a physical robot). For example, if a

humanoid robot wants to learn how to make egg-salad sandwiches by watching a Youtube video

of someone doing so, then the robot is capable of seeing how the human spreads the egg salad on

bread slices and so forth, but the robot does not have access to which muscular contractions the

human employed to carry out the task, much less which low-level mechanical operations (limb

torque, gripping strength, etc.) it needs to use to copy the human’s movements. In other words, the

robot learner can see the effects of the human’s actions, but does not know the actions themselves.

Therefore, the robot must infer which of its actions must be taken to achieve the same effects as

those observed in the human’s behavior.

In response to this, a specialized form of imitation learning was created: “imitation from obser-

vation” (IfO) [45] or “imitation learning from observation” (ILfO). Several works have operated

under the constraint that the experts actions are not available to the learning agent, creating a new

problem of how to deal with perceptions gathered from observation. Some works have used either

teleoperation or sensors on a demonstrator to provide a learning agent (e.g. a robot) with percep-

52

tions similar to those it would experience during deployment [79] [4]. Otherwise, the learning

agent must contend with “viewpoint difference” and “embodiment mismatch” [79]. Viewpoint

difference is the problem where an observed actor’s perception during a performance differs from

what a learning agent perceives within a training environment. Embodiment mismatch is the prob-

lem where an observed actor has a different appearance or body than the learning agent and the

learning agent must map the observed actor’s body movements to appropriate movements in its

own body.

To mitigate problems associated with viewpoint difference (ignoring embodiment mismatch), the

work in [45] learned a context translation model to convert observations of the actor into suitable

inputs for the learning agent. Basically, the context translation model learned how to convert

a set of observations from one demonstration (this is called a single “context”) into the set of

observations present in a second demonstration (called a second “context”), under the assumption

that the demonstrations are time-aligned exactly. Then, reinforcement learning is applied by the

learning agent, using a handcrafted distance metric reward function. The method was validated in

a simulated and physical robotic arm performing various simple tasks.

Another approach for addressing viewpoint difference is perspective-taking. Perspective-taking

[80] is a mechanism in human-robot interactions wherein a robot determines how to accomplish a

task given by a human by reasoning about information available to the human. Trafton et. al. [80]

used the example of a wrench to illustrate this concept. In the example, a robot and a human exist

within an environment with two wrenches on a table (one of which is hidden from the human’s

view). When the human tells the robot, “Give me the wrench,” then the robot can either ask the

human which wrench should be delivered or the robot can assume that the human must be referring

to the wrench she can see. The latter option, perspective-taking, is useful for resolving ambiguity

in high-level tasks where a learning robot’s perception capabilities differ significantly from those

of an observed actor being learned from.

53

However, if problems with perception are sufficiently addressed, then the next issue ILfO must

address is the manner by which a control policy is derived. According to [79], there are two model-

based ILfO approaches (inverse and forward) to agent control and two model-free approaches

(adversarial and reward-engineered).

In the inverse dynamics model approach, a learning agent must learn which actions in its action

set correspond to certain state-transitions. In a forward dynamics model approach, the learning

agent must learn which states result from specific actions taken in a given state. The adversarial

approach uses GAN structures to learn an appropriate policy without a model of the world, while

the reward engineering approach uses a handmade reward function that is approximated based on

the observed actor’s behavior.

Within this framework, recent work in ILfO has pursued measures to either: 1) reduce the number

of times a learning agent must interact with the environment to create an effective control policy

or 2) reduce the number of demonstrations required from an observed actor to form an effective

policy. Regarding the first reduction, the work in [78] introduced Behavioral Cloning from Obser-

vation (BCO), which aims to learn to mimic an observed actor without having to interact with the

environment. It works as follows:

1. Learn an inverse dynamics model of the environment. This is akin to how humans already

possess prior experience before engaging in an imitation task — they know how the world

works.

2. Based on the sequence of states that are perceived during an observed actor’s behavior, infer

the actions they took to effect those state transitions, using the inverse dynamics model

learned previously.

3. Use standard behavior cloning to learn a policy to mimic the state-action sequence for the

54

observed actor’s behavior.

4. If a budget of limited interactions with the environment is allowed, interact with the environ-

ment and update the inferred actions of the observed actor and thus the control policy.

The authors showed in various simulated tasks that BCO’s performance is generally comparable to

other imitation learning techniques (including GAIL [30]) despite being the only method without

access to the observed actor’s actions.

Regarding the second reduction, pursuant to minimizing the number of required demonstrations

from an observed actor for effective learning, two works reported in the literature have worked to

increase “sample efficiency”. The first work [77] improves upon a previous adversarial imitation

learning technique by replacing the model-free reinforcement learning component of the GAN with

a model-based reinforcement learning technique (linear quadratic regulators or LQRs). The LQRs

assume that the environment operates linearly with a quadratic reward. This technique was found

to potentially outperform its predecessor with fewer observations in earlier iterations of learning.

(With more iterations, the more complex predecessor technique is better.)

The work in [74] provides a bound on sample efficiency for its proposed Forward Adversarial

Imitation Learning (FAIL) technique. FAIL works by learning a separate policy for every time

step of a task through a series of min-max games between the learner agent and the observed actor

(the expert) in order to minimize regret during learning. The authors make the claim that FAIL is

the “first provably efficient algorithm in ILfO setting”, meaning that the bound on the number of

required samples for FAIL is known.

We now discuss where our research is situated within the imitation learning from observation

framework outlined in this section. The biggest distinction between imitation learning from ob-

servation and previous LfO research is the constraint on IfO that a learner be able to mimic an

55

observed actor without having access to the expert’s actions. This constraint is particularly impor-

tant for robotics applications where embodiment mismatch is a significant consideration. However,

the objective of our research here is to investigate how LfO may be improved with a learned mem-

ory model of an observed actor’s performance, and thus we elect to ignore this constraint in our

work — we assume that action information by an observed actor is available for learning for the

purposes of this dissertation. Schaal proposed “movement primitives” as a way by which robotic

movement could be mapped to specific objective-specific actions [65], thus mitigating the prob-

lem of embodiment mismatch when processing observations of demonstrated behavior. Inverse

dynamics models, such as [78], can be learned in order to infer an observed actor’s actions without

regard to memory. Moreover, this constraint of not knowing an observed actor’s actions would

confound our analysis of memory-based behaviors in our work.

Furthermore, the above works in imitation learning do not address the concerns of memory in-

fluences on observed behavior. Other than accounting for viewpoint difference [45] or not being

able to observe an actor’s actions, the works described in this section do not account for unob-

servable aspects of a task, such as occluded environmental influences or an actor’s internal state

(e.g. memory influences). Some works use standard supervised learning [7] [21] without regard

to the effects of an agent’s past decisions. Other works, especially those centered around MDPs,

characterize a policy by Markovian (memory-less) states [1], [78]. Even those works that develop

control policies iteratively (such as FAIL [74], which conditions a policy for a given time step on

the policies derived for prior time steps) do not create a memory model from observed behavior to

augment decision making during agent control.

The primary concerns of the ILfO field seem to be centered around capitalizing on the utility

of current deep learning techniques and catering to the needs of physical applications, such as

robotics. Our research described in this dissertation seeks to investigate the feasibility of learning

a memory model of human performance from observation, which can be a separate module that is

56

added to the lines of research described in this section.

2.4 Summary

In this chapter, we reviewed the history of LfO, discussed the formalization of the LfO task, and

analyzed the various works that have addressed the problem of learning memory-influenced be-

haviors. We then reviewed three related fields, temporal-based learning, memory models, and

context, in our search for inspiration and insight into learning the internal state of an observed

entity as it is influenced by memory of past events. Finally, we reviwed imitation learning from

observation, the latest work in LfO centered around the opportunities and needs surrounding deep

learning and robotics. With the establishment of the current state of the art regarding learning

memory-influenced behaviors, we now proceed to state the problem addressed by our research, the

hypothesis to be investigated, and our contributions to the field.

57

CHAPTER 3: PROBLEM DEFINITION

3.1 General Problem

Learning from Observation is increasing in importance as the problems tackled by machine learn-

ing become increasingly abstract and harder to define via static training samples. Often, a series

of observations is more conducive for extracting knowledge from an entity to be modeled than the

traditional interviewing process or standard construction of independent training examples. LfO

has made great strides toward automating knowledge acquisition and improving the learning pro-

cess, but its greatest challenge still remains its inability to elucidate the internal state structure used

by the observed entity while executing a given behavior. Much research has accomplished the ob-

jective of LfO in spite of this challenge of unobservability [19] [70] [7] [21] while other research

endeavors have sought to better understand this challenge [58] [20] [27] [76].

3.2 Specific Problem

One aspect of the unobservable nature of an entity’s behavior is how memory of past events affects

its decision-making process. Specifically, which aspects of the environment does a performer

choose to remember? When do these remembered events or objects become relevant to the next

decision? For how long are the contents of memory stored and retrieved? The significance of these

questions for understanding how to incorporate memory into LfO make it paramount for further

research to model how memory is composed, modified, and used in decision-making over time, in

order to more fully and accurately extract knowledge from observation.

In our dissertation research, we describe a new technique, Memory Composition Learning, that

58

composes memory structures that approximately model how past interactions with the environment

influence an observed entity’s behavior. Our aim is to analyze a trace of an entity’s behavior and

construct an auxiliary set of features that encapsulate the salient aspects of past events that have

significant correlation with future decisions. The incorporation of a set of memory features within a

trace used as input for LfO would reduce or eliminate perception aliasing [16] in machine learning

algorithms limited to learning at most Level 2 LfO behaviors, as discussed in Chapter 2. Our

approach more intelligently and explicitly models how an observed entity uses memory for the

purposes of analyzing this usage and enabling memoryless learning techniques to capitalize on

memory. This technique will alleviate burdens on learning caused by overly simple assumptions

on memory influence on an observed behavior; it allows memory to become more explicit and

human-readable for behavioral analysis domains; and it will hasten deployment of behaving agents

by maintaining a memory-aware internal state instead of recomputing memory influence at every

decision.

3.3 Hypothesis

The following statement is the hypothesis of this research:

“The internal state of an observed entity exhibiting a behavior possibly reliant on memory of past

events can be modeled through a set of memory features that approximate the influence of memory

on the entity’s decisions.”

3.4 Limitations of the State of the Art Addressed by Dissertation Research

The LfO literature reports many lines of research that generally assume at least one of the following

approaches regarding memory-based behaviors:

59

• The learning technique does not account for memory of past events at all. The disadvantage

of this approach is that behaviors that rely on memory are common, and failing to account for

memory at best reduces the modeled knowledge to a probabilistic emulation of what could

otherwise be a deterministic phenomenon.

• The learning technique does not model memory of past events explicitly, but rather computes

the influence of memory during the decision-making phase of execution. The disadvantage

of this approach is that no understanding is gleaned about how the behavior is influenced

by memory. Furthermore, the lack of an internal state model makes decision-making during

execution a potentially inefficient process when the influence of memory is complex.

• The learning technique predefines a set of possible states that encapsulate the internal state of

an observed entity. The disadvantage of this approach is that assumptions must be made as to

the range and structure of the internal state; such assumptions will likely be wrong in many

instances. If the assumptions are too conservative, then the internal state representation

will be inadequate for fully capturing the influence of memory on the observed behavior.

If the assumptions are too liberal, on the other hand, then the learning algorithm will be

unnecessarily burdened.

Our proposed approach, Memory Composition Learning (MCL), overcomes the above limitations

of the current approaches. MCL accounts for the influence of memory, as dictated by the created

memory feature set, which will enable machine learning algorithms to capitalize on pertinent in-

formation about memory. Additionally, MCL extracts from the data (trace) the correlative aspects

of past events that influence future decisions, and explicitly models them in an auxiliary feature

set. Thus, there is no need to go back in time when making a decision at a given time step; the

feature set itself reveals which aspects of the past actually matter. Finally, MCL automatically

learns the structure and range of memory usage, an approximation of an observed entity’s internal

60

state regarding memory that does not rely on unnecessary assumptions.

3.5 Contributions

Our research contributions to the literature for LfO in particular and machine learning in general

are as follows:

• A procedure (MCL) that can automatically learn a feature set that encapsulates the salient

aspects of past events that influence future decisions. This feature set can be used to im-

prove performance in LfO algorithms. MCL is different from past approaches to learning

memory-based behaviors in that it explicitly models memory’s influence on a behavior and

automatically discovers the structure and range of memory influence. MCL attempts to infer

and approximate one aspect of the unobservable aspect of behavior: the retention, modifica-

tion, and utilization of memory of past events.

• A prototype system implementing the MCL algorithm.

• Data comparing the performance of memory-agnostic learning techniques with that of tech-

niques augmented by MCL preprocessing.

The next chapter discusses behavior representations that are used in our conceptual approach to

our defined problem.

61

CHAPTER 4: BEHAVIORAL REPRESENTATIONS

This chapter discusses how behaviors and memory of behaviors are represented in this research,

particularly in the realm of Case Based Reasoning (CBR). Specifically, we provide detailed de-

scriptions of how we choose to represent behaviors in terms of how they are generated by agents,

stored in a case base, traversed via the Temporal Backtracking algorithm, and condensed into a

memory model describing an internal state structure of our choice. These concepts are necessary

for understanding the conceptual approach we take to address the problem from Chapter 3.

This chapter is organized as follows:

• Section 4.1 describes three types of agents that can perceive, reason, and act within an envi-

ronment. It also describes our choice of agent for this research.

• Section 4.2 describes the XY Z domain, a custom-made theoretical environment that we

invented and use as a running example in this dissertation.

• Section 4.3 describes CBR conventions that we use in this research for representing recorded

behaviors.

• Section 4.4 describes the Temporal Backtracking algorithm, as it was presented in [20]. It is

a core mechanic in our conceptual approach.

• Section 4.5 describes Memory Features, novel memory modeling elements of our own in-

vention and the intended output of MCL.

62

4.1 Behavioral Agents

Agents are the actors within an environment whose actions over time change the state of the envi-

ronment. Their behaviors and how they are influenced by memory are the object of our investiga-

tion in this research. There are different ways to represent how behaviors are generated by agents.

We borrow the conventions used by Gunaratne, Esfandiari, and Fawaz [27], which they took from

[89]. Those conventions (discussed next) are used throughout the rest of this dissertation.

Let the finite set of possible states that the environment may assume be represented as:

E = {e0, e1, ..., en}

Let the finite set of possible actions that an agent can execute in the environment be defined as:

A = {a0, a1, ..., an}

The agent interacts with the environment by perceiving which state the environment is in and then

executing an action in response. This may change the environmental state that the agent then

perceives and responds to with some further action, if necessary. This sequence of perception-

action pairs is called a run and it is represented as follows:

r : e0
a0−→ e1

a1−→ . . .
an−1−−−→ en

Let R be the set of all finite runs and let RE ⊆ R be the subset of runs in R that end in a specific

environmental state. From a run composed of n perception-action pairs (from environmental state

e0 to state en−1), we can extract n− 1 runs. Those runs are:

63

• e0

• e0
a0−→ e1

• e0
a0−→ e1

a1−→ e2

• . . .

• e0
a0−→ e1

a1−→ e2
a2−→ . . .

an−2−−−→ en−1

Each “sub-run” is a complete run in its own right, but part of a bigger run that continues it. How-

ever, if a run is not part of some bigger run because the run has reached a terminal state, then we

consider this special case a trace, a complete, finite, fully expanded record of an observed entity’s

behavior. (We should note that the term “trace” is not part of the conventions of [27], but we in-

cluded the concept of a trace in order to eliminate potential confusion between a run, which could

be continued by further interactions of an observed entity with its environment, and a trace, which

cannot be continued in this way.)

Given the above, we define three agents (following the conventions by [27]).

• Standard agent: chooses the next actionAc based on the run in progressRE leading up to the

most recently perceived environmental state. This agent is informed by memory of previous

states and actions.

AgStd : RE → Ac

• Reactive agent: chooses the next action Ac based solely on the most recently perceived

environmental state E.

AgRct : E → Ac

64

• State-based agent: chooses the next action Ac based on the most recently perceived envi-

ronmental state E and an internal state I , which is updated based on E. This agent is also

informed by memory that is embedded in the internal state.

AgStB : E × I → Ac

AgStB : E × I → I

For clarity, we also define I as the finite set of possible internal state values that a state-based agent

can assume for its internal state.

I = {i0, i1, . . . , in}

For example, a standard agent might be operating within the following run in progress:

e0
a0−→ e1

a1−→ e2

The symbols e0, e1, e2 represent the perceived environmental states at time steps 0, 1, and 2, and

the symbols a0 and a1 represent the actions taken by the agent at time steps 0 and 1. The specific

values represented by these symbols can be anything. Based on the entire run up to the perception

of environmental state e2, the standard agent will then determine that the next action to execute is

a2, and thus continue the run in progress:

e0
a0−→ e1

a1−→ e2
a2−→

The environment will change, and in the next time step, the run will be as follows:

e0
a0−→ e1

a1−→ e2
a2−→ e3

65

The new run, ending in the perception of environmental state e3, will be the input to the standard

agent in the next time step.

In contrast, a reactive agent has no memory of past events. Suppose it also has the following run

in progress:

e0
a0−→ e1

a1−→ e2

Without memory, the reactive agent’s only input is the most recent perception of the environment:

e2

Solely from this one observation, a reactive agent will determine that the next action to execute is

a2 (which is not necessarily the same action a2 taken by the standard agent). The environmental

state will change, and so its run in progress will be:

e0
a0−→ e1

a1−→ e2
a2−→ e3

However, in the next time step, the only information to which the reactive agent has access to is

the most recent environmental perception:

e3

Therefore, the reactive agent is implicitly relying on the Markov assumption, that assumes that all

relevant information for making the next decision (the next action to execute) is contained within

the most recent perception.

The state-based agent, like the reactive agent, uses only the most recent perception in its run

and ignores all past interactions. However, like the standard agent, the state-based agent has the

capacity for memory because it maintains an internal state I , whose structure is arbitrary. Thus, if

66

a state-based agent has the following run in progress:

e0
a0−→ e1

a1−→ e2

its only inputs are the most recent perception:

e2

and its internal state (with an unspecified structure in our example):

i2

The state-based agent, given e2 and i2, will determine that the next action is a2. However, it must

also update its internal state from i2 to i3 as a result of perceiving e2. In effect, the state-based

agent incorporates e2 into its “memory” when it updates its internal state from i2 to i3 as a result of

perceiving environmental state e2, because the internal state is the encapsulation of all influences

from past events. Then, the environmental state will become e3 as a result of the agent executing

action a2. Then, the inputs to the state-based agent in the next time step will be the perception of

environmental state e3 and the agent’s internal state i3.

In our research, we seek to approximate the internal state I with respect to memory. This internal

state approximation can then be used in the creation of state-based agents by a machine learning

algorithm. In other words, MCL will learn how to approximate I; then, the machine learning

algorithm will learn how to use I in creating state-based agents. The machine learning algorithm

that uses I can be any machine learning algorithm, which is not a part of our research.

67

4.2 The XYZ Domain

TheXY Z domain is a simple domain of our own invention, created solely for providing conceptual

examples. In the XY Z domain, there are three possible states of the environment: X , Y , and Z.

Within this world, an agent can execute one of two actions: a or b. Figure 4.1 illustrates how the

different actions (indicated by arrows) change the environment’s state. In state X , the environment

will transition to state Y if either action a or b is taken by the agent. In state Z, the environment

will transition to state X if either action a or b is taken by the agent. In state Y , action a always

transitions the environmental state to state Z, but action b has a random effect on the environment:

50% of the time, action b will transition the environmental state to state Z, and the rest of the time,

the environmental state will not change (it will remain in state Y).

Figure 4.1: XYZ Domain Finite State Machine

We define one agent for this XYZ domain; we simply call it the XY Z agent. The XY Z agent’s

behavior is defined by the following rules:

1. If the agent perceives environmental state X , choose the action that was taken one time step

68

ago. Choose action a by default if it’s the first time step.

2. If the agent perceived environmental state Y , choose action b.

3. If the agent perceives environmental state Z, choose the opposite of the action taken when

the environment was previously in state Z. So, if the agent chose action a when it previously

perceived environmental state Z, then it should choose action b; and if the agent chose action

bwhen it previously perceived environmental state Z, then it should choose action a. Choose

action a by default if this is the first time that environmental state Z has been perceived by

the agent.

This agent’s behavior is trivial in that different actions will in some cases affect the environment in

the same way (e.g. when transitioning from stateX or Z, any action gets the agent to the same next

state), but it is interesting because the actions chosen depend on memory of past events. Again,

the XY Z domain and the behavior of the XY Z agent exist only for the purpose of providing

examples in this dissertation.

We now provide an example run of the XY Z agent’s behavior in the XY Z world. Suppose that

the XY Z agent perceives environmental state X .

run : X

According to rule 1, the agent should choose the action taken one time step ago, but this is the first

time step, so the agent chooses action a by default.

run : X
a−→

According to the finite state machine in Figure 4.1, the environment will transition from state X to

69

state Y .

run : X
a−→ Y

A single time step encompasses a single perception followed by a single action. For clarity, we

provide subscripts indicating which time step a given perception or action belongs to. We rewrite

the current run of the XY Z agent with this convention and use it in the rest of this dissertation.

Thus, our run so far consists of time steps 0 and 1.

run : X0
a0−→ Y1

Upon perceiving environmental state Y , the agent will execute action b according to rule 2.

run : X0
a0−→ Y1

b1−→

According to the finite state machine in Figure 4.1, the environmental state will either remain the

same or transition to state Z. The probability of both outcomes is 50%, so for this example, let’s

assume that the next environmental state becomes Z.

run : X0
a0−→ Y1

b1−→ Z2

Upon perceiving environmental state Z, the agent will execute the action taken when the environ-

mental state was previously in state Z (according to rule 3). However, this is the first time the agent

has perceived environmental state Z, so it chooses action a by default.

run : X0
a0−→ Y1

b1−→ Z2
a2−→

According to the finite state machine in Figure 4.1, the environmental state will change from state

70

Z to state X .

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

Upon perceiving environmental state X at time step 3, the agent will execute the action from the

previous time step (time step 2), according to rule 1. This action is action a.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→

According to the finite state machine in Figure 4.1, the environmental state will change from X to

Y .

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4

Upon perceiving environmental state Y , the agent will execute action b, according to rule 2.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→

According to the finite state machine in Figure 4.1, the environmental state will either remain the

same (Y) or become Z. Let’s say that it remains the same in this example.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

Upon perceiving environmental state Y in time step 5, rule 2 dictates that the agent will perform

action b.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→

According to Figure 4.1, the environmental state will either remain the same (Y) or become Z.

71

Let’s say that the environment transitions to state Z in this example.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6

Upon perceiving environmental state Z, the agent will execute the action taken when the environ-

mental state was previously in state Z (according to rule 3). The last time the XY Z agent had

perceived environmental state Z was in time step 2. In that time step, it performed action a, so

according to rule 3, the agent should choose action b in the current time step (time step 6).

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→

According to the finite state machine in Figure 4.1, the environmental state will transition from Z

to X .

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→ X7

Upon perceiving environmental state X in time step 7, the agent will select the action taken in the

previous time step (time step 6), which is action b.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→ X7

b7−→

There is no terminal condition specified in the behavior of the XY Z agent, so it will proceed until

the end of time.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→ X7

b7−→ . . .

However, let’s assume that we cease to care what the agent does after time step 100, because our

72

research requires agent runs to be finite in duration.

run : X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→ X7

b7−→ . . .
Ac99−−→ perception100

The above constitutes an example run from theXY Z domain. Next, we describe CBR conventions

and demonstrate how they can be used to represent this example run in a case base.

4.3 Case Based Reasoning Conventions

This section describes the conventions we borrow from CBR for this research. In our research, we

use CBR to store traces by an observed human. Problem-solving occurs in CBR as follows [20]:

1. A test problem is presented to the CBR framework. The structure of that problem is domain-

dependent.

2. The CBR framework examines a prebuilt case base for a possible solution. This case base is

filled with many cases. Each case is a problem-solution pair.

3. During the retrieval stage, each case’s problem component is compared to the test problem

to be solved. All cases with problem components that have a sufficient similarity to the test

problem are retrieved. These are candidate cases.

4. During the reuse stage, the candidate cases are evaluated for their ability to solve the test

problem and the best one’s solution component is used.

5. Other stages of the CBR cycle include revision of a used case if it is proven to be inadequate

for solving the test problem and its retention in the case base, but our research does not

involve these stages.

73

In our research, each case’s problem component is a run (at some point in time) ending in an

environmental state (RE), and its solution component is an action (Ac) which the observed entity

took at that point in the run. In our research, a case base is composed of cases. Each case C is

represented as follows:

C : RE × Ac

Therefore, each sub-run in a trace is represented as a separate case in the case base.

Table 4.1: Case Base for XYZ Agent

Case Number Problem Solution

0 X0 a0

1 X0
a0−→ Y1 b1

2 X0
a0−→ Y1

b1−→ Z2 a2

3 X0
a0−→ Y1

b1−→ Z2
a2−→ X3 a3

4 X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4 b4

5 X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5 b5

6 X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6 b6

7 X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→ X7 b7

...
...

...

100 X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4
b4−→ Y5

b5−→ Z6
b6−→ X7

b7−→

. . .
Ac99−−→ perception100

Ac100

We can build a case base from the sub-runs comprising the example run by the XY Z agent from

Section 4.2, using the same procedure from [20]. Each sub-run is the subset of the example run up

to and including the environmental state perceived at a given time step. Thus, the cases generated

by the example run are shown in Table 4.1.

74

Case 0 corresponds to the sub-run up to time step 0. The run up to and including the environmental

state at time step 0 is just X0; this comprises the problem component of the case. The action taken

in that time step (time step 0) is a0; this comprises the solution component of the case. Case 1

corresponds to the sub-run up to time step 1. The run up to and including the environmental state

at time step 1 is X0
a0−→ Y1; this is the problem component of case 1. The action taken in time step

1 is b1; this is the solution component of case 1. The rest of the cases in the case base created from

the example run of the XY Z agent are similarly defined.

However, it is possible for a case base to contain cases generated from multiple traces. For example,

suppose that our XY Z agent generates two separate traces, with different seeds for the random

number generator that decides what action to take when at state Y . Suppose those two runs, up to

time step 4, are as follows:

1. X0
a0−→ Y1

b1−→ Z2
a2−→ X3

a3−→ Y4

2. X0
a0−→ Y1

b1−→ Y2
b2−→ Z3

a3−→ X4

To differentiate between the traces from which each run element comes from (either trace 1 or trace

2), we ascribe a superscript for each run element, denoting the trace of origin. This convention is

our own invention and it is applied as follows:

1. X1
0

a10−→ Y 1
1

b11−→ Z1
2

a12−→ X1
3

a13−→ Y 1
4

2. X2
0

a20−→ Y 2
1

b21−→ Y 2
2

b22−→ Z2
3

a23−→ X2
4

If we create a case base from these two runs, it would that shown in Table 4.2. In this case base,

cases 0-3 correspond to trace 1 and cases 4-7 correspond to trace 2. Cases must have unique

identifiers.

75

Table 4.2: XYZ Agent Case Base from Two Complete Runs

Case Number Problem Solution

0 X1
0 a10

1 X1
0

a10−→ Y 1
1 b11

2 X1
0

a10−→ Y 1
1

b11−→ Z1
2 a12

3 X1
0

a10−→ Y 1
1

b11−→ Z1
2

a12−→ X1
3 a13

4 X2
0 a20

5 X2
0

a20−→ Y 2
1 b21

6 X2
0

a20−→ Y 2
1

b21−→ Y 2
2 b22

7 X2
0

a20−→ Y 2
1

b21−→ Y 2
2

b22−→ Z2
3 a23

With the above terminology pertaining to agents, runs, and CBR in place, we are now ready to

describe Temporal Backtracking, as designed by Floyd [20].

4.4 Temporal Backtracking

Temporal Backtracking (TB) is a CBR approach for learning memory-influenced behaviors [20]. A

modified version of TB is used within our MCL algorithm, so a detailed discussion of TB as it was

originally set forth in [20] is warranted. The modifications to TB in our research are not described

in this section. This section only describes TB as it was originally designed; our modifications to

TB for use in our research are described in Chapter 5.

TB relies on the CBR framework described in Section 4.3. TB agents use the CBR approach of

case retrieval and case reuse to solve the problem of choosing the next action to take within a test

run in progress for a standard agent (described in Section 4.1). This is shown in Algorithm 1.

76

Algorithm 1 Temporal Backtracking
1: procedure GET-NEXT-ACTION(test-run, case-base, time-step)
2: next-action← state-retrieve(test-run, case-base, time-step, 0)
3: return next-action
4: procedure STATE-RETRIEVE(test-run, case-pool, time-step, time-back)
5: candidate-actions← (empty set)
6: candidate-cases← (empty set)
7: test-percep← test-run.percep-at(time-step− time-back)
8: for each case in case-pool do
9: case-percep← case.percep-at(time-step− time-back)

10: similiarity← percep-sim(test-percep, case-percep)
11: if similarity > THRESHOLD then
12: candidate-cases.add(case)
13: if not candidate-actions.contains(case.action) then
14: candidate-actions.add(case.action)
15: if count(candidate-actions) is 0 then return random-action
16: if count(candidate-actions) is 1 then return candidate-actions[0]
17: return action-retrieve(test-run, candidate-cases, time-step, time-back− 1)

18: procedure ACTION-RETRIEVE(test-run, case-pool, time-step, time-back)
19: candidate-actions← (empty set)
20: candidate-cases← (empty set)
21: test-action← test-run.action-at(time-step− time-back)
22: for each case in case-pool do
23: case-action← case.action-at(time-step− time-back)
24: if case-action == test-action then
25: candidate-cases.add(case)
26: if not candidate-actions.contains(case.action) then
27: candidate-actions.add(case.action)
28: if count(candidate-actions) is 0 then return random-action
29: if count(candidate-actions) is 1 then return candidate-actions[0]
30: return state-retrieve(test-run, candidate-cases, time-step, time-back)
31: procedure PERCEP-SIM(percep1, percep2)
32: sim← 0
33: for feature in percep1 do
34: p1 gets percep1.value-of (feature)
35: p2 gets percep2.value-of (feature)
36: sim← sim + (1− abs(p1− p2)/(p1 + p2))

37: return sim

77

Basically, TB works as follows:

1. Invoke procedure get-next-action and pass it the test run in progress, the case base,

and the current time step.

2. Set the pool of candidate cases or “case-pool” to all cases in the case base. Set the value of

“time-back” to zero (this tracks how many time steps back in the test run TB is looking at

during recursion).

3. Do the following until all cases in the case-pool agree on the next action (e.g. their solu-

tion components are all the same). Each repetition of this step is one iteration of the TB

algorithm.

(a) Invoke procedure state-retrieve. Do the following:

i. Let τ be the last time step in the test run. Set “test-percep” to the state at time

τ − time-back in the test run.

ii. Compare all cases in the case pool to the test run. For each case, do the following:

A. Let γ be the last time step in the case’s problem component run. Set “case-

percep” to the state for this run at time step γ − time-back.

B. Compare “case-percep” and “test-percep” with procedure percep-sim. If

their similarity exceeds a predefined threshold, retain the case in the “case-

pool”, otherwise discard it.

iii. If the solution component of all remaining cases in the case pool is the same, return

the action for this solution component and go to Step 4.

(b) Increment “time-back” and invoke procedure action-retrieve. Do the following:

i. Let τ be the last time step in the test run. Set “test-action” to the action at time

τ − time-back in the test run.

78

ii. Compare all cases in the case pool to the test run. For each case, do the following:

A. Let γ be the last time step in the case’s problem component run. Set “case-

action” to the action for this run at time step γ − time-back.

B. Compare “case-action” and “test-action”. If they are the same, retain the case

in the “case-pool”, otherwise discard it.

iii. If the solution component of all remaining cases in the case pool is the same, return

the action for this solution component and go to Step 4.

4. The procedure get-next-action will return the next action for the agent to take.

We now proceed with an example from the XY Z domain (described in Section 4.2) to show how

TB works. Suppose we want to use TB to control an agent that is supposed to behave like the

XY Z agent. Suppose that our TB agent has the following test run T in progress, where “???”

means that the next action to take is unknown.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

As described in Section 4.2, each element of the run has a subscript denoting the time step it

belongs to and a superscript denoting its trace of origin. The run is currently at time step t; the

correct action to take at time step t in the above run is unknown. The trace of origin is T , which is

currently being implemented by the test run in progress.

TB will require a case base constructed from observations of the XY Z agent’s interactions with

the environment. Suppose we have the case base shown in Table 4.3. For simplicity, let us assume

that all cases in the case base come from the same trace of origin, trace C (C for “case base”).

Trace C has at most T time steps and each case contains the sub-run of the trace up to some time t.

In other words, for every time step, from t = 0 to t = T , there is a case in the case base containing

79

the sub-run of the trace up to that value t. Therefore, the value of t is different for each case. For

example, t could be 30 for case 0, 15 for case 1, 17 for case 2, etc. The important thing is that t is

the last time step for the sub-run contained within any given case.

Table 4.3: Temporal Backtracking XYZ Case Base

Case Number Problem Solution

0 . . .
aCt−1−−→ XC

t aCt

1 . . .
bCt−1−−→ XC

t bCt

2 . . .
aCt−1−−→ Y C

t bCt

3 . . .
bCt−1−−→ Y C

t bCt

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

...
...

...

In Table 4.3, we only show ten cases. There are potentially many other cases that would resemble

the ten shown in the final elements of their problem components. They are treated like the cases

they resemble during the TB algorithm, but we ignore them for simplicity in this example.

The rules governing the behavior of the XY Z agent are not known to the TB agent (because this is

the behavior it must emulate solely from observations structured within a case base). However, for

the benefit of the reader, the rules described in Section 4.2 for dictating the behavior of the XY Z

agent are repeated below.

80

1. If the agent perceives environmental state X , choose the action that was taken one time step

ago. Choose action a by default if it’s the first time step.

2. If the agent perceived environmental state Y , choose action b.

3. If the agent perceives environmental state Z, choose the opposite of the action taken when

the environment was previously in state Z. So, if the agent chose action a when it previously

perceived environmental state Z, then it should choose action b; and if the agent chose action

bwhen it previously perceived environmental state Z, then it should choose action a. Choose

action a by default if this is the first time that environmental state Z has been perceived by

the agent.

Therefore, we know from rule 3 that the next action that should be executed in the test run is action

a, if the TB agent is to truly behave like the XY Z agent.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

aT
t−→

We know this because the last time step when the TB agent perceived environmental state Z in the

test run was at time step t−4 and the action taken in that time step was action b; thus, the TB agent

must take the opposite action (action a) when it perceives environmental state Z again. However,

the TB agent does not know the behavior rules governing the XY Z agent, so the TB agent must

deduce the next action to take using its case base; we now show how TB does this.

In the first iteration of TB, all the cases’ problem components are compared to the test run. Specif-

ically, the perception at time step t for each case is compared to the perception in the test run at

time step t. (Recall that the value of t is different for the test run and for each case.) In the test run,

the perception at time step t is environmental state Z. TB will select those cases with the same

81

perception at time step t.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

Table 4.4: Temporal Backtracking XYZ Example - Iteration 1

Case Number Problem Solution

0 [. . .
aCt−1−−→ XC

t] aCt

1 [. . .
bCt−1−−→ XC

t] bCt

2 [. . .
aCt−1−−→ YC

t] bCt

3 [. . .
bCt−1−−→ YC

t] bCt

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

In our example, the run elements at time t for each case are bolded in Table 4.4. All the cases from

the case base whose problem components are sub-runs ending with perceptions of environmental

state Z are selected and the rest are discarded. Therefore, cases 0 and 1 are discarded because their

sub-runs end in environmental state X . Cases 2 and 3 are discarded because their sub-runs end in

environmental state Y . The discarded cases are surrounded by square brackets in Table 4.4; the

cases that were not discarded constitute the pool of remaining candidate cases.

TB then checks to determine whether all the remaining candidate cases’ solution components

82

agree. If they do agree, then that agreed-upon solution is returned. In our example, they do not

agree. Cases 4, 6, and 8 have action a as their solution, but cases 5, 7, and 9 have action b as their

solution. Therefore, TB must go back in time by one time step and compare the actions of each

case at time t− 1 to that of the test run.

Table 4.5: Temporal Backtracking XYZ Example - Iteration 2

Case Number Problem Solution

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t aCt

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t bCt

In the second iteration of TB, the action at time step t − 1 of each case in the pool of surviving

cases is compared to the action of the test run at time step t− 1. These actions are bolded in Table

4.5. The cases that have the same action as the test run at time step t − 1 will be selected. The

action at time step t− 1 in the test run is action b.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bT
t−1−−−→ ZT

t
???−→

Those cases with action b at time step t − 1 are retained within the group of candidate cases and

the rest are discarded. At this iteration, no cases are rejected. However, the solution components

of the candidate cases are still not all the same; cases 4, 6, and 8 have action a as their solution and

cases 5, 7, and 9 have action b as their solution. Therefore, TB will next examine the perception at

83

time step t− 1 for each case as it compares to the perception at time step t− 1 in the test run.

Table 4.6: Temporal Backtracking XYZ Example - Iteration 3

Case Number Problem Solution

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t aCt

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ YC
t−1

bCt−1−−→ ZC
t bCt

Table 4.7: Temporal Backtracking XYZ Example - Iteration 4

Case Number Problem Solution

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t aCt

9 [. . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aC
t−2−−→ Y C

t−1

bCt−1−−→ ZC
t] bCt

In the third iteration of TB, the perception at time step t − 1 in the test run is environmental state

Y .

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ YT
t−1

bTt−1−−→ ZT
t

???−→

The candidate cases in Table 4.6 with perceptions of environmental state Y at time step t − 1 are

84

retrieved. In our example, all candidate cases are retained; their solutions still do not agree, so TB

will examine the cases’ actions at time step t− 2 in its next iteration.

In the fourth iteration of TB, the action at time step t− 2 in the test run is action b.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bT
t−2−−−→ Y T

t−1

bTt−1−−→ ZT
t

???−→

Those cases in Table 4.7 with action b at time step t − 2 are selected as the new set of candidate

cases and the rest are discarded. Case 9 is discarded (and surrounded by square brackets in Table

4.7) because the action at time step t − 2 of its sub-run is action a, not action b. The remaining

cases (cases 4-8) are shown in Table 4.7 without square brackets; their solutions still do not match,

so TB will next compare the perception of each case at time step t− 2 to that of the test run.

Table 4.8: Temporal Backtracking XYZ Example - Iteration 5

Case Number Problem Solution

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

8 [. . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t] aCt

In the fifth iteration of TB, the perception at time step t− 2 in the test run is environmental state Y .

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ YT
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

The cases in Table 4.8 with perceptions of environmental state Y at time step t − 2 are kept and

the rest are discarded. Case 8 is discarded because the environmental state perceived in its sub-run

85

at time step t− 2 is X . The solutions of the remaining cases (cases 4-7) still disagree, so TB will

next compare the action of each case at time step t− 3 to that of the test run at time step t− 3.

Table 4.9: Temporal Backtracking XYZ Example - Iteration 6

Case Number Problem Solution

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bC
t−3−−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

5 [. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aC
t−3−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t] bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bC
t−3−−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bC
t−3−−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

In the sixth iteration of TB, the action at time step t− 3 of the test run is action b.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bT
t−3−−−→ Y T

t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

Those cases in Table 4.9 with action b at time step t− 3 in their sub-runs are kept and the rest are

discarded. In this iteration of our example, case 5 is discarded because the action at time step t− 3

of its sub-run is action a instead of action b like in the test run. The remaining cases are cases 4,

6, and 7. Their solutions still do not agree; cases 4 and 6 have action a for their solution, but case

7 has action b as its solution. Therefore, TB will next compare the perception of each case at time

step t− 3 to that of the test run at time step t− 3.

In the seventh iteration of TB, the perception of the test run at time step t−3 is environmental state

X .

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

The cases in Table 4.10 with environmental state X as the perception at time step t − 3 of their

sub-runs are kept and the rest are rejected. In this case, cases 6 and 7 are rejected because the

86

environmental state perceived at time step t − 3 of their sub-runs is Y , instead of X as in the test

run. Therefore, the only remaining case is case 4. Therefore, its solution, action a, is returned by

TB and the recursion stops.

Table 4.10: Temporal Backtracking XYZ Example - Iteration 7

Case Number Problem Solution

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

6 [. . .
bCt−5−−→ XC

t−4

bCt−4−−→ YC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t] aCt

7 [. . .
aCt−5−−→ XC

t−4

aCt−4−−→ YC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t] bCt

Thus, TB has (correctly) determined that the next action to take in the test run is action a.

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

aT
t−→

Originally designed by Floyd [20] and described in this section, TB can replicate memory-influenced

behaviors. Its limitation is that it operates like a standard agent (defined in Section 4.1). Thus, it

does not try to explicitly model an observed entity’s internal state as in a state-based agent (defined

in Section 4.1). As a result, it must travel back in time recursively for potentially every decision. As

the case base grows in size and the complexity of memory influence increases (potentially increas-

ing the distance in the past a memory influence exists), agent deployment becomes increasingly

costly.

This is an important justification for MCL in our research here. A model of the internal state

of an observed entity that is learned, and not predefined, is more accessible than raw memory

influences that must be recursively retrieved every time step by the agent, and it can be used by

learning algorithms that create state-based agents. Therefore, TB in isolation cannot accomplish

87

the objective of this research as stated by the dissertation hypothesis.

In the next subsection, we describe Memory Features. Memory Features are one of the innovations

introduced in our research and are the intended output of the MCL algorithm.

4.5 Memory Features

Memory Features (MFs) (also memory “attributes” or “variables”) capture some information about

the past. MFs are the output of the MCL algorithm and a core component of our research. MFs

are the formalized codification of memory influence that we have invented within the context

of LfO. The success of MCL is completely dependent on the proper definition and discovery of

MFs from observable behavior, and on their integration into the original traces to complement the

features already there describing the perception of the environment. First, we describe a simple

letter sequence example showing why MFs are essential for capturing influences of memory in our

research. Then, we describe our MF formalization.

4.5.1 Memory Features - Conceptual Description

Table 4.11: Simple Letter Sequence

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Letter A B B A B B A B B A B B A . . .

Suppose that we have a repeating sequence of letters, A and B, as seen in Table 4.11. Here, we

can see that the subsequence ABB repeats itself. We can also represent this sequence as a run, per

88

the conventions from Section 4.1.

A0 → B1 → B2 → A3 → B4 → B5 → A6 → B7 → B8 → A9 → B10 → B11 → A12 → . . .

Here, we assume that the action taken, that would normally be written over each arrow in the

sequence, is either “Go to A” or “Go to B”. The finite state machine shown in Figure 4.2 dictates

the effects of these actions. The environmental state is sufficient for knowing which action by the

agent was taken to bring about that state, so we omit the action label from our runs because it is

implicit.

Figure 4.2: Finite state machine for ABB example

Now, if we were told that the current letter is B and if we were asked to determine which letter

comes after it, we could not do so with certainty.

· · · → B →??

This is because there are instances when B comes after B and other instances when A comes after

B. However, if we were told what the previous letter was, then we could answer the question with

absolute confidence.

· · · → B → B →??

89

· · · → A→ B →??

If the letter before B is B, then the next letter is A. If the letter before B is A, then the next letter

is B.

· · · → B → B → A

. . . , A→ B → B

The conventional description of an observed performer’s run, provided by [27], represents an ob-

served behavior as a sequence of interactions of an actor with its environment. Each interaction

consists of a perception of the environment and an action executed in response by the actor. How-

ever, this representation of an actor’s run does not include the internal state of the actor. The actor’s

internal state cannot be observed by an external observer, but it plays a vital role in the actor’s de-

cisions. The hypothesis of our research is that the internal state of an observed actor, specifically

the component of internal state that is influenced by memory of past observable interactions of the

observed actor with its environment, can be approximated and modeled by a preprocessing tech-

nique and then used by an agent that learns to emulate the observed actor’s behavior. Therefore,

we present a modified representation of a run that explicitly represents the internal state of an agent

as it changes over time. We call a run that accounts for internal state an internal run and we call a

run that does not account for internal state an observed run. We note here that our definition of an

internal run only accounts for the actor’s memory of past events. We do not account for other com-

ponents of an actor’s behavior that may affect his or her internal state, such as motivation, agenda,

goals, or emotional state. Such components of internal state and their influences on behavior are

beyond the scope of our research and are explicitly left for future research.

In addition to the finite setE = {e0, e1, . . . , en} of possible states that the environment may assume

and the finite set A = {a0, a1, . . . , an} of possible actions that an agent may execute in response,

90

our notation includes the finite set I of possible internal state instances that an agent’s singular

internal state may assume:

I = {i0, i1, . . . , in}

It is worth noting that for the purposes of our research, an agent has only one internal state, but

that internal state can assume one of several values or instances at any given time. Also, I is finite

because every run has a beginning and therefore every run up to a given time step t is finite. Thus,

the number of configurations for an internal state based on memory of a finite run is itself finite.

An internal run is represented as a sequence of interactions of the agent with its environment,

each of which consists of an internal state instance, a perception of the environmental state, and an

action taken in response. In a state-based agent, the juxtaposition of the internal state instance and

the perception of the environment within a given interaction is called the agent’s awareness. From

that awareness, the agent chooses an action to do in response (even if that action is to do nothing).

Again, this convention is our own invention. An internal run may be represented as:

(i0, e0)
a0−→ (i1, e1)

a1−→ (i2, e2)
a2−→ . . .

an−1−−−→ (in, en)

An alternative (more compact) notation is:

(i, e)0
a0−→ (i, e)1

a1−→ (i, e)2
a2−→ . . .

an−1−−−→ (i, e)n

The internal run representation is more detailed than the representational convention of a run

presented in [27] and described in Section 4.1. This is because an internal run accounts for the

change in an agent’s internal state over time. However, an internal run is only accessible by the

agent itself because only an agent has access to its own internal state. All external observers of a

performing entity’s behavior have access to the observed run, but the performing entity is the only

91

one with access to its internal run. Our research tries to approximate the internal state (based on

memory) within an internal run of an observed entity, but the actual internal state is inaccessible

to us, the observers.

For one last clarification, we return to the car driving example from Chapter 1. In the example

where a car driver on an interstate highway passes a sign indicating a gas station at the next exit

and then takes the exit, the observed run (known by anyone watching) could be represented by the

following sequence:

• Car on interstate passes sign indicating a gas station at the next exit.

• Car continues driving on the interstate.

• Car changes to the right-most lane.

• Car takes the exit.

In contrast, the internal run (known only to the driver) could be represented by the following

sequence:

• Observe: Car passes sign for gas station. Internally: [Okay, gas station coming up.]

• Observe: Car drives on interstate. Internally: [Oh, hold on, I need gas! Where can I get gas?

Oh, the sign before... gas at next exit.]

• Observe: Car changes to right lane. Internally: [Need to get off interstate to get gas.]

• Observe: Car exits interstate. Internally: [Now, off to the gas station.]

If the observer happened to be inside of the car with the driver and could also observe the level of

the fuel gauge (which would be at a low level throughout this example), then the observer could

92

also associate a low fuel gauge reading with memory of the gas station sign when learning to

proceed to an exit when gas is needed.

We now proceed to convert the following observed run from our “ABB” example

A0 → B1 → B2 → A3 → B4 → B5 → A6 → B7 → B8 → A9 → B10 → B11 → A12 → . . .

into the format of an internal run. We have established that it is possible to determine the next letter

in the observed run if we know the current letter and the letter that came before it. Therefore, the

current letter comprises the perception and the letter before it comprises the internal state instance,

both of which make up the awareness within an internal run. The first awareness in our internal

run is thus composed of the first letter in the observed run, A, as the perception, and null as the

internal state instance (because there are no previous letters). The internal run is now:

(null,A)0

The next letter (perception) in the observed run is B. The action taken in the first time step to get

there is “Go to B”. (Again, we omit action labels from the run because the action is intuitive and

implicit.) Within the internal run, the internal state instance is the letter of the previous time step,

which is A. The run is now:

(null,A)0 → (A,B)1

The letter (perception) in the third time step of the observed run is again B. In the internal run, in

addition to the perception, the awareness is composed of the letter in the previous time step, which

is B. The run is now:

(null,A)0 → (A,B)1 → (B,B)2

In the fourth time step of the observed run, the perception is A. In the corresponding time step

93

of the internal run, the perception is also A and the internal state instance is the letter from the

previous time step, which is B. The run is now:

(null,A)0 → (A,B)1 → (B,B)2 → (B,A)3

The rest of the internal run corresponding to our observed run is instantiated in a similar fashion,

using the same procedure we have illustrated:

(null,A)0 → (A,B)1 → (B,B)2 → (B,A)3 → (A,B)4 → (B,B)5 → (B,A)6 . . .

Now, given an awareness in the internal run in our “ABB” example, we can deduce the next per-

ception (i.e. letter) in the observed run. For example, if the latest awareness in the internal run

is (B, B), then the next awareness in that internal run will be (B, A). This means that the next

perception in the corresponding position in the observed run is simply A (the perception compo-

nent of the awareness (B, A)). We can make such a deduction because there is a now a one-to-one

mapping between each awareness in the internal run and the appropriate next perception (letter) in

the observed run, as seen in Table 4.12. For example, from the second entry (row) in Table 4.12,

if the current awareness in our internal run is (A, B), then we know with certainty that the next

awareness in the internal run should be (B, B). This means that the next perception in the observed

run will be the perception component of the next awareness (B, B), which is B.

The internal run thus Markovian [86] - at a given time step in the internal run, the information

needed to determine the next awareness in the internal run is entirely contained within the aware-

ness of the current time step and absolutely no information is needed from any prior awarenesses

in the internal run.

94

Table 4.12: One-to-One Mapping From Internal Run Awareness to Next Observed Run Perception

Entry
Current Awareness

(Internal Run)

Next Awareness

(Internal Run)

Next Perception

(Observed Run)

1 (null, A) → (A, B) → B

2 (A, B) → (B, B) → B

3 (B, B) → (B, A) → A

4 (B, A) → (A, B) → B

In our “ABB” example, each awareness in the internal run contained both a perception and an

internal state instance that consisted of a single memory feature (MF), where the MF stored the

value of the previous time step’s letter (perception). The purpose of MFs are therefore to make

internal runs Markovian. For the “ABB” example, the observed run is not Markovian because

information from previous time steps is required to determine the next action (“Go to A” or “Go to

B”) needed to institute the next desired letter, but the internal run is Markovian because the current

awareness has all the information necessary to produce the next time step’s awareness contents.

The set of MFs necessary to make an internal run Markovian thus comprises the internal state I

that is used by state-based agents, described in Section 4.1. It is the job of the MCL algorithm to

learn which MFs can help produce the internal state instances within each awareness of an internal

run that would make the internal run Markovian. We now describe these MFs formally.

4.5.2 Memory Features - Formal Description

There are two kinds of MFs in our research: value-back MFs and time-back MFs. Value-back

MFs store the value µ of a feature f at time t−K, where K is some positive constant less than t.

Time-back MFs store the number of time steps σ prior to a given time step t when a specific value

95

V of a given feature f was last observed.

Up until this point, within a run we have only considered each perception as a whole, but not

the individual components or features that comprise it. All of our examples until now have only

used perceptions that had just one feature, so it is important for us to note here that a perception

can have several features that have varying ramifications for memory-influenced behaviors. For

example, “speed” and “steer angle” may be two possible features in a car-driving domain. In our

“ABB” example, our only feature was “Letter”. Temporal Backtracking [20] [27] considers each

feature as equally important in determining a case’s relevance to a test run in progress (as seen in

the Percep-Sim function in Algorithm 1 in Section 4.4). However, our research decomposes

these perceptions to investigate the significance to memory of each individual feature. MFs can

also track the action taken at some prior time step.

For a given behavior of an agent, let the finite set of all features F that are contained in an agent’s

perception and action sets be:

F = {f0, f1, . . . , fn}

Let the finite set of all values V that may be assumed by a feature in the agent’s perception be:

V = {v0, v1, . . . , vn}

Let the set T be the set of all numbers in the range [1, N], where N is the maximum number of

time steps that an agent’s run may have.

T = {1, 2, . . . , N}

96

For a given time step value t ∈ T , let K be the set of positive integers less than or equal to t.

K = {1, 2, . . . , t− 1}, t ∈ T

Therefore, a MF, like an agent, is a conversion from some cross product of its input parameters to

the space of its output parameter. The value-back MF, MF V B, is parameterized by a feature f , a

time step t, and a constant k, and it stores the value v of f at time step t− k. The value-back MF

can be represented as:

MF V B : F ×K × T → V

The time-back MF, MF TB, is parameterized by a feature f , a time step t, and a value v of f , and

it stores the number of time steps k before time step t when value v was last observed for feature

f . The time-back MF can be represented as:

MF TB : F × V × T → K

It is important to note that if value v occurs for feature f at time step t, a time-back MF tracking v

for f will not return the value k = 0, because all values from time step t comprise the perception at

time step t and not memory of past events — such a value cannot affect the internal state instance

at time step t. Instead, the time-back MF will return the number of time steps before time step t

when v last occurred.

An example of a value-back MF would be the MF we used in the “ABB” example, the value of the

feature letter at time t− k, where k = 1. We represent this MF as:

vLetter(1)

97

In the general case, a value-back MF is represented as:

vFeature(k)

We exclude the time step t from the naming convention of a value-back MF because its value is

expected to change over time, similar to how a perception feature (e.g. “Throttle” in a car driving

domain) will change over time.

Table 4.13 shows the value of the value-back MF vLetter(1) for each time step of the “ABB”

run from our example. This corresponds to the same letter sequence shown in Table 4.11. At time

step 0, the value of the feature Letter is A. The value-back MF vLetter(1) stores the value of

feature Letter at time t− 1. At time step 0, t− 1 = −1, which is less than 0, and so the MF stores

“null” (which also bears the same meaning as “N/A”, “nothing”, or “-”). At time step 1, the value

of feature Letter is B. The value-back MF vLetter(1) stores the value of Letter at time step

t − 1 = 0; thus, the MF stores “A” because that was the value of Letter at the previous time step,

time step 0.

Table 4.13: Value-Back MF for ABB Example

Time 0 1 2 3 4 5 6 . . .

vLetter(1) null A B B A B B . . .

Letter A B B A B B A . . .

The contents of Table 4.13 can be represented in the format of an internal run (as described in

Section 4.5.1), where each awareness within an interaction is of the form (vLetter(1), Letter). This

internal representation is:

(null,A)0 → (A,B)1 → (B,B)2 → (B,A)3 → (A,B)4 → (B,B)5 → (B,A)6 → . . .

98

An example of a time-back MF would be an MF that stores the number of time steps k before

time step t when the value A for feature Letter was last observed in our example “ABB” letter

sequence. We represent this MF as:

tLetter(A)

In the general case, a time-back MF is represented as:

tFeature(value)

For the same reason we excluded the time step t from the naming convention for the value-back

MF, we also do so for the time-back MF. The t prefix stands for time-back.

Table 4.14: Time-Back MF for ABB Example

Time 0 1 2 3 4 5 6 . . .

tLetter(A) null 1 2 3 1 2 3 . . .

Letter A B B A B B A . . .

Table 4.14 shows the value of the time-back MF tLetter(A) for each time step of the “ABB”

run from our example. This corresponds to the same letter sequence shown in Table 4.11. At time

step 0, the value of the feature Letter is A. The time-back MF tLetter(A) stores the number

of time steps before time step t when the value of feature Letter was A. There are no time steps

before time step 0, and so the MF stores “null”.

At time step 1, the value of feature Letter is B. The time-back MF tLetter(A) stores the value

k = 1, because the last observation of value A for feature Letter was at time step 0, which comes

k = 1 time steps before the current time step, time step 1.

99

At time step 2, the value of feature Letter is B. The last observation of value A for feature Letter is

still time step 0, which comes two time steps before the current time step, time step 2. Therefore,

tLetter(A) stores the value k = 2.

At time step 3, the value of feature Letter is A. The last observation of value A for feature Letter

before the current time step t = 3 is time step 0. So, tLetter(A) stores the value k = 3.

The contents of Table 4.14 can be represented in the format of an internal run, where each aware-

ness within an interaction is of the form (tLetter(A), Letter). This internal run representation is:

(null,A)0 → (1,B)1 → (2,B)2 → (3,A)3 → (1,B)4 → (2,B)5 → (3,A)6 → . . .

The power of MFs lies in their ability to capture knowledge from the past and augment an internal

run to make it Markovian. If the appropriate MFs can be learned by MCL via analysis of a trace of

an observed behavior, then an internal state approximation for the observed behavior composed of

these MFs can be constructed for this purpose.

4.6 Behavioral Representations Summary

In this chapter, we described terminology and topics that are important for understanding the im-

plementation of the MCL algorithm. We discussed the various agents that can be created through

learning algorithms. We then described the XY Z domain and a memory-influenced behavior by

one agent within this domain, which will be addressed in Chapter 5. This was followed by a discus-

sion of the terminology behind a Case-Based Reasoning (CBR) framework that facilitates learning

memory-influenced behaviors. Next, we described the Temporal Backtracking (TB) algorithm, as

originally designed by Floyd [20], and provided an example of it operating within the XY Z do-

100

main. Finally, we presented our novel Memory Features (MFs), the intended output of MCL. With

these concepts in place, we now present a minimal conceptual description of the MCL algorithm.

101

CHAPTER 5: BASELINE CONCEPTUAL APPROACH

In this chapter, we introduce our initial or “baseline” conceptual approach to the problem described

in Chapter 3. Here, we describe the Memory Composition Learning (MCL) algorithm; this chapter

covers a preliminary version of MCL that is unencumbered by improvements made in the advanced

version described in Chapter 6. We call this baseline approach “MCLv0”. MCLv0 was used

to verify the basic concepts of MCL in a simple vacuum cleaner domain before enhancing the

approach through other useful concepts.

This chapter is organized as follows:

• Section 5.1 presents the high-level view of the overall MCL algorithm and which aspects of

the algorithm constitute the MCLv0 approach.

• Section 5.2 describes the first phase of MCLv0, Memory Feature Extraction.

• Section 5.3 describes the second phase of MCLv0, Memory Feature Refinement.

• Section 5.4 describes the third phase of MCLv0, Trace Enhancement.

• Section 5.5 describes our assessment of MCLv0 in a simulated vacuum cleaner domain.

5.1 High Level Conceptual Approach

In this section, we describe the Memory Composition Learning (MCL) algorithm, our concep-

tual approach to the problem defined in Chapter 3. We furthermore show which aspects of this

algorithm constitute our baseline conceptual approach, MCLv0.

102

The purpose of MCL is to learn a set of features that encapsulate the pertinent information from

memory of past events that have significance for decision-making in an observed behavior. We

accomplish this in three phases, as seen in Figure 5.1.

Figure 5.1: MCL Full Approach

MCL can be viewed as a pipeline that takes as input several traces (described in Section 4.1) that

have been converted into a CBR case base (see Section 4.3). The three main steps in the MCL

approach are:

1. Extract atomic MFs for each case in the case base.

2. Refine the extracted MFs into a minimal subset that applies to all cases.

3. Enhance the traces with memory by incorporating the refined MFs into the traces themselves.

103

In Figure 5.1, the first step is to gather raw traces that record the observed behavior from which we

want to learn. If the traces encode continuous-valued data, they would need to first be converted

into discrete-valued traces. These traces are then converted into a case base that is structured

according to the conventions outlined in Section 4.3. Then, the operations of our MCL approach

begin.

In the first phase, Memory Feature Extraction, the objective is to learn the appropriate MFs that

make the problem component sub-run for each case conform to the Markov assumption. This

phase operates on the micro-level; each case is addressed individually. In Step 1 “Extract Memory

Features”, the memory influences at work for a given case are expressed as MFs (see Section 4.5).

The end result of this phase is that each case will have its own set of extracted MFs.

In the second phase, Memory Feature Refinement, the objective is to reduce or refine the many sets

of MFs extracted for each case into just one refined set of MFs that applies to all cases. This phase

operates on the macro-level; all cases must be taken into account simultaneously. This occurs in

Step 2a “Refine Memory Features”. This also provides the opportunity to see which groups of

MFs frequently occurred together; from this information, various memory-based contexts may be

generated in Step 2b “Contextualize Memory Features”.

In the third phase, Trace Enhancement, the objective is to compute the contents of memory (the

values of the MFs) for each time step in the original traces. This creates new memory-enhanced

traces, which are the ultimate output of MCL. This occurs in Step 3a “Enhance Traces with Mem-

ory”. If contexts were generated in the Memory Feature Refinement phase, then portions of each

trace that map to the generated contexts will be written to file in Step 3b “Map Runs to Contexts”.

Steps 1, 2a, and 3a are absolutely necessary for MCL to work. These constitute the minimal MCL

approach, MCLv0, which is described in this chapter. The addition of steps 1b, 2b, and 3b along

with the appropriate modification of steps 1, 2a, and 3a constitutes a comprehensive approach,

104

which is described Chapter 6.

Figure 5.2 depicts the transformation of memoryless traces into memory-enhanced traces as they

are processed through the MCLv0 pipeline. At the start of the pipeline for MCLv0, Gather Raw

Traces, we obtain one or more traces that recorded an observed entity’s behavior. As described in

Section 4.1, a trace is a record of an observed run that cannot be expanded or continued because that

run has reached a terminating state. In other words, a trace is a record of what an observed entity

did in one scenario, from start to finish. Each trace is represented graphically within Figure 5.2 as

a sequence of alternating perception-action pairs, where a perception is a group of three squares,

and an action is a circle. Each square in the perception is a single feature that captures one aspect

of the environment at a given time step. After the observed entity perceives the environment, it

executes an action in response, which then changes the environment. Upon perceiving the updated

environment, the entity will choose an action to take in response, and the cycle continues. (Note:

There is no particular reason why there are three squares — three is just an arbitrary number

because each perception tracks three features in this example.)

In the second module of the pipeline in Figure 5.2, Create Case Base, a case base is formed from

all the memoryless traces. Each rectangle in the stack is a single case that contains a problem

component (the run from one trace up to a given time step’s perception of the environment) and

a solution component, the action which the observed entity took at that point of the observed

run. This formulation of the case base, as was described in Section 4.3, is necessary to execute

a modified version of the Temporal Backtracking algorithm [20], which is executed in the third

module of the MCLv0 pipeline.

105

106

Figure 5.2: MCLv0 Pipeline

In this third module of the pipeline, Extract Memory Features, a list of value-back and time-back

MFs (represented as ovals and triangles, respectively, in Figure 5.2) is extracted for each case

via our version of the Temporal Backtracking algorithm called Memory Temporal Backtracking

(MemTB). MemTB is applied to each case in the case base to get a list of MFs that converts the

observed sub-run within the case into a Markovian internal sub-run. However, because each case

is handled independently of the other cases, many extraneous MFs may be extracted during this

process.

The fourth module of the MCLv0 pipeline, Refine Memory Features, refines the list of MFs ex-

tracted from each case in the case base and determines which MFs are common across all the cases.

In some cases, certain MFs may be redundant and can be discarded. In other cases, the extracted

MFs are the result of artifacts in the traces instead of being indicative of memory influence on the

behavior as a whole. Thus, the set of extracted MFs is reduced to a minimal refined set of MFs that

is applicable to the majority of cases in the case base.

In the fifth module of the MCLv0 pipeline, Enhance Traces with Memory, the refined MFs are

incorporated into the memoryless traces to produce a new set of memory-enhanced traces. The

value of each MF is computed for every time step of each trace. The MFs can then be treated like

the originally included trace features by a machine learning algorithm.

The problem that MCL seeks to address is formally defined as follows:

• Input: A set of traces that record the observed behavior of an actor.

• Output: A set of memory-enhanced traces that record values for MFs that summarize relevant

memory influences at each time step.

In other words, if an observed behavior requires information from memory in order to explain the

107

actions taken by the observed actor, then MCL learns which MFs express those memory influences

and then computes their values for each time step of the observed behavior in order to create

memory-enhanced traces.

Algorithm 2 Memory Composition Learning
procedure MEM-COMP-LEARN(traces)

casebase← create-casebase(traces)
mem-feats← (empty set)
for each case in casebase do

tmp-mem-feats← extract-mem-feats(case, casebase, case.last-time-step)
mem-feats.add(tmp-mem-feats)

min-mem-feat-set← refine-mem-feats(traces, casebase, mem-feats)
for each trace in traces do

enhance-trace(trace, min-mem-feat-set)

The MCL algorithm (see Algorithm 2), as it has been implemented in the MCLv0 approach, works

as follows:

• Given a set of traces, structure the information within as a case base, as described in Section

4.3.

• Once a set of traces have been converted into a case base (see Section 4.3), a set of MFs is

extracted for each individual case via the extract-mem-feats procedure.

• All of these MFs are appended to a large cumulative list of MFs, which is then refined in the

refine-mem-feats procedure to reduce the MF list to just a minimal subset that has the

most utility across the entire case base.

• Finally, the final MF set is used to enhance each of the original traces in the enhance-

trace procedure.

108

Each of the major steps will be discussed at length in the following sections and clarified with our

running example from the XY Z domain.

5.2 Memory Feature Extraction

The Memory Feature Extraction step of the MCL algorithm analyzes each case in the case base

and extracts a list of MFs for each case that would make the case’s problem component sub-run

Markovian. First, we provide an algorithmic description of the Memory Feature Extraction step,

then we clarify it with our ongoing example in the XY Z domain.

5.2.1 Memory Feature Extraction Algorithm

For each case in the case base, a call is made to the procedure extract-mem-feats in Al-

gorithm 2. The Memory Feature Extraction algorithm invoked by this procedure is shown in Al-

gorithm 3. This procedure uses a modified version of the Temporal Backtracking (TB) algorithm

(the original version was described in Section 4.4). We call our modified TB version Memory

Temporal Backtracking or just “MemTB”. Unlike the original TB, which gets the next action to

take at a given time step in a test run in progress, MemTB will get a MF that codifies the most

recent memory influence on a case’s problem sub-run that resolves the proper action to take next

in the sub-run. By invoking MemTB multiple times and modifying the case’s sub-run each time

to account for the extracted memory influences, a list of MFs that maximally reduces a case’s de-

pendence on memory can be otained. The objective is to find the MFs that will convert the case’s

problem component test-run into an internal run that is Markovian.

109

Algorithm 3 Memory Feature Extraction
1: procedure EXTRACT-MEM-FEATS(test-run, case-base, time-step)
2: mem-feats← (empty set)
3: while True do
4: last-mf, call-depth← mem-tb(test-run, case-base, time-step)
5: if call-depth == 0 then
6: break
7: vb-test-run, vb-case-base← add-val-back-mf(last-mf, test-run, case-base)
8: tb-test-run, tb-case-base← add-time-back-mf(last-mf, test-run, case-base)
9: temp-mf, vb-call-depth← mem-tb(vb-test-run, vb-case-base, time-step)

10: temp-mf, tb-call-depth← mem-tb(tb-test-run, tb-case-base, time-step)
11: if vb-call-depth ≤ tb-call-depth then
12: test-run, case-base← add-val-back-mf(last-mf, test-run, case-base)
13: mem-feats.add(val-back-mf)
14: if tb-call-depth ≤ vb-call-depth then
15: test-run, case-base← add-time-back-mf(last-mf, test-run, case-base)
16: mem-feats.add(time-back-mf)
17: return mem-feats

The procedure extract-mem-feats is invoked for a given test case for which MFs are ex-

tracted. This procedure is called once for every case in the case base; every case in the case base

gets a chance to be the test case. The procedure extract-mem-feats has four major steps that

it iterates through until all memory influences for the current test case have been obtained in the

form of MFs:

1. Use MemTB to extract one raw MF for the test run. The “test run” is the problem component

sub-run in the test case for which MCL is extracting MFs. A raw MF is a MF that has not

been designated as either value-back or time-back. Record how many MemTB iterations

were required. Note, MemTB is a recursive function.

2. Convert the raw MF into a value-back MF. Temporarily add this MF to the internal test run.

Run MemTB and record how many MemTB iterations are required.

3. Convert the raw MF into a time-back MF. Temporarily add this MF to the internal test run.

110

Run MemTB and record how many MemTB iterations are required.

4. Convert the raw MF into the MF type that has the greatest reduction in MemTB iterations.

Permanently add it to the internal test run. If the number of TB iterations was greater than

one, return to Step 1. Otherwise, terminate.

To clarify, the procedure extract-mem-feats will iterate through the above steps until the

memory influences for a given test case have been captured in the form of MFs. However, within

a given iteration, three calls to the recursive function MemTB are made, the result of each is the

extraction of a single raw MF, which may or may not be converted into a specialized (value-back

or time-back) MF.

The procedure mem-tb is shown in Algorithm 4. It consists of an initial call to the recursive

procedure Mem-State-Retrieve, shown in Algorithm 5. Similar to how the original TB

algorithm alternates between recursive functions State-Retrieve and Action-Retrieve

until all cases agree on an action to take, MemTB will recursively alternate between Mem-State-

Retrieve (Algorithm 5) and Mem-Action-Retrieve (Algorithm 6) until all retained cases

agree upon the next action to take. The algorithmic design of MF Extraction in MCLv0 is a simple

and intuitive one that is meant to validate the basic mechanism of extracting MFs. However, the

reader may notice that the algorithmic design for MF Extraction in MCLv0 is computationally

inefficient. This limitation is addressed in Chapter 6.

Algorithm 4 Memory Temporal Backtracking
1: procedure MEM-TB(test-run, case-base, time-step)
2: return mem-state-retrieve(test-run, case-base, time-step, 0, 1)

111

Algorithm 5 Memory State Retrieval
1: procedure MEM-STATE-RETRIEVE(test-run, case-pool, time-step, time-back, call-depth)
2: candidate-actions← (empty set)
3: candidate-cases← (empty set)
4: test-percep← test-run.percep-at(time-step− time-back)
5: for each case in case-pool do
6: case-percep← case.percep-at(time-step− time-back)
7: similiarity← percep-sim(test-percep, case-percep)
8: if similarity >= THRESHOLD then
9: candidate-cases.add(case)

10: if not candidate-actions.contains(case.action) then
11: candidate-actions.add(case.action)
12: if count(candidate-actions) is 0 then
13: return null, call-depth . Memory feature can’t be determined
14: if count(candidate-actions) is 1 then
15: raw-mem-feat ← get-raw-mem-feat(test-run, candidate-cases, case-pool, time-

step, time-back)
16: return raw-mem-feat, call-depth . Return raw memory feature
17: return mem-action-retrieve(test-run, candidate-cases, time-step, time-back −

1, call-depth + 1) . Recursion

Algorithm 6 Memory Action Retrieval
1: procedure MEM-ACTION-RETRIEVE(test-run, case-pool, time-step, time-back, call-depth)
2: candidate-actions← (empty set)
3: candidate-cases← (empty set)
4: test-action← test-run.action-at(time-step− time-back)
5: for each case in case-pool do
6: case-action← case.action-at(time-step− time-back)
7: if case-action == test-action then
8: candidate-cases.add(case)
9: if not candidate-actions.contains(case.action) then

10: candidate-actions.add(case.action)
11: if count(candidate-actions) is 0 then return null, call-depth . Memory feature can’t be

determined
12: if count(candidate-actions) is 1 then return new MemFeat(“Action”, test-action, time-

back), call-depth . Return raw memory
feature

13: return mem-state-retrieve(test-run, candidate-cases, time-step, time-back, call-depth+
1) . Recursion

112

If a raw MF is created in the procedure Mem-State-Retrieve, the raw MF can only track one

of the perception features in the perception. The original TB algorithm treats all features in the

perception equally and only cares about the similarity of a case’s problem component sub-run’s

perception as a whole, but MemTB can only create a raw MF from one of the features in the

perception. Therefore, a heuristic for determining the most influential perception feature is used in

the procedure Get-Raw-Mem-Feat (Algorithm 7). The heuristic is composed of the following

steps.

1. Create two lists, candidate-cases and reject-cases. The former contains cases with a solution

component matching that of the test-run (the problem component sub-run of the test case).

The latter contains cases with different solution components.

2. For each feature in the perception of the test-run, compute the similarity of the corresponding

feature of each case in the candidate-cases list. Do the same for each case in the reject-cases

list. A case’s similarity score for a feature is in the range [0.0, 1.0], where a higher score

indicates higher similarity.

3. Given the feature similarities for candidate cases and rejected cases, a feature’s influence

score is equal to the average candidate case feature similarity plus one minus the average

reject case feature similarity. The assumption behind this computation is that an influential

feature should yield high similarity scores for candidate cases and low similarity scores for

rejected cases. Future work could investigate more nuanced metrics for finding the appro-

priate feature for the raw MF

4. Create a raw MF that tracks the feature with the highest influence score and stores the value

of that feature and the number of time steps back in time when that value was taken.

113

Algorithm 7 Raw Memory Feature Computation
1: procedure GET-RAW-MEM-FEAT(test-run, candidate-cases, case-pool, time-step, time-back)
2: reject-cases← (empty-set)
3: candidate-feat-scores← (empty-set)
4: reject-feat-scores← (empty-set)
5: all-features← case-pool[0].features
6: test-percep← test-run.percep-at(time-step− time-back)
7: for case in case-pool do
8: if not case-pool.contains(case) then
9: reject-cases.add(case)

10: for feat in all-features do
11: candidate-feat-scores.add(0.0)
12: reject-feat-scores.add(0.0)
13: for feat in all-features do
14: for cand-case in candidate-cases do
15: case-percep← cand-case.percep-at(time-step - time-back)
16: temp-val← case-percep.value-of(feat)
17: old-val← candidate-feat-scores.value-of(feat)
18: candidate-feat-scores.value-of(feat)← old-val + temp-val
19: for rej-case in reject-cases do
20: case-percep← rej-case.percep-at(time-step - time-back)
21: temp-val← case-percep.value-of(feat)
22: old-vale← reject-feat-scores.value-of(feat)
23: reject-feat-scores.value-of(feat)← old-val + temp-val
24: old-val← candidate-feat-scores.value-of(feat)
25: candidate-feat-scores.value-of(feat)← old-val / candidate-feat-scores.size()
26: old-val← reject-feat-scores.value-of(feat)
27: reject-feat-scores.value-of(feat)← old-val / reject-feat-scores.size()
28: max-score← 0.0
29: best-feat← null
30: for feat in all-features do
31: good-score← candidate-feat-scores.value-of(feat)
32: bad-score← reject-feat-scores.value-of(feat)
33: tmp-score← good-score + (1 - bad-score)
34: if tmp-score > max-score then
35: max-score← tmp-score
36: best-feat← feat
37: feat-val← test-percep.value-of(best-feat)
38: return MemFeat(best-feat, feat-val, time-back)

114

It is important to note that MCL does not learn how to emulate the behavior of an observed per-

former. That is done by a machine learning algorithm later. TB, as originally designed, was meant

to learn memory-influenced behavior; however, as we discussed in Section 4.4, TB is insufficient

by itself to capture the influence of memory explicitly. This limitation inspired our research. In

contrast to TB, which retrieves the next action to take in a sub-run in progress, MemTB retrieves

the most discriminative memory influence used to separate cases in a case base that are sufficiently

similar to a given sub-run in progress from those cases that are not sufficiently similar. This dis-

tinction and its consequences are further discussed next.

5.2.2 Memory Temporal Backtracking Analysis

This section briefly outlines the commonalities and differences between TB [20] and MemTB.

They are the same in their implementation of case comparison and backtracking elements. They

differ in purpose, in input parameters, and return output. We discuss the elements that TB and

MemTB share in common, then we discuss how they are different.

First, we define what a test run is. In the context of TB, a test run is the performance of a TB-

controlled agent in progress, for which TB seeks to determine the next action that should be taken

by the agent. In the context of MemTB (within MCLv0), the test run is the problem sub-run

component of the specific case in the case base for which MCL is extracting MFs. In TB, the test

run has never been seen before (e.g. it is not necessarily reflected exactly in the case base). In

MemTB, the test run comes from one of the cases in the case base because MemTB is used to find

memory influences for each case in the case base.

Regarding case comparisons, TB and MemTB both rely on two assumptions:

1. A test-run and a case’s sub-run should be compared temporal element by temporal element.

115

Given a time step tT for the test run and tC for the case’s sub-run, an element from k time

steps prior to tT in the test run can only be compared to the corresponding element k time

steps prior to tC in the case’s sub-run.

2. The procedure for comparing perceptions or actions from two different runs is the same

for both TB and MemTB. For perceptions with multiple features, each feature contributes

equally to the similarity score of two perceptions.

This means that when comparing two runs, both TB and MemTB will compare the same elements

and compare them in the same manner.

Regarding backtracking, TB and MemTB both rely on the assumption, as stated in [27], that the

most recent events of a run in progress are the most relevant to making the next decision. This

is evidenced in the manner by which both TB and MemTB backtrack, which is defined by these

steps:

1. Set k = 0 and include all cases in the case base within the initial candidate cases pool.

2. Repeat the following until t− k = 0 for all candidate cases’ sub-runs and the test run.

(a) Compare the candidate cases’ perceptions to the corresponding perception in the test

run at time t − k. Remove cases with similarity scores below a certain predefined

threshold.

(b) This is the end of one iteration. If all remaining candidate cases agree on the same

action, terminate.

(c) Increment k by one.

(d) Compare the candidate cases’ actions to the corresponding action in the test run at time

t− k. Remove cases with similarity scores below a certain predefined threshold.

116

(e) This is the end of a second iteration. If all remaining candidate cases agree on the same

action, terminate.

By first examining the most recent perceptions and actions, both TB and MemTB are more likely to

inform their results with influences from recent time steps than from those in older time steps, thus

biasing their computations toward influences from recent events. Additionally, TB and MemTB,

given the same test run and initial pool of candidate cases, will terminate after the same number of

iterations.

However, TB and MemTB differ in terms of what happens when they do terminate. This is because

they differ in purpose, which informs their input parameters and return output. The purpose of TB

is to determine the next action to take in a test run in progress by using the same action as that of

the most similar case sub-runs in the case base. The purpose of MemTB is to determine the most

recent memory influence (encoded by a raw MF) that in and of itself distinguishes all agreeing and

sufficiently similar candidate cases from all disagreeing and sufficiently dissimilar reject cases;

in other words, MemTB determines which memory influence was responsible for resolving case

disagreements over the right action to take in the test run during MemTB’s final iteration.

The difference in purpose between TB and MemTB affects the final output. For TB, the final

output is simply the action (the solution component) of all remaining candidate cases in the final

TB iteration (when all candidate cases have the same solution component). For MemTB, the output

is a raw MF that tracks a feature f (even if it is “Action”), the number of time steps k to backtrack,

and value v of f . If there are multiple features in the perception and the test run perception was an

element of comparison in MemTB’s final iteration, then a heuristic must be applied to determine

which feature of the perception was the most influential in discriminating between kept cases and

reject cases when MemTB terminates recursion (see Algorithm 7 from Section 5.2.1).

117

Finally, the input parameters of TB and MemTB differ, in accordance to these two algorithms’

difference in purpose. Specifically, MemTB has two changes in input parameters:

1. MemTB has an additional input parameter, call-depth, which is incremented every iter-

ation. In other words, call-depth will increment approximately twice as quickly as the

backtracking parameter k does. This input parameter is tracked because its value in the final

MemTB iteration is returned in addition to the discovered raw MF.

2. The test run parameter of TB does not necessarily appear as a sub-run in any of the cases

in the case base (if it does, it’s only by coincidence). However, the test run parameter of

MemTB will always be equivalent to a sub-run of one of the cases in the case base; this is

because MemTB is used to find the memory influences for each case in the case base and,

therefore, each case in the case base is used as the test case exactly once so that MFs can be

extracted for it.

Regarding the difference between TB and MemTB for the test run parameter, further explanation

is required. In Algorithm 2 (from Section 5.2.1), the argument given to the procedure extract-

mem-feats as the test run parameter is the sub-run from a case from the case base. In fact, the

procedure extract-mem-feats is called for every case in the case base. This is important

because this guarantees that for deterministic behaviors, the correct memory influence (subject to

the recency bias mentioned earlier that TB and MemTB share) will be found, even if the case from

which the test run was derived is the only remaining candidate case in the last MemTB iteration.

In summary, MemTB uses the same case comparison and backtracking mechanisms as TB. How-

ever, MemTB’s purpose differs in that it seeks to determine the most recent memory influence that

resolves case retrieval. In order to do this, MemTB has additional mechanisms to create a raw

MF in its final iteration. In addition, MemTB tracks its recursion depth and uses sub-runs from

118

its own case base as test runs because it is learning the memory influences from its own case base

instead of resolving test runs outside of its case base. The differences between the original TB and

MemTB are as follows:

1. Mem-State-Retrieve and Mem-Action-Retrieve track an additional parameter,

call-depth, which is incremented at each level of recursion. This is different from the param-

eter time-back, which tracks how many time steps prior to the parameter time-step recursion

has traversed (two function calls, one to Mem-Action-Retrieve and then one to Mem-

State-Retrieve, constitutes one time step). The final value of this parameter is returned

in the return statements in lines 13/16 and 11/12 of Mem-State-Retrieve (Algorithm

5) and Mem-Action-Retrieve (Algorithm 6), respectively.

2. When all retained cases in the case-pool agree on the next action to take in MemTB, in-

stead of returning that action, a raw MF is returned instead. In line 12 of Mem-Action-

Retrieve (Algorithm 6), this raw MF consists of the tracked feature (“Action” in this

case), the value of the tracked feature (test-action, the observed action taken in this case),

and the number of time steps back when all retained cases agreed (which is stored in the time-

back parameter). In Mem-State-Retrieve (Algorithm 5), a raw MF is also returned,

albeit with a call to get-raw-mem-feat (Algorithm 7).

5.2.3 Memory Feature Extraction Example

We now show MCL in action during the Memory Feature Extraction step, using the same example

from the XY Z domain that was used in Section 4.4. For the benefit of the reader, the rules

described in Section 4.2 for governing the behavior of the XY Z agent are repeated below.

1. If the agent perceives environmental state X , choose the action that was taken one time step

119

ago. Choose action a by default if it’s the first time step.

2. If the agent perceived environmental state Y , choose action b.

3. If the agent perceives environmental state Z, choose the opposite taken when the environ-

ment was previously in state Z. So, if the agent chose action a when it previously perceived

environmental state Z, then it should choose action b; and if the agent chose action b when it

previously perceived environmental state Z, then it should choose action a. Choose action a

by default if this is the first time that environmental state Z has been perceived by the agent.

By the end of the Memory Feature Extraction step, MCL will have discovered a list of MFs for

each case in the case base. Suppose we have the case base shown in Table 5.1. We note that there

are many cases that resemble the ten shown in Table 5.1, but these ten are representative of the

possible unique cases that can be generated by observing the XY Z agent.

Table 5.1: XYZ Case Base: Unique Cases

Case Number Problem Solution

0 . . .
aCt−1−−→ XC

t aCt

1 . . .
bCt−1−−→ XC

t bCt

2 . . .
aCt−1−−→ Y C

t bCt

3 . . .
bCt−1−−→ Y C

t bCt

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

120

For cases where the perception at time step t is environmental state X , we know that the action

chosen is always the same as that taken at time step t − 1. Therefore, the first call to procedure

mem-tb (Algorithm 4) in procedure extract-mem-feats (Algorithm 3) will result in the

MemTB iterations shown in Table 5.2 if the test run is . . . a−→ X (action a leading to state X) or

those shown in Table 5.3 if the test run is . . . b−→ X (action b leading to state X). (By test run, we

are referring to the problem sub-run component of the specific case for which we are extracting

MFs. Even though this case is part of the case base, it is treated as a test case.)

Table 5.2: Memory Temporal Backtracking Iterations - Test Run: . . . a−→ X

Iteration Test Run Candidate Cases Candidate Actions

0 . . .
aTt−1−−→ XT

t (
???−→)

. . .
aCt−1−−→ XC

t (
aCt−1−−→)

. . .
bCt−1−−→ XC

t (
bCt−1−−→)

a, b

1 . . .
aT
t−1−−→ XT

t (
???−→)

. . .
aC
t−1−−→ XC

t (
aCt−1−−→)

[. . .
bC
t−1−−−→ XC

t (
bCt−1−−→)]

a

Table 5.3: Memory Temporal Backtracking Iterations - Test Run: . . . b−→ X

Iteration Test Run Candidate Cases Candidate Actions

0 . . .
bTt−1−−→ XT

t (
???−→)

. . .
aCt−1−−→ XC

t (
aCt−1−−→)

. . .
bCt−1−−→ XC

t (
bCt−1−−→)

a, b

1 . . .
bT
t−1−−−→ XT

t (
???−→)

[. . .
aC
t−1−−→ XC

t (
aCt−1−−→)]

. . .
bC
t−1−−−→ XC

t (
bCt−1−−→)

b

Briefly, in Iteration 0, all cases with sub-runs ending with perceptions of environmental state X

are retained and all others are discarded. (For the purposes of this example, let us call the one

121

perception feature within each perception “State”.) In this iteration, the solutions from these cases

are not the same (possible solutions are actions a and b), so MemTB iterates one more time to

analyze the actions at time step t − 1. In Iteration 1, those cases with the same action as the test

run at time step t− 1 are retained and the others are rejected (shown by square brackets in Tables

5.2 and Table 5.3). After Iteration 1, all retained cases have the same solution component.

Therefore, MemTB will create a raw MF (a MF that is not yet designated as value-back or time-

back). This raw MF stores:

1. The name of the last feature used to resolve conflicts in MemTB (“Action” in this example).

2. The number of time steps back when all retained cases’ solution components agreed (one

time step back in this example).

3. The value of the feature used to resolve conflicts in MemTB (for test run . . . a−→ X from

Table 5.2, that value is action a, and for test run . . . b−→ X from Table 5.3, that value is action

b).

Once MemTB returns this raw MF, the next step in the procedure extract-mem-feats (Algo-

rithm 3) is to determine if the MF should be a value-back MF or a time-back MF. The designation

as value-back or time-back should maximize the MF’s usefulness. The usefulness of the MF is

determined by how much it reduces the number of iterations MemTB would have to make if the

MF was included as part of the perception. Therefore, MemTB tries both MF types and sees which

one is more “useful”.

In our XY Z example, for the test run · · · → X
a−→, the retrieved raw MF becomes vAction(1)

if it becomes a value-back MF or tAction(a) if it becomes a time-back MF. The former would

track the Action taken in the previous time step (t − 1). The latter would track the number of

122

time steps before time step t when the Action taken was a. Tables 5.4 and 5.5 show the iterations

of MemTB when the raw MF (stores these components: feature f = “Action” , number of time

steps back k = 1, value v = a) is added as a value-back MF vAction(1) and as a time-back

MF tAction(a), respectively, when extracting MFs for time step t in a case whose sub-run is

. . .
a−→ X .

Table 5.4: Memory Temporal Backtracking Iterations - Value-Back MF Test Run: . . . a−→ X

Iter Test Run Candidate Cases
Candidate

Actions

n . . .
AcTt−1−−−→ (State,vAction(a))Tt (

???−→)
Retained cases

[Discarded cases]
{Act}

0 . . .
aTt−1−−→ (XT

t , a)(
???−→)

. . .
aCt−1−−→ (X, a)Ct (

aCt−1−−→)

[. . .
bCt−1−−→ (X,b)Ct (

bCt−1−−→)]
a

Table 5.5: Memory Temporal Backtracking Iterations - Time-Back MF Test Run: . . . a−→ X

Iter Test Run Candidate Cases
Candidate

Actions

n . . .
AcTt−1−−−→ (State,tAction(a))Tt (

???−→)
Retained cases

[Discarded cases]
{Act}

0 . . .
aTt−1−−→ (X,1)Ct (

???−→)
. . .

aCt−1−−→ (X,1)Ct (
aCt−1−−→)

[. . .
bCt−1−−→ (X, > 1)Ct (

bCt−1−−→)]
a

As we can see, within the procedure extract-mem-feats (Algorithm 3), when either type of

MF is added to the awareness of the internal test run for this particular case, only one iteration

of MemTB is required. Therefore, MCL will add both types of MFs to the list MFs extracted

for this test case. Additionally, MemTB goes back exactly zero time steps in the past with either

123

MF, because the awareness of the current time step t contains all information (environmental state

perception plus internal state) necessary to arrive at the correct solution. Therefore, the logic in the

procedure extract-mem-feats will terminate.

Table 5.6: Memory Temporal Backtracking Iterations - Value-Back MF Test Run: . . . b−→ X

Iter Test Run Candidate Cases
Candidate

Actions

n . . .
AcTt−1−−−→ (State,vAction(1))Tt (

???−→)
Retained cases

[Discarded cases]
{Act}

0 . . .
bTt−1−−→ (XT

t ,b)(
???−→)

[. . .
aCt−1−−→ (X, a)Ct (

aCt−1−−→)]

. . .
bCt−1−−→ (X,b)Ct (

bCt−1−−→)
b

Table 5.7: Memory Temporal Backtracking Iterations - Time-Back MF Test Run: . . . b−→ X

Iter Test Run Candidate Cases
Candidate

Actions

n . . .
AcTt−1−−−→ (State,tAction(b))Tt (

???−→)
Retained cases

[Discarded cases]
{Act}

0 . . .
bTt−1−−→ (X,1)Ct (

???−→)
[. . .

aCt−1−−→ (X,1)Ct (
aCt−1−−→)]

. . .
bCt−1−−→ (X, > 1)Ct (

bCt−1−−→)
a

A similar trend is observed when MemTB (via the procedure extract-mem-feats (Algorithm

3)) is extracting MFs for a case whose sub-run is . . . b−→ X . Tables 5.6 and 5.7 show the iterations

of MemTB when the raw MF (stores: feature f = Action, number of time steps back k = 1,

value v = b) is added to the perception as a value-back MF (vAction(1)) or as a time-back MF

(tAction(b)), respectively. With either type of MF (value-back or time-back), MemTB ends

124

after one iteration, so both types of MFs are extracted for this case. Additionally, MemTB goes

back in time exactly zero time steps, so it terminates.

If a case contains a sub-run ending with a perception of environmental state Y , then the iterations

of MemTB are shown in Table 5.8. The action b always follows a perception of environmental state

Y , so all retrieved cases with a perception of environmental state Y at time step t have the same

solution component. Therefore, MemTB has gone back in time exactly zero time steps and will

terminate without extracting any MFs, because they are not needed for such cases with sub-runs

ending with environmental state Y .

Table 5.8: Memory Temporal Backtracking Iterations - Test Run: . . . Y

Iteration Test Run Candidate Cases Candidate Actions

0 . . . Y T
t

???−→ . . . Y T
t

bTt−→ b

For cases in the case base that have sub-runs ending with perceptions of environmental state Z,

the influence of memory becomes more complex and the true power of MCL becomes evident.

Suppose we are extracting MFs for a case in the case base from the XY Z domain whose sub-run

is as follows (same as the example run from Section 4.4):

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

Suppose that the unique cases in our case base are those in Table 5.9. In the procedure extract-

mem-feats, the initial call to the procedure mem-tb (Algorithm 4) will proceed through the

same iterations as those described in Section 4.4. Those iterations are shown in Tables 5.10 and

5.11. (The enormity of the contents requires them to be split among two tables.)

125

Table 5.9: Temporal Backtracking XYZ Unique Cases

Case Number Problem Solution

0 . . .
aCt−1−−→ XC

t aCt

1 . . .
bCt−1−−→ XC

t bCt

2 . . .
aCt−1−−→ Y C

t bCt

3 . . .
bCt−1−−→ Y C

t bCt

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

As demonstrated in Section 4.4 and shown in Tables 5.10 and 5.11, it takes seven iterations for the

given case to be resolved by MemTB. In the final iteration of MemTB, a raw MF is created, which

stores the feature analyzed (“State”, the only feature), the value of that feature (“X” in this case),

and the number of time steps back (3 time steps in this case).

It is important to note here that MCL only returns a raw MF from the last iteration of MemTB

instead of one raw MF from every iteration. The rationale for this decision is that the raw MF

from the last MemTB iteration is essential for separating the last few dissenting cases from the

group of cases that are sufficiently similar to the test run; no other information from memory that

was analyzed in the prior MemTB iterations was sufficient evidence for discarding those last few

dissenting cases.

126

Table 5.10: Memory TB Iterations for Test Run Ending with State Z

Iter. Test Elem Candidate Cases Solns.

1 ZT
t

[. . .
aCt−1−−→ XC

t (
aCt−→)]

[. . .
bCt−1−−→ XC

t (
bCt−→)]

[. . .
aCt−1−−→ YC

t (
bCt−→)]

[. . .
bCt−1−−→ YC

t (
bCt−→)]

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)

a, b

2 bTt−1

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t (
aCt−→)

. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t (
bCt−→)

. . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t (
aCt−→)

. . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t (
bCt−→)

. . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t (
aCt−→)

. . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bC
t−1−−−→ ZC

t (
bCt−→)

a, b

3 Y T
t−1

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ YC
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ YC
t−1

bCt−1−−→ ZC
t (

bCt−→)

a, b

...
...

...
...

127

Table 5.11: Memory TB Iterations for Test Run Ending with State Z

Iter. Test Elem Candidate Cases Solns.
...

...
...

...

4 bTt−2

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bC
t−2−−−→ Y C

t−1

bCt−1−−→ ZC
t (

aCt−→)

[. . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aC
t−2−−→ Y C

t−1

bCt−1−−→ ZC
t (

bCt−→)]

a, b

5 Y T
t−2

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)

. . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ YC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)

[. . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)]

a, b

6 bTt−3

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bC
t−3−−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

[. . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aC
t−3−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)]

. . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bC
t−3−−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

. . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bC
t−3−−−→ Y C

t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)

a, b

7 XT
t−3

. . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)

[. . .
bCt−5−−→ XC

t−4

bCt−4−−→ YC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

aCt−→)]

[. . .
aCt−5−−→ XC

t−4

aCt−4−−→ YC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t (

bCt−→)]

a

128

Therefore, the raw MF that is created in the last MemTB iteration is indicative of a memory in-

fluence that has significance for the observed behavior (the behavior of the XY Z agent in this

case). Raw MFs that could be extracted from earlier MemTB iterations would not be sufficient for

filtering out the mismatching cases that made it to the final MemTB iteration. However, the raw

MF from the final MemTB iteration may be sufficient to filter out cases in earlier iterations, as we

shall see in our continuing example.

After MemTB extracts the raw MF from its last iteration, MCL must decide whether the raw MF

is better as a value-back MF or a time-back MF. So, MCL makes it a value-back MF vState(3)

and temporarily adds it to the perceptions in the test run and in all cases in the case base. In

the procedure extract-mem-feats (Algorithm 3), MCL runs MemTB again (with a call to

the procedure mem-tb, Algorithm 4) and counts the number of iterations it takes to make all

surviving candidate cases agree. Such iterations for our example with the case with the sub-run

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

are shown in Tables 5.12 and 5.13 (the contents needed to be split into two tables). Each awareness

in Tables 5.12 and 5.13 has the form (State, vAction(3))t. In Iteration 1, we do not show

cases not ending with perceptions of environmental state Z, to save space (such cases would be

discarded within that iteration).

When we add a value-back MF vState(3) to the perception, the number of iterations required

by MemTB drops from seven to six. Next, MCL will remove the value-back MF vState(3)

from the test case’s sub-run and the cases in the case base, then it will convert the raw MF it

retrieved earlier into the time-back MF tState(X). MCL will incorporate tState(X) into

the perceptions of the test case’s sub-run and those of the cases in the case base. MCL’s logic within

the procedure extract-mem-feats (Algorithm 3) will then call MemTB again (procedure

129

mem-tb, Algorithm 4) to see if the time-back MF can reduce the number of iterations even further

than the value-back MF did. These iterations can be seen in Table 5.14. Each awareness in the

sub-runs is of the form (State, tState(X))t.

Table 5.12: Memory TB Iterations for Test Run Ending with State Z with Value-Back MF

Iter. Test Elem Candidate Cases Solns.

1 (Z, Y)Tt

. . .
bCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z,Y)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z,Y)Ct (
bCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z,Y)Ct (
aCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z,Y)Ct (
bCt−→)

. . .
bCt−3−−→ (X,Z)Ct−2

bCt−2−−→ (Y,X)Ct−1

bCt−1−−→ (Z,Y)Ct (
aCt−→)

. . .
aCt−3−−→ (X,Z)Ct−2

aCt−2−−→ (Y,X)Ct−1

bCt−1−−→ (Z,Y)Ct (
bCt−→)

a, b

2 bTt−1

. . .
bCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bC
t−1−−−→ (Z, Y)Ct (

aCt−→)

. . .
aCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bC
t−1−−−→ (Z, Y)Ct (

bCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bC
t−1−−−→ (Z, Y)Ct (

aCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bC
t−1−−−→ (Z, Y)Ct (

bCt−→)

. . .
bCt−3−−→ (X,Z)Ct−2

bCt−2−−→ (Y,X)Ct−1

bC
t−1−−−→ (Z, Y)Ct (

aCt−→)

. . .
aCt−3−−→ (X,Z)Ct−2

aCt−2−−→ (Y,X)Ct−1

bC
t−1−−−→ (Z, Y)Ct (

bCt−→)

a, b

3 (Y, Y)Tt−1

. . .
bCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y,Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y,Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bCt−2−−→ (Y,Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bCt−2−−→ (Y,Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)

[. . .
bCt−3−−→ (X,Z)Ct−2

bCt−2−−→ (Y,X)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)]

[. . .
aCt−3−−→ (X,Z)Ct−2

aCt−2−−→ (Y,X)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)]

a, b

...
...

...
...

130

Table 5.13: Memory TB Iterations for Test Run Ending with State Z with Value-Back MF

Iter. Test Elem Candidate Cases Solns.
...

...
...

...

4 bTt−2

. . .
bCt−3−−→ (Y,X)Ct−2

bC
t−2−−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,X)Ct−2

bC
t−2−−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bC
t−2−−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)

. . .
bCt−3−−→ (Y, Y)Ct−2

bC
t−2−−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)

a, b

5 (Y,X)Tt−2

. . .
bCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)

[. . .
bCt−3−−→ (Y,Y)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)]

[. . .
bCt−3−−→ (Y,Y)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)]

a, b

6 bTt−3

. . .
bC
t−3−−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
aCt−→)

[. . .
aC
t−3−−→ (Y,X)Ct−2

bCt−2−−→ (Y, Y)Ct−1

bCt−1−−→ (Z, Y)Ct (
bCt−→)]

a

Now, the test run takes the form:

. . .
bTt−3−−→ (Y, 1)Tt−2

bTt−2−−→ (Y, 2)Tt−1

bTt−1−−→ (Z, 3)Tt

Note that the first part of the test run was truncated, because MemTB will terminate before pro-

cessing those elements of the test run in this example.

131

Table 5.14: Memory TB Iterations for Test Run Ending with State Z with Time-Back MF

Iter. Test Elem Candidate Cases Solns.

1 (Z, 3)Tt

. . .
bCt−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bCt−1−−→ (Z,3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bCt−1−−→ (Z,3)Ct (
bCt−→)

[. . .
bCt−3−−→ (Y, 2)Ct−2

bCt−2−−→ (Y, 3)Ct−1

bCt−1−−→ (Z,4)Ct (
aCt−→)]

[. . .
bCt−3−−→ (Y, 2)Ct−2

bCt−2−−→ (Y, 3)Ct−1

bCt−1−−→ (Z,4)Ct (
bCt−→)]

[. . .
bCt−3−−→ (X, 3)Ct−2

bCt−2−−→ (Y, 1)Ct−1

bCt−1−−→ (Z,2)Ct (
aCt−→)]

[. . .
aCt−3−−→ (X, 3)Ct−2

aCt−2−−→ (Y, 1)Ct−1

bCt−1−−→ (Z,2)Ct (
bCt−→)]

a, b

2 bTt−1

. . .
bCt−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bC
t−1−−−→ (Z, 3)Ct (

aCt−→)

. . .
aCt−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bC
t−1−−−→ (Z, 3)Ct (

bCt−→)
a, b

3 (Y, 2)Tt−1

. . .
bCt−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y,2)Ct−1

bCt−1−−→ (Z, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y,2)Ct−1

bCt−1−−→ (Z, 3)Ct (
bCt−→)

a, b

4 bTt−2

. . .
bCt−3−−→ (Y, 1)Ct−2

bC
t−2−−−→ (Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y, 1)Ct−2

bC
t−2−−−→ (Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
bCt−→)

a, b

5 (Y, 1)Tt−2

. . .
bCt−3−−→ (Y,1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
bCt−→)

a, b

6 bTt−3

. . .
bC
t−3−−−→ (Y, 1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
aCt−→)

[. . .
aC
t−3−−→ (Y, 1)Ct−2

bCt−2−−→ (Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
bCt−→)]

a

The time-back MF tState(X) also reduces the number of iterations for MemTB from seven

to six, so it is not more advantageous than the value-back MF type in that regard. However, it is

interesting to note that in the first iteration of MemTB, the value-back MF reduced the number of

unique candidates cases to four while the time-back MF reduced the number of unique candidate

cases to two. The question of whether or not this indicates an advantage to using the time-back

MF instead of the value-back MF for this particular test case is left for future research.

132

Table 5.15: MemTB, Recursion Level 2, Test Run Ending with State Z

Iter. Test Elem Candidate Cases Solns.

1 (Z, Y, 3)Tt

. . .
bCt−3−−→ (Y,X, 1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z,Y,3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,X, 1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z,Y,3)Ct (
bCt−→)

[. . .
bCt−3−−→ (Y, Y, 2)Ct−2

bCt−2−−→ (Y, Y, 3)Ct−1

bCt−1−−→

(Z,Y,4)Ct (
aCt−→)]

[. . .
bCt−3−−→ (Y, Y, 2)Ct−2

bCt−2−−→ (Y, Y, 3)Ct−1

bCt−1−−→

(Z,Y,4)Ct (
bCt−→)]

[. . .
bCt−3−−→ (X,Z, 3)Ct−2

bCt−2−−→ (Y,X, 1)Ct−1

bCt−1−−→

(Z,Y,2)Ct (
aCt−→)]

[. . .
aCt−3−−→ (X,Z, 3)Ct−2

aCt−2−−→ (Y,X, 1)Ct−1

bCt−1−−→

(Z,Y,2)Ct (
bCt−→)]

a, b

2 bTt−1

. . .
bCt−3−−→ (Y, Y, 1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bC
t−1−−−→

(Z, Y, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y, Y, 1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bC
t−1−−−→

(Z, Y, 3)Ct (
bCt−→)

a, b

3 (Y, Y, 2)Tt−1

. . .
bCt−3−−→ (Y, Y, 1)Ct−2

bCt−2−−→ (Y,Y,2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y, Y, 1)Ct−2

bCt−2−−→ (Y,Y,2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
bCt−→)

a, b

...
...

...
...

133

MCLv0 will add both vState(3) and tState(X) as MFs to the test case’s sub-run and those

of the rest of the cases in the case base. However, the minimum number of iterations achieved was

six, so MCLv0 will continue to search for additional MFs that will reduce this iteration count to

one when combined with the current set of MFs, which currently consists of two MFs.

Thus, MCLv0 will extract a raw MF from its last iteration when including the two MFs that were

just added to the awareness. Those iterations appear in Tables 5.15 and 5.16. Awarenesses in these

sub-runs now take the form (State, vState(3), tState(X)).

Table 5.16: MemTB, Recursion Level 2, Test Run Ending with State Z

Iter. Test Elem Candidate Cases Solns.
...

...
...

...

4 bTt−2

. . .
bCt−3−−→ (Y, Y, 1)Ct−2

bC
t−2−−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y, Y, 1)Ct−2

bC
t−2−−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
bCt−→)

a, b

5 (Y, Y, 1)Tt−2

. . .
bCt−3−−→ (Y,Y,1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,Y,1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
bCt−→)

a, b

6 bTt−3

. . .
bC
t−3−−−→ (Y, Y, 1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bCt−1−−→ (Z, 3)Ct (
aCt−→)

[. . .
aC
t−3−−→ (Y, Y, 1)Ct−2

bCt−2−−→ (Y, Y, 2)Ct−1

bCt−1−−→

(Z, Y, 3)Ct (
bCt−→)]

a

After six iterations, MemTB creates a raw MF storing the feature f = Action, value v = b,

134

number of time steps back k = 3. Then, MemTB converts the raw MF into a value-back MF

vAction(3). Adding this MF reduces the number of MemTB iterations to one, as seen in Table

5.17. The perceptions take the form (State, vState(3), tState(X), vAction(3)).

Table 5.17: MemTB, Recursion Level 2, Test Run Ending with State Z, Value-Back MF

Iter. Test Elem Candidate Cases Solns.

1 (Z, Y, 3, b)Tt

. . .
bCt−3−−→ (Y,X, 1, b)Ct−2

bCt−2−−→ (Y, Y, 2, b)Ct−1

bCt−1−−→

(Z,Y,3,b)Ct (
aCt−→)

[. . .
aCt−3−−→ (Y,X, 1, b)Ct−2

bCt−2−−→ (Y, Y, 2, a)Ct−1

bCt−1−−→

(Z,Y,3, a)Ct (
bCt−→)]

[. . .
bCt−3−−→ (Y, Y, 2, b)Ct−2

bCt−2−−→ (Y, Y, 3, b)Ct−1

bCt−1−−→

(Z,Y,4,b)Ct (
aCt−→)]

[. . .
bCt−3−−→ (Y, Y, 2, b)Ct−2

bCt−2−−→ (Y, Y, 3, b)Ct−1

bCt−1−−→

(Z,Y,4,b)Ct (
bCt−→)]

[. . .
bCt−3−−→ (X,Z, 3, a)Ct−2

bCt−2−−→ (Y,X, 1, b)Ct−1

bCt−1−−→

(Z,Y,2,b)Ct (
aCt−→)]

[. . .
aCt−3−−→ (X,Z, 3, b)Ct−2

aCt−2−−→ (Y,X, 1, b)Ct−1

bCt−1−−→

(Z,Y,2, a)Ct (
bCt−→)]

a

However, a time-back MF may be equally advantageous. The value-back MF is then removed

from the test case sub-run and those of the other cases in the case base. Then, MCL will create a

time-back MF tAction(b), add it to the test case sub-run and to all other cases in the case base,

and run MemTB. The first iteration is shown in in Table 5.18. Here, the surviving candidate cases

in this first iteration do not have matching solution components. TempTB will require more than

one iteration to resolve the temporal conflicts with this MF set. It is evident that the value-back

135

MF is more useful than the time-back MF in reducing the number of MemTB iterations, so the rest

of the iterations involving the time-back MF are not shown.

Table 5.18: Memory TB Iterations for Test Run Ending with State Z, Time-Back MF

Iter. Test Elem Candidate Cases Solns.

1 (Z, Y, 3, 1)Tt

. . .
bCt−3−−→ (Y,X, 1, 1)Ct−2

bCt−2−−→ (Y, Y, 2, 1)Ct−1

bCt−1−−→

(Z,Y,3,1)Ct (
aCt−→)

. . .
aCt−3−−→ (Y,X, 1, 3)Ct−2

bCt−2−−→ (Y, Y, 2, 1)Ct−1

bCt−1−−→

(Z,Y,3,1)Ct (
bCt−→)

[. . .
bCt−3−−→ (Y, Y, 2, 1)Ct−2

bCt−2−−→ (Y, Y, 3, 1)Ct−1

bCt−1−−→

(Z,Y,4,1)Ct (
aCt−→)]

[. . .
bCt−3−−→ (Y, Y, 2, 1)Ct−2

bCt−2−−→ (Y, Y, 3, 1)Ct−1

bCt−1−−→

(Z,Y,4,1)Ct (
bCt−→)]

[. . .
bCt−3−−→ (X,Z, 3, 1)Ct−2

bCt−2−−→ (Y,X, 1, 1)Ct−1

bCt−1−−→

(Z,Y,2,1)Ct (
aCt−→)]

[. . .
aCt−3−−→ (X,Z, 3, 2)Ct−2

aCt−2−−→ (Y,X, 1, 1)Ct−1

bCt−1−−→

(Z,Y,2,1)Ct (
bCt−→)]

a

...
...

...
...

MCL will thus terminate its logic in the procedure extract-mem-feats (Algorithm 3) for the

test case with following sub-run

test run T : . . .
bTt−5−−→ ZT

t−4

bTt−4−−→ XT
t−3

bTt−3−−→ Y T
t−2

bTt−2−−→ Y T
t−1

bTt−1−−→ ZT
t

???−→

and it will extract following MFs

136

• vState(3): The value of State at time step t− 3.

• tState(X): The number of time steps before time step t when State stored the value X .

• vAction(3): The value of Action at time step t− 3.

Table 5.19: Extracted Memory Features, XYZ Example

Case Problem Soln Extracted MFs

0 . . .
aCt−1−−→ XC

t aCt
vAction(1)

tAction(a)

1 . . .
bCt−1−−→ XC

t bCt
vAction(1)

tAction(b)

2 . . .
aCt−1−−→ Y C

t bCt None

3 . . .
bCt−1−−→ Y C

t bCt None

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

vState(3)

tState(X)

vAction(3)

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt tAction(a)

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

vAction(4)

tAction(b)

vState(3)

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt tAction(a)

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

vState(2)

tState(X)

vAction(2)

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

vAction(2)

tAction(a)

Up to this point, we have demonstrated how MCL extracts MFs for cases with the following test

137

runs, which were selected to demonstrate MCLv0’s capabilities in a variety of runs:

• . . . at−1−−→ Xt
at−→

• . . . bt−1−−→ Xt
bt−→

• . . . Yt
bt−→

• . . . bt−5−−→ Zt−4
bt−4−−→ Xt−3

bt−3−−→ Yt−2
bt−2−−→ Yt−1

bt−1−−→ Zt
at−→

A similar procedure can be used to extract the MFs for the other cases in our example. (Walking

through this procedure for the other cases would be repetitive.) The MFs for all 10 example cases

are shown in Table 5.19. These MFs will be refined in our ongoing example in Section 5.3.

5.3 Memory Feature Refinement

This section describes how MCL, given a list of MFs for every case in a case base as generated

by the Memory Feature Extraction step, will refine the MFs into a minimal subset that can be

applied to all cases in the case base. We first describe the algorithm behind the Memory Feature

Refinement step. Then, we demonstrate this step in our ongoing example from the XY Z domain.

5.3.1 Memory Feature Refinement Algorithm

The implementation of the Memory Feature Refinement step in MCL is described in this section.

The objective of the Memory Feature Refinement step is to isolate those MFs that appear consis-

tently across multiple cases from multiple traces of origin in the case base. Such MFs are likely

indicative of a memory influence that informs the observed behavior encoded by the case base.

138

During the Memory Feature Extraction step described in Section 5.2, various MFs may be extracted

that are artifacts of a particular trace. Here, artifacts are aspects of the environment that coincide

with a specific situation, but are irrelevant to the behavior at that situation. As an example from the

car driving domain, suppose that there just happens to be a tree branch that fell on top of the stop

sign when an observed human stops at the stop sign before crossing the intersection, just like the

human is observed doing at any other stop sign. If MCL extracts a MF encoding the presence of

the tree branch at this one particular intersection, then the “tree branch MF” would be an artifact

because the tree branch has no bearing on the behavior of the human driver and it is present at

none of the other observations of driving at stop signs. A MF encoding the presence of a stop sign

would be more relevant to the car driving behavior at this situation. Therefore, the objective of the

Memory Feature Refinement step is to filter out the MF artifacts from the MF set.

Algorithm 8 Memory Feature Refinement
1: procedure MEM-FEAT-REFINE(trace-list, case-base, mem-feat-lists)
2: refined-mem-feats← (empty list)
3: case-threshold← 0.05 . Min percent of cases a MF must appear in
4: trace-threshold← 0.80 . Min percent of traces a MF must appear in
5: unique-mem-feats← get-unique-mem-feats(mem-feat-lists)
6: for each mem-feat in unique-mem-feats do
7: num-cases-appear← 0
8: traces-appear← (empty list)
9: for each case in case-base do

10: tmp-mem-feat← mem-feat-lists.at(case)
11: if same-mem-feats(tmp-mem-feat, mem-feat) then
12: num-cases-appear← num-cases-appear +1

13: for each trace in trace-list do
14: if case.trace-name equals trace then
15: if trace-appear.contains(trace) is False then
16: trace-appear.add(trace)
17: break
18: case-percent← num-cases-appear / case-base.size()
19: trace-percent← traces-appear.size() / trace-list.size()
20: if case-percent ≥ case-threshold and trace-percent ≥ trace-threshold then
21: refined-mem-feats.add(mem-feat)
22: return refined-mem-feats

139

In MCL, the Memory Feature Refinement step is shown in Algorithm 8. It is called in the procedure

memory-composition-learning, which was shown in Algorithm 2 in Section 5.1. Its

inputs are the list of traces containing observations of the behavior, the case base of the observations

created from those traces, and the list of case-specific MF sets from the prior Memory Feature

Extraction step. As described in Section 5.2, a list of value-back and/or time-back MFs is extracted

for each case, independent of other cases. Therefore, MCL must take this list of MF sets and refine

it into a set of MFs that is applicable to all cases (i.e. the behavior as a whole). The Memory

Feature Refinement step can be summarized by the following substeps.

1. Get a list of MFs from every case-specific MF set. Make sure there are no duplicate MFs.

2. For each MF:

(a) Compute the percentage of cases in which the MF appears.

(b) Compute the percentage of traces in which the MF appears.

(c) If the case-percentage and trace-percentage coverages exceed the coverage thresholds

for the case base and trace set, respectively, add the MF to the set of refined MFs.

3. Return the set of refined MFs.

From the procedure mem-feat-refine in Algorithm 8, we can see that substep 1 is accom-

plished with a call to the procedure get-unique-mem-feats, shown in Algorithm 9. In order

to compare MFs (to ensure that one is not a copy of the other), the procedure get-unique-

mem-feats calls the procedure same-mem-feats (shown in Algorithm 10) and passes two

MFs to compare. As described in Section 4.5.2, MFs are either of type “Time-Back” or ’Value-

Back”. Just like a perception feature, a MF will store a potentially different return value for each

time step t in a trace. However, independent of t, we define MF equivalence as follows:

140

• Two time-back MFs are equivalent if they track the same feature f and the same value v of

f .

• Two value-back MFs are equivalent if they track the same feature f at time step t− k for the

same constant k.

Algorithm 9 Get Unique Memory Features
1: procedure GET-UNIQUE-MEM-FEATS(mem-feat-lists)
2: unique-mem-feats← (empty set)
3: for each mf-list in mem-feat-lists do
4: for each mem-feat in mf-list do
5: found← False
6: for each uniq-mf in unique-mem-feats do
7: if same-mem-feats(uniq-mf, mem-feat) is False then
8: found← True
9: break

10: if found is False then
11: unique-mem-feats.add(mem-feat)
12: return unique-mem-feats

Algorithm 10 Memory Feature Comparison
1: procedure SAME-MEM-FEATS(mem-feat1, mem-feat2)
2: if mem-feat1.mem-feat-type.equals(mem-feat2.mem-feat-type) is False then
3: return False
4: if mem-feat1.feat-name.equals(mem-feat2.feat-name) is False then
5: return False
6: if mem-feat1.mem-feat-type.equals(“Time-Back”) then
7: if mem-feat1.value.equals(mem-feat2.value) is False then
8: return False
9: if mem-feat1.mem-feat-type.equals(“Value-Back”) then

10: if mem-feat1.time-look-back.equals(mem-feat2.time-look-back) is False then
11: return False
12: return True

For substep 2a, the for-loop in line 9 of the mem-feat-refine procedure (Algorithm 8) iterates

through each case to check its list of MFs for an equivalent copy of a specific unique MF (specified

141

in the for-loop on line 6); if so, the variable num-cases-appear is incremented by one. For

substep 2b, the for-loop in line 13 of the procedure mem-feat-refine adds the trace of origin

of the case to a list of traces that the unique MF appears in. For substep 2c, the case coverage

percentage and the trace coverage percentage are computed in lines 18-19 of procedure mem-

feat-refine and are compared to the thresholds set on lines 3-4 in the same procedure. For

MCL, these thresholds are hard-coded (we discuss the selection of these threshold values later).

Finally, the unique MFs with sufficient coverage in the set of traces and cases are compiled and

returned in line 22 of the procedure mem-feat-refine, according to substep 3.

The Memory Feature Refinement step uses two thresholds: a case coverage threshold and a trace

coverage threshold. These are hyperparameters that are tuned for each domain and set by hand. The

case coverage threshold is the minimum percentage of cases in the case base in whose extracted

MF lists (generated by the Memory Feature Extraction stage) a MF must appear in order to be

considered applicable to a significant proportion of the observed behavior encoded by the case

base. The trace coverage threshold is the minimum percentage of traces in the trace set for which

a MF must appear at least once in order to be considered applicable to a significant proportion of

unique scenarios.

The use of two thresholds (a case coverage threshold and a trace coverage threshold) will yield

four categories of MFs:

• Blip Artifact: This MF passes neither threshold. Its existence indicates either an aberration

in the prior MF Extraction step, described in Section 5.2, or an artifact that occurs once

or twice in a very small fraction of the traces and that likely does not inform the observed

behavior as a whole because of its low frequency.

• Rare Memory Influence: This MF passes the trace coverage threshold, but not the case cov-

erage threshold. This indicates that the encoded memory influence is present in the majority

142

of traces, but occurs so infrequently in a trace that including the memory influence as a mem-

ber of the refined MF set would be spurious and unnecessarily comprehensive; such memory

influences are still potentially important, but were excluded in the experiments for MCLv0

and will not be investigated in our research.

• Trace Artifact: This MF passes the case coverage threshold, but not the trace coverage

threshold. This means that a particular memory influence occurred frequently in a minority

of the traces and is likely a result of the intricacies of a particular trace scenario and not the

behavior itself. This is based on the assumption that a memory influence will exert itself on

a behavior in a wide variety of circumstances because it is inherent to the behavior, not a

particular situation.

• True Memory Influence: This MF passes both the case coverage threshold and the trace

coverage threshold. This means that the MF encodes a memory influence that occurs in the

majority of trace scenarios and it occurs frequently enough in those scenarios to be helpful

in a significant percentage of the cases. This MF will be included in the set of refined MFs.

In MCLv0, the case and trace coverage thresholds are set to 0.05 and 0.80, respectively. These

particular thresholds gave good results in the experiments described in Section 5.5. However,

we note here that the case coverage threshold is relatively low while the trace coverage threshold

is relatively high. The case coverage threshold is low because certain memory influences may

indeed only affect behavior at a single time step to signify a single decision (e.g. a Rhumba

vacuum selecting a new direction when bumping into a wall based on memory of its last known

location). However, such memory influences should occur enough times to comprise at least a

minimal portion of a behavior’s decisions, which we set at 5%. The trace coverage threshold, in

contrast, is much higher because we assume that the salient aspects of a behavior, and the essence of

its reliance on memory, will remain constant no matter what situational circumstances a behaving

143

entity finds itself in. Thus, MCLv0 assumes that a memory influence will manifest itself in most

trace scenarios, at least 80% according to our threshold. We will challenge this assumption in our

upcoming work, to be discussed in Chapter 6.

We now proceed to illustrate the Memory Feature Refinement step using our ongoing example

from the XY Z domain.

5.3.2 Memory Feature Refinement Example

The Memory Feature Extraction step resulted in a list of MFs for each case that made the problem

component sub-run of the case Markovian. Table 5.20 shows the extracted MFs for each case in

our example; it has the same contents as Table 5.19 from the end of Section 5.2.

Table 5.20 shows the extracted MFs for all unique cases, but the Memory Feature Refinement

process uses all cases, even redundant ones, to identify the True Memory Influence MFs that were

described in Section 5.3.1. Therefore, we need to specify how many times each of the unique

cases occurs in our case base. Let us assume that the state Y repeats itself at most three times

consecutively and that the case base is created from ten traces, each 100 time steps in duration

for a total of 1000 cases. For our example, the unique cases shown in Table 5.21 comprise all

possible cases. Table 5.21 also shows the frequency of each unique case in the case base and the

trace set. (Note: For mathematical simplicity in this example, we round frequencies to the nearest

percentage, resulting in only 970 total cases in this example.)

As described in Section 5.3.1, the first step is to get a list of unique MFs from the list of case-

specific extracted MF sets. The parameters of the MFs are encoded in feature name f (which is

either “State” or “Action” in our example) and the parameter in parentheses: a time-look-back

constant k for value-back MFs (which are prefixed by a v) or a value v of feature f for time-back

144

MFs (whose names are prefixed by a t). The set of unique MFs will not be equivalent to each

other, as described in Section 5.3.1.

Table 5.20: Extracted Memory Features, XYZ Example

Case Problem Soln Extracted MFs

0 . . .
aCt−1−−→ XC

t aCt
vAction(1)

tAction(a)

1 . . .
bCt−1−−→ XC

t bCt
vAction(1)

tAction(b)

2 . . .
aCt−1−−→ Y C

t bCt None

3 . . .
bCt−1−−→ Y C

t bCt None

4 . . .
bCt−5−−→ ZC

t−4

bCt−4−−→ XC
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

vState(3)

tState(X)

vAction(3)

5 . . .
bCt−5−−→ ZC

t−4

aCt−4−−→ XC
t−3

aCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt tAction(a)

6 . . .
bCt−5−−→ XC

t−4

bCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

vAction(4)

tAction(b)

vState(3)

7 . . .
aCt−5−−→ XC

t−4

aCt−4−−→ Y C
t−3

bCt−3−−→ Y C
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt tAction(a)

8 . . .
aCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

bCt−3−−→ XC
t−2

bCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t aCt

vState(2)

tState(X)

vAction(2)

9 . . .
bCt−5−−→ Y C

t−4

bCt−4−−→ ZC
t−3

aCt−3−−→ XC
t−2

aCt−2−−→ Y C
t−1

bCt−1−−→ ZC
t bCt

vAction(2)

tAction(a)

145

Table 5.21: XYZ Example, Proportions in Case Base

Case Problem Soln Extracted MFs Case %
Num

Cases

Num

Traces

0 . . .
a−→ X a

vAction(1)

tAction(a)
12.0% 120 10

1 . . .
b−→ X b

vAction(1)

tAction(b)
12.0% 120 10

2 . . .
a−→ Y b None 12.0% 120 10

3 . . .
b−→ Y b None 37.0% 370 10

4 . . .
b−→ Z

b−→ X
b−→ Y

b−→ Y
b−→ Z a

vState(3)

tState(X)

vAction(3)

4.0% 40 10

5 . . .
b−→ Z

a−→ X
a−→ Y

b−→ Y
b−→ Z b tAction(a) 4.0% 40 10

6 . . .
b−→ X

b−→ Y
b−→ Y

b−→ Y
b−→ Z a

vAction(4)

tAction(b)

vState(3)

4.0% 40 10

7 . . .
a−→ X

a−→ Y
b−→ Y

b−→ Y
b−→ Z b tAction(a) 4.0% 40 10

8 . . .
a−→ Y

b−→ Z
b−→ X

b−→ Y
b−→ Z a

vState(2)

tState(X)

vAction(2)

4.0% 40 10

9 . . .
b−→ Y

b−→ Z
a−→ X

a−→ Y
b−→ Z b

vAction(2)

tAction(a)
4.0% 40 10

146

Table 5.22: XYZ Example, Memory Feature Analysis

ID Mem Feat Cases Traces Case % Trace % Include

0 vAction(1) 0, 1 All 24% 100% YES

1 vAction(2) 8, 9 All 8% 100% YES

2 vAction(3) 4 All 4% 100% NO

3 vAction(4) 6 All 4% 100% NO

4 vState(2) 8 All 4% 100% NO

5 vState(3) 4, 6 All 8% 100% YES

6 tAction(a) 0, 5, 7, 9 All 24% 100% YES

7 tAction(b) 1, 6 All 16% 100% YES

8 tState(X) 4, 8 All 8% 100% YES

Table 5.22 shows the list of unique MFs extracted. For each unique MF, the table also shows the

cases and traces the MF appears in, its case and trace coverage percentages, and whether it passes

the coverage thresholds for inclusion in the refined MF set. The list of unique MFs are as follows:

• MFs 0-3: value-back MFs tracking the Action taken at time steps t − 1, t − 2, t − 3, and

t− 4, respectively.

• MFs 4-5: value-back MFs tracking the value of the feature State (the perception) at time

steps t− 2 and t− 3, respectively.

• MFs 6-7: time-back MFs tracking the number of time steps before time step t when actions

a and b, respectively, were last taken.

• MF 8: time-back MF tracking the number of time steps before time step t when State last

stored value X .

147

All MFs pass the trace coverage threshold of 80%, but MFs 2-4 do not pass the case coverage

threshold of 5%. Therefore, the memory influences encoded by MFs 2-4 did not affect a significant

portion of the behavior as a whole and will not be included in the final refined MF set.

One of the advantages of using MCL is that the memory influences are explicitly enumerated. We

can tell much from which MFs were retained in the final refined MF set, which MFs were filtered

out during Memory Feature Refinement, and which MFs were never extracted in the previous

Memory Feature Extraction stage. We analyze all of these now:

• MFs that were extracted, then retained in the refined MF set:

1. Time-back MFs for both actions a and b: This makes sense, because the proper action

to take often depended on when that action (or its opposite) occurred previously.

2. Value-back MFs for Action at t− 1 and t− 2: Here, we see the importance of looking

back a fixed number of time steps back to see which action occurred, in order to inform

the next action to take at time step t.

3. Time-back MF for state X: The perception of X , which immediately prompts a repeat

of the action from the prior time step, was found by MCLv0 as a shortcut for deter-

mining the action taken when the perception Z last occurred (because X perceptions

immediately follow Z perceptions). This helped in a couple Z cases, which depend on

this information.

• MFs that were extracted, but not retained for the final refined MF set:

1. Value-back MFs for Action at time steps t − 3 and t − 4: These MFs are only useful

for Z cases that involve longer Y chains (sequences of consecutive perceptions of Y),

which represent a smaller proportion of the case base. In contrast, value-back MFs for

148

Action at time steps t− 1 and t− 2 (see item 2 above) are useful for both Z cases with

short Y chains and X cases in addition to Z cases with longer Y chains.

2. Value-back MF for State perception at time step t − 2. This MF is only useful for Z

cases with a single Y perception preceding Z where action a is not observed after X

(case 8). Furthermore, this MF does not help the ubiquitous X cases, which only have

to look one time step back into the past.

• MFs that were never extracted during Memory Feature Extraction:

1. Value-back MF for State at time step t − 1: It is notable that this MF was never ex-

tracted because its absence indicates that all value-back memory influences based on

perception exist at least two time steps back.

2. Time-back MFs for perceptions Y and Z. The former is never informative because a

perception of Y is followed by an arbitrary number of Y perceptions and always evokes

action b. The latter is also unnecessary because a perception of X always follows

a Z perception and utilizes the same action taken when Z is perceived; that is why

tState(X) was added as part of the refined MF set.

3. Value-back MFs tracking either State or Action for time steps before t− 4: state Y can

never repeat itself more than three times consecutively for this example. The absence

of these MFs indicates that memory influences before the most recent Z perception do

not exist.

The above insights about the behavior of the XY Z agent are fully realized because the memory

influences were explicitly encoded in the MFs that MCL extracted, then refined. The insight about

the timing of the previous X perception is particularly surprising, given that the human-made rules

governing the XY Z agent (which MCL does not have access to) codify action selection when Z

is perceived according to the action taken at the previous Z perception; MCL used the timing of

149

the previous X perception as a more efficient shortcut for codifying the same memory influence,

because the X perception exists closer to the present than the prior Z perception.

At the end of the Memory Feature Refinement step, the following MFs are selected as the codifi-

cation of memory influence on the behavior of the XY Z agent as a whole.

• vAction(1)

• vAction(2)

• vState(3)

• tAction(a)

• tAction(b)

• tState(X)

The exponentially large space of possible memory influences has been reduced to just six MFs,

which will be incorporated into each of the 10 traces to augment them with memory in the next

section.

5.4 Trace Enhancement

This section describes the final step of the MCLv0 approach. Given the final set of MFs that codify

all significant memory influences on an observed behavior, the Trace Enhancement step computes

the return values of each MF for every time step of every trace. The final memory-enhanced traces

will then contain all pertinent information from memory at each time step so that the sun-run

contained therein is as close to Markovian as possible. The MFs will be indistinguishable from

150

normal perception features to any application (e.g. a machine learning algorithm) that uses the

memory-enhanced traces.

Algorithm 11 Trace Enhancement
1: procedure ENHANCE-TRACE(trace, refined-mem-feats)
2: for t = 0 to trace.size() do
3: for each mem-feat in refined-mem-feats do
4: mem-feat-name← mem-feat.mem-feat-name
5: feat-name← mem-feat.feat-name
6: if mem-feat.type is “Value-Back” then
7: time-back← mem-feat.k-steps-back
8: feat-val← null
9: if t ≥ time-back then

10: feat-val← trace.at(time-back).value-of(feat-name)
11: trace.at(t).value-of(mem-feat-name)← feat-val
12: if mem-feat.type is “Time-Back” then
13: time-back← null
14: feat-val← mem-feat.feat-val
15: tmp-time-back← 1
16: while t− tmp-time-back ≥ 0 do
17: tmp-feat-val← trace.at(tmp-time-back).value-of(feat-name)
18: if tmp-feat-val = feat-val then
19: break
20: tmp-time-back← tmp-time-back− 1

21: if tmp-time-back > −1 then
22: time-back← tmp-time-back
23: trace.at(t).value-of(mem-feat-name)← time-back
24: trace.write-to-file()
25: return

Algorithm 11 contains the trace enhancement process. The procedure enhance-trace is called

for each trace in the procedure mem-comp-learn in Algorithm 2 in Section 5.1. The basic steps

of this process are as follows:

1. For each time step in the trace, do the following:

• For a value-back MF, the feature name f and number of time steps k to look before

151

time step t are fixed. Store the value v of f at time step t− k as the value stored for the

value-back MF at time step t.

• For a time-back MF, the feature name f and the value v of f for which to search before

time step t are fixed. Iterate from time step t − 1 to 0 for a time step t − k when the

value of feature f is v. Store k as the value of the time-back MF at time step t.

2. After the values of every MF for every time step in the trace have been computed, write the

memory-enhanced trace to file.

Table 5.23: XYZ Example, Trace Sample

Time State Action
0 X a
1 Y b
2 Z a
3 X a
4 Y b
5 Y b
6 Z b
7 X b
8 Y b
9 Y b
10 Y b
11 Z a
...

...
...

We now proceed with illustrating the Trace Enhancement process for our ongoing example in the

XY Z domain. Suppose we have the trace shown in Table 5.23. The Trace Enhancement process

will be applied using the following MFs that were extracted in Section 5.2.3, then refined in Section

5.3.2.

• vAction(1): value of Action at time step t− 1

152

• vAction(2): value of Action at time step t− 2

• vState(3): value of State perception at time step t− 3

• tAction(a): number of time steps before t when Action was a

• tAction(b): number of time steps before t when Action was b

• tState(X): number of time steps before t when State was X

Section 4.5.2 illustrated by detailed example the process of adding time-back and value-back MFs

to a trace. The same process is applied here for each MF. The end results are shown in Table 5.24.

(We substitute Ac for Action and St for State to save space.)

Table 5.24: XYZ Example, Memory-Enhanced Trace Sample

Time State Action vAc(1) vAc(2) vSt(3) tAc(a) tAc(b) tSt(X)
0 X a - - - - - -
1 Y b a - - 1 - 1
2 Z a b a - 2 1 2
3 X a a b X 1 2 3
4 Y b a a Y 1 3 1
5 Y b b a Z 2 1 2
6 Z b b b X 3 1 3
7 X b b b Y 4 1 4
8 Y b b b Y 5 1 1
9 Y b b b Z 6 1 2

10 Y b b b X 7 1 3
11 Z a b b Y 8 1 4
...

...
...

...
...

...
...

...
...

With the creation of memory-enhanced traces, we have provided information at each time step in

these traces that encodes the influences of memory. These traces can then be used by one of several

applications, such as behavioral analysis or agent control applications.

153

5.5 Assessment of MCLv0 Approach

This section describes how we evaluated whether MCLv0, our initial implementation of the MCL

algorithm, functioned as intended and we present test results showing how it accomplishes its main

purpose of capturing and modeling the influence of memory within a set of memory features that

are automatically learned. This evaluation was also reported in our previous publication [87].

5.5.1 The Vacuum Cleaner Domain

MCLv0 was assessed using the vacuum cleaner domain (see Figure 5.3) from [58]. In this domain,

a vacuum cleaner agent (green square) moves about a 2D grid world cleaning dirt patches (red

squares) and bumping into various obstacles (gray rectangles), both of which are perceived by

eight binary features, two per side indicating whether the closest object in that direction is dirt or

an obstacle and whether that object is near (adjacent to the agent) or far. An agent can move up,

down, left, right, or stand still.

The authors in [58] defined eight agents, each exhibiting a behavior that is Level 1, 2, or 3, and

that is either deterministic, stochastic, or random. These agents are as follows:

• Fixed Sequence agent (SEQ, Level 1): repeatedly executes a fixed sequence of actions.

• Random agent (RD, Level 2): performs a random action at each time step.

• Straight Line agent (SL, Level 3): moves in a straight line until encountering an obstacle,

then picks a new random direction and continues.

• Wall Follower agent (WF, Level 2): If there is a wall on the left, it follows that wall, otherwise

it moves right.

154

• Zig Zag agent (ZZ, Level 3): Moves left until encountering an obstacle, then moves down

one spot and reverses its horizontal direction. When it bumps into an obstacle when moving

down, it continues the pattern moving up.

• Smart agents: The RD, SL, and WF agents have “smart” variations (SRD, SSL, and SWF,

respectively) which perform similarly to their non-smart counterparts, but will instead move

towards dirt if it is sighted in any given direction. The smart agents are the same LfO level

as their non-smart counterparts.

Figure 5.3: Vacuum cleaner world, reprinted with permission from [58].

Reprinted from A Dynamic-Bayesian Network Framework for Modeling and Evaluating Learning
from Observation, 41/11, S. Ontañón, J. L. Montaña, and A. J. Gonzalez, Page 5223, Copyright
(2014), with permission from Elsevier.

The SEQ agent exhibits deterministic Level 1 behavior, which is purely a function of time. The

WF and SWF agents exhibit deterministic Level 2 behaviors, which do not require memory. The

ZZ agent exhibits deterministic Level 3 behavior, because the immediate short-term direction and

long-term vertical direction must be remembered. The SL and SSL agents also exhibit Level 3

behavior, but it is non-deterministic. The RD and SRD agents exhibit Level 2 non-deterministic

behavior.

155

5.5.2 Experiments and Results

This section describes the results of experiments in the vacuum cleaner domain that were used to

evaluate our MCLv0 approach. These results were also presented in our previous publication [87].

Each of the vacuum cleaner agents had raw traces, each corresponding to one of seven maps,

and each trace was 1000 time steps long. For each agent, we ran MCLv0 on the seven traces

containing observations of that agent’s behavior. Then, MCLv0 extracted MFs appropriate for

summarizing information from memory for that agent’s behavior and generated memory-enhanced

traces containing the values of these MFs.

We fed each trace into the Weka machine learning framework [28] and used three classifiers:

J.48 tree, Multilayer Perceptron, and Bayes Net. These three classifiers are standard supervised

learning algorithms, which we use in this evaluation to demonstrate the effects of using the original

memoryless traces and the memory-enhanced traces generated by MCL. (In contrast, the work in

[58] used Dynamic Bayesian Networks, which consider internal state.) We collected results when

Weka was fed the raw traces and when Weka was fed the memory-enhanced traces. Here, we

present the F1-score for each agent’s trace (raw or MCL-enhanced) for each classifier when 10-

fold cross validation is used. The F1-score ensures that agents were not improperly considered to

be high-performing when they only learned to predict the majority class (or action) to the detriment

of minority classes [27]. The F1-score is computed for some class X as follows:

• TP : True Positive rate, the number of class X instances that were correctly predicted

• FP : False Positive rate, the number of class X instances that were not correctly predicted

• FN : False Negative rate, the number of instances not of class X that were incorrectly clas-

sified as class X

156

• P : Precision rate, the fraction of class X classifications that were correct: TP/(TP + FP)

• R: Recall rate, the fraction of class X instances that were correctly classified: TP/(TP +

FN)

• F1: F1-score, the combination of precision and recall rates: 2PR/(P +R)

The chosen classifiers are normally limited to learning Level 2 behaviors, but MCL provides these

learning algorithms with information from memory via the learned memory features. The impact

of MCL on learning performance for the Bayes Net, J.48 Decision Tree, and Multilayer Perceptron

learners is shown in Figures 5.4, 5.5, and 5.6, respectively. The reported F1 score for a given agent

is the average F1 score over all seven maps the agent behaved in. Also, results for the stochastic

Bayes Net and Multilayer Perceptron learners were generated from a single trial rather than being

averaged over multiple trials. Thus, all results are analyzed via absolute comparisons rather than

through statistical analysis.

Figure 5.4: Bayes Net Learning Performance

157

Figure 5.5: J.48 Learning Performance

Figure 5.6: Multilayer Perceptron Learning Performance

158

Table 5.25: F1 Scores for MCLv0 Evaluation

Agent
Bayes Net J48 Tree MLP

Orig MCL Orig MCL Orig MCL

SEQ 0.71 0.82 0.58 1.00 0.59 0.99

RD 0.35 0.35 0.17 0.20 0.18 0.20

SRD 0.35 0.32 0.30 0.33 0.33 0.33

SSL 0.53 0.89 0.52 0.94 0.52 0.94

SWF 0.99 0.99 0.99 0.99 1.00 1.00

SL 0.50 0.89 0.49 0.94 0.50 0.94

WF 1.00 1.00 1.00 1.00 1.00 1.00

ZZ 0.55 0.99 0.52 1.00 0.52 0.98

The specific F1 scores are shown in Table 5.25, where F1 scores for learning with MCL-generated

traces are bolded if they exceed the corresponding F1 score for learning the original (memory-

less) traces. For all three classifiers, the MCL-augmented traces for agents SEQ, SL, SSL, and

ZZ resulted in a higher learning performance than their memory-less trace counterparts (with F1

scores that improved by at least 10%). There was no improvement for RD, SRD, WF or SWF

because these behaviors do not depend on memory at all; there was also no performance degrada-

tion for these agents, with the exception of the SRD agent for the Bayes Net clasifier (degradation

of only 3%). In other words, the memory-enhanced traces generated by MCL resulted in higher

performance for classifying the behavior of agents with memory-dependent Level 3 behavior, both

of stochastic and deterministic variants. It was also able to improve classification for the time-

dependent Level 1 SEQ agent by learning MFs that encoded where the agent was in its 20-move

action sequence. MCL traces did not result in better behavior for Level 2 agents (which did not

rely on memory at all), but it did not harm their performance either. These trends are observed for

all three machine learning algorithms. All these results are desirable and suggest that MCL has

159

worked as intended for improving machine learning performance of algorithms that were previ-

ously limited to learning up to Level 2 behaviors.

We now demonstrate how the learned MFs achieve the second advantage of MCL: explicitly enu-

merating the memory influences on agent behavior for human understanding. The perception

features for the vacuum cleaner domain track the following for each cardinal direction: the sighted

element (dirt or obstacle) and its distance away (far or close). The perception features are thus

named: ElemUp, DistUp, ElemRight, DistRight, ElemDown, DistDown, ElemLeft,

DistLeft. The MFs use the same naming convention used in Section 4.5.2. The MFs that were

extracted and then refined for each agent are as follows:

• SEQ: Sequential Agent, Level 1 Deterministic Behavior

– Time-Back MFs: tDistUp(Far), tAction(Down)

– Value-Back MFs: vDistUp(1), vDistUp(2), vDistUp(4), vAction(3), vAc-

tion(5)

– Analysis: The only perception features that exert a memory influence are ElemUp and

Action. The fixed action sequence is up, up, right, right, down, down, left, left, up,

up, up, right, right, right, down, down, down, left, left, left, repeat.

• RD: Random Agent, Level 2 Non-Deterministic Behavior

– Time-Back MFs: tElemUp(obstacle), tDistUp(Close), tDistUp(Far),

tDistRight(Close), tDistRight(Far), tDistDown(Close), tDist-

Down(Far), tDistLeft(Close), tDistLeft(Far), tAction(Still), tAc-

tion(Up), tAction(Right), tAction(Left), tAction(Down)

– Value-Back MFs: vDistUp(1), vDistUp(2), vDistUp(4), vDistRight(2),

160

vDistRight(2), vDistDown(2), vDistLeft(1), vDistLeft(2), vAc-

tion(1), vAction(2), vAction(3), vAction(4), vACtion(5), vAction(6)

– Analysis: MCLv0 has no way of knowing that memory is useless for random behavior,

so it learned 14 time-back MFs and 14 value-back MFs. All possible time-back MFs

for DistUp, DistRight, DistDown, DistLeft, and Actionwere learned. Fur-

thermore, various value-back MFs were learned, including those for Action up to six

time steps back in the past. This might indicate a danger that MCLv0 will attempt to

overfit memory influence.

• SRD: Smart Random Agent, Level 2 Non-Deterministic Behavior

– Time-Back MFs: tDistUp(Close), tDistUp(Far), tDistRight(Close),

tDistRight(Far), tDistDown(Close), tDistDown(Far), tDistLeft(Close),

tDistLeft(Far), tAction(Up), tAction(Right), tAction(Left), tAc-

tion(Down)

– Value-Back MFs: vDistUp(1), vDistUp(2), vDistRight(2), vDistDown(1),

vDistDown(2), vDistLeft(1), vDistLeft(2), vAction(1), vAction(2),

vAction(3), vAction(4), vAction(5), vAction(6), vAction(7), vAc-

tion(8)

– Analysis: MCLv0 similarly learned many MFs for SRD, which ultimately did not im-

prove learning performance. Most of the time-back MFs and value-back MFs that were

learned by MCLv0 for the SRD agent are the same as those learned for the RD agent.

• SSL: Smart Straight Line Agent, Level 3 Non-Deterministic Behavior

– Time-Back MFs: tAction(Up), tAction(Right), tAction(Left), tAc-

tion(Down), DistUp(Far)

– Value-Back MFs: vDistDown(2), vAction(1)

161

– Analysis: MCLv0 learned a small MF set for SSL. The MFs tracking the Action

feature recorded which direction the cleaner agent was going in previous time steps,

and thus were useful for improving the performance of machine learning when using

the memory-enhanced traces. The MFs vDistDown(2) and tDistUp(Far) may

be attempts by MCL to capture memory influence for the “smart” behavior of this

agent, but we know that smart behavior is not influenced by memory, so it was an error

on MCLv0’s part.

• SWF: Smart Wall Follower Agent, Level 2 Deterministic Behavior

– Time-Back MFs: None

– Value-Back MFs: None

– Analysis: No MFs were learned for SWF. This is good because SWF is not influenced

by memory and any additional features that otherwise could have been added by MCL

would have only confused learning.

• SL: Straight Line Agent, Level 3 Non-Deterministic Behavior

– Time-Back MFs: tAction(Up), tAction(Right), tAction(Left), tAc-

tion(Down)

– Value-Back MFs: vAction(1)

– Analysis: MCL learned MFs pertaining to just “Action”. In the absence of “smart”

behavior, SL is only influenced by the previous action taken. Intuitively, only Val-

Action-1 is necessary, but MCL also added the time-back MFs because each individual

MF extraction provided no evidence that one type was better than the other, so both

types were added. Therefore, a more advanced version of MCL should further refine

the MF set.

162

• WF: Wall Follower Agent, Level 2 Deterministic Behavior

– Time-Back MFs: None

– Value-Back MFs: None

– Analysis: No MFs were learned for WF, which is the ideal situation because WF is not

influenced by memory.

• ZZ: Zig Zag Agent, Level 3 Deterministic Behavior

– Time-Back MFs: tAction(Up), tAction(Right), tAction(Left), tAc-

tion(Down)

– Value-Back MFs: vAction(1), vAction(8)

– Analysis: MCL learned MFs for “Action”, including an interesting vAction(8) MF

(storing the action taken eight time steps in the past), which is likely an artifact of the

maps experienced. Otherwise, the learned MFs correspond to the intuitive notion that

the Zig Zag agent must memorize its short-term horizontal direction (so that it moves

in a straight line) and its long-term vertical direction (so that it knows whether to move

up or down after bumping into the left or right wall).

The MCLv0 approach has generally succeeded in learning MFs that codify memory influences on

each of the vacuum cleaner agents in a sensible fashion. Except for the random agents, the MF sets

that were learned were small and may be further reduced as the algorithm is further refined in our

research.

163

5.6 Minimal Conceptual Approach Summary

In this section, we described the MCLv0 approach to the MCL algorithm. The MCLv0 approach

implements the essential components of the MCL algorithm which form its core mechanism. It

is geared toward learning memory influences in discrete-valued behavioral traces and encoding

them with appropriate memory features that are used to create memory-enhanced traces. We de-

scribed each step in the MCLv0 approach in detail: Memory Feature Extraction, Memory Feature

Refinment, and Trace Enhancement. Now that we have presented the MCL algorithm, as it is im-

plemented in the MCLv0 approach and has been explained and illustrated by example up to this

point, we are now ready to justify and describe improvements to the algorithm, which constitute

our comprehensive conceptual approach.

164

CHAPTER 6: COMPREHENSIVE CONCEPTUAL APPROACH

In this chapter, we describe our full or “comprehensive” conceptual approach to the problem de-

scribed in Chapter 3. We call this comprehensive approach “MCLvN”. Here, we describe how

MCLvN addresses the limitations in MCLv0, which we described in Chapter 5, and how MCLvN

has been designed to handle the general class of memory-influenced behaviors.

This chapter is organized as follows:

• Section 6.1 summarizes the MCLv0 approach.

• Section 6.2 outlines the limitations of the MCLv0 approach.

• Section 6.3 provides a high-level description of the modifications present in MCLvN and

how each of them addresses a specific limitation of MCLv0.

• Section 6.4 discusses preprocessing steps that were added to MCLvN to handle continuously-

valued behavioral traces.

• Section 6.5 discusses improvements made to the Memory Feature Extraction phase in MCLvN.

• Section 6.6 discusses improvements made to the Memory Feature Refinement phase in

MCLvN.

• Section 6.7 discusses improvements made to the Trace Enhancement phase in MCLvN.

6.1 Baseline Approach Synopsis

This section summarizes the MCLv0 baseline approach upon which MCLvN improves. It is orga-

nized as follows:

165

• Section 6.1.1 describes the output of MCLv0, Memory Features (MFs).

• Section 6.1.2 describes the overall MCL algorithm and its inputs and outputs.

• Section 6.1.3 describes the MF Extraction step of MCLv0.

• Section 6.1.4 describes the MF Refinement step of MCLv0.

• Section 6.1.5 describes the Trace Enhancement step of MCLv0.

This section will serve as a brief summary of Chapter 5 and may be skipped by those who have a

sufficient understanding of that chapter’s contents.

6.1.1 Memory Features

Memory Features (MFs) are features that encode aspects of an agent’s past performance. There

are raw MFs and specialized MFs. Raw MFs record an aspect of recorded performance at a single

point in time and they have three components:

1. A feature f , which is one of the variables recording the perception of the environment.

2. A time step t in the range [0, T], for some maximum number of time steps T .

3. A value v that is recorded for f at time t.

For example, suppose we have the trace seen Table 6.1, which records the values of two features,

F and G, over five time steps such that time step t ∈ {0, 1, 2, 3, 4}.

One possible raw MF is one which records that feature F stored value - at time t = 2. We denote

this as MF(F = -, t = 2). Another possible MF is one recording that feature G stored value x at

166

time t = 3, denoted MF(G = x, t = 3). One should note that these raw MFs are only applicable to

one particular time step t.

Table 6.1: Example Trace with Two Features

t 0 1 2 3 4

F + - - + +

G a b z x y

Specialized MFs are raw MFs that are parameterized and formatted to store information about

memory relative to any time step. These are MFs for which an appropriate value can be computed

at every time step. There are two types: value-back and time-back.

Value-back MFs (VMFs) are MFs that store the value of some feature at a fixed time prior to the

present. VMFs have two parameters, which are:

1. A feature f , which is one of the variables that records the perception of the environment.

2. A time-back constant tb, which is the number of time steps prior to some time step t at which

value v was recorded for feature f for this MF.

Thus, for a given time step t, a VMF stores the value v of feature f at time t − tb. We call it a

“value-back” MF because it stores a value from memory or a value back in time.

Time-back MFs (TMFs) are MFs that store the amount of time since the last occurrence of some

value of a feature. TMFs have two parameters, which are:

1. A feature f , which is one of the variables recording the perception of the environment.

167

2. A fixed value v of feature f .

Thus, for a given time step t, a TMF stores the number of time steps tb before time t when value

v for feature f was last observed. It is a called a “time-back” MF because it stores the amount of

time back to the most recent observation of a specific feature value.

For example, suppose we have a sequence of values for a single feature F over five time steps

(where time t takes on values 0-4), as seen in Table 6.2:

Table 6.2: Example Trace with One Feature

t 0 1 2 3 4

F + - - + +

If we add a VMF that tracks the value of feature F at time t− 1, the values of this VMF, denoted

vF (1), are as follows (see Table 6.3):

Table 6.3: Example Trace with Value-Back Memory Feature

t 0 1 2 3 4

F + - - + +

vF (1) + - - +

VMF vF (1) stores the symbol from the immediately prior time step. At time t = 0, there is no

such symbol, so vF (1) stores nothing.

168

Table 6.4: Example Trace with Time-Back Memory Feature

t 0 1 2 3 4

F + - - + +

tF (-) 1 1 2

If we add a TMF tracking the number of time-back tb steps before time t since the last occurrence

of the value ‘-’ of feature F , the values of this TMF, denoted tF (-), are as follows (see Table 6.4):

The first occurrence of the value ’-’ for feature F is at time step t = 1. Therefore, TMF tF (-)

stores nothing for times t = 0 and t = 1 because at those times, there is no prior occurrence of ’-’

before t.

6.1.2 Memory Composition Learning, Version 0

Memory Composition Learning (MCL) is an algorithm for learning a memory model that explains

the memory influences for an observed behavior. A preliminary version of this algorithm, which

we call MCLv0, was implemented using three major steps: 1) MF Extraction, 2) MF Refinement,

3) Trace Enhancement.

The input to MCL is a series of traces that record a single start-to-end run of the observed behavior.

A run is a set of variables (including agent actions) and their values up to a certain point in time.

(The actual definition of a run is more nuanced and is described in Chapter 5, but this definition

suffices for this section.) A perception is a set of features or variables that encode the state of the

environment at a single point in time. Actions are variables that encode what an acting agent did,

possibly in reaction to the perceived state of the environment, at a point in time. Thus, for a trace

with N time steps, there are N runs (the run up to time 0, the run up to time 1, etc.).

169

After one or more traces recording an actor’s observed behavior are obtained, the traces are con-

verted into a case base. The environmental variables are then copied over to the cases themselves,

because the cases replace the traces for the purposes of learning a memory model of the observed

behavior. Each case in the case base has two components:

• Problem Component: This component stores a run of the observed behavior up to and in-

cluding the values of the perception features at a given time step t.

• Solution Component: This component stores the action(s) taken by the observed actor at

time t.

Next, MCL automatically learns a memory model of the observed behavior to explain the memory

influences at work. This memory model, which is a set of appropriate MFs, is incorporated into the

original traces to create memory-enhanced traces that store all pertinent information from memory

at each time step. The objective is to restore the Markov assumption — that all information needed

to predict the action taken by the observed actor at a given time step is present in the values of the

variables recorded for that time step. This would allow standard supervised learning algorithms to

learn Level 3 memory-based behaviors because the influences of the actor’s memory are reflected

as part of the present state.

MCL does this through three steps:

1. Memory Feature Extraction: For each case in the case base, a set of MFs explaining the

memory influences for that case is computed.

2. Memory Feature Refinement: Given the sets of MFs extracted for each case, a single refined

set of MFs explaining the memory influences on the behavior as a whole is computed.

170

3. Trace Enhancement: The value of all MFs in the refined set is computed for each time step in

each trace. These are incorporated into each corresponding trace to create memory-enhanced

traces.

The following sections describe each of these steps in greater detail.

6.1.3 Baseline Memory Feature Extraction

MF Extraction is the process in MCLv0 by which a set of MFs is computed for each case in a case

base. For each case, the set of extracted MFs for a given case encodes the memory influences at

work for the problem component run in the case.

In MCLv0, MF Extraction is done iteratively. The objective of this step is to extract the mem-

ory influences present for each individual case. Therefore, each case gets its turn to be the test

case, for which MCLv0 uses the following procedure to extract memory influences in the form of

specialized MFs. MCLv0 repeats the following steps for each test case.

1. Instantiate the set of extracted MFs, which is initially an empty set. Copy every case in the

case base (including the test case) to a pool of candidate cases.

2. Do the following until an exit condition is encountered:

(a) Use Memory Temporal Backtracking (MemTB) to retrieve a raw MF from the earliest

time step where the test case differed from other cases in the case base that prescribed

a different action for time t.

(b) If no raw MF was retrieved with MemTB because the perception features at time twere

sufficient to predict the test case’s solution component (the action at time t), then exit

the loop and go to Step 3.

171

(c) Convert the raw MF into a VMF. Add it to copies of the test case and cases in the case

base.

(d) Use MemTB with the copies of the test case and the case base with the VMF to retrieve

a second raw MF. Note how many time steps later this second raw MF occurs than the

first raw MF.

(e) Convert the first raw MF into a TMF. Add it to copies of the test case and cases in the

case base.

(f) Use MemTB with the copies of the test case and the case base with the TMF to retrieve

a third raw MF. Note how many time steps later this third raw MF occurs than the first

raw MF.

(g) If the second raw MF (the one retrieved using the VMF) occurs later than the third raw

MF (the one retrieved using the TMF), add the VMF to the set of extracted MFs and

permanently add the VMF to the test case and case base.

(h) If the third raw MF (the one retrieved using the TMF) occurs later than the second raw

MF (the one retrieved using the VMF), add the TMF to the set of extracted MFs and

permanently add the TMF to the test case and case base.

(i) If both the second and third raw MFs occur at the same time step, include both the

VMF and TMF in the set of extracted MFs and permanently add both to the test case

and case base.

3. Return the set of extracted MFs.

In each iteration of step 2, two MFs (one value-back and one time-back) are created and evaluated

— one or both will then be added to the set of MFs extracted for this case. If the problem compo-

nent sub-run has T time steps, then at most 2T MFs can be extracted for this case, two per time

step. If there are C cases in the case base, then the above procedure will be performed C times,

172

once per case. This is because each case in the case base will act as the test case one time, so that

MCLv0 can extract specialized MFs for it. Thus, the end result will be C sets of MFs that are used

as input in the following MF Refinement step, which is discussed next.

6.1.4 Baseline Memory Feature Refinement

MF Refinement (MFR) is the process in MCLv0 by which the sets of MFs extracted for each case

are condensed into a single set of refined MFs that describe the memory influences on the observed

behavior as a whole.

In MCLv0, MF Refinement assesses each MF individually. The MF Extraction process was done

for each case independently to find the memory influences that help predict the solution component

of each case. The MF Refinement process, in contrast, assesses the memory influences that are

prevalent in an observed behavior as a whole (e.g. over all cases in the case base) in order to

determine which MFs are most significant. It does so through these steps:

1. Instantiate the set of refined MFs, which is initially an empty set.

2. Get the set of unique MFs that were extracted for any case. (The same specialized MF

may have been extracted for multiple cases, but such an MF is only processed once in the

refinement stage.) For each of these MFs, do the following:

(a) Compute the proportion α of cases for which this MF was extracted.

(b) Compute the proportion β of traces for which this MF was extracted for at least one

case derived from the trace.

(c) Compare α and β to predefined thresholds τ and ρ, respectively. If α > τ and β > ρ,

add this MF to the set of refined MFs.

173

The purpose of the thresholds τ and ρ (which are tuned by hand for each domain) is to filter out

artifacts or memory influences that are based on aspects of the environment, rather than aspects of

the behavior. There are three artifacts:

1. Blip Artifact: This is a MF that appears in few cases (α < τ) and few traces (β < ρ) and is

therefore meaningless; an aberration of the extraction process may have resulted from noise

in the behavioral data.

2. Trace Artifact: This is a MF that appears in many cases (α > τ), but very few traces (β < ρ).

It is memory of an aspect of the environment of certain traces rather than memory that affects

the behavior in general in all traces.

3. Rare Memory Influence: This is a MF that appears in many traces (β > ρ), but in very few

cases (α < τ). If is a memory influence that affects the behavior in general, but it occurs so

infrequently that we do not retain it in our refined MF set.

Once all artifacts are filtered out and our refined MF set is obtained, we have a set of MFs that

explain how memory influences the behavior as a whole. This is the input to the next step of

MCLv0, Trace Enhancement.

6.1.5 Baseline Trace Enhancement

Trace Enhancement (TE) is the process in MCLv0 by which a set of memory-enhanced traces

is created by incorporating the learned memory model of the observed behavior into the original

traces.

The learned memory model is a set of MFs that explains the memory influences on the observed

behavior as a whole. For each time step in each of the traces, the return value of each MF is

174

computed and incorporated into the original trace, thereby converting it into a memory-enhanced

trace. The MFs in the enhanced traces can be treated the same as the originally-included perception

features and action features by a standard supervised learning algorithm without modifying the

learning algorithm. The hope is that all pertinent information from memory will be present at each

time step, thereby asserting the Markov assumption that the information at the current time step is

sufficient for predicting the action(s) taken at that time step.

6.2 Limitations of MCLv0 Approach

Chapter 5 presented MCLv0, a preliminary version of the Memory Composition Learning (MCL)

algorithm. However, MCLv0 suffers from the following limitations:

1. Context Agnosticism: MCLv0 assumes that the influence of memory is consistent throughout

the execution of the behavior; in reality, however, the usefulness of MFs and their relevance

may rise and fall throughout the behavior’s execution depending on the situation (context).

MFs should thus be context-sensitive.

2. Extraction Inefficiency: MCLv0 is computationally expensive in the MF extraction phase

and is unlikely to scale up well to domains with more complex perceptions.

3. Inability to Handle Continuous Data: MCLv0 only operates in finite, discrete domains.

Future versions should be adapted to continuous domains and use more complex similarity

metrics when comparing case runs.

4. Extraneous Memory Representations: MCLv0 currently only learns two MFs (time-back and

value-back), which are often generated unnecessarily when a more concise MF set could be

used to express certain memory influences.

175

5. Stochastic Considerations: MCLv0 has no mechanism for addressing random or stochastic

behavior when generating its learned MF set. Learning from completely random agents, for

example, can wreak havoc on the MCLv0 process, as was shown in Section 5.5.

MCLv0’s purpose was to show that the idea behind the hypothesis of our research was both credible

and feasible. However, MCLv0’s shortcomings do not allow it to properly validate the hypothesis

of our research (stated in Section 3.3). Either MCLv0 makes simplistic assumptions or does not

account for certain aspects of behavior that would allow it to be generally applied to real-world

human behaviors.

In order to prove that the concept of the MCL algorithm is applicable to domains and learning

tasks in the general case, and that it is better than other techniques that learn memory-influenced

behaviors, the MCLv0 approach must be enhanced to overcome all the limitations mentioned.

These improvements are discussed next.

6.3 MCLvN Approach Overview

This section provides a high-level overview of the extensions to the MCLv0 approach that enable

MCL to learn memory models in behaviors with continuous-valued data, complex memories, and

contextual considerations. We call this modified approach “MCLvN”, the ultimate comprehensive

conceptual approach to the MCL algorithm presented in this dissertation. Figure 6.1 shows the final

MCLvN approach. (It has similar contents to those shown in Figure 5.1 from Section 5.1 except

with shaded boxes showing where new modules/functionality are to be located for MCLvN.) In

Section 5.1, we discussed these modules (and improvements to preexisting modules from MCLv0).

We discuss here how these improvements of MCLvN are meant to address the limitations of

MCLv0 here; other sections discuss the specific mechanics of the MCLvN components in greater

176

detail. Put another way, we justify the modifications/additions in this section and why we included

them, but we describe in later sections how these updated modules work. Also, we do not claim

that the design choices in this approach are optimal, but only that their synergistic combination ad-

equately works to address the overall problem of inferring a model of memory influences at work

in observed behavior as described in Chapter 3.

Figure 6.1: MCL Comprehensive Approach

6.3.1 MCLvN Preprocessing Overview

Before the major phases of MCL are invoked, we added a “discretizer” module to preprocess

continuous-valued features in behavioral traces. This module will convert all continuous-valued

177

features into discrete values. Then, all feature values can be processed by MCL without regard to

the range and distributions in the data. This would address the “Inability to Handle Continuous

Data” limitation discussed in Section 6.2.

The alternative was to rewrite all other modules to process continuous-valued data directly, which

would essentially create a second MCL algorithm specifically geared toward continuous-valued

data. However, there are three issues with this approach:

1. Having two versions of MCL makes it difficult to directly test the efficacy of various mod-

ules of MCL. There will always be two sets of tests and any differences in memory modeling

performance could be attributed to the type of data processed rather than to the MCL mod-

ules themselves. It would also make it difficult to manage applications when there are two

versions of the resulting tool.

2. The Memory Temporal Backtracking algorithm treats time steps as discrete units. Unless

there is a feature tracking time itself (e.g. the number of seconds that have passed since

the beginning of the simulation), there is no way to create time-back MFs that record a

continuous amount of time (instead of a discrete number of time steps as in MCLv0).

3. MCL requires memory influences to repeatedly appear in order for such influences to be

learned and modeled. High-precision memory values for a continuous-valued feature are

less likely to be repeated (unless similar values are clustered) and would make learning

value-back MFs difficult.

Discretization was seen as a better alternative to handling continuous-valued traces and expanding

the MCLv0 approach.

178

6.3.2 MCLvN Memory Feature Extraction Overview

The updates that were intended for the Memory Feature Extraction phase in MCLvN are twofold:

1. Update Step 1 “Extract Memory Features” from Figure 6.1 to use a new principle, called

the Memory Singularity Principle (MSP), to reduce redundant computations and make this

phase more efficient. This will address the “Extraction Inefficiency” limitation. We discuss

the MSP in greater detail later.

2. A consequence of using MSP is that the specialization of MFs (converting raw MFs into

value-back or time-back MFs) is no longer possible in the MF Extraction stage and therefore

must be transferred to the subsequent MF Refinement stage.

The algorithmic complexity of the MF Extraction phase in MCLv0 was determined to be O(N4)

in Appendix A, where N is the number of time steps in the observed behavior. This algorithmic

complexity is derived in Appendix A. Nevertheless, O(N4) is much too computationally intensive

to be useful in real-world applications.

6.3.3 MCLvN Memory Feature Refinement Overview

The updates to the Memory Feature Refinement phase in MCLvN will be twofold:

1. Update Step 2a to generate specialized MFs that express the memory influences codified by

the raw MFs that were extracted for each case in the case base. By waiting until the MF

Refinement stage to generate specialized MFs, a more concise set of specialized MFs can be

generated that more effectively expresses the memory influences on observed behavior. This

addresses the “Extraneous Memory Representations” limitation.

179

2. Add Step 2b “Contextualize Memory Features” from Figure 6.1 to create memory-based

contexts. Such contexts will encode sets of MFs that repeatedly occur together throughout a

trace. This will address the “Context Agnosticism” limitation. The creation of these contexts

will also address the “Stochastic Considerations” limitation because MFs that do not map to a

specific context can be said to be a product of non-determinism (such as human inconsistency

in behavior or noise) or some aspect of the environment that was not modeled in the trace

and thus cannot be modeled by memory.

6.3.4 MCLvN Trace Enhancement Overview

The updates to the Trace Enhancement phase in MCLvN will be twofold:

1. Update Step 3a “Enhance Traces with Memory” to be able to add MFs to continuous traces.

The MFs are generated from discretized traces and their values for each time step are com-

puted with those same discretized traces. However, the MFs’ values are now incorporated

into the original continuously-valued traces.

2. Add Step 3b “Map Runs to Contexts” to write to file which segments of a trace map to

which contexts. This will allow context-based LfO algorithms to know which segments

of the traces to use for training knowledge for the generated contexts. This addresses the

“Context Agnosticism” limitation.

These updates accommodate the outputs generated by the MF Refinement stage that are beyond

the simple value-back and time-back MFs that were generated in MCLv0.

180

6.3.5 MCLvN Holistic Overview

We have provided a high-level description of the modifications/additions that have been made as

part of MCLvN and how they address specific limitations in the MCLv0 approach. We list below

the limitations of MCLv0 and which modules address them in MCLvN.

Table 6.5: How MCLvN address limitations in MCLv0

Limitation Description MCLvN modules

Context Agnosticism Group memory influences by context. Steps 2b, 3b

Extraction Inefficiency Leverage repeated computations. Step 1

Need for Discretization Process continuous-valued data. Discretizer module

Extra. Mem. Represent. Make MFs more concise. Step 2a

Stochastic Considerations Handle non-determinism. Step 2b

The following sections will now provide more detailed explanations for the mechanisms behind

these MCLvN novelties.

6.4 Trace Preprocessing

This section addresses how MCLvN addresses continuously-valued data. In this step, MCLvN

converts every continuous value of a trace into a discretized value. In order to do this, the following

information needs to be specified for each feature:

• A base value B — the value to which other values are compared. For example, for a feature

measuring a vehicle’s speed, we would set B = 0 because we want to know how many units

of speed above 0 a vehicle is going.

181

• A range size R — the maximum difference that two feature values can have and still corre-

spond to the same discrete value (e.g. if R = 0.2, then values 5.2 and 5.1 will be the same

value when discretized).

Then, for a given feature F with base value B and range size R, we can convert a continuous value

V observed for F into a discretized value D = V−B
R

. It should be noted that this formula uses

integer division, because D must assume an integer value. Thus, D represents the number of units

of size R away from B that V is. This formulation uses a uniform distribution, but future work

may use a different distribution (e.g. Gaussian) for discretization. Now, we discuss the mechanism

behind MF Extraction in MCLvN.

6.5 Improved Memory Feature Extraction

This section describes the improved MF Extraction step of MCLvN. The improvements in this step

address two limitations in the MCLv0 version:

1. The iterative MF extraction algorithm made three calls to MemTB in order to procure a

single MF. This is grossly inefficient.

2. The iterative MF extraction algorithm made the simplistic assumption that the best special-

ized MF (value-back or time-back) was the one that resulted in the retrieval of raw MFs that

are more recent. This resulted in extracted MF sets that were at times not concise.

182

183

Figure 6.2: Memory Temporal Backtracking Plus — Flowchart

The improved MF Extraction step of MCLvN, rather than iteratively retrieving a single MF after

every three calls to MemTB), it does so recursively by retrieving all MFs from just a single call to

MemTB for a given case. In other words, in MCLv0, ifM MFs are to be retrieved for a given case,

MemTB would be called 3M times. However, in MCLvN, the extraction process can retrieve M

MFs with just one MemTB invocation, that reduces the run-time complexity of the MF Extraction

step significantly.

The MF Extraction step relies on what we call the Memory Singulary Principle (MSP), which

states that under the assumption of perfect memory recall, if two elements in a run are the same,

then the memories of those elements will also be the same. The corollary is that if two elements

in a run are not the same, then the memories of those elements will also not be the same. In other

words, there is a one-to-one mapping between a memory and the element it is “pointing” to, to use

a programming analogy.

In order to leverage the MSP, the algorithm for MemTB is modified — we call it MemTB+. In

this way, future improvements to MemTB+ can simply add additional + signs (e.g. MemTB++).

Figure 6.2 shows the steps for MemTB+. Terminating events in the flowchart have a black outline.

We note here that a consequence of leveraging MSP is that the output of MF Extraction in MCLvN

is not a set of specialized MFs for each case in the case base. Instead, MF Extraction outputs a set

of raw MFs for each case in the case base. The specialization of these raw MFs into value-back or

time-back MFs is thus transitioned to the MF Refinement stage in MCLvN.

We describe the steps in Figure 6.2 in detail below. Note that the MF Extraction+ procedure

iteratively processes each case in the case base, but it processes an individual case recursively.

1. The inputs to MemTB+ are a test-run, for which MFs are being extracted, a pool of cases

that are similar to test-run, and a time-back parameter k. The first call to MemTB+ will pass

184

all cases in the case base as the pool of similar cases and a time-back parameter k = 0. The

value of k will be incremented as the recursion depth increases. The current time t of the

test-case is known.

2. MemTB+ will create two empty sets:

(a) extracted-MFs, which stores the extracted MFs that comprise the final output of MemTB+.

(b) rejected-cases, which stores those cases that are removed from pool in a given MemTB+

call.

3. The following is done for each case in pool.

(a) The current case is compared to the test-case at time t− k.

(b) If the case is dissimilar to the test-case at time t − k, it is added to the rejected-cases

set and removed from pool.

4. A new-raw-MF is created and it stores three components:

(a) The feature for which the most cases remaining in pool are similar to test-case and

for which the most cases in rejected-cases are dissimilar to test-case is selected as the

feature recorded by the new-raw-MF.

(b) The value of the discriminative feature is recorded.

(c) The time t− k is recorded.

5. If all pool cases share the same solution component, then a MF set with just the new-raw-

MF will be returned. This MF was responsible for resolving all memory-influences for this

MemTB+ iteration. This is the terminating case (a.k.a. termination of recursion).

6. Otherwise, a recursive call to MemTB+ will be made to obtain the list of earlier-MFs that

resolve memory influences for time steps before time t−k. The parameters to this MemTB+

185

call will be the same test-case, the remaining cases in pool, and an incremented k + 1 pa-

rameter. In Figure 6.2, the flow would return to “Initialize set of extracted-MFs to an empty

set. Initialize rejected-cases set to empty set.”

7. In the original MemTB (no plus sign), the output of this recursive call to MemTB (a single

raw MF) would have been returned. However, MemTB+ adds a few crucial post-processing

steps, which are as follows:

(a) If the rejected-cases set is empty, this means that no cases were removed from pool.

This means that no memory influence was present at time t− k. Therefore, the earlier-

MFs set is returned.

(b) Otherwise, there is a memory influence that caused certain cases to be removed from

pool at time t−k, namely the new-raw-MF that was created. However, it is possible that

memory influences from earlier-MFs are sufficient for explaining memory influence up

to time t−k, thus making new-raw-MF unnecessary. This is because of the MSP, which

we explain later. For now, if earlier-MFs are sufficient for resolving (i.e. explaining)

memory influences at time t− k, then just return earlier-MFs. Otherwise, add earlier-

MFs and new-raw-MF to the extracted-MFs set and return extracted-MFs.

Following from the MSP, we can make the following assertions:

1. At time t−k, all cases in pool have similar elements to the test-case. Therefore, all memories

between times t − k and t are also similar to those of the test-case and cannot be used to

differentiate between the test-case and other cases with different solution-components in that

time range.

2. Therefore, in the absence of memory influences prior to t−k, any memory influences present

at time t − k are absolutely necessary for explaining why the action taken in the test-case

186

differs from that of other cases in pool at time t− k.

3. However, because of MemTB+’s recency bias (the assumption that more recent memories

are more influential than earlier memories, hence the reason why TB and thus MemTB+

inspect cases from present to past), memory influences prior to t − p, for some p < k, are

not considered when removing cases from pool at time t− p.

4. Therefore, it is possible that memory influences from times t− k to t− p− 1 (all time steps

prior to time t − p, but after and including t − k) may be sufficient to remove cases from

pool with different solution components than that of the test-case. If this is the case, then

any memory influences from time t− p are unnecessary.

Furthermore, we should note that the at the end of the improved MF Extraction phase for MCLvN,

the output is a set of raw MFs, not specialized MFs; MFs are not designed as value-back or time-

back in the MF Extraction step for MCLvN. This is because the MSP only applies to raw MFs, not

specialized MFs. Therefore, using the MSP has three important ramifications:

1. We can now guarantee that all extracted MFs are necessary, provided that they were correctly

formed in the first place. This is because we no longer rely on the potentially faulty recency

bias, allowing earlier MFs to potentially phase out or suppress memory influences that come

later. This is in contrast to MCLv0, which relied on the possibly faulty assumption that

selecting MFs that cause subsequent MFs to be more recent was the optimal procedure.

There is currently no definitive evidence that this recency bias is appropriate for all domains.

2. MCLvN, by delaying MF specialization to a later stage, avoids the overhead of computing

MF values for all cases in the case base. The MSP allows us to compare elements directly

instead of first computing MF values and comparing those. This is because raw MFs have a

one-to-one relationship with the elements being remembered/tracked.

187

3. Raw MFs cannot be included in memory-enhanced traces because they only record memory

information for a single point in time. They cannot be adapted to other time steps. Thus, it

is up to a subsequent stage, such as the MF Refinement+ step, to specialize these raw MFs.

(In contrast, MCLv0 specialized its raw MFs during the MF Extraction stage.)

However, the limitation of the current MF Extraction algorithm we have described thus for MCLvN

is that the extraction process is invoked for every case in the case base. With a few modifications to

the algorithm, we can run the extraction process once and get the extracted raw MF lists for every

case in the case base. Those modifications are as follows:

1. Instead of having MemTB+ return the set of extracted MFs to be assigned to a specific test

case, just have each case in the case base update its own extracted MF set on the fly as the MF

Extraction operation is being carried out. Every time a raw MF is created during recursion,

the appropriate cases in the case base incorporate it into their raw MF sets immediately

instead of waiting for the entire set of raw MFS to be computed. This eliminates the need

for return statements during MF Extraction.

2. Instead of discarding cases that are dissimilar to the test case, extract the raw MFs those

cases as well. Do this by arbitrarily picking one of those cases (it doesn’t matter which one)

as the new test case and running another MemTB+ operation from that point in the recursive

call stack.

If one views each recursive call as a node in a tree, then MemTB+ is like traversing a tree. Each

leaf node represents the end of recursion. Previously, the path to each leaf node began all the way

from the root node (the first recursive call to MemTB+). Now, the path to each leaf node need only

begin from the lowest node in the tree (the closest ancestor) that has more than one child node.

188

189

Figure 6.3: Tree Memory Temporal Backtracking Plus — Flowchart

Figure 6.3 shows the modified extraction algorithm. The two major changes from Figure 6.2 are:

• The return statements are modified such that any new MF generated in that call is immedi-

ately assigned to all cases in the pool.

• The last task that is done in MemTB+ is a resolution of the rejected cases that were not

similar the test case.

Figure 6.4: Tree Memory Temporal Backtracking Plus — Addressing Rejected Cases

The MF extraction process for the rejected cases is shown in Figure 6.4. Basically, while the set

of rejected cases is not empty, the first case is chosen to be a lead case (a new test case) to which

all rejected cases are compared. All cases that are similar to the lead case are put in a new set and

removed from the rejected cases set. Then, MemTB+ is invoked on this new group of similar cases

and the loop continues.

190

The algorithmic complexity of this new MemTB+ algorithm is O(N2). Its derivation can be found

in Appendix A. This is much more scalable to practical applications than its former O(N4) com-

plexity.

6.5.1 Comparison of MF Extraction Methods

The following section contains a graphical representation of how the different MF Extraction meth-

ods discussed in this dissertation compare to each other. The objective is to demonstrate how the

MF Extraction procedure in MCLvN has been improved over the version in MCLv0.

6.5.1.1 MCLv0 Memory Feature Extraction

In MCLv0, the MF Extraction process is performed repeatedly, once for each case in the case base.

Figure 6.5 shows the first iteration of MF Extraction for a single case.

Figure 6.5: MCLv0 MF Extraction — Iteration 1, Recursion Level 1

In this figure, cases are represented by miniature shapes. The test case (a solid circle in this

example) is surrounded by square brackets. All cases that are possibly similar to the test case are

encapsulated in a group with a solid outline — this constitutes the candidate cases pool. A single

raw MF will be extracted by a call to MemTB. In its first level of recursion, MemTB will compare

all cases to the test case at time t (where t for each case is the latest time step in that case’s problem

191

component sub-run). Each case will be either be retained in the candidate cases pool or be rejected.

Figure 6.6: MCLv0 MF Extraction — Iteration 1, Recursion Level 2

Figure 6.6 shows the result of the case comparisons from the first MemTB recursion level. All

dissimilar cases (non-circular shapes) have been rejected and set aside in a group with a dashed

outline — they will no longer be considered by MemTB. All other cases that are still similar to the

test case are retained in the candidate case pool. However, the cases in the candidate case pool do

not agree on the next action to be taken at time step t (since not each case is the exact same shape),

so MemTB will delve into a second level of recursion, comparing the cases in the candidate case

pool with the test case at time t− 1. (Note: This process is more nuanced, as described in Chapter

5, but the simplification of the process serves the purposes of this example.)

Figure 6.7 shows the result of the case comparisons from the second MemTB recursion levels. The

cases that were dissimilar from the test case were rejected and set aside in a group with a dashed

outline while the other cases were retained in the candidate case pool. All cases in the candidate

case pool now prescribe the same action at time t (since they are all the exact same shape, a solid

circle), so MemTB terminates and a single raw MF is extracted. The raw MF is represented by a

fuzzy cloud shape. This ends the first iteration of MF Extraction for the given test case. (Again,

this is a simplification of the process described in Chapter 5.)

192

Figure 6.7: MCLv0 MF Extraction — Iteration 1, Recursion Level 3

In the second iteration of MF Extraction for the same test case, the raw MF that was extracted in

the previous iteration is then converted into a value-back MF (VMF) and temporarily incorporated

into the test case and all cases in the case base. The VMF is represented as a yellow cube. This is

seen in Figure 6.8.

In Figure 6.8, all the cases are changed from a blue color to a yellow color to represent the incorpo-

ration of the VMF. (Unfortunately, this color change will not be reflected in black and white copies

of this dissertation.) As a result of the VMF, we can see that MemTB only reaches a recursion

level of 2 instead of 3.

193

Figure 6.8: MCLv0 MF Extraction — Iteration 2, Testing VMF

Figure 6.9: MCLv0 MF Extraction — Iteration 2, Testing TMF

The next step is to remove the VMF from the cases in the case base. The raw MF from iteration

1 is then converted into a time-back MF (TMF) and temporarily incorporated into the cases in the

case base. The TMF is represented as a green cylinder shape. MemTB is run again, as seen in

194

Figure 6.9. In this figure, all the cases are green to signify the incorporation of the TMF.

As seen in Figure 6.9, when the TMF is used, MemTB also results in a recursion level of 2. There-

fore, according to the recency bias that MCLv0 uses, both the VMF and TMF versions of the raw

MF that was extracted in Iteration 1 are equally advantageous and thus they are both permanently

incorporated into the cases of the case base (at least for the duration of the MF Extraction pro-

cedure for this test case). Even though it would seem that having both the VMF and the TMF

is redundant, they are both incorporated in order to avoid potentially filtering out an MF that is

actually necessary.

Figure 6.10: MCLv0 MF Extraction — Iteration 2, Extracting Raw MF

MemTB is then run a third time with this case base (which now contains two MFs in each case)

in order to extract a second raw MF. This is shown in Figure 6.10. The VMF and TMF (the cube

and cylinder) are permanently incorporated into the cases in the case base, which are now beige

195

color to signify the incorporation of both MFs. The result of this call to MemTB, a raw MF, is

represented as a cloud shape in the figure. This concludes the second iteration of MF Extraction

for the current test case.

The third iteration of MF Extraction for the same test case begins with the conversion of the raw

MF from the second iteration into a VMF and its temporary incorporation into the cases in the case

base. This is shown in Figure 6.11, where the VMF is a purple cube and all cases are shown as red

to signify the incorporation of the new VMF. (Note: The cases already possess the TMF and VMF

that were incorporated in the previous iteration).

Figure 6.11: MCLv0 MF Extraction — Iteration 3, Testing VMF

In Figure 6.11, we can see MemTB terminates in its first level of recursion, which indicates that

the MFs have captured all memory influences relevant to this case. In order to see if a TMF version

of the second raw MF is useful, the raw MF that was extracted in the second iteration is converted

into a TMF and temporarily added to the cases in the case base. This is shown by Figure 6.12,

where the TMF is a red cube and all cases in the case base are red to signify the incorporation of

the TMF.

196

Figure 6.12: MCLv0 MF Extraction — Iteration 3, Testing TMF

As seen in Figure 6.12, MemTB terminates in its first level of recursion, indicating that the TMF

and VMF versions of the raw MF that was extracted in the second iteration of MF Extraction are

equally advantageous, so both are permanently added to the cases in the case base. Thus, four MFs

(the VMF and TMF versions of the first extracted raw MF, and the VMF and TMF versions of the

second extracted raw MF) have been extracted for the test case surrounded by square brackets. The

end result of MF Extraction for a single test case is shown in Figure 6.13.

Figure 6.13: MCLv0 MF Extraction — End Result

In MCLv0. the process we just described is run for every single case in the case base (a total of

15 times in our example). A small optimization can be added to this process if we assume that the

MFs that are extracted for one test case are the same MFs that would be extracted for the other

197

cases that remain in the candidate case pool when MemTB terminates, due to the high similarity

between these cases. Regarding our example, this would mean that the specialized MFs that were

extracted for the first solid circle case would also be assigned to the other two solid circular cases.

Since there are six unique shapes in the case base, we would really only have to perform MF

Extraction six times in this example. It should also be noted that even though there are six unique

shapes in this example, it is possible that different shapes prescribe the same action at time step t,

but are simply not similar in their problem component sub-runs.

6.5.1.2 MCLvN Memory Feature Extraction

In contrast to the MF Extraction process in MCLv0, the final output of MF Extraction in MCLvN

is not a set of specialized MFs for each case. Instead, MCLvN computes a set of raw MFs that are

extracted for each case in the case base. MF Extraction in MCLvN possesses two optimizations

that make it more efficient than its counterpart in MCLv0: Memory Singularity Principle (MSP)

and Tree Extraction.

The first optimization is the use of the Memory Singularity Principle (MSP), which states that

comparison of memories of run components is equivalent to comparison of those run components

directly. In other words, there is no need to compare MFs that were created from run components

when we can just compare the run components directly. (It is important to note here that MSP only

applies to raw MFs, not specialized MFs such as value-back and time-back MFs.) As we already

discussed previously, one consequence of the MSP is that all raw MFs for a single test case can

be extracted from just a single MemTB+ call, rather than 3R calls (where R is the number of raw

MFs that are ultimately needed to express the memory influences relevant to the test case).

198

Figure 6.14: MCLvN MF Extraction — Memory Singularity Principle, Part 1

In Figure 6.14, a test case is selected (the solid circular case surrounded by square brackets). Then,

MemTB+ filters out cases from the candidates case pool that are not similar to the test case at time

t. However, the cases remaining in the candidates case pool still differ on the prescibed action to

take at time t, so MemTB+ enters another level of recursion to remove cases from the candidate

case pool that differ from the test case at time t − 1. At this point, all remaining cases in the

candidate cases pool agree on the prescribed action for time t and a single raw MF is extracted,

as represented by a cloud shape in the figure. This process is similar to that in MCLv0, but in

MCLvN, the process continues.

199

Figure 6.15: MCLvN MF Extraction — Memory Singularity Principle, Part 2

One must keep in mind that the purpose of MFs is to help a learning algorithm distinguish between

time steps where one set of actions is required from other time steps where some other set of

actions should be performed. For time steps where the same set of actions are performed, the MFs

will encode one set of values and for other time steps, the MFs will encode a different set of values.

With this in mind, MemTB+ will return control back to the previous level of recursion and do two

things:

1. MemTB+ will check all the cases that were rejected at this level of recursion (which we’ll

call “current level rejected cases” or CLR cases). For every raw MF that was previously

extracted for a deeper level of recursion, MemTB+ will compare each of the CLR cases with

the test case at the time-back value specified by the raw MF. If all of the CLR cases differ

200

from the test case for at least one of these time-back values, then MemTB+ terminates at this

level of recursion.

2. Otherwise, it is necessary to extract a raw MF that differentiates the test case from the CLR

cases, which MemTB+ does here.

In the case where a raw MF is required at time t−1 for our example, Figure 6.15 shows the creation

of this MF. At this point, MF Extraction finishes and a set of raw MFs has been extracted for the

current test case.

Figure 6.16: MCLvN MF Extraction — MF Pruning by MSP, Part 1

To further demonstrate the power of MSP in pruning unnecessary raw MFs, we provide an example

here. Figure 6.16 shows a test case (denoted “Test”) and three cases that prescribe different actions

201

at time t than the test case. The three cases (denoted C1, C2, and C3) must be rejected during MF

Extraction. MemTB+ begins by comparing all candidate cases to the test case at time t — neither

C1, C2, nor C3 are rejected. However, at time t − 1, case C3 differs from the test case and is

rejected. Case C2 is rejected as being different from the test case at time t − 3, then Case C1 is

rejected as being different from Test at time t− 5.

Let’s assume that at the MemTB+ recursion level for time t − 5, all remaining candidate cases

agree on the action to take for time t. Thus, a raw MF is extracted to differentiate the cases that

were rejected at this recursion level for being different from Test at time t − 5. This is shown in

Figure 6.17.

Figure 6.17: MCLvN MF Extraction — MF Pruning by MSP, Part 2

In Figure 6.17, a raw MF encoding the value ‘*’ at time t− 5 is created (it stores the value for Test

at time t − 5). This raw MF thus “resolves” case C1 by encoding one instance where C1 differs

202

from Test (because instead of *, C1’s run component is & at time t−5). Then, control returns to the

previous MemTB+ recursive call. When control returns to the MemTB+ recursive call processing

comparisons at time t− 3, case C2 is analyzed to see if its run components differ from at least one

of the raw MFs that were previously extracted. At this point, there is only raw MF (value *, time

t− 5). However, case C2 also stores value * at time t− 5 and is thus similar to Test at time t− 5.

Therefore, it is necessary to extract another raw MF for time t − 3 to differentiate C2 from Test.

The raw MF that is generated stores value ’*’ and time t− 3.

From there, control will eventually return to the MemTB+ function call that was processing com-

parisons at time t − 1. Case C3, which was rejected from the candidate case pool at this point, is

then compared to all previously extracted raw MFs to see if it differs from at least one of them. For

the raw MF (value *, time t− 3), C3 also has value * (like Test) at time t− 3 and is not resolved.

For the raw MF (value *, time t − 5), C3 differs from test, because it has value & instead of * at

time t − 5. Thus, C3 is resolved. If we assume there are no other cases that were rejected along

with C3 at this recursive call, then we can say that all rejected cases have been resolved for this

time step and thus no raw MFs have to be extracted.

As a result of leveraging MSP, now MCLvN only needs to call MemTB+ once for each case in the

case base. Figure 6.18 shows the application of MF Extraction in MCLvN for a new test case (a

hollow circle, the one with square brackets around it). As we can see in the figure, this test case

shares one raw MF in common with the solid circle test case from Figure 6.15 (the top raw MF

generated from the first split in the tree at t − 1). However, the second raw MF generated for the

hollow circle test case is different. In each of these examples, as soon as a case is rejected from

the candidate cases pool, it is no longer considered, but we can further optimize the process of MF

Extraction if we don’t do this.

The second optimization used by MCLvN is called “Tree Extraction”. Tree Extraction treats the

203

Figure 6.18: MCLvN MF Extraction — Memory Singularity Principle, New Case

MF Extraction process like a postfix tree traversal (where a node in the tree processes its children

before it processes itself). Figure 6.19 shows the first step in tree extraction, in combination with

MSP.

In Figure 6.19, the first solid circular case is the test case. When cases are filtered at time t, the

non-circular cases are rejected and set aside. Then, the cases are compared at time t − 1 and the

hollow circular cases are rejected from the candidate cases pool. Raw MF 1 is then extracted and

control returns to the t − 1 MemTB+ function call. Here, tree extraction processes the cases that

were rejected (the hollow circular cases). It does so by picking a new test case (which is arbitrarily

the first hollow circular case) and a new candidate cases pool is formed. All cases in this new

candidate cases pool agree on the prescribed case for time t, so a raw MF is extracted (raw MF

2). Control then returns to the t− 1 MemTB+ function call. With all cases (retained and rejected)

204

having been processed, MemTB+ (according to MSP) compares all CLR (current level rejected)

cases with raw MFs 1 and 2. If not all CLR cases are resolved, then raw MF 3 is created.

Figure 6.19: MCLvN MF Extraction — Tree Extraction, Part 1

It is important to note here that if we had not been using tree extraction, then the raw MFs for

the hollow circular test case would have to be computed starting from the root of the “tree” and

compared to all other cases (e.g. the squares, houses, triangles, and diamonds) (see Figure 6.17).

We assume that the hollow circle cases are dissimilar to the square/house/triangle/diamond cases,

given that they are similar to the solid circle cases and given that the solid circle cases are dissimilar

to the square/house/triangle/diamond cases. Under this assumption, it is not necessary to compare

the hollow circle cases to the non-circular cases, which is what enables tree extraction.

205

206

Figure 6.20: MCLvN MF Extraction — Tree Extraction, Part 2

207

Figure 6.21: MCLvN MF Extraction — Tree Extraction, Part 3

Control returns to the MemTB+ recursive call for time t. Figure 6.20 shows the continuation of tree

extraction operations. In Figure 6.20, the rejected cases (the non-circular cases) are consolidated

into a new candidate cases pool and the first square-shaped case is arbitrarily assigned as the new

test case. Cases are then compared to the new test case and all the triangle and diamond-shaped

cases are removed from the pool and set aside. Similar to how the circular cases were processed, a

raw MF (raw MF 4) is created for the square cases, raw MF 5 is created for the house-shaped cases,

and raw MF 6 is created for the square/house-shaped cases (assuming that circular, triangular, and

diamond-shaped cases are not resolved by the extracted raw MFs accumulated thus far). Control

then returns to the MemTB+ recursive call for time t.

In a similar manner to the square cases, the triangle and diamond cases are analyzed, as seen in

Figure 6.21. The triangle case is arbitrarily chosen as the new test case. The diamond cases are

rejected from the candidate cases pool and set aside. Raw MF 7 is created for the triangle cases.

Then, the diamond case is chosen as the new test case. No cases are removed from the pool of

diamond cases, so raw MF 8 is generated. Then, control returns to the parent recursive call for

MemTB+ at time t− 1 and raw MF 9 is created.

Figure 6.22: MCLvN MF Extraction — Tree Extraction, End Result

The end result for tree extraction in our example is shown in Figure 6.22. Next to each case is the

set of raw MFs that were extracted for it. When a raw MF is generated, it is automatically assigned

to all cases that are in the candidate cases pool at that time.

We emphasize here that for each case, only raw MFs have been extracted. It is up to MF Re-

208

finement to determine which set of specialized MFs appropriately express the memory influences

codified by these raw MFs.

6.6 Improved Memory Feature Refinement

This section describes the improved MF Refinement stage of MCLvN. MF Extraction found the

memory influences that were relevant for each case. MF Refinement finds the best representations

for memory influences that affect the behavior as a whole. However, the assumption that mem-

ory influences affect the behavior at every time step can be false. Often, memory influences are

context-specific, meaning that a memory influence may only be relevant within certain contexts or

situations.

Thus, the task for MF Refinement in MCLvN is as follows: Given a list of raw MF sets, which

were extracted for each case in the previous stage, generate a set of context definitions that describe

situations where specific memory influences are relevant. This is different from the MF Refinement

stage in MCLv0, which received as input sets of specialized MFs for each case and which only

generated a single set of specialized MFs as its output.

Contexts, as discussed in Chapter 2, are structures that define expectations and appropriate behav-

ior for a given type of situation. The advantage of using contexts in modeling memory influences

for observed behavior is that contexts can help MCL detect rare memory influences. Figure 6.23

shows a hypothetical example of the frequencies of various MFs in a case base. If we arbitrarily

say that MFs must appear in at least 60% of the cases in the case base to be retained in the final

refined MF set, then only MFs 1, 2, 3, and 5 would be retained.

209

Figure 6.23: MF Refinement without Context

Figure 6.24: MF Refinement with Context

Figure 6.24 shows the frequencies of MFs in our example 1) over all cases in the case base, 2) over

210

all cases within Context 1, and 3) over all cases within Context 2. According to our 60% threshold,

MF 4 appears in only 50% of all cases in the case base, but it appears in 85% of cases in Context 1.

Because of its high relevance in Context 1, it should not be filtered out. MFs 6 and 7 both appear

in 45% of the cases in the case base. However, while MF 6 has a 90% relevance in Context 2 and

should not be filtered out, MF 7 is does not exceed a frequency over 60% in either context and

should be filtered out. Thus, MFs 1-5 are relevant to Context 1, and MFs 1-3, and 6 are relevant to

Context 2. MFs 4-6 are relevant for exactly one context in our example.

Given the significance of context in modeling memory influences on observed behavior, we now

have to address two issues:

1. How do we define context within the scope of memory?

2. How do we learn the representations of the appropriate contexts?

Contexts can be defined manually by a developer or discovered automatically by a system such as

COPAC [82]. A context, as defined in [82] is “Any recognized situation defined by a set of similar

practices that can approximate the set of actions, procedures, and expectations employed by an

expert within the situation.”

In this research, we make a distinction between behavioral contexts, which follow the definition in

[82], and memory contexts, which we define as follows:

Any recognized situation defined by a set of similar memory influences that represent

the relationships between past observations and present actions by an observed actor

within the situation.

In our definition, observations pertain to anything that is knowable by an external observer (e.g.

211

perceptions of the environment, actions taken by the observed actor) and relationships between

past and present are constants based on the passage of time, as defined by our MFs.

Figure 6.25: MF Refinement Overview — Part 1

Similar to COPAC, MCL will learn which contexts exist, which contexts they can transition to,

and which parts of the input traces are mapped to those contexts, but MCL will not learn which

behaviors should be executed nor which conditions will trigger a change in context; this knowledge

is meant to be learned by a subsequent LfO algorithm. In contrast to COPAC, MCL will also learn

which specialized MFs are relevant to each memory context.

Figures 6.25 and 6.26 present an overview of how specialized MFs are generated for various con-

text definitions in the MF Refinement stage of MCLvN. The steps in MF Refinement, according to

the figure, are as follows:

212

1. Obtain Extracted Mem Feats: The input to the MF Refinement stage is the list of raw MF

sets that were extracted for each case. In Figure 6.25, cases are long rectangles and their raw

MFs are denoted by parallelograms.

2. Create Specialization Matrices: To compute which specialized MFs are most appropriate for

accounting for the memory influences encoded by the raw MFs, we initialize one matrix per

feature, its cells denoting how many cases possessed a raw MF with a particular value and

time-back component.

3. Compute Specialized Mem Feats: This step uses the specialization matrices to create spe-

cialized MFs (value-back denoted by triangles and time-back denoted by ovals). Each spe-

cialized MF accounts for one or more types of raw MFs.

4. Assign Specialized Mem Feats to Each Case: The raw MFs for each case are replaced by one

or more of the specialized MFs computed in the previous step. Each specialized MF may

account for one or more of a case’s raw MFs, so there may fewer specialized MFs assigned

to each case than there are raw MFs.

5. Create Memory Contexts: In this research, memory contexts are contexts centered around

specific specialized MF sets. The memory contexts are represented by long hexagons and

each case is mapped to exactly one of the memory contexts.

6. Filter Memory Contexts. Get Context Transitions.: The proportion of cases in the case base

that belong to a given memory context is compared to a threshold. If the memory con-

text’s coverage of the case base does not exceed the threshold, it is deleted and its cases are

assigned to a default context. The transitions between all remaining memory contexts are

computed to create a context map.

213

214

Figure 6.26: MF Refinement Overview — Part 2

215

Figure 6.27: MF Refinement — Flowchart

Figure 6.27 shows a flowchart for the different procedures in the MF Refinement stage of MCLvN.

We cover these procedures in more detail here. In Figure 6.27, the start state has a dotted border

and the terminating state has a bold solid border. Each major operation in the flowchart begins with

a node on the leftmost side. If a given operation has been done, control proceeds downward to the

next operation. Otherwise, the appropriate procedure is employed to complete the operation.

The first three operations in MF Refinement have to do with computing an optimal set of special-

ized MFs to account for the extract raw MFs across all cases. These operations are:

1. Initialize structures for a master set of specialized MFs (spec. MFs for short), list of memory

contexts, context map, and specialization matrices.

2. Add the raw MFs of every case to the specialization matrices.

3. Use the specialization matrices to compute specialized MFs that summarize the raw MFs

therein.

First, we discuss the data structures that are initialized in the first operation of MF Refinement in

MCLvN:

• Memory Contexts: Each memory context will contain the list of cases that belong to that

context and the list of specialized MFs that are relevant for that context.

• Context Map: The context map defines which transitions between memory contexts were

observed in an actor’s behavior.

• Specialization Matrices: One spec. matrix tracks the number of raw MFs (across all cases)

that have particular combinations of values and time-backs for a given feature. There is one

spec. matrix created for each feature.

216

• Master specialized MFs: This is the list of specialized MFs that are relevant to the entire

case base. However, not all of them are necessarily relevant to each memory context.

In the second operation of MF Refinement, the specialization matrices for each feature are updated

with information from all raw MFs from all cases. Each specialization matrix is essentially a two

dimensional array. For each raw MF of each case, the feature name, feature value, and time-

back (number of time steps before the current time step) are obtained from the raw MF. Then, the

specialization matrix belonging to feature f is updated – the cell corresponding to the feature value

and time-back of the raw MF stores the number of cases with this same raw MF, so we increment

it by one.

In the third operation of MF Refinement, the specialization matrices are used to compute the small-

est set of specialized MFs that account for all raw MFs in the matrix. The following steps are used

for each feature’s specialization matrix:

1. Compute the sum of counts for each row (feature value) and column (time-back) in the

matrix. If all sums are zero, then terminate this procedure.

2. Obtain the highest sum. If the highest sum belongs to a row (feature value), then create a

time-back MF parameterized with the feature value corresponding to the row. This time-back

MF accounts for all raw MFs with the same feature value.

3. If the highest sum belongs to a column (time-back), then create a value-back MF parameter-

ized with the time-back corresponding to the column. This value-back MF accounts for all

raw MFs with the same time-back.

4. If there’s a tie, break the tie using the original row/column sums and choosing the row/column

with the highest original sum.

217

5. Zero out the cells in the winning row/column. Add the new specialized MF to the list of

master specialized MFs.

We now show an example of this procedure. In Figure 6.28, we see a hypothetical specialization

matrix for feature F. Feature F can take on values a, b, c, and d. Raw MFs for this feature have

time-back values of 1, 2, 3, 7, or 8. The number of cases with raw MFs for each combination of

feature value and time-back are recorded in the cells. For example, the number of cases with a raw

MF for feature F, value a, and time-back 1 is 8. In this matrix, the sum of each row and column

is computed. The row sums are stored in the columns labeled Cv and Ov. The column sums are

stored in the rows labeled Ct and Ot. The C sums will be updated every time a specialized MF is

created. The O sums will not change and will be used to break ties.

Figure 6.28: MF Specialization Example — Part 1

218

Figure 6.29: MF Specialization Example — Part 2

Figure 6.30: MF Specialization Example — Part 3

In Figure 6.29, the first row corresponding to value F=a is selected with a red circular border, be-

cause it has the highest sum out of all the rows and columns. Thus, a time-back MF parameterized

219

with feature value F=a is created.

In Figure 6.30, the cell counts in the first row are zeroed out and the row/column sums (the C

sums) have been updated. Now, the row corresponding to value F=c has the highest sum. Thus, a

time-back MF parameterized with feature value F=c is created.

In Figure 6.31, the cell counts in the third row have been zeroed out and the row/column sums have

been updated. Now, the sums for the first column, second column, second row, and last row are

tied for the highest sum (20). However, the first column has the highest original O sum, so it is the

winning column. A value-back MF with time-back parameter t− 1.

Figure 6.31: MF Specialization Example — Part 4

In Figure 6.32, the second column has the highest sum, so a value-back MF with time-back pa-

rameter t − 2 is created. After this, all row and column sums are zero and the computation of

specialized MFs for this feature matrix is complete. The end result is shown in Figure 6.33.

220

Figure 6.32: MF Specialization Example — Part 5

Figure 6.33: MF Specialization Example — End Result

The computation of specialized MFs corresponds to the states Create Specialization Matrices and

Compute Specialized Mem Feats in the overview graphic in Figure 6.25. The end result of this

221

first half of MF Refinement is a master set of specialized MFs, which summarize the memory

influences for all raw MFs in the entire case base. However, we may not want all these specialized

MFs to be retained in the final output, which is where context comes in.

For the second half of the MF Refinement, shown by the states in Figure 6.26, the memory contexts

and context map are computed. First, the raw MF sets for each case are replaced by an appropri-

ate set of specialized MFs. Then, these specialized MF sets are used to define various memory

contexts. Then, instead of filtering individual MFs, we filter out contexts.

The work in [81] made the distinction between defined contexts and executed contexts. Defined

contexts are the parameters that define a behavior in a given situation. Executed contexts are

instances of the defined context and may vary slightly from one another. For example, a defined

context could dictate that a car driver “drives slowly” on neighborhood roads, but possible executed

contexts could a car driver driving at 15 mph in the morning on West St, but later driving at night

at 20 mph on Palm St.

The last two operations in the flowchart in Figure 6.27 define the precise procedures for generating

memory contexts, given the master set of specialized MFs:

1. For each case in the case base, check to see which master specialized MFs “match” its raw

MFs — all such specialized MFs comprise the specialized MF set for the case. A raw MF

matches a value-back MF if the feature name and time-back parameter are the same. A raw

MF matches a time-back MF if the feature name and feature value parameter are the same.

2. Once the case’s specialized MF set is computed, its specialized MF set is compared to those

of all preexisting memory contexts. If there is a memory context with the same specialized

MF set, the case is added to that memory context. Otherwise, a new memory context with

the case’s specialized MF set is created and added to the list of memory contexts.

222

Once the memory contexts have been created, it’s possible that some of the memory contexts may

have been generated as a result of random or stochastic behavior. Such memory contexts should

be removed. MCL verifies the utility of each memory context by computing the proportion of

cases in the case base that are assigned to this memory context and comparing that proportion to a

manually defined CXT-THRESH threshold. If the proportion is high enough, the memory context

is retained. Otherwise, all cases assigned that memory context are assigned to an empty catch-all

“default context” and the memory context is deleted. Once all memory contexts have been verified,

the observed transitions between all memory contexts are computed in order to generate the context

map.

The reason why the application of a filtering threshold to contexts instead of individual MFs is

advantageous is because this approach makes it easier to filter out MFs that are generated as a result

of random behavior. MCL has no mechanism for determining whether a behavior is random (and

thus cannot benefit from memory) or just highly complex. Thus, MCL will attempt to extract MFs

to explain every variation in observed behavior. Not all these MFs will be useful for subsequent

LfO.

If a behavior is random, but it is executed for a long period in time, then certain raw MFs may

appear in several cases and appear to be a legitimate memory influence. However, it is much less

likely for these raw MFs to repeat themselves simultaneously. In other words, a group of MFs

(like those encapsulated in a memory context) are much less likely to appear repeatedly (in several

cases) than just a single MF is.

The other difference between MCLv0 and MCLvN is that MCLvN accomplishes MF specialization

in the Refinement stage instead of the Extraction stage. This is advantageous because MCLvN can

compute specialized MFs that express memory influences over the whole behavior rather than

computing specialized MFs that benefit just a single case (as is the case in MCLv0 Extraction).

223

However, MCL’s output is meant to work with a wide variety of LfO algorithms, even those that

do not use context, and thus an additional step is recommended to generate just a single refined

set of specialized MFs that describe the majority of memory influences over an entire behavior

(instead of just those specific to a given context).

One could just take the superset of all memory contexts’ specialized MF sets, but this may result

in a specialized MF set that is rather large in size. Instead, we employ the following procedure to

get a single refined MF set, similar to the output from MCLv0’s Refinement stage. Given the list

of memory contexts that have a case base coverage that exceeds the CXT-THRESH threshold, do

the following:

1. For each specialized MF in the memory context, compute how many cases in the case base

use this specialized MF (regardless of each case’s context assignment).

2. If the specialized MF’s case base coverage exceeds a manually defined threshold MF-THRESH,

then include that specialized MF in the final refined set.

When we use both CXT-THRESH and MF-THRESH thresholds to generate a final MF set for a

context-free LfO algorithm, then it is advised to set CXT-THRESH to a value that is no higher than

MF-THRESH because the MFs in a memory context cannot be included in the set if the memory

context itself is filtered out. To enforce this constraint, we will refer to CXT-THRESH AND MF-

THRESH as “Low Filtering (LF) Threshold” and “High Filtering (HF) Threshold”, respectively.

In the situation where memory-enhanced traces are being generated for a context-base LfO algo-

rithm, the superset of the memory contexts’ specialized MFs will be added to the traces because

each context can dictate which MFs it employs during learning. We now discuss Trace Enhance-

ment in MCLvN.

224

6.7 Improved Trace Enhancement

The improvements to the Trace Enhancement phase of MCLvN are minimal. The major improve-

ment in this phase is that it has been modified in the prototype to allow for the development of

future MFs beyond those described in this dissertation. In MCLv0, the Trace Enhancement phase

had custom code for computing the values of VMFs and TMFs. However, in MCLvN, the Trace

Enhancement phase allows the MFs to compute their own memory values for a trace, given the

trace values of other relevant features. In this way, the Trace Enhancement part of MCLvN does

not need to be modified when a new MF type is created because that new MF will be responsible

for computing its own values for a trace.

We also note here that MFs are generated by MCL by using discretized versions of traces and their

values for each time step are computed using the discretized traces. However, Trace Enhancement

incorporates these MFs (and their computed values for each time step) into the original traces,

which are not discretized.

6.8 Comprehensive Approach Summary

In this chapter, we discussed changes to our baseline conceptual approach (MCLv0) that were de-

signed to create a more comprehensive conceptual approach (MCLvN). We discussed the specific

limitations of MCLv0 and provided an overview of how specific components of MCLvN address

these limitations. Then, we discussed each phase of MCLvN in detail: Preprocessing, Memory

Feature Extraction, Memory Feature Refinement, and Trace Enhancement. In the next chapter, we

discuss a prototype implementing MCLvN.

225

CHAPTER 7: PROTOTYPE IMPLEMENTATION

In this chapter, we describe a prototype implementation of our conceptual approach described in

this chapter. To differentiate between the conceptual approach and the prototype that implements

this approach, we call the approach just “MCL” (Memory Composition Learning algorithm) and

we call the prototype “MCLS” (Memory Composition Learning System). The purpose of this

prototype is to:

• Assess our conceptual approach and prove that our results are not the product of black magic.

• Investigate the needs of applying our approach in varied domains, as will be discussed in

Chapter 8.

• Validate the hypothesis of this dissertation, as described in Chapter 3.

First, we describe the format of the inputs and outputs of MCLS. Then, we describe the framework

we used to implement MCLS, including the organization and interaction of code files and their

invocation protocols.

7.1 System Inputs and Outputs

This section describes the format of the inputs and outputs of MCLS. In its simplest form, MCLS

receives as input behavioral traces written to file. MCLS processes these original traces by learning

the memory influences within these traces and then incorporating them into memory-enhanced

traces, which are then written to file.

Trace information is written in two files. The first file is a header file, which records information

226

about the nature of the features, and the second file is a data file, which records the values of these

features over time.

The header file is formatted as follows. If there are F features, then the header file will have F

lines. Each line consists of the name of one feature (which shall not have any spaces in it) and the

feature’s type. A feature can either have the “numeric” type (if it encodes continuous values) or

“nominal” (if it encodes discrete values). It may also have additional information about the feature

for the purposes of discretization (e.g. center and range values). The file delimeter (the character

that separates elements on a single line) for the header file is a comma ‘,’.

Table 7.1 shows the contents of an example header file in a car driving domain with continuously-

valued features Speed and DistToStop and discrete-valued features TrafficLightColor and DriverIsYawn-

ing. We present these contents in tabular view.

Table 7.1: Example header file contents

Speed numeric

DistToStop numeric

TrafficLightColor nominal

DriverIsYawning nominal

The data file encodes the values of these features over time for one run. If the recorded run has T

time steps, then the data file will consist of T lines. On each line, there will be F values, one for

each feature for that time step. The order of these values corresponds to the order of the features

in the header file. The delimeter for the data file is a comma ‘,’.

Table 7.2 shows the contents of an example data file for the car driving domain. The first line

encodes a Speed value of 4.3, a DistToStop value of 102.5, a TrafficLightColor value of 1.0, and a

227

DriverIsYawning value of 0.0.

Table 7.2: Example data file contents

4.3 102.5 1.0 0.0

4.4 101.6 2.0 0.0

4.47 100.7 2.0 1.0

4.51 99.8 2.0 1.0

Two things should be noted. First, units are not specified. Speed could be in meters per second

or miles per hour. At the developer’s choice, such information could be encoded in another file,

but such information is not pertinent to the functionality of MCLS. The important thing is that all

values for Speed have the same units, whatever they are. Second, the values for discrete features

are represented with floating point numbers. This makes it easier for MCLS to process traces

internally. The real-world meaning behind the numbers is not pertinent to the functionality of

MCLS, though it could be encoded in another file by the developer. For clarity of this example, a

TrafficLightColor value is 1.0 or 2.0 if the light is red or green, respectively, and a DriverIsYawning

value is 0.0 or 1.0 if the driver’s yawning status is False or True, respectively. We also note that

a comma will separate the elements on each line in the file, but the tabular view of the data file is

presented in Table 7.2 for convenience and easy viewing by the reader.

The separation of feature information and run information into two files serves two purposes:

1. For multiple traces of observed behavior in the same domain, a single header file can encode

feature information for all input traces. Each trace will simply require a unique data file.

2. Certain feature information is required for processing by the Weka machine learning frame-

work [28] and this file format suits such needs.

228

MCLS converts the original traces into memory-enhanced traces. Both types of traces are for-

matted in the same manner as described above. However, the memory-enhanced traces will have

additional “memory features” encoding memory influences. Thus, a unique header file will be

generated for each output memory-enhanced trace.

A file written in XML is used to specify various hyperparameters for MCLS. The most pertinent

hyperparameters are as follows:

• Current Problem Threshold (CPT): A value between 0 and 1 that determines the minimum

similarity two cases must have at the current time step to be considered “similar”. This is

used in Temporal Backtracking [20].

• Past Problem Threshold (PPT): A value between 0 and 1 that determines the minimum sim-

ilarity two cases’ perceptions (i.e. problem components) must have in time steps prior to the

current time step in order to be considered “similar”. This is also used in TB [20].

• Past Action Threshold (PAT): A value between 0 and 1 that determines the minimum similar-

ity two cases’ actions (i.e. solution components) must have in time steps prior to the current

time step in order to be considered “similar”. This is also used in TB [20].

• Inverse Resolution (IR): A boolean that determines whether MCLS will use the Memory

Singularity Principle (MSP) to check if memory influences for rejected cases are accounted

for in earlier time steps. This hyperparameter was set to False for all experiments to avoid

confounding influence of this mechanism, but the code infrastructure is present for use in

future work.

• Low Filtering Threshold (LF): A value between 0 and 1 that determines the minimum pro-

portion of cases in the case base that a memory context be relevant to in order to contribute

MFs to the final refined MF set.

229

• High Filtering Threshold (HF): A value between 0 and 1 that determines the minimum pro-

portion of cases in the case base that a MF from a retained memory context must be appear

in to be retained in the final refined MF set.

We next describe the code base for MCLS.

7.2 Code Implementation

MCLS was written in the Python programming language, using the Python 3 standard. Python

was selected as the programming language for this research because of its flexible syntax and

extensive library support, which allows for rapid prototyping and easier high-level design. An

object-oriented approach was taken to implement MCLS. It is organized into the following pack-

ages:

• args: This package handles code to store MCLS parameters. These parameters are set by the

user in one of several XML files.

• cbr: This package handles code that implements custom functionality for Case Based Rea-

soning (CBR). For example, the code implementing the case and case base aspects of MCLS

are located here.

• extractors: This package handles code for the Memory Feature Extraction phase of MCL.

The modules in this package are interchangeable and the module to be used will be specified

by the learner class, which is set by the user.

• learners: This package handles code for various MCLS implementations. A learner class

selects the components for each phase of MCL and invokes their functionality. In other

words, a learner defines which code is used to execute the different phases of MCL.

230

• mem: This package handles code pertaining to Memory Features.

• misc: This package stores code, such as low-level data structures and common data process-

ing operations, that is usable by all other packages.

• refiners: This package handles code for the Memory Feature Refinement phase of MCL. The

modules in this package are also interchangeable and the appropriate module is specified by

the learner class, which is set by the user.

• regenerators: This package handles code for the Trace Enhancement phase of MCL.

• run: This package stores all code that initiates MCLS operations. Each file in this package

has a “main” method where program execution begins.

• tempback: This package handles code that implements Temporal Backtracking or Memory

Temporal Backtracking.

• traces: This package stores code for reading from and writing to trace files (e.g. header files,

data files). It also stores data structures for representing information read from these files for

use by other MCLS components.

• weka: This package stores code for preparing input files for the Weka framework and inter-

preting its output.

A full documentation of the code base is outside the scope of this chapter and even this dissertation.

Nonetheless, we provide a concrete view of MCLS through UML (Unified Modeling Language).

Figure 7.1 shows a class diagram for MCLS to visually represent the interaction between code

files. Figure 7.2 shows a sequence diagram to represent the operations over time within MCLS.

231

232

Figure 7.1: Class UML diagram for MCLS

The “Main” class in Figure 7.1 is not really a class, but it is shown because it is the starting point of

execution in MCLS. It first invokes the ArgsManager class to read the following parameters from

a XML file:

• Input and output directories.

• The header file and data files to process.

• The learner module to use. (The learner module itself specifies which MF extractor/refiner

modules it uses.)

Next, the “Main” class has access to a Learner instance. This is actually an interface which is

implemented by one of two Python classes:

• LearnerMinimal: This module implements the most minimal version of MCL (MCLv0).

• LearnerGraphSim: This module implements the comprehensive MCLvN approach.

The “DiscretizerMain” is a separate process for discretizing traces that will be used as input to the

MCLS module. The Common class contains functionality usable by any class.

The MF Extraction module in MCLv0 relies on a “Temporal Backtracking agent” as an intermedi-

ary class between the MCL components and the CBR components. Basic Memory Temporal Back-

tracking (encapsulated in the MemoryTempBack class in Figure 7.1) extracts specialized MFs. It

interacts with the Casebase class, which manages the CBR aspects of MCLS.

233

Figure 7.2: Sequence UML diagram for MCLS

234

For MCLvN, LearnerGraphSim interacts with the MemTraceMgr class for reading and discretizing

traces read from file and incorporating memory features into traces. Its RefinerMatrix module

interacts with a MemMatrix class (for MF specialization), a MemSetMgr class (to process sets of

MFs), and DefCxt and ExeCxt modules (for contextualization).

Figure 7.2 shows the operations MCLS undergoes when learning a memory model from input

traces. The specific operations depend on the learner module used, but the general flow is the

same:

1. Read arguments from XML file in the ArgsMgr class. Launch MCLS from the command

prompt or terminal and pass this XML file as an argument.

2. Set up the Learner modules.

3. Pass the trace files for the Learner to process. Do the following:

• Convert the trace information into a case base.

• Extract a list of MFs for each case in the case base.

• Refine the MFs list into a single refined MF set.

• Create memory-enhanced traces by adding MFs from the refined set.

4. Save outputs of all Learner sub-components to a pickle file (specific to Python).

7.3 Prototype Summary

In this section, we discussed matters pertinent to an actual prototype system, called MCLS, which

implements the conceptual approach described in Chapter 6. First, we discussed the inputs and

outputs of MCLS. Then, we provided a high-level view of the code implementation. In the next

chapter, we discuss how we evaluated MCLS to investigate our hypothesis.

235

CHAPTER 8: EXPERIMENTS AND RESULTS

This chapter describes the evaluation procedure for assessing the validity of the hypothesis in

Chapter 3 and presents the results of the evaluation. We utilized two simulated domains for this

purpose: vacuum cleaner and lawn mower. The same vacuum cleaner domain that was described

in Section 5.5.1 was used in our evaluation of MCLS. It is a simple domain used as a proof-

of-concept. The lawn mower domain is a custom domain of our own creation to facilitate the

execution of memory-influenced behaviors in humans and is a more realistic domain.

This chapter is organized as follows:

• Section 8.1 describes the experiments and criteria for success that we used to evaluate MCL.

• Section 8.2 describes the experiments and results for the vacuum cleaner domain.

• Section 8.3 describes the experiments and results for the lawn mower domain.

• Section 8.4 summarizes the findings of our experimentation and its impact on the dissertation

research.

8.1 Description of Experiments

This section describes how we will evaluate the final MCLS prototype to test our hypothesis. We

first describe the criteria for success for the final MCL algorithm and MCLS prototype. Then, we

describe each assessment in detail and how they will provide evidence that validates the hypothesis.

236

8.1.1 Success Criteria

The success criteria dictating whether the dissertation research has matured to completion are as

follows:

1. MCL must be able to measurably model memory-based behaviors. The adequacy of a

learned MF set will be determined by the degree to which a one-to-one mapping between

perception/memory space and an action space can be achieved or else explained away by

stochastic effects.

2. MCL must be able to a) improve the performance of a subsequent LfO-Level-2-bound learn-

ing algorithm and b) perform comparably with other memory-based LfO algorithms.

3. MCL must be able to operate in discrete, continuous, deterministic, and stochastic domains

while satisfying all other success criteria.

In the evaluation of MCLv0 in Section 5.5, criterion 1 was only addressed with qualitative means,

criterion 2b was not addressed, and criterion 3 was not addressed (because the vacuum cleaner

domain only involves eight binary variables). However, the addition of the lawn mower domain

addresses criterion 3. The other criteria are addressed in this chapter.

8.1.2 Specific Tests

We propose two tests to assess the MCL approach for fulfilling the dissertation hypothesis:

• Function Test: This test assesses whether MCL is functioning as intended and will allow for

evaluation of success criterion 1. This test will be conducted in the vacuum cleaner domain

because the domain is simple enough to know whether MCL’s output is correct without

237

evaluating machine learning performance. MCL will learn memory features for various

cleaner agents. Then, a human-interpretable meaning behind the generated memory features

should be produced and analyzed both qualitatively and quantitatively for correctness. This

will ensure that the modifications to MCL did not hinder any core functionalities of the

prototype.

• Design Test: This test assesses the efficacy of MCL in its intended setting to evaluate success

criteria 2 and 3. This test will be conducted in both the vacuum cleaner and lawn mower

domains. Here, MCL will generated memory-enhanced traces and then Level 2-bound LfO

algorithms will learn from these traces. The learning performance of these algorithms on the

memory-enhanced traces will be compared to that of memory-based LfO.

We now describe our experimental setup for these tests.

8.1.3 Experimental Setup

This section describes the inputs and outputs for each experiment. The inputs to MCLS are a single

trace or set of traces that record the behavior of a single observed entity. The outputs of MCLS are

memory-enhanced traces, one for each input trace, and contextual information. The contents of the

memory-enhanced traces are the same as the input traces except for the possible addition of one or

more MFs. Regarding contextual information, a list of executed contexts and defined contexts is

produced, which can be used as input to context-based learning.

The outputs of MCL are then used as inputs to machine learning algorithms. We use the following

supervised learning algorithms:

• Bayes Network: This is a probabilistic representation of procedural knowledge that is im-

238

plemented in the Weka framework [28].

• J.48 Decision Tree: This is a fast learning algorithm that is implemented in the Weka frame-

work [28].

• Multilayer Perceptron: This is a standard neural network learner that is implemented in the

Weka framework [28].

None of these algorithms are memory-based learners. We compute the learning performance of

each of these algorithms with the original traces and with the memory-enhanced traces generated

by MCLS to see if the learning performance improved. Learning performance is evaluated using

the F1 measure.

Finally, we compare the learning performance of the above algorithms coupled with MCL with

that of the memory-based Temporal Backtracking algorithm [20].

8.2 Vacuum Cleaner Experiments

This section describes our experiments and results from the vacuum cleaner domain. First, we

briefly describe the vacuum cleaner domain that was described in Section 5.5.1. Next, we sum-

marize our evaluation of MCLv0 from Section 5.5. Then, we describe our results of MCLvN

(implemented in prototype MCLS) in the vacuum cleaner domain and how those results compare

to the results for MCLv0.

8.2.1 Vacuum Cleaner Domain Description — Recap

The vacuum cleaner domain [58] is a grid-like world where a 2x2 vacuum cleaner agent moves up,

down, left, and right bumping into obstacles and cleaning dirt patches. The cleaner agent perceives

239

the environment through eight binary sensors, two per direction. One sensor tracks the closest

object (obstacle or dirt) in that direction. The other sensor tracks the distance (close or far) of the

tracked object. (An object is considered “close” if it is next to the cleaner agent.)

There are several cleaner agents that exhibit behaviors that are deterministic or non-deterministic

and belonging to LfO Level 1, 2, or 3. These agents are listed in Table 8.1.

Table 8.1: Vacuum Cleaner Agents

LfO Level Deterministic Non-deterministic

1 Fixed Sequence (SEQ) N/A

2 Wall Follower (WF) Random (RD)

3 Zig Zag (ZZ) Straight Line (SL)

The WF, RD, and SL agents have “smart” variations (SWF, SRD, and SSL) that operate in the

same way as the non-smart counterparts, but they prefer moving toward dirt. Each agent has one

trace that is 1000 time steps long for each of the 7 possible maps.

8.2.2 Results — MCL Version 0

The reader is referred to Section 5.5.2 for detailed results from the evaluation of MCLv0. However,

we briefly summarize the results here. We generated memory-enhanced traces for all vacuum

cleaner agents with MCLv0. Then, we recorded the F1-measure (averaged over all seven traces

for a single agent) for the J.48 decision tree, Bayes net, and Multilayer Perceptron algorithms both

when using the original traces and when using the memory-enhanced traces.

For the Level 1 SEQ agent, all learning algorithms saw an appreciable increase in the F1 score

240

when using the memory-enhanced traces. The same pattern was observed for the Level 3 SL, SSL,

and ZZ agents. However, no such increase is seen for the Level 2 RD, SRD, WF, and SWF agents,

but no decrease is seen either; this is the expected result because Level 2 agents do not use memory

at all. Thus, learning performance saw improvements for agents that require either memory (for

the Level 3 agents) or internal state (for the Level 1 agent).

The learned MFs for each agent are as follows:

• For the Level 1 SEQ agent, 5 value-back and 2 time-back MFs are learned to track where in

its 20-move sequence the agent is at.

• For the deterministic Level 2 WF and SWF agents, no MFs were learned, which is desired.

However, for the non-deterministic RD and SRD agents, many extraneous MFs were learned

(when none are required) because MCLv0 does not have a mechanism for detecting random

behavior that cannot benefit from MFs.

• For the Level 3 SL, SSL, and ZZ agents, an appropriate set of MFs were learned, but based

on intuition, some of the MFs were not necessary.

Therefore, there is little room for improvement regarding improvements in learning performance.

However, improvements could be made in the computational efficiency of MF extraction and con-

ciseness of learned MF sets for the agents.

8.2.3 Results — MCL Version N

This section describes the results for MCLvN for the vacuum cleaner domain. We divide this into

two sub-sections. The first sub-section analyzes the learned MFs as part of the function test. The

241

second sub-section describes the improvements in learning performance. These tests ensure that

MCLvN performs just as well if not better than MCLv0.

8.2.3.1 Analysis of Learned Memory Features

This section will describe the MFs learned by MCLvN for each agent.

• SEQ: Fixed Sequence (Level 1, Deterministic)

– Time-Back MFs: none

– Value-Back MFs: vAction(1), vAction(2), vAction(3), vAction(5)

– Analysis: All MFs learned for this agent pertain to the Action feature, which is the only

relevant feature for a Level 1 LfO agent. Thus, all learned MFs are helpful.

• RD: Random (Level 2, Non-deterministic)

– Time-Back MFs: none

– Value-Back MFs: none

– Analysis: A Level 2 agent does not use memory at all. MCLvN learned no MFs for the

Random agent, which is desirable.

• SRD: Smart Random (Level 2, Non-deterministic)

– Time-Back MFs: none

– Value-Back MFs: none

– Analysis: MCLvN learned no MFs for the Smart Random agent, which is desirable

because the Level 2 Smart Random agent does not use memory at all.

242

• SSL: Smart Straight Line (Level 3, Non-deterministic)

– Time-Back MFs: tAction(Left), tAction(Right), tAction(Up), tAc-

tion(Down)

– Value-Back MFs: vAction(1)

– Analysis: All MFs learned for this agent pertained to the Action feature. This agent

needs to refer to the action it took in the previous time step. The value-back MF conveys

this information sufficiently, so the time-back MFs can be considered extraneous.

• SWF: Smart Wall Follower (Level 2, Deterministic)

– Time-Back MFs: none

– Value-Back MFs: none

– Analysis: MCLvN learned no MFs for the Smart Wall Follower agent, which is desir-

able because the Level 2 Smart Wall Follower agent does not use memory at all.

• SL: Straight Line (Level 3, Non-deterministic)

– Time-Back MFs: tAction(Left), tAction(Right), tAction(Up), tAc-

tion(Down)

– Value-Back MFs: vAction(1)

– Analysis: All MFs learned for this agent pertained to the Action feature. This agent,

similar to its smart variant, needs to refer to the action it took in the previous time step.

The value-back MF conveys this information sufficiently, so the time-back MFs can be

considered extraneous.

• WF: Wall Follower (Level 2, Deterministic)

– Time-Back MFs: none

243

– Value-Back MFs:, none

– Analysis: MCLvN learned no MFs for the Wall Follower agent, which is desirable

because the Level 2 Wall Follower agent does not use memory at all.

• ZZ: Zig Zag (Level 3, Deterministic)

– Time-Back MFs: tAction(Left), tAction(Right), tAction(Up), tAc-

tion(Down)

– Value-Back MFs: vAction(1)

– Analysis: The Zig Zag agent must refer to its previous action when moving in a straight

line horizontally, but it must refer to the last vertical action it took when it bumps into

a wall and must choose a vertical direction. Thus, all MFs, which pertain to the Action

feature, are useful.

Table 8.2: MF Counts for Vacuum Cleaner

Agent MCLv0 VMFs MCLv0 TMFs MCLvN VMFs MCLvN TMFs

SEQ 5 2 4 0

RD 14 14 0 0

SRD 15 12 0 0

WF 0 0 0 0

SWF 0 0 0 0

SL 1 4 1 4

SSL 2 5 1 4

ZZ 2 4 1 4

Table 8.2 shows the counts of value-back MFs (VMFs) and time-back (TMFs) for each agent,

both for MCLv0 and MCLvN. As we can see from Table 8.2, the most noticeable improvement in

244

the MF sets from MCLv0 to MCLvN is seen in the Level 2 Random and Smart Random agents.

In MCLv0, many individual MFs were learned in an attempt to rationalize the non-deterministic

choices of the random agents, resulting in a large final refined MF set. In MCLvN, sets of MFs (i.e.

memory contexts) were analyzed at a time for the random agents, and these memory contexts did

not occur frequently enough to contribute any MFs to the final refined MF set, which is desirable

because the random agents do not use memory at all.

Some extraneous MFs were removed from the Level 1 Fixed Sequence agent and the Level 3 Zig

Zag and Smart Straightline agents, but the MF sets remained largely the same from MCLv0 to

MCLvN. Thus, the memory influences on the agents were made more concise in some cases by

MCLvN without a loss in any crucial MFs.

8.2.3.2 Analysis of Learning Performance

This section describes the learning performance of various learning algorithms when using memory-

enhanced traces generated by MCLv0 versus those generated by MCLvN. We evaluate the F1-score

assigned to the learning performance of each learning algorithm for each agent. Figures 8.1, 8.2,

and 8.3 show the F1 scores for the Bayes Network, J.48 Decision Tree, and Multilayer Perception

learning algorithms, respectively.

The objective of this evaluation was to ensure that no mechanism in MCLvN hindered the original

memory learning capabilities of MCLv0. In other words, we wanted to ensure that MCLvN per-

formed at least as well as MCLv0 in the original vacuum cleaner domain. There was little room

for improvement in the performance of MCLv0 in terms of F1-score, so we sought to ensure that

there was no significant decrease in learning performance when using memory-enhanced traces

generated by MCLvN. As noted in Section 5.5.2, results for Bayes Net and Multilayer Perceptron

were generated from a single trial and no statistical analysis is performed.

245

””

Figure 8.1: Vacuum Cleaner Bayes Network Learning Performance

””

Figure 8.2: Vacuum Cleaner J.48 Decision Tree Learning Performance

246

””

Figure 8.3: Vacuum Cleaner Multilayer Perceptron Learning Performance

In general, the trends observed for each of our three learning algorithms are the same. The F1-

scores corresponding to the MCLvN traces are very similar to those for the MCLv0 traces, indi-

cating that MCLvN’s effect on improvements in learning are at least as good as MCLv0.

One may notice that in certain cases, there are very small decreases in F1-score for MCLvN when

compared to MCLv0. In Figure 8.1, this can be seen for the Fixed Sequence (Seq) and Random

(Rand) agents. For both of these agents, the decrease in F1-score for MCLvN is likely a decrease in

overfitting, which is desirable. In the case of the Fixed Sequence agent, MCLv0 learned four MFs

pertaining to the perception of the environment, which we know has no bearing on the agent’s ac-

tual behavior. These MFs are thus artifacts, which may have artificially increased the F1-score for

MCLv0. In the case of the Random agent, MCLv0 learned 28 MFs (all extraneous) which had the

effect of increasing the learning performance slightly due to overfitting. MCLvN, which learned

no MFs, did not invoke such overfitting. We thus conclude that MCLvN passes this functional

evaluation in the vacuum cleaner domain.

247

8.3 Lawn Mower Experiments

This section describes our experiments and results from the lawn mower domain. First, we describe

the lawn mower simulation we created for this research and the memory-influenced behaviors that

are executed within this domain. Then, we describe the experiments we ran in this domain. Finally,

we discuss results.

8.3.1 Lawn Mower Simulation Domain

This section describes the lawn mower simulation (LMS). Specifically, we discuss the motivation

and mechanics behind LMS as well as the memory-influenced behaviors we hoped to induce in

this domain.

The LMS domain was created in order to facilitate several memory-influenced human behaviors

that we hoped to model with MCL. In order to ensure complete control over the testing environ-

ment (so as to guarantee that humans indeed used memory), we created a custom simulation from

scratch in Unity. LMS was chosen as a tactical simulation testbed that was specifically designed for

facilitating non-trivial and continuously-valued memory-influenced behaviors in human subjects.

It was created to provide a variety of memory-influenced behaviors that MCL could learn and to

serve as an indicator of definitive success or failure by MCLS, regarding our hypothesis.

In the LMS, a human controls a lawn mower in a simulation with the objective of mowing as many

grass patches as possible while avoiding obstacles. The lawn mower is controlled via a Logitech

Force 3D joystick, where the X and Y axes control horizontal and vertical movement, respectively.

The joystick was selected as our input device for this domain for two reasons. First, the joystick

provides a continuous value in the range -1 to +1 along each axis, depending on how fast a human

desires to move the lawn mower. Continuous outputs were desired for this domain. Second, the

248

joystick is an relatively easy input device to use and yet is unwieldy enough to produce noise in a

humans’s movements, which increases the difficulty of the learning task for LfO.

There were 13 scenarios in the LMS, each of which focused on specific new memory-based entity

(or a combination of such entities). The details behind each scenario are discussed in Appendix

D. Typically, the scenario is preceded by a screen with text describing any new entities that are

being introduced by that level, followed by another screen describing the minimum requirements

for achieving the requirements of the scenario (e.g. “Get 60+ grass points and hit the exit in 60

seconds.”). Then, the scenario begins.

Figure 8.4: Lawn Mower Simulation Game Play

Figure 8.4 shows a screenshot of a human controlling the lawn mower in the LMS. The human

controls a lawn mower (a gray square with tiny black wheels and an orange front bumper). The

gray squares are impassable barriers. Grass patches are green squares with green triangles. The exit

(initially black) activates (turns orange) when the human has mowed enough grass patches — the

249

human will finish the scenario upon arriving at the exit after it activates. The human’s health, grass

total (number obtained and number needed), and time remaining are displayed on the bottom of

the screen. After the scenario ends, the human is shown the result of their performance (pass/fail).

If the human mows enough grass patches and gets to the exit within the time limit, they move on

to the next scenario. If the human runs out of time or their health points are reduced to zero, they

must repeat the scenario. The human is given up to four attempts to meet the requirements of a

scenario. On the human’s last attempt, the human’s health point total increases to 100 so that they

can exhibit the full range of memory-influenced behaviors in the scenario without being subject

to the health point constraint, but if they still fail to achieve the scenario requirements, they are

transitioned to the next scenario.

The environment area in each scenario is the same size and the lawn mower always starts in the

bottom left of the environment. Each scenario is on average 60 seconds long and the human begins

with three health points each time (except on their last attempt). The purpose of the time limit is

the ensure that the human is in constant motion and exhibiting mostly tactical behavior (rather than

deliberative strategic behavior). The health points allow the human to make some mistakes (as is

expected in human behavior in general), but it forces the human to behave mostly competently.

The required number of grass patches to mow in a given scenario is set to a value that forces the

human to move through most of the environment and encounter the various memory-based entities

in the scenario. For scenarios that are more difficult, the required number of grass patches to mow

is set to a value that is less than the maximum number of grass patches in order to make it easier for

the human to fulfill the scenario requirements. The simulation is deterministic and the humans’s

joystick inputs for each time step are recorded to an external file.

The various memory-based entities in the simulation can be summarized in Table 8.3. Each sce-

nario is designed around a single entity (or group of entities) such that it should be impossible for

the human to successfully complete the scenario without demonstrating the desired memory-based

250

behavior in reaction to the entity in question. The environmental setup for each scenario for the

LMS are described in Appendix D.

Table 8.3: Lawn Mower simulation entities

Entity Type Boon Hazard

Consumable Grass N/A

Persistent Dark Grass Rock

Memory Static Gold Pot Ground Hog

Memory Dynamic Leprechaun Snake

Memory Phased Fairy Sprinkler

In Table 8.3, the simulation entities are divided into “boons” (which the human actively seeks to

collect) and “hazards” (which the human actively seeks to avoid). From there, the entities are

divided into one of five categories:

1. Consumable — An entity that is visible until consumed.

2. Persistent — These entities are persistently visible.

3. Memory Static — These entities are temporarily visible, then potentially occluded (hidden

from view) within a grass patch until the lawn mower collides with them.

4. Memory Dynamic — These entities move back-and-forth horizontally or vertically and be-

come invisible when moving through a grass patch.

5. Memory Phased — These entities have massive areas of effect that trigger in reaction to the

lawn mower’s presence. Their behavior goes through multiple phases.

251

We now discuss each simulation entity in detail and which memory-influenced behavior (if any) it

requires the human to perform.

The grass patch is the main commodity of the LMS. When the lawn mower moves over a grass

patch, the grass patch takes on a “mowed appearance” so that the human doesn’t try to mow it

again; for all intents and purposes, the grass patch becomes “invisible”.

The persistently visible entities are dark grass patches and rocks. Dark grass patches, like regular

grass patches, can be mowed once for one point. However, a dark grass patch’s mowed appearance

is the same as its uncut appearance. This forces the human to remember which dark grass patches

have already been mowed. The rocks are persistently visible and will decrease the lawn mower’s

health by one if the human tries to mow over them. The rocks are also indestructible.

The “memory static” entities (ground hogs and gold pots) are non-moving entities that are only

temporarily visible to the human. These entities become visible to the human when the human

comes within proximity. This is called “peeking”. Then, if the entity is in a grass patch, it will

become invisible to the human after a short time. This is called “hiding”. If the lawn mower

collides with a hidden memory static object, then the object becomes visible permanently. The

LMS has two memory static objects: ground hogs and gold pots. The ground hog and gold pot are

virtually the same, except that the former reduces the lawn mower’s health by one upon a collision

while the second restores one health by one (unless the lawn mower is already at maximum health).

Also, gold pots are only usable one time. Memory is required because the human must remember

that he or she saw the entity in that location and either actively go toward it or avoid it.

The “memory dynamic” entities (snakes and Leprechauns) are moving entities that are invisible

when moving through grass patches. In the LMS, snakes cause the lawn mower to lose one health

point and the Leprechauns restore one health point if the lawn mower is below maximum health.

The snakes are indestructible (to avoid animal abuse) and may damage the lawn mower multiple

252

times, but Leprechauns will disappear after colliding with the lawn mower. Memory is required for

addressing memory dynamic entities because when the entity becomes invisible, the human must

not only remember that the entity is there in the grass, but the human must remember the entity’s

direction of movement and anticipate where the entity has moved over time. The entity will not

change speed, but it may change direction if it collides with a barrier while it is hidden by grass.

Figure 8.5: Sprinkler phases in Lawn Mower Simulation.

The “memory phased” entities (sprinklers and fairies) go through multiple “phases” in response

to the lawn mower coming within proximity to them. This is illustrated in Figure 8.5 for the

sprinkler. Initially, a sprinkler is in the “unspawned” phase (part a of the figure). When the lawn

mower comes within proximity, the sprinkler enters the “peeking” phase and reveals itself to the

253

human (part b of the figure). After a short while, the entity turns invisible and enters the “standby”

phase (part c of the figure). Then, the entity enters the “spray” phase (part d of the figure) and

affects the lawn mower if the lawn mower is in the spray area. If it’s a sprinkler, the lawn mower

loses one health point if the lawn mower is in the spray area during this phase. If it’s a fairy, the

lawn mower regains all lost health if the lawn mower is in the spray area during this phase. Finally,

the entity enters the “cool down” phase where it turns invisible again and remains so for a brief

time period before entering the unspawned phase and again detecting if the lawn mower is within

proximity. (Also, colliding with the sprinkler or fairy itself has no effect.) Memory is required to

handle memory phased entities because the unspawned, standby, and cool down phases all look

identical (the entity is invisible) and yet each requires a different response from the human.

8.3.2 Test Procedures

For each person who experienced the LMS scenarios, we generated a trace of their behavior for

each of the 13 scenarios. For each trace, we tracked the state of the world using pie wedges,

adapted from their use in [69]. We divided the world into 8 pie wedges centered around the lawn

mower and relative to north. For a given entity type (e.g. rock, grass patch, etc.), we recorded the

distance to the closest visible entity of that type for each pie wedge (if there was any such entity

in that wedge). This is illustrated in Figure 8.6 — black lines denote pie wedge boundaries and

red lines denote distances to the closest entity in the wedge (the entity type is “grass patch” in the

figure). For sprinklers and fairies, we also recorded whether the entity was in the “peeking” phase

or the “spray” phase (the sprinklers and fairies are invisible for all other phases). We recorded pie

wedge distances for the following entity types: barrier, grass, dark grass, rock, gold pot, ground

hog, Leprechaun, snake, sprinkler, fairy. We also recorded the distance to the exit, the bearing

angle of the mower to the exit, and whether the exit was active. This is a total of 99 perception

features. However, it should be noted that most levels only used a small subset of the entity types

254

and so most of the features in the traces held their default values for the duration of the trace.

Figure 8.6: Pie wedges.

MCL was designed for applications with a single output feature, so we combined the joystick axis

values generated during gameplay into a single output feature as follows:

1. Choose a value D denoting the number of discrete values the joystick can take for a single

axis.

2. For each possible combination of discretized joystick inputs along both axes, assign a nom-

inal value. There will be D ∗D possible values.

3. For each time step in a human’s trace, discretize their joystick inputs for both axes, then as-

sign to the output variable the value corresponding to the combination of discretized joystick

inputs that was observed.

255

For example, if we want each joystick axis to have D = 5 possible values, then there will be

D ∗D = 25 possible values for the output feature that combines the joystick input values. Figure

8.7 shows how the XY coordinate space of possible joystick inputs are assigned to regions that

represent combinations of discretized XY values. Each axis is divided into D = 5 possible spaces.

There are 25 possible regions, corresponding to 25 possible values for the single output feature.

Figure 8.7: Combination of joystick inputs into one feature

In the figure, each region indicates a general direction for the joystick. The center region indicates

relatively little movement of the joystick. The inner ring indicates eight possible directions the

joystick could be going at a moderate speed. The outer ring indicates 16 possible directions the

joystick could be going at high speed (three per direction, plus one per corner). This joystick output

is what must be predicted by machine learning algorithms seeking to learn a human’s policy in the

LMS domain.

256

8.3.3 Experiments

For this domain, we collected trace data from 11 persons. We generated one trace for each of the

13 scenarios for a given person, resulting in a total of 143 traces.

The humans we collected data from are anonymous, identified only by the first one or two letters

of the nicknames they chose for themselves when they participated in the study. Those identifiers

are: AJ, AK, AW, CA, CH, D, G, L, P, T, W.

Table 8.4: Abbreviations for Lawn Mower Scenarios

Abbrevation Scenario Appearance Order

DG Dark Grass Level 2

F1 Fairy Level 1 12

F2 Fairy Level 2 13

GP Gold Pot Level 6

G1 Grass Test Level 4

G2 Grass Train Level 1

GH Ground Hog Level 5

L Leprechaun Level 9

R Rock Level 3

Sn1 Snake Level 1 7

Sn2 Snake Level 2 8

Sp1 Sprinkler Level 1 10

Sp2 Sprinkler Level 2 11

Furthermore, we use abbreviated identifiers for the different scenarios in the LMS, which are shown

in Table 8.4. The design of each scenario is covered in Appendix D. It should be noted that the G1

scenario (Grass Test Level) involves grass, rocks, and dark grass, not just grass.

257

Based on outputs by MCL, four types of memory-enhanced traces were generated from each base-

line trace using various PPT/PAT thresholds, which are discussed in Chapter 7:

1. State-Based: A state-based memory-enhanced trace is created when MCL’s PPT and PAT

thresholds are 0.90 and 0.00, respectively. Only MFs based on perception features can be

generated.

2. Action-Based: An action-based memory-enhanced trace is created when MCL’s PPT and

PAT thresholds are 0.00 and 0.90, respectively. Only MFs based on the Action feature can

be generated.

3. State/Action-Based: A state/action-based memory-enhanced trace is created when MCL’s

PPT and PAT thresholds are both 0.90. MFs based on both perception and action can be

generated.

4. Hybrid: A hybrid memory-enhanced trace is a combination of the state-based and action-

based traces. It combines both the perception MFs from the state-based trace and the action

MFs from the action-based trace.

The three PPT/PAT parameter sets used to generate state-based, action-based, and state/action-

based traces were adopted from Floyd’s work [20]. These parameter sets were geared toward

learning behaviors that are dependent only on perception, only on action, or on both perception

and action. However, in real-time domains, such as the lawn mower domain, it may be better to

learn MFs based on perception features independently from MFs based on action features. There

are two reasons for this: perception/action imbalance, and nominal/numeric feature imbalance.

First, the number of features that describe an agent’s perception may differ drastically from the

number of features that describe the agent’s actions in the environment. MCL alternates between

258

creating perception MFs and action MFs. Within a given group of features (perception or action

features), the different features essentially “compete” to be the feature upon which the new MF is

based. Therefore, the memory influences associated with a specific perception (or action) feature

may be discovered more slowly if there are many perception (or action) features. Thus, if there are

many more perception features than there are action features (or vice versa), then the memory in-

fluences associated with perception may be learned by MCL more slowly than memory influences

associated with action features (or vice versa). The consequence of this imbalance is that MCL

may attempt to learn additional (and potentially extraneous) MFs from action features to account

for memory influences for perception features that have yet to be learned. This leads to inaccuracy

in modeling an observed entity’s memory.

Second, learning MFs may suffer from nominal/numeric feature imbalance. Nominal features

have a fixed number of possible values. Two nominal values are either completely the same or

completely different. In contrast, numeric features have an infinite number of possible values, but

these values can be partially similar (e.g. 2.0 and 3.0 are more similar to each other than 2.0 and

100.0).

In a real time environment, numeric feature values will in general change gradually from time step

to time step. An example of this is distance – the distance between an agent and an object of

interest will gradually decrease as the agent moves toward it, time step to time step. In contrast,

nominal feature values can change drastically from time step to time step because any change in

the feature’s value will make it completely dissimilar from previous values. Because it is easier for

nominal features to experience significant change over time than it is for numeric features, MFs

will more readily be created for nominal features during MCL’s Extraction process.

Both perception/action imbalance and nominal/numeric imbalance are present in the lawn mower

domain, where there are 99 perception features and 1 action feature, and 19 nominal perception

259

features and 80 numeric perception features.

The first measure we took to address these imbalances was to evaluate learning performance on

hybrid memory-enhanced traces (as defined previously). This addresses the first imbalance by

allowing perception MFs and action MFs to be learned independently from each other. This also

addresses the second imbalance, because the singular action feature is a nominal feature, in contrast

to the perception features, which are mostly numeric.

The second measure we took to address the perception/action imbalance was to down-sample our

traces from 60 Hz to 10 Hz. This allows numeric features to change more drastically from time step

to time step, because time steps will now have approximately 0.1 seconds between them instead of

only about 0.016 seconds between them.

For each PPT/PAT parameter set, we tested the following high/low filtering thresholds for MF

Refinement:

• HF=0.10, LF=0.05

• HF=0.10, LF=0.025

• HF=0.10, LF=0.01

• HF=0.05, LF=0.05

• HF=0.05, LF=0.025

• HF=0.05, LF=0.01

• HF=0.025, LF=0.025

• HF=0.025, LF=0.01

260

The filtering thresholds determine which MFs from the Extraction phase are retained in the final

refined MF set that is used to create the memory-enhanced traces. For each HF/LF parameter set,

we computed the number of cases in the case base that were allocated to a context other than the

default context. The results for the parameter set that minimized the default context size were used

for a given trace.

8.3.4 Results — MCL Version N

This section describes the results of MCLS (MCLvN) for LMS. With the merits of MCLvN having

been verified in the vacuum cleaner domain, we now now proceed to compare machine learning

performance on memoryless (baseline) traces compared to that for memory-enhanced traces gen-

erated by MCLvN.

For each human subject, we analyze three types of results:

1. Memory Statistics: We analyze the optimal HF/LF parameters and the categorization of the

case base regarding memory.

2. Memory Models: We analyze the MFs that were learned by MCL for each trace.

3. Learning Performance: We analyze the learning performance of various algorithms for the

traces associated with each level.

Regarding the Memory Statistics results, we compute the following statistics for each trace:

• The optimal High Filter (HF) and Low Filter (LF) parameters that minimized the size of the

default context for the trace.

261

• The number of memory sets/contexts (Set Count) that contributed to the final refined MF set,

after being filtered during MCL’s refinement process. This number can be low or high, as

long as all memory influences are comprehensively expressed.

• The number of cases (Mem Cases) that did not fall under the default context, and the number

of cases that did (Default Cases). We want the former metric to be high and the latter one to

be low.

• The number of MFs (MF Count) that were learned for the trace. This number can be low or

high, as long as all memory influences are comprehensively expressed.

Regarding learning performance, we computed two results:

1. F1-scores, computed via 10-fold cross validation on the entire trace.

2. F1-scores, computed via training on 66% of the trace and testing on the remaining 33%.

For our results, we present two caveats:

1. The stochastic learner Bayes Net may offer different learning results when initialized with

a different seed. The results presented here are the result of single trial learning, wherein a

single learning result is computed. Thus, the results averaged over multiple runs may differ

slightly from those presented in this section.

2. Qualitatively, we analyze differences in F1 scores on an absolute basis rather than through

statistical testing. The behaviors of a human entity in the same situation may differ from

run to run. However, it is not empirically possible to “wipe” a person’s memory between

runs, and so the behavior in subsequent runs may be affected by a person’s memory of a

scenario from a prior attempt. Thus, results are only computed for a person’s final attempt

262

on a given scenario. Any claim that one result is “better” than another is based on an absolute

comparison.

First, we analyze the results for each human individually. Then, we offer insights into common

trends across all humans overall for the lawn mower domain.

8.3.4.1 Human AJ

Tables 8.5, 8.6, and 8.7 show the optimal parameters and memory categorization of the case base

for action-based, state-based, and action/state-based traces, respectively.

Table 8.5: Action-Based Memory Parameters – Human AJ

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AJ DG 0.05 0.05 30 210 81 2

AJ F1 0.05 0.05 35 187 65 2

AJ F2 0.05 0.05 37 206 79 3

AJ G1 0.05 0.05 46 247 87 2

AJ G2 0.05 0.05 40 240 172 4

AJ GH 0.05 0.05 47 227 121 2

AJ GP 0.025 0.025 42 263 73 3

AJ L 0.05 0.05 38 273 107 2

AJ R 0.05 0.05 23 171 66 1

AJ Sn1 0.05 0.05 56 231 153 4

AJ Sn2 0.05 0.05 24 190 52 3

AJ Sp1 0.05 0.05 100 445 283 3

AJ Sp2 0.05 0.05 32 247 81 4

From Table 8.5, we can see that for the majority of the LMS scenarios, the optimal HF/LF param-

263

eters action-based memory-enhanced traces (PPT=0.00, PAT=0.90) for Human AJ were 0.05 and

0.05. The exception was the Gold Pot (GP) scenario, which gained the smallest default context

size for for HF=0.025, LF=0.025. In general, about one third of the case base for each scenario fell

under the default context. At most, four MFs were learned for a trace, but the number of unique

memory sets that contributed to the final refined set ranged from 23 to 100.

Table 8.6: State-Based Memory Parameters – Human AJ

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AJ DG 0.025 0.025 17 248 43 1

AJ F1 0.05 0.05 11 231 21 3

AJ F2 0.05 0.05 25 211 74 5

AJ G1 0.05 0.05 20 278 56 1

AJ G2 0.025 0.01 1 412 0 0

AJ GH 0.05 0.05 13 314 34 1

AJ GP 0.05 0.05 25 256 80 1

AJ L 0.05 0.05 47 236 144 3

AJ R 0.05 0.05 13 197 40 0

AJ Sn1 0.05 0.05 24 273 111 2

AJ Sn2 0.05 0.05 13 205 37 2

AJ Sp1 0.05 0.05 88 407 321 0

AJ Sp2 0.05 0.05 7 304 24 0

For state-based memory-enhanced traces (see Table 8.6), there were in general fewer memory

sets and smaller default contexts. Fewer MFs were learned on average for each scenario. Again,

the optimal HF/LF parameters were 0.05 and 0.05 for most scenarios, with the exception of the

G2 (Grass Train Level) and DG (Dark Grass) scenarios, which did better under less constrictive

filtering thresholds. In cases where no MFs were learned, human AJ’s behavior was likely deemed

too random to infer meaningful MFs for.

264

Table 8.7: State/Action-Based Memory Parameters – Human AJ

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AJ DG 0.025 0.01 30 267 24 6

AJ F1 0.025 0.01 35 218 34 5

AJ F2 0.025 0.01 37 257 28 6

AJ G1 0.025 0.01 46 281 53 4

AJ G2 0.025 0.01 40 361 51 9

AJ GH 0.025 0.01 47 292 56 6

AJ GP 0.025 0.01 42 281 55 4

AJ L 0.025 0.01 38 344 36 8

AJ R 0.025 0.01 23 223 14 8

AJ Sn1 0.025 0.01 56 337 47 9

AJ Sn2 0.025 0.01 24 217 25 5

AJ Sp1 0.025 0.01 100 553 175 6

AJ Sp2 0.025 0.01 32 298 30 6

For state/action-based memory-enhanced traces (see Table 8.7), an interesting trend is that the least

constrictive HF/LF parameters (HF=0.025, LF=0.01) yielded the best results. Except for the Sp1

(Sprinkler 1) scenario, the default context sizes for the scenarios are relatively small. Furthermore,

the number of MFs learned for each scenario are on average higher than the MF counts for the

state-based and action-based traces.

The following MFs were learned for the action-based memory-enhanced traces for Human AJ.

• DG: v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2)

• F2: v-Action(1), v-Action(2), v-Action(3)

265

• G1: v-Action(1), v-Action(2)

• G2: t-Action(S), t-Action(Se), v-Action(1), v-Action(2)

• GH: v-Action(1), v-Action(2)

• GP: v-Action(1), v-Action(2), v-Action(3)

• L: v-Action(1), v-Action(2)

• R: v-Action(1)

• Sn1: t-Action(w), t-Action(C), v-Action(1), v-Action(2)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: v-Action(1), v-Action(2), v-Action(3)

• Sp2: t-Action(sW), t-Action(sw), v-Action(1), v-Action(2)

In general, the mostly commonly learned MFs were value-back MFs for Action at time-back values

of 1-3. For the G2 and Sp2 scenario, time-back MFs for downward joystick positions were learned

and for the Sn1 scenario, a time-back MF for the motionless joystick position was learned. This

indicates that Human AJ’s behavior was largely reactive when only focusing on their choice of

joystick position, as evidenced by most memory influences being confined to a few time steps

back in memory. However, it appears that downward and motionless joystick positions may have

been instrumental in memory-based behavior for a couple scenarios.

The following MFs were learned for the state-based memory-enhanced traces for Human AJ.

• DG: t-DarkGrassW4Dist(1000.0)

• F1: t-FairyW4Dist(1000.0), t-RockW4Dist(4.100), v-RockW7Dist(29)

266

• F2: t-FairyW2Dist(1000.0), t-FairyW4Dist(1000.0), t-RockW7Dist(1000.0), v-FairyW5Dist(98),

v-RockW3Dist(111)

• G1: t-DarkGrassW4Dist(1000.0)

• G2: none

• GH: t-GrassW0Dist(1000.0)

• GP: t-GoldPotW2Dist(1000.0)

• L: t-GrassW0Dist(1000.0), t-GrassW4Dist(1000.0), t-SnakeW7Dist(1000.0)

• R: none

• Sn1: t-GrassW3Dist(1000.0), t-SnakeW0Dist(1000.0)

• Sn2: t-GrassW0Dist(1000.0), v-GrassW2Dist(17)

• Sp1: none

• Sp2: none

For Human AJ, we can see that Wedge 4 (which covers the area to the human’s southwest) and

to a lesser degree Wedges 0 and 2 (which cover the areas to the human’s northeast and southeast,

respectively) are prominent in several learned MFs. Furthermore, the majority of learned MFs are

time-back MFs tracking the value 1000.0 (which indicates that there is no entity of a given type in

that wedge). This indicates that these MFs were learned to account for memory of when a wedge

was last unoccupied by a given entity type.

The following MFs were learned for the state/action-based memory-enhanced traces for Human

AJ.

267

• DG: t-Action(w), t-Action(E), t-Action(S), v-Action(1), v-Action(2), v-Action(3)

• F1: t-Action(C), t-Action(e), t-Action(N), v-Action(1), v-Action(2)

• F2: t-Action(C), t-Action(E), t-Action(nE), v-Action(1), v-Action(2), v-Action(3)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G2: t-Action(E), t-Action(nE), t-Action(S), t-Action(Nw), t-Action(N), t-Action(Ne), t-Action(Se),

v-Action(1), v-Action(2)

• GH: t-Action(E), t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• GP: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• L: t-Action(C), t-Action(n), t-Action(N), t-Action(Se), t-Action(se), v-Action(1), v-Action(2),

v-Action(3)

• R: t-Action(E), t-Action(nE), t-Action(S), t-Action(N), t-Action(Ne), t-Action(Se), v-Action(1),

v-Action(2)

• Sn1: t-Action(w), t-Action(C), t-Action(ne), t-Action(N), v-Action(1), v-Action(2), v-Action(3),

v-Action(4), v-Action(5)

• Sn2: t-Action(N), t-Action(Ne), v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(C), v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• Sp2: t-Action(nw), t-Action(n), t-Action(sW), t-Action(sw), v-Action(1), v-Action(2)

Most notably, even though MFs for both perception and action features can be generated for

state/action-based memory-enhanced traces (PPT=0.90, PAT=0.90), only action MFs were learned

for Human AJ for these traces. It is as though allowing tree extraction to create branches based

268

on differences between cases in perception features served mostly to allow more nuanced memory-

influences based on the Action feature to be learned, rather than facilitating the creation of perception-

based MFs. This is evidenced by the presence of several time-back action MFs that were not

present for the action-based traces. A second observation is that for the time-back MFs, the value

for “West” (left joystick inputs) is rarely present in the MFs. This result is intuitive, given that

the LMS scenarios generally require the human to move from left to right. A third observation is

that value-back MFs for Action at time-back values of 1-3 were learned for almost every scenario,

which indicates that Human AJ’s joystick inputs are typically consistent within a few time steps.

Figure 8.8: LMS Results, Human AJ, Bayes Net, Cross Validation

Figure 8.8 shows the cross validation results for the Bayes Net learning algorithm. For each level,

the F1 score for baseline (memory-less) traces is compared to four memory-enhanced trace types:

state-based, action-based, state/action-based, and hybrid. Again, hybrid traces simply use the su-

perset of MFs learned for state-based and action-based traces.

There are two trends apparent from the figure. First, the state-based memory-enhanced traces did

269

not result in significant improvement in F1 scores. This result is surprising, given how perception

MFs resulted in very small default context sizes in our analysis of Memory Parameters results for

state-based traces for Human AJ. However, it should be noted that the addition of perception MFs

did not result in lower F1 scores than those for the baseline traces.

The second trend is that the other three memory-enhanced trace types (the ones that allow for

Action MFs) generally improved learning performance, especially for the DG, G1, G2, and GH

scenarios. More specifically, the state/action-based traces in several cases (e.g. the DG, G2, GH, L,

Sn1, Sp2 scenarios) outperformed the hybrid traces, which suggests that tree extraction that com-

pares cases for both perception and action (even if only Action MFs are learned) generally results

in better learning performance than simply learning perception and action MFs independently, then

combining them. The one exception to this result is seen in the G1 scenario, where hybrid traces

resulted in a higher F1 score. However, hybrid traces resulted in F1 scores equivalent to those of

the action-based traces.

Figure 8.9 shows the F1 scores that result from the learning algorithm training on 66% of the trace

and being evaluated on the remaining 33%. Understandably, the F1 scores are much lower, given

that there is less training data available to the learner in this evaluation. We still observe that the

memory-enhanced traces result in F1 scores that are no worse than those for the baseline trace.

In particular, higher scores are observed for action-based, state/action-based, and hybrid traces,

though the increases are less than those observed for the cross validation evaluation.

270

Figure 8.9: LMS Results, Human AJ, Bayes Net, Train/Test Split

Figure 8.10: LMS Results, Human AJ, J.48 Tree, Cross Validation

Figure 8.10 shows the results of cross validation for the J.48 Decision Tree algorithm. The differ-

271

ences between the results for the J.48 Tree learner and those of the Bayes Net learner are twofold.

First, the results for the Dark Grass (DG) scenario are the same for all traces for J.48 Tree, even

though the Bayes Net learner saw the greatest learning improvements for this scenario when using

the memory-enhanced traces. In addition to the learning improvements for the memory-enhanced

traces being more muted for J.48 Tree than for Bayes Net, the memory-enhanced traces result in

lower F1 scores than those for the baseline traces in the F1 scenario (and for the hybrid trace in the

Sn2 scenario). Interestingly, the state-based traces (which allow for only perception MFs) for these

scenarios have the highest F1 score out of all the traces (including baseline traces). This means

that for certain scenarios, modeling memory from perception features alone may be the appropriate

approach.

Figure 8.11: LMS Results, Human AJ, J.48 Tree, Train/Test Split

Figure 8.11 shows the train/test evaluation results for the J.48 Tree learner. Even though the F1

scores are lower than those for the cross validation evaluation, the action-based, state/action-based,

and hybrid traces always resulted in higher F1 scores than those of the baseline traces, which

272

suggests that Action MFs offer an advantage to a learner’s ability to generalize its procedural

knowledge to unseen situations.

8.3.4.2 Human AK

The Memory Parameter analysis for Human AK is shown in Tables 8.8, 8.9, and 8.10 for action-

based, state-based, and state/action-based memory-enhanced traces, respectively.

Table 8.8: Action-Based Memory Parameters – Human AK

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AK DG 0.05 0.05 44 234 106 2

AK F1 0.05 0.05 55 251 133 4

AK F2 0.05 0.05 17 153 31 1

AK G1 0.05 0.05 46 342 91 3

AK G2 0.05 0.05 87 336 229 3

AK GH 0.05 0.05 37 237 77 2

AK GP 0.05 0.05 49 239 124 1

AK L 0.05 0.05 47 263 97 1

AK R 0.05 0.05 27 183 53 1

AK Sn1 0.025 0.025 55 266 104 4

AK Sn2 0.025 0.025 61 391 124 3

AK Sp1 0.05 0.05 55 378 193 2

AK Sp2 0.05 0.05 47 250 110 3

From Table 8.8, we can see that the most common HF/LF parameters were HF=0.05 and LF=0.05,

with the Snake scenarios (Sn1 and Sn2) being the exception by using less constrictive thresholds.

The number of memory sets used for the different scenarios varied from 17 to 87, but the number

of MFs in the final refined set only varied from 1 to 4. We also observe that the default context

273

sizes are relatively large, even accounting for two-thirds of the case base in the G2 scenario (which

features only grass).

Table 8.9: State-Based Memory Parameters – Human AK

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AK DG 0.05 0.05 26 273 67 5

AK F1 0.05 0.05 24 296 88 0

AK F2 0.05 0.05 5 171 13 0

AK G1 0.05 0.05 29 320 113 4

AK G2 0.025 0.01 1 565 0 0

AK GH 0.05 0.05 15 260 54 1

AK GP 0.025 0.025 20 305 58 0

AK L 0.05 0.05 20 290 70 0

AK R 0.05 0.05 13 198 38 0

AK Sn1 0.05 0.05 28 229 141 2

AK Sn2 0.05 0.05 58 306 209 1

AK Sp1 0.05 0.05 26 428 143 2

AK Sp2 0.05 0.05 15 313 47 3

For Table 8.9, we observe that fewer MFs in general were learned for state-based traces. The

optimal values for the HF/LF thresholds again were generally HF=0.05 and LF=0.05. Interestingly,

the scenario with the smallest default context size (G2) for the state-based traces had one of the

largest proportions of cases in the default context for action-based traces, which indicates that

perception memories may be more important for this particular scenario.

274

Table 8.10: State/Action-Based Memory Parameters – Human AK

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AK DG 0.025 0.01 44 293 47 6

AK F1 0.025 0.01 55 321 63 7

AK F2 0.025 0.01 17 176 8 4

AK G1 0.025 0.01 46 379 54 4

AK G2 0.025 0.01 87 436 129 7

AK GH 0.025 0.01 37 274 40 4

AK GP 0.025 0.01 49 318 45 7

AK L 0.025 0.01 47 298 62 2

AK R 0.025 0.01 27 213 23 4

AK Sn1 0.025 0.01 55 306 64 6

AK Sn2 0.025 0.01 61 423 92 3

AK Sp1 0.025 0.01 55 495 76 5

AK Sp2 0.025 0.01 47 316 44 6

For state/action-based traces (see Table 8.10), we again see that the least constrictive HF/LF values

yielded the best results. The most number of MFs were generally learned for these traces with

relatively small default context sizes. The number of memory sets used is comparable to the

numbers for action-based traces.

The following MFs were learned for the action-based traces for Human AK.

• DG: v-Action(1), v-Action(2)

• F1: t-Action(C), t-Action(e), v-Action(1), v-Action(2)

• F2: v-Action(1)

275

• G1: v-Action(1), v-Action(2), v-Action(3)

• G2: v-Action(1), v-Action(2), v-Action(3)

• GH: v-Action(1), v-Action(2)

• GP: v-Action(1)

• L: v-Action(1)

• R: v-Action(1)

• Sn1: t-Action(w), t-Action(C), v-Action(1), v-Action(2)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(C), v-Action(1)

• Sp2: t-Action(C), v-Action(1), v-Action(2)

We observe that MCL learned mostly value-back MFs for Human AK for the action-based traces.

The time-back parameters for these MFs are constrained to just the most recent three time steps.

However, we also observe that the motionless joystick input is the value parameter for the time-

back MFs learned for the two Sprinkler scenarios (Sp1 and Sp2). This result is intuitive, given

how one must wait in place for a sprinkler to transition from its spray phase to its cooldown phase

before safely proceeding to the next part of the scenario. The same time-back MF is also observed

for the first Snake scenario (Sn1), which indicates an effort by Human AK to use patient waiting

to allow the snake entities to move out of the intended mower trajectory.

The following MFs were learned for the state-based traces for Human AK.

• DG: t-DarkGrassW0Dist(1000.0), t-DarkGrassW7Dist(1000.0), t-GrassW7Dist(1000.0), v-

DarkGrassW4Dist(188), v-ExitState(17)

276

• F1: none

• F2: none

• G1: t-DarkGrassW0Dist(1000.0), t-DarkGrassW4Dist(1000.0), t-DarkGrassW7Dist(1000.0),

t-RockW4Dist(1000.0)

• G2: none

• GH: t-GrHogW7Dist(1000.0)

• GP: none

• L: none

• R: none

• Sn1: t-ExitState(Off), t-ExitState(On)

• Sn2: t-GrassW4Dist(1000.0)

• Sp1: t-GrassW4Dist(1000.0), t-GrassW6Dist(1000.0)

• Sp2: t-GrassW4Dist(1000.0), v-GrassW3Dist(29), v-SprinklerW4Dist(79)

We observe that several MFs based on the Dark Grass wedge distance features were learned for

both the dedicated Dark Grass (DG) level and for the conglomerate Grass Test (G1) level. However,

these MFs were all for the maximum distance 1000.0, which indicates that Human AK’s behavior

depends on which wedges used to be devoid of Dark Grass patches. These memories perhaps

informed Human AK as to which wedges contained newer dark grass patches that were likely

unmowed.

277

We also observe a couple MFs based on the ExitState feature, which were learned for the DG and

Sn1 scenarios. This suggests that the activation of the Exit entity in these scenarios resulted in

delayed, but significantly different behavior by Human AK in reaction to the exit.

The following MFs were learned for the state/action-based traces for Human AK.

• DG: t-Action(N), t-Action(SE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F1: t-Action(C), t-Action(e), t-Action(E), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• F2: t-Action(C), t-Action(E), t-Action(N), v-Action(1)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G2: t-Action(S), t-Action(NE), t-Action(SE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• GH: t-Action(nE), v-Action(1), v-Action(2), v-Action(3)

• GP: t-Action(ne), t-Action(N), t-Action(Ne), t-Action(NE), v-Action(1), v-Action(2), v-

Action(3)

• L: v-Action(1), v-Action(2)

• R: t-Action(Ne), t-Action(NE), v-Action(1), v-Action(2)

• Sn1: t-Action(w), t-Action(C), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(C), t-Action(e), v-Action(1), v-Action(2), v-Action(3)

• Sp2: t-Action(C), t-Action(e), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

278

Similar to Human AJ, Human AK’s behavior resulted in MCL learning no MFs based on perception

for the state/action-based memory-enhanced traces. Instead, several time-back MFs for Action

were learned. Again, we observe the absence of left or “West” joystick inputs in the learned MFs,

and we observe the strong presence of value-back Action MFs with time-back parameters confined

mostly to the previous 3-4 time steps.

Figure 8.12: LMS Results, Human AK, Bayes Net, Cross Validation

Figure 8.12 shows the cross validation F1 scores for the Bayes Net learner. Except for the DG

scenario (for which a relatively larger number of MFs were learned), the state-based traces resulted

in F1 scores equivalent to those of the baseline traces. In the majority of the scenarios, the action-

based, state/action-based, and hybrid traces resulted in higher F1 scores than those for the baseline

traces. (The exception being the second Fairy scenario, F2, where the F1 scores were slightly

worse for action-based and hybrid traces.)

For a few scenarios, the state/action-based trace F1 scores were higher than those the hybrid traces

(e.g. F1, G2, L), and they generally resulted in F1 scores that were no less than those of the hybrid

279

traces across all scenarios.

Figure 8.13: LMS Results, Human AK, Bayes Net, Train/Test Split

In Figure 8.13, we observe that the memory-enhanced traces of all types except state-based saw

the greatest increases in F1-score for the G1 and Sn1 scenarios, which was also the case in the

cross validation evaluation. This provides evidence that generalizability of machine learning can

be improved with the addition of MFs for agent actions.

Figure 8.14 shows the results of cross validation for the J.48 Decision Tree. We observe that there

is not much improvement in F1 score for the memory-enhanced traces, and that there is even a

decrease in score for the DG (Dark Grass), F1 (Fairy 1), and GP (Gold Pot) scenarios. This could

either be caused by the behavior by Human AK being mostly reactive (and thus the learned MFs

were extraneous and harmful for learning) or that the learned MFs were not comprehensive enough

to fully capture the memory influences on Human AK’s behavior. These results are interesting, in

light of the positive results for the Bayes Net learner.

280

Figure 8.14: LMS Results, Human AK, J.48 Tree, Cross Validation

Figure 8.15: LMS Results, Human AK, J.48 Tree, Train/Test Split

Figure 8.15 shows the results of the train/test split evaluation for J.48 Tree. Here, we see F1 score

281

increases for the memory-enhanced traces for several scenarios. In particular, the increases in the

DG and F1 scenarios, though slight, are in direct contrast to the decrease in score that was observed

for the cross validation evaluation.

8.3.4.3 Human AW

Tables 8.11, 8.12, and 8.13 show the Memory Parameters statistics for action-based, state-based,

and action/state-based memory-enhanced traces, respectively.

Table 8.11: Action-Based Memory Parameters – Human AW

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AW DG 0.05 0.05 24 224 64 2

AW F1 0.05 0.05 49 207 97 2

AW F2 0.05 0.05 29 149 43 2

AW G1 0.05 0.05 54 351 121 2

AW G2 0.05 0.05 45 285 124 3

AW GH 0.05 0.05 42 260 111 2

AW GP 0.05 0.05 47 277 114 4

AW L 0.05 0.05 62 225 190 2

AW R 0.05 0.05 16 248 23 3

AW Sn1 0.05 0.05 52 352 170 2

AW Sn2 0.05 0.05 46 263 90 2

AW Sp1 0.05 0.05 42 315 117 4

AW Sp2 0.05 0.05 48 272 113 2

In all scenarios, the optimal values for HF and LF thresholds were HF=0.05 and LF=0.05. The

number of learned MFs for each scenario was 2-4 MFs. The smallest default context size was seen

in the Rock (R) scenario, which is intuitive because there are no occluded entities in that scenario.

282

Table 8.12: State-Based Memory Parameters – Human AW

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AW DG 0.05 0.05 45 155 133 1

AW F1 0.05 0.05 36 189 115 2

AW F2 0.05 0.05 11 162 30 1

AW G1 0.025 0.025 62 303 169 2

AW G2 0.025 0.01 1 409 0 0

AW GH 0.05 0.05 18 311 60 0

AW GP 0.05 0.05 32 295 96 1

AW L 0.05 0.05 22 271 144 0

AW R 0.05 0.05 14 234 37 0

AW Sn1 0.025 0.025 48 379 143 2

AW Sn2 0.05 0.05 20 260 93 1

AW Sp1 0.025 0.025 74 261 171 1

AW Sp2 0.05 0.05 12 316 69 2

For state-based traces (see Table 8.12), the HF/LF parameters were optimally around 0.05 on aver-

age, which a few exceptions, most notably the Grass Training (G2) scenario. For the G2 scenario,

no MFs were learned and the default context was non-existent, which suggests completely reactive

behavior for that scenario. A similar trend is seen for the Rock (R) scenario, which a small default

context size and no learned MFs. This is intuitive, given that the Rock scenario has no occluded

entities and thus a small memory requirement on part of the human. Even though the Leprechaun

scenario resulted in no learned MFs, the default context size is high, which indicates that there are

memory influences that MCL simply had difficulty formalizing in a coherent MF set.

283

Table 8.13: State/Action-Based Memory Parameters – Human AW

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

AW DG 0.025 0.01 24 269 19 5

AW F1 0.025 0.01 49 249 55 5

AW F2 0.025 0.01 29 174 18 5

AW G1 0.025 0.01 54 401 71 3

AW G2 0.025 0.01 45 345 64 7

AW GH 0.025 0.01 42 329 42 9

AW GP 0.025 0.01 49 347 44 8

AW L 0.025 0.01 62 337 78 8

AW R 0.025 0.01 16 256 15 4

AW Sn1 0.025 0.01 52 455 67 8

AW Sn2 0.025 0.01 46 297 56 5

AW Sp1 0.025 0.01 42 379 53 8

AW Sp2 0.025 0.01 48 336 49 6

Table 8.13 features very non-constrictive HF/LF parameters, relatively high MF counts, and rela-

tively small default context sizes. These trends were also evident for Humans AJ and AK.

These were the MFs learned for the action-based memory-enhanced traces for Human AW.

• DG: v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2)

• F2: v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2)

• G2: v-Action(1), v-Action(2), v-Action(3)

284

• GH: v-Action(1), v-Action(2)

• GP: t-Action(n), t-Action(N), v-Action(1), v-Action(2)

• L: v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2), v-Action(3)

• Sn1: v-Action(1), v-Action(2)

• Sn2: v-Action(1), v-Action(2)

• Sp1: t-Action(S), t-Action(Se), v-Action(1), v-Action(2)

• Sp2: v-Action(1), v-Action(2)

With the exception of the the single time-back MF for an upward joystick input in the GP (Gold

Pot) scenario, mostly value-back MFs parameterized with time-back values less than 3 were learned.

These were the MFs learned for the state-based memory-enhanced traces for Human AW.

• DG: t-DarkGrassW4Dist(1000.0)

• F1: t-FairyW1Dist(1000.0), t-GrassW0Dist(1000.0)

• F2: t-GrassW1Dist(1000.0)

• G1: t-GrassW2Dist(1000.0), t-GrassW3Dist(1000.0)

• G2: none

• GH: none

• GP: t-GoldPotW4Dist(1000.0)

285

• L: none

• R: none

• Sn1: t-GrassW0Dist(1000.0), t-SnakeW0Dist(1000.0)

• Sn2: t-GrassW0Dist(1000.0)

• Sp1: t-SprinklerW0Dist(1000.0)

• Sp2: t-GrassW1Dist(1000.0), t-GrassW5Dist(1000.0)

All learned MFs were based on wedge distance features and were parameterized with the maximum

distance value 1000.0. Also, the most common wedges were Wedges 0-1 (northeast regions) and

Wedges 3-4 (southern regions), which indicates that vertical perception has a significant memory

influence on Human AW’s behavior.

These were the MFs learned for the state/action-based memory-enhanced traces for Human AW.

• DG: t-Action(nE), t-Action(NE), v-Action(1), v-Action(2), v-Action(3)

• F1: t-Action(nE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F2: t-Action(E), t-Action(nE), t-Action(NE), v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3)

• G2: t-Action(n), t-Action(N), t-Action(SE), t-Action(sE), v-Action(1), v-Action(2), v-Action(3)

• GH: t-Action(Sw), t-Action(S), t-Action(Nw), t-Action(N), t-Action(NE), t-Action(Se), t-

Action(SE), v-Action(1), v-Action(2)

• GP: t-Action(C), t-Action(n), t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3),

v-Action(4)

286

• L: t-Action(C), t-Action(n), t-Action(ne), t-Action(S), t-Action(N), t-Action(s), v-Action(1),

v-Action(2)

• R: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sn1: t-Action(E), t-Action(nE), t-Action(N), t-Action(Ne), t-Action(NE), v-Action(1), v-

Action(2), v-Action(3)

• Sn2: t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sp1: t-Action(S), t-Action(Se), t-Action(SE), v-Action(1), v-Action(2), v-Action(3), v-Action(4),

v-Action(5)

• Sp2: t-Action(e), t-Action(nE), t-Action(sW), v-Action(1), v-Action(2), v-Action(3)

Similar to Humans AK and AJ, several time-back MFs based on the Action feature were learned

for the state/action-based traces, but no perception MFs were learned. However, in contrast to AK

and AJ, Human AW’s behavior resulted in MCL learning MFs for several “slow” joystick inputs

that were not recorded purely in the extreme positions for the four cardinal directions N, E, S, W.

Examples include t-Action(s), t-Action(nE), t-Action(Se).

Figure 8.16 shows cross validation results for Bayes Net. In all scenarios (especially DG, F1,

and G1), the action-based, state/action-based, and hybrid memory-enhanced traces resulted in in-

creased F1 scores over the baseline. State-based traces saw little difference in F1 score from those

of the baseline traces. These same trends are seen in Figure 8.17 for the train/test split evaluation.

Figure 8.18 shows cross validation results for the J.48 Decision Tree. Increases in F1-score are seen

for some scenarios, though not as pronounced as those for Bayes Net. Decreases in F1 score for

the memory-enhanced traces (except state-based) are observed for the F2 (Fairy 2) and R (Rock)

scenarios. However, such decreases are not evident in Figure 8.19 for the train/test split evaluation.

287

Figure 8.16: LMS Results, Human AW, Bayes Net, Cross Validation

Figure 8.17: LMS Results, Human AW, Bayes Net, Train/Test Split

288

Figure 8.18: LMS Results, Human AW, J.48 Tree, Cross Validation

Figure 8.19: LMS Results, Human AW, J.48 Tree, Train/Test Split

289

8.3.4.4 Human CA

Tables 8.14, 8.15, and 8.16 show Memory Parameter statistics for action-based, state-based, and

state/action-based memory-enhanced traces, respectively.

Table 8.14: Action-Based Memory Parameters – Human CA

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

CA DG 0.05 0.05 55 281 144 3

CA F1 0.025 0.025 32 248 62 2

CA F2 0.025 0.025 20 176 31 2

CA G1 0.025 0.025 73 456 142 3

CA G2 0.05 0.05 62 352 193 2

CA GH 0.05 0.05 58 272 178 1

CA GP 0.05 0.05 34 333 117 2

CA L 0.05 0.05 46 290 109 2

CA R 0.025 0.025 32 198 59 2

CA Sn1 0.05 0.05 80 386 213 3

CA Sn2 0.05 0.05 61 368 125 3

CA Sp1 0.05 0.05 72 546 267 3

CA Sp2 0.05 0.05 37 288 91 3

From Table 8.14, we observe a few more scenarios that had the best results with less constric-

tive thresholds than HF=0.05 and LF=0.05, as compared to the previous human participants. We

observe a relatively small number of MFs, but relatively large default contexts.

290

Table 8.15: State-Based Memory Parameters – Human CA

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

CA DG 0.05 0.05 23 345 80 4

CA F1 0.05 0.05 25 235 75 1

CA F2 0.05 0.05 9 182 25 2

CA G1 0.05 0.05 102 282 316 2

CA G2 0.025 0.025 16 485 60 0

CA GH 0.05 0.05 10 399 51 1

CA GP 0.05 0.05 23 367 83 0

CA L 0.05 0.05 48 256 143 4

CA R 0.05 0.05 10 221 36 0

CA Sn1 0.05 0.05 62 332 267 1

CA Sn2 0.05 0.05 53 270 223 0

CA Sp1 0.025 0.025 121 333 480 0

CA Sp2 0.05 0.05 12 339 40 3

From Table 8.15 for state-based traces, we observe optimal results for mostly HF=0.05 and LF=0.05

thresholds. Even though there are a few scenarios with no learned MFs, the L (Leprechaun) and

DG (Dark Grass) scenarios have four. The Sp1 scenario statistics are particularly interesting be-

cause the number of cases in this scenario are many, and the default context is larger than all other

memory-based contexts combined.

291

Table 8.16: State/Action-Based Memory Parameters – Human CA

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

CA DG 0.025 0.01 55 349 76 7

CA F1 0.025 0.01 32 273 37 5

CA F2 0.025 0.01 20 191 16 3

CA G1 0.025 0.01 73 483 115 4

CA G2 0.025 0.01 62 455 90 8

CA GH 0.025 0.01 58 369 81 9

CA GP 0.025 0.01 38 400 50 6

CA L 0.025 0.01 46 347 52 6

CA R 0.025 0.01 32 232 25 5

CA Sn1 0.025 0.01 80 478 121 6

CA Sn2 0.025 0.01 61 405 88 4

CA Sp1 0.025 0.01 72 693 120 7

CA Sp2 0.025 0.01 37 331 48 7

Table 8.16 shows statistics for state/action-based traces for Human CA. Similar to previous hu-

mans, we observe the least constrictive HF/LF thresholds producing the smallest default contexts

(which are small in size) and a greater number of MFs across all scenarios.

The following MFs were learned for the action-based memory-enhanced traces for Human CA.

• DG: v-Action(1), v-Action(2), v-Action(3)

• F1: v-Action(1), v-Action(2)

• F2: v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3)

292

• G2: v-Action(1), v-Action(2)

• GH: v-Action(1)

• GP: v-Action(1), v-Action(2)

• L: v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: v-Action(1), v-Action(2), v-Action(3)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(SE), v-Action(1), v-Action(2)

• Sp2: t-Action(N), t-Action(Ne), v-Action(1)

Only value-back MFs with time-back parameter values less than 4 are learned (with the exception

of the time-back MF in the Sp1 (Sprinkler 1) scenario).

The following MFs were learned for the state-based memory-enhanced traces for Human CA.

• DG: t-DarkGrassW4Dist(1000.0), t-DarkGrassW5Dist(1000.0), t-DarkGrassW7Dist(1000.0),

t-GrassW7Dist(1000.0)

• F1: t-RockW4Dist(1000.0)

• F2: t-FairyW6Dist(1000.0), v-RockW7Dist(14)

• G1: t-DarkGrassW0Dist(1000.0), t-DarkGrassW6Dist(1000.0)

• G2: none

293

• GH: t-GrHogW0Dist(1000.0)

• GP: none

• L: t-GrassW4Dist(1000.0), t-RockW4Dist(1000.0), t-RockW5Dist(1000.0), v-GrassW7Dist(22)

• R: none

• Sn1: t-GrassW0Dist(1000.0)

• Sn2: none

• Sp1: none

• Sp2: t-GrassW4Dist(1000.0), t-SprinklerW4Dist(1000.0), v-GrassW6Dist(18)

The grass distance features were the basis for several MFs across multiple scenarios. As observed

for previous humans, Human CA’s behavior did not result in many perception MFs, perhaps due

to human inconsistency in behavior.

The following MFs were learned for the state/action-based memory-enhanced traces for Human

CA.

• DG: t-Action(w), t-Action(s), v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• F1: t-Action(S), t-Action(Nw), t-Action(SE), v-Action(1), v-Action(2)

• F2: t-Action(N), v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G2: t-Action(Nw), t-Action(N), t-Action(Se), t-Action(SE), v-Action(1), v-Action(2), v-

Action(3), v-Action(4)

294

• GH: t-Action(SW), t-Action(nw), t-Action(n), t-Action(Se), t-Action(SE), v-Action(1), v-

Action(2), v-Action(3), v-Action(4)

• GP: t-Action(n), t-Action(S), t-Action(N), t-Action(Se), v-Action(1), v-Action(2)

• L: t-Action(C), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• R: t-Action(S), t-Action(Se), v-Action(1), v-Action(2), v-Action(3)

• Sn1: t-Action(S), t-Action(Se), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sn2: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sp1: t-Action(SW), t-Action(S), t-Action(SE), t-Action(sE), v-Action(1), v-Action(2), v-

Action(3)

• Sp2: t-Action(E), t-Action(Nw), t-Action(N), t-Action(Ne), t-Action(sE), v-Action(1), v-

Action(2)

For Human CA, the value-back Action MFs are strongly present for time-back parameters close

to 1. We also see no perception MFs, but several time-back Action MFs. Strangely, only the

L (Leprechaun) scenario features a time-back MF for the motionless joystick input “C”, which

suggests that remaining still did not heavily influence Human CA’s memory, as it was apparent

from MCL’s output.

Figure 8.20 shows the Bayes Net cross validation results. Unlike the previous human subjects,

increases in F1 score are readily seen in all scenarios. There are several instances where the

state/action-based trace resulted in a higher F1 score than the hybrid trace, the opposite trend was

seen in the DG, F1, and G1 scenarios. The first trend holds in the train/test split evaluation seen in

Figure 8.21, while the second trend is less pronounced.

295

Figure 8.20: LMS Results, Human CA, Bayes Net, Cross Validation

Figure 8.21: LMS Results, Human CA, Bayes Net, Train/Test Split

296

Figure 8.22: LMS Results, Human CA, J.48 Tree, Cross Validation

Figure 8.23: LMS Results, Human CA, J.48 Tree, Train/Test Split

Figure 8.22 shows the cross validation results for J.48 Decision Treee. We observe that all memory-

297

enhanced traces except state-based have increased F1 scores over those of the baseline traces,

except in the F2 and R scenarios, where the F1 scores are less than those for the baseline traces.

However, this is only true of scenario R in the train/test split evaluation (see Figure 8.23).

8.3.4.5 Human CH

Tables 8.17, 8.18, and 8.19 show Memory Parameter statistics for action-based, state-based, and

state/action-based memory-enhanced traces, respectively.

Table 8.17: Action-Based Memory Parameters – Human CH

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

CH DG 0.05 0.05 32 269 77 2

CH F1 0.05 0.05 43 220 110 2

CH F2 0.05 0.05 22 190 41 2

CH G1 0.025 0.025 47 422 121 3

CH G2 0.05 0.05 61 316 169 3

CH GH 0.05 0.05 57 275 145 2

CH GP 0.05 0.05 51 293 103 2

CH L 0.05 0.05 43 229 118 2

CH R 0.05 0.05 26 210 42 2

CH Sn1 0.05 0.05 72 284 148 2

CH Sn2 0.025 0.025 62 303 130 3

CH Sp1 0.05 0.05 67 358 201 2

CH Sp2 0.05 0.05 46 148 95 2

For all but two of the scenarios in Table 8.17, HF=0.05 and LF=0.05 produced the smallest default

context size, which is still relatively large in most scenarios. Each scenario also contains at least

two MFs that were learned by MCLvN.

298

Table 8.18: State-Based Memory Parameters – Human CH

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

CH DG 0.05 0.05 12 294 52 3

CH F1 0.025 0.025 33 219 111 1

CH F2 0.05 0.05 16 186 45 2

CH G1 0.05 0.05 83 235 308 0

CH G2 0.025 0.01 2 483 2 0

CH GH 0.025 0.01 2 416 4 0

CH GP 0.05 0.05 26 309 87 2

CH L 0.05 0.05 42 210 137 2

CH R 0.05 0.05 7 229 23 0

CH Sn1 0.05 0.05 7 397 35 0

CH Sn2 0.05 0.05 38 315 118 1

CH Sp1 0.05 0.05 61 333 226 3

CH Sp2 0.05 0.05 18 187 56 0

In Table 8.18, the default context size is generally smaller across all scenarios except in the first

sprinkler scenario (Sp1) and the Grass Test (G1) leve, which has a default context bigger than

all other memory-based contexts combined. Interestingly, the G2 (Grass Train) and GH (Ground

Hog) scenarios do not feature any learned MFs and yet have very small default context sizes.

299

Table 8.19: State/Action-Based Memory Parameters – Human CH

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

CH DG 0.025 0.01 32 312 34 6

CH F1 0.025 0.01 43 279 51 5

CH F2 0.025 0.01 22 212 19 5

CH G1 0.025 0.01 47 470 73 5

CH G2 0.025 0.01 61 402 83 5

CH GH 0.025 0.01 57 339 81 5

CH GP 0.025 0.01 51 340 56 4

CH L 0.025 0.01 43 301 46 9

CH R 0.025 0.01 26 230 22 4

CH Sn1 0.025 0.01 72 341 91 5

CH Sn2 0.025 0.01 62 340 93 4

CH Sp1 0.025 0.01 67 459 100 6

CH Sp2 0.025 0.01 46 198 45 7

The HF/LF thresholds that produced the smallest default context sizes were as non-constraining as

possible. Default context sizes were relatively smaller and MF counts were relatively higher than

those for the state-based or action-based traces.

These are the MFs learned for each scenario for the action-based memory-enhanced traces for

Human CH. All MFs are value-back with time-back parameters less than four.

• DG: v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2)

• F2: v-Action(1), v-Action(2)

300

• G1: v-Action(1), v-Action(2), v-Action(3)

• G2: v-Action(1), v-Action(2), v-Action(3)

• GH: v-Action(1), v-Action(2)

• GP: v-Action(1), v-Action(2)

• L: v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: v-Action(1), v-Action(2)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: v-Action(1), v-Action(2)

• Sp2: v-Action(1), v-Action(2)

These are the MFs learned for each scenario for the action-based memory-enhanced traces for

Human CH. The value parameter for all MFs is maximum distance 1000.0, except for the Rock

wedge MF for the F2 scenario, which tracks the time since the distance was near 0.0. This is a

unique MF, indicating that memory of promixity to a rock above the human was significant. No

particular wedge appeared to be prominent across all the scenarios.

• DG: t-DarkGrassW6Dist(1000.0), t-DarkGrassW7Dist(1000.0), v-GrassW6Dist(25)

• F1: t-GrassW0Dist(1000.0)

• F2: t-FairyW0Dist(1000.0), t-RockW7Dist(2.7)

• G1: none

301

• G2: none

• GH: none

• GP: t-GoldPotW1Dist(1000.0), t-GrassW4Dist(1000.0)

• L: t-GrassW4Dist(1000.0), t-SnakeW0Dist(1000.0)

• R: none

• Sn1: none

• Sn2: t-GrassW7Dist(1000.0)

• Sp1: t-GrassW5Dist(1000.0), t-SprinklerW1Dist(1000.0), t-SprinklerW5Dist(1000.0)

• Sp2: none

The following MFs were learned for state/action-based MFs. All MFs are based on Action. The

value-back MFs track the value of Action as far back as five time steps back. The most prominent

joystick input values in the MFs seem to be south or downward inputs.

• DG: t-Action(E), t-Action(sE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F1: t-Action(E), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F2: t-Action(C), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• G2: v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• GH: t-Action(N), t-Action(SE), t-Action(sE), v-Action(1), v-Action(2)

302

• GP: t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• L: t-Action(C), t-Action(E), t-Action(n), t-Action(S), t-Action(N), t-Action(Ne), t-Action(s),

v-Action(1), v-Action(2)

• R: t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• Sn1: t-Action(S), t-Action(Se), v-Action(1), v-Action(2), v-Action(3)

• Sn2: t-Action(SE), v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(SW), t-Action(Sw), t-Action(S), t-Action(sE), v-Action(1), v-Action(2)

• Sp2: t-Action(SW), t-Action(N), t-Action(sW), v-Action(1), v-Action(2), v-Action(3), v-

Action(4)

Figure 8.24 shows cross validation Bayes Net F1 scores. State-based trace F1 scores were equiv-

alent to baseline trace F1 scores for all scenarios. All other memory-enhanced trace F1 scores

exceeded the baseline F1 score, with the state/action-based traces having the highest score for the

majority of scenarios. The same trend is seen in the train/test split evaluation (see Figure 8.25), al-

though the state/action-based trace F1 score is more tied with those of the other memory-enhanced

traces.

Figure 8.26 shows J.48 Tree cross validation F1 scores. Except in the DG and R scenarios, all

memory-enhanced trace F1 scores (except for state-based) exceed the baseline trace F1 score.

In Figure 8.27, the memory-enhanced traces (except state-based) have higher F1 scores in all sce-

narios. However, they have an especially high score in the Sn1 scenario, indicating a possible

tendency to mostly use straight line movements. These traces all share two value-back MFs for

Action, for time-back values close to 1. Thus, it seems that Human CH’s behavior in this scenario

was very consistent from time step to time step.

303

Figure 8.24: LMS Results, Human CH, Bayes Net, Cross Validation

Figure 8.25: LMS Results, Human CH, Bayes Net, Train/Test Split

304

Figure 8.26: LMS Results, Human CH, J.48 Tree, Cross Validation

Figure 8.27: LMS Results, Human CH, J.48 Tree, Train/Test Split

305

8.3.4.6 Human D

Tables 8.20, 8.20, and 8.20 show Memory Parameter statistics for action-based, state-based, and

state/action-based memory-enhanced traces, respectively.

Table 8.20: Action-Based Memory Parameters – Human D

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

D DG 0.05 0.05 43 257 97 2

D F1 0.05 0.05 36 206 58 3

D F2 0.025 0.025 20 176 33 2

D G1 0.05 0.05 52 438 144 2

D G2 0.05 0.05 66 245 238 3

D GH 0.05 0.05 49 226 94 2

D GP 0.05 0.05 34 280 91 1

D L 0.05 0.05 52 262 145 4

D R 0.05 0.05 39 202 71 2

D Sn1 0.05 0.05 36 241 55 3

D Sn2 0.05 0.05 50 282 129 3

D Sp1 0.05 0.05 52 398 149 2

D Sp2 0.05 0.05 31 168 43 5

In Table 8.20, all scenarios except one had the smallest default context for HF=0.05 and LF=0.05.

However, the G2 scenario featured a default context that encompassed almost all cases. This

indicates that Human D’s behavior was fairly random in this scenario. In contrast, the default

context was the smallest in the Sp2 and F2 scenarios, which both feature phased memory-based

entities (fairies and sprinklers).

306

Table 8.21: State-Based Memory Parameters – Human D

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

D DG 0.05 0.05 89 148 206 1

D F1 0.05 0.05 56 109 155 0

D F2 0.05 0.05 24 141 68 0

D G1 0.025 0.025 160 204 378 0

D G2 0.025 0.01 1 483 0 0

D GH 0.05 0.05 33 239 81 0

D GP 0.05 0.05 52 163 208 0

D L 0.05 0.05 79 162 245 0

D R 0.05 0.05 6 246 27 0

D Sn1 0.05 0.05 3 282 14 0

D Sn2 0.05 0.05 48 235 176 3

D Sp1 0.05 0.05 102 236 311 0

D Sp2 0.05 0.05 25 148 63 2

Table 8.21 again features HF=0.05 and LF=0.05 as the most common thresholds used. Very few

MFs were learned for the state-based traces. In contrast to previous humans, the default context

sizes are relatively large for the state-based traces for this human, which is further evidence of

more random/erratic behavior.

307

Table 8.22: State/Action-Based Memory Parameters – Human D

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

D DG 0.025 0.01 43 297 57 4

D F1 0.025 0.01 34 231 33 5

D F2 0.025 0.01 20 186 23 3

D G1 0.025 0.01 52 497 85 4

D G2 0.025 0.01 66 396 87 8

D GH 0.025 0.01 49 263 57 6

D GP 0.025 0.01 38 324 47 4

D L 0.025 0.01 52 331 76 5

D R 0.025 0.01 39 236 37 7

D Sn1 0.025 0.01 36 259 37 4

D Sn2 0.025 0.01 50 340 71 7

D Sp1 0.025 0.01 53 469 78 6

D Sp2 0.025 0.01 31 180 31 7

Table 8.22 shows statistics for state/action-based traces. Here, the default contexts are relatively

small and the HF/LF parameters are non-constrictive. A modest number of MFs are learned for

each scenario.

The following MFs were learned for Human D’s action-based traces. Most MFs were value-back

Action MFs, but there were a few time-back MFs for extreme upward (north or N) and rightward

(east or E) joystick inputs.

• DG: v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2), v-Action(3)

• F2: v-Action(1), v-Action(2)

308

• G1: v-Action(1), v-Action(2)

• G2: t-Action(N), v-Action(1), v-Action(2)

• GH: v-Action(1), v-Action(2)

• GP: v-Action(1)

• L: t-Action(C), t-Action(E), v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: v-Action(1), v-Action(2), v-Action(3)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: v-Action(1), v-Action(2)

• Sp2: t-Action(nW), t-Action(NW), v-Action(1), v-Action(2), v-Action(3)

Human D’s learned MFs for the state-based traces are shown below. The sheer absence of MFs,

compared with the previous humans, is interesting. However, the role of the Grass distance feature

in Wedges 2-3 seemed to be significant for the second Snake (Sn2) and second Sprinkler (Sp2) sce-

narios. This may be due to the interaction of with grass in the southeastern direction in conjunction

with interaction with the snakes/sprinklers while Human D was mowing.

• DG: t-DarkGrassW1Dist(1000.0)

• F1: none

• F2: none

• G1: none

309

• G2: none

• GH: none

• GP: none

• L: none

• R: none

• Sn1: none

• Sn2: t-GrassW3Dist(3.5), t-GrassW3Dist(3.7), t-SnakeW4Dist(1000.0)

• Sp1: none

• Sp2: t-GrassW2Dist(1000.0), t-GrassW3Dist(1000.0)

The following MFs were learned for the state/action-based memory-enhanced traces for Human

D. Mostly value-back MFs for Action were learned, but additional time-back MFs for Action were

also learned. The value parameter of “North” (upward joystick input) seemed to be prominent

among the time-back MFs.

• DG: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F1: t-Action(NE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F2: t-Action(NE), v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G2: t-Action(S), t-Action(N), t-Action(Ne), v-Action(1), v-Action(2), v-Action(3), v-Action(4),

v-Action(5)

310

• GH: t-Action(S), t-Action(Nw), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• GP: t-Action(C), t-Action(N), t-Action(s), v-Action(1)

• L: t-Action(C), t-Action(E), t-Action(n), v-Action(1), v-Action(2)

• R: t-Action(Nw), t-Action(N), t-Action(SE), t-Action(s), v-Action(1), v-Action(2), v-Action(3)

• Sn1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sn2: t-Action(SW), t-Action(E), t-Action(Se), t-Action(sE), v-Action(1), v-Action(2), v-

Action(3)

• Sp1: t-Action(w), t-Action(C), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• Sp2: t-Action(nW), t-Action(NW), t-Action(N), t-Action(NE), v-Action(1), v-Action(2), v-

Action(3)

Figure 8.28: LMS Results, Human D, Bayes Net, Cross Validation

311

Figure 8.28 shows the Bayes Net cross validation results for Human D. The biggest increases in

F1 score from the memory-enhanced traces are in the G1 and G2 scenarios. A large increase in

score is also present in the DG scenario. All these scenarios involve grass or dark grass patches.

Supposedly, one could simply remember where they have traveled rather than relying on memory

of mowed grass patch locations to ensure that all grass patches get mowed. This strategy could

more readily manifest itself in the form of memory of one’s actions rather than memory of one’s

perceptions. However, the F1 scores for the baseline traces were low to begin with, which indicates

possibly chaotic behavior in reaction to the relatively open environment in these scenarios.

Interestingly, a large increase in F1 score for the memory-enhanced traces is also observed for the

Sn2 scenario, which is interesting because one must react to the inferred positions of snakes and

thus memory of perception is important. The same F1 score increases that were observed in the

cross validation evaluation are also evident in the train/test split evaluation seen in Figure 8.29.

Figure 8.29: LMS Results, Human D, Bayes Net, Train/Test Split

312

Figure 8.30: LMS Results, Human D, J.48 Tree, Cross Validation

Figure 8.31: LMS Results, Human D, J.48 Tree, Train/Test Split

Figure 8.30 shows the J.48 Decision Tree cross validation results for Human D. In contrast to

313

the Bayes Net results, the largest F1 score increases are seen in the GP (Gold Pot) scenario. If

the human moves fast enough, one can collide with the gold pot health restoratives before they

disappear, thus reducing the memory requirement in that scenario. The increases in F1 score for

the DG, G1, and G2 scenarios are also present, but to a lesser degree than they were for the Bayes

Net results. Similar trends are also seen in the train/test split evaluation, as seen in Figure 8.31.

8.3.4.7 Human G

Tables 8.23, 8.24, and 8.25 show the Memory Parameter statistics for action-based, state-based,

and state/action-based memory-enhanced traces, respectively.

Table 8.23: Action-Based Memory Parameters – Human G

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

G DG 0.05 0.05 44 184 89 4

G F1 0.025 0.025 40 218 66 3

G F2 0.05 0.05 43 156 101 4

G G1 0.05 0.05 41 332 127 3

G G2 0.05 0.05 68 363 185 3

G GH 0.05 0.05 52 176 190 3

G GP 0.05 0.05 36 272 99 5

G L 0.025 0.025 43 209 90 4

G R 0.05 0.05 40 192 83 2

G Sn1 0.05 0.05 62 238 138 4

G Sn2 0.05 0.05 55 206 94 2

G Sp1 0.05 0.05 27 192 94 1

G Sp2 0.05 0.05 54 218 115 3

Table 8.23 shows that the number of MFs learned for each scenario ranges from one to four. The

314

default context sizes are relatively large.

Table 8.24: State-Based Memory Parameters – Human G

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

G DG 0.05 0.05 6 251 22 0

G F1 0.05 0.05 34 198 86 2

G F2 0.025 0.025 6 248 9 2

G G1 0.05 0.05 63 263 196 2

G G2 0.025 0.01 1 548 0 0

G GH 0.025 0.01 1 366 0 0

G GP 0.05 0.05 24 264 107 1

G L 0.05 0.05 26 216 83 2

G R 0.025 0.025 10 263 12 7

G Sn1 0.05 0.05 19 308 68 3

G Sn2 0.05 0.05 22 234 66 5

G Sp1 0.05 0.05 2 275 11 0

G Sp2 0.05 0.05 19 220 113 2

For state-based traces (see Table 8.24), we see that the number of memory sets is less than that

for action-based traces. In some cases, the default context size is very small. However, it is

interesting to note that scenario R (Rock) has the most MFs, even though this scenario has no

occluded entities. Perhaps the behavior of Human G relied on memory of previous positions

relative to certain entities.

315

Table 8.25: State/Action-Based Memory Parameters – Human G

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

G DG 0.025 0.01 44 241 32 10

G F1 0.025 0.01 40 247 37 5

G F2 0.025 0.01 43 222 35 11

G G1 0.025 0.01 41 387 72 7

G G2 0.025 0.01 68 443 105 6

G GH 0.025 0.01 52 324 42 8

G GP 0.025 0.01 36 338 33 7

G L 0.025 0.01 43 269 30 8

G R 0.025 0.01 40 239 36 6

G Sn1 0.025 0.01 62 310 66 7

G Sn2 0.025 0.01 55 250 50 5

G Sp1 0.025 0.01 27 268 18 9

G Sp2 0.025 0.01 54 272 61 6

Table 8.25 shows statistics for state/action-based traces. The default context sizes are small, MF

counts are relatively high, the number of memory sets used is comparable to that for action-based

traces, and HF/LF thresholds are as low as possible.

The following MFs were learned for the action-based traces. Value-back MFs for Action for the

previous 1-3 time steps were the most prominent MF. However, a time-back MFs based on upward

or “northward” joystick inputs were also learned.

• DG: t-Action(Nw), t-Action(N), v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2), v-Action(3)

• F2: t-Action(SE), t-Action(sE), v-Action(1), v-Action(2)

316

• G1: v-Action(1), v-Action(2), v-Action(3)

• G2: v-Action(1), v-Action(2), v-Action(3)

• GH: t-Action(n), v-Action(1), v-Action(2)

• GP: t-Action(C), t-Action(e), t-Action(E), v-Action(1), v-Action(2)

• L: t-Action(N), t-Action(Ne), v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: t-Action(C), v-Action(1), v-Action(2), v-Action(3)

• Sn2: v-Action(1), v-Action(2)

• Sp1: v-Action(1)

• Sp2: t-Action(N), v-Action(1), v-Action(2)

The following MFs were learned for state-based traces for Human G.

• DG: none

• F1: t-RockW3Dist(1000.0), t-RockW4Dist(1000.0)

• F2: t-GrassW7Dist(1.0), t-GrassW7Dist(1000.0)

• G1: t-DarkGrassW3Dist(1000.0), t-RockW5Dist(1000.0)

• G2: none

• GH: none

• GP: t-GoldPotW5Dist(1000.0)

317

• L: t-GrassW3Dist(1000.0), t-SnakeW3Dist(1000.0)

• R: t-RockW3Dist(1.8), t-RockW3Dist(2.0), t-RockW3Dist(2.1), t-RockW3Dist(2.300), v-

GrassW0Dist(25), v-RockW3Dist(19), v-RockW3Dist(21)

• Sn1: t-GrassW0Dist(1000.0), t-SnakeW0Dist(1000.0), t-SnakeW0Dist(9.200)

• Sn2: t-ExitState(Off), t-GrassW4Dist(1000.0), t-SnakeW0Dist(1000.0), t-SnakeW0Dist(8.1),

t-SnakeW7Dist(1000.0)

• Sp1: none

• Sp2: t-GrassW0Dist(1000.0), t-GrassW0Dist(3.800)

What is unique about Human G, as compared to the previous humans, is that several time-back

MFs are learned for wedge distance features that are not parameterized with the maximum distance

1000.0 Examples include the time-back MFs for the Wedge 3 Rock distance feature, for values 2.0,

2.1, and 2.3. Other examples include the snake distance feature for the Sn2 scenario and the grass

distance feature for scenario F2. Additionally, a few value-back MFs were also learned for certain

perception features for times as far back as 25 time steps prior to the present.

The following MFs were learned for the state/action-based traces for Human G.

• DG: t-Action(W), t-Action(C), t-Action(E), t-Action(nW), t-Action(ne), t-Action(nE), t-Action(Nw),

t-Action(N), v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• F2: t-Action(C), t-Action(e), t-Action(E), t-Action(nE), t-Action(SE), t-Action(s), t-Action(sE),

v-Action(1), v-Action(2), v-Action(3), v-Action(4)

318

• G1: t-Action(E), t-Action(sE), v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• G2: t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• GH: t-Action(C), t-Action(e), t-Action(E), t-Action(n), t-Action(s), v-Action(1), v-Action(2),

v-Action(3)

• GP: t-Action(C), t-Action(e), t-Action(E), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• L: t-Action(C), t-Action(e), t-Action(E), t-Action(N), t-Action(Ne), t-Action(Se), v-Action(1),

v-Action(2)

• R: t-Action(E), t-Action(Nw), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• Sn1: t-Action(C), t-Action(E), t-Action(n), t-Action(Se), v-Action(1), v-Action(2), v-Action(3)

• Sn2: t-Action(W), t-Action(E), t-Action(NE), v-Action(1), v-Action(2)

• Sp1: t-Action(W), t-Action(E), t-Action(nW), t-Action(nE), t-Action(SE), t-Action(s), t-

Action(sE), v-Action(1), v-Action(2)

• Sp2: t-Action(n), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

Similar to the previous humans, no perception MFs were learned, but several time-back and value-

back MFs were learned. The value-back MFs tracking Action seem to be limited to five time steps

prior to the present. No particular direction emerges and an incredibly prominent joystick value

for the time-back Action MFs.

319

Figure 8.32: LMS Results, Human G, Bayes Net, Cross Validation

Figure 8.33: LMS Results, Human G, Bayes Net, Train/Test Split

Figure 8.32 shows Bayes Net cross validation F1 scores. We can see that there is one instance

320

where the state-based trace does outperform the baseline trace in terms of F1 score (see scenario

Sn2), but it otherwise has equivalent F1 scores to those of baseline traces. The other memory-

enhanced traces have higher F1 scores than the baseline trace, with the state/action-based trace

having the highest score in scenarios F2, GP, GH, R, Sn2, and Sp1 (and having an F1 score that is

approximately equal to that of the hybrid trace for the other scenarios). Similar trends are observed

in the train/test split evaluation, as seen in Figure 8.33. The relatively low F1 scores for the the

G1 and G2 scenarios for baseline traces may indicate chaotic behavior in reaction to the open

environment in these scenarios.

Figure 8.34 shows the J.48 Tree cross validation results for Human G. For the DG, GP, and G2

scenarios, the memory-enhanced traces (except state-based) have a notably higher F1 score than

that for the baseline trace. However, three interesting trends are observed for Human G. In the GH

(Ground Hog) scenario, the action-based and hybrid traces have lower F1 scores than the baseline.

The state-based and state/action-based traces only manage to equal the baseline trace in F1 score.

In the Sn2 scenario, the state-based and state/action-based traces again have approximately the

same F1 score, which exceeds those for the action-based, hybrid, and baseline traces. And finally,

the Sp1 scenario shows the state-based memory-enhanced trace having the highest F1 score out of

all the memory-enhanced traces, which also is roughly equivalent to the baseline trace’s F1 score.

Thus, we have three examples where the state-based memory-enhanced trace can outperform the

other types of memory-enhanced traces. However, this trend is not as readily apparent in the

train/test split evaluation, as seen in Figure 8.35.

321

Figure 8.34: LMS Results, Human G, J.48 Tree, Cross Validation

Figure 8.35: LMS Results, Human G, J.48 Tree, Train/Test Split

322

8.3.4.8 Human L

Tables 8.26, 8.27, and 8.28 show Memory Parameter statistics for action-based, state-based, and

state/action-based memory-enhanced traces for Human L, respectively.

Table 8.26: Action-Based Memory Parameters – Human L

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

L DG 0.025 0.025 59 308 137 3

L F1 0.05 0.05 43 219 94 4

L F2 0.05 0.05 27 156 63 1

L G1 0.05 0.05 46 418 134 3

L G2 0.05 0.05 79 287 305 5

L GH 0.05 0.05 27 207 63 2

L GP 0.05 0.05 40 304 117 2

L L 0.05 0.05 82 226 183 2

L R 0.05 0.05 19 210 40 1

L Sn1 0.05 0.05 47 221 94 2

L Sn2 0.05 0.05 39 258 105 3

L Sp1 0.05 0.05 73 345 213 3

L Sp2 0.05 0.05 40 131 94 3

Table 8.26 shows that HF=0.05 and LF=0.05 are the most common filtering thresholds for the

action-based traces. The number of MFs learned for each scenario range from one to five. Default

context sizes are relatively large in size.

323

Table 8.27: State-Based Memory Parameters – Human L

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

L DG 0.05 0.05 96 173 272 0

L F1 0.05 0.05 63 153 160 1

L F2 0.05 0.05 17 160 59 0

L G1 0.05 0.05 77 295 257 0

L G2 0.05 0.05 25 483 109 8

L GH 0.025 0.01 1 270 0 0

L GP 0.05 0.05 47 224 197 4

L L 0.05 0.05 50 214 195 1

L R 0.025 0.025 4 245 5 1

L Sn1 0.05 0.05 28 237 78 1

L Sn2 0.05 0.05 56 207 156 0

L Sp1 0.05 0.05 36 350 208 1

L Sp2 0.05 0.05 13 180 45 0

Table 8.27 shows that HF=0.05 and LF=0.05 are the most common filtering thresholds for state-

based traces. Interestingly, the lowest HF/LF values are employed for the GH (Ground Hog)

scenario, even though the default context has size 0 and no MFs are learned for that scenario.

324

Table 8.28: State/Action-Based Memory Parameters – Human L

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

L DG 0.025 0.01 59 359 86 6

L F1 0.025 0.01 46 257 56 5

L F2 0.025 0.01 30 195 24 5

L G1 0.025 0.01 46 493 59 5

L G2 0.025 0.01 79 484 108 10

L GH 0.025 0.01 27 246 24 7

L GP 0.025 0.01 40 371 50 5

L L 0.025 0.01 82 318 91 7

L R 0.025 0.01 19 236 14 5

L Sn1 0.025 0.01 47 261 54 5

L Sn2 0.025 0.01 39 327 36 7

L Sp1 0.025 0.01 74 436 122 6

L Sp2 0.025 0.01 40 193 32 8

Table 8.28 possesses the same trends that were observed for the previous humans for state/action-

based traces. The HF and LF levels that resulted in the smallest default context size for the scenario

were employed. The most number of MFs are learned for these traces.

The following MFs were learned for the action-based memory-enhanced traces for Human L. The

majority of them are value-back Action MFs with time-back parameters less than four.

• DG: v-Action(1), v-Action(2), v-Action(3)

• F1: t-Action(w), t-Action(C), v-Action(1), v-Action(2)

• F2: v-Action(1)

325

• G1: v-Action(1), v-Action(2), v-Action(3)

• G2: t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• GH: v-Action(1), v-Action(2)

• GP: v-Action(1), v-Action(2)

• L: v-Action(1), v-Action(2)

• R: v-Action(1)

• Sn1: v-Action(1), v-Action(2)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(S), t-Action(s), v-Action(1)

• Sp2: t-Action(N), t-Action(Ne), v-Action(1)

The following MFs were learned for the state-based traces for Human L. The G2 scenario is notable

for its many MFs, all pertaining to the grass distance feature for Wedge 2 (north east) or Wedge

5 (south west). The time-back MFs track the time since close proximity with a grass patch. The

value-back MFs track the distance to grass patches approximately 2 seconds prior to the present.

• DG: none

• F1: t-FairyW3Dist(1000.0)

• F2: none

• G1: none

326

• G2: t-GrassW2Dist(5.300), t-GrassW5Dist(4.4), t-GrassW5Dist(4.5), v-GrassW2Dist(15),

v-GrassW2Dist(16), v-GrassW2Dist(17), v-GrassW2Dist(24), v-GrassW2Dist(27)

• GH: none

• GP: t-GoldPotW0Dist(1000.0), t-GrassW4Dist(1000.0), t-GrassW6Dist(1000.0), v-RockW6Dist(24)

• L: t-RockW4Dist(1.900)

• R: t-GrassW0Dist(1000.0)

• Sn1: t-SnakeW0Dist(1000.0)

• Sn2: none

• Sp1: t-GrassW0Dist(1000.0)

• Sp2: none

The following MFs were learned for Human L’s state/action-based memory-enhanced traces. A

combination of value-back and time-back MFs based on the Action were learned, but as with the

previous humans, no perception MFs were learned. It is also notable that the time-back MFs are

generally parameterized with joystick values with full-tilt (e.g. N instead of n, S instead of s).

• DG: t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F1: t-Action(w), t-Action(C), t-Action(E), v-Action(1), v-Action(2)

• F2: t-Action(C), t-Action(E), v-RockW7Dist(28), v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• G2: t-Action(Sw), t-Action(S), t-Action(N), t-Action(Ne), t-Action(Se), v-Action(1), v-

Action(2), v-Action(3), v-Action(4), v-Action(5)

327

• GH: t-Action(E), t-Action(n), t-Action(N), t-Action(sE), v-Action(1), v-Action(2), v-Action(3)

• GP: v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• L: t-Action(n), t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• R: t-Action(E), t-Action(S), t-Action(Se), t-Action(sE), v-Action(1)

• Sn1: t-Action(E), t-Action(sE), v-Action(1), v-Action(2), v-Action(3)

• Sn2: t-Action(S), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4), v-Action(5)

• Sp1: t-Action(C), t-Action(e), t-Action(S), t-Action(s), v-Action(1), v-Action(2)

• Sp2: t-Action(C), t-Action(E), t-Action(N), t-Action(Ne), t-Action(sw), t-Action(s), v-Action(1),

v-Action(2)

Figure 8.36: LMS Results, Human L, Bayes Net, Cross Validation

Figure 8.36 shows the Bayes Net cross validation F1 scores. The action-based, state/action-based,

328

and hybrid traces see F1 scores that are higher than that of the baseline traces for every scenario.

A similar trend is generally visible in the train/test split evaluation, as seen in Figure 8.37.

Figure 8.37: LMS Results, Human L, Bayes Net, Train/Test Split

Figure 8.38: LMS Results, Human L, J.48 Tree, Cross Validation

329

The same trends we observed for the Bayes Net results are present for J.48 Tree results in both

the cross validation evaluation (see Figure 8.38) and the train/test split evaluation (see Figure 8.39)

with one exception. In scenario L (Leprechaun), the baseline and state-based trace F1 scores in

the train/test split evaluation are very high compared to F1 scores for those traces in all other

scenarios for that evaluation. What’s interesting is that the memory-enhanced traces (action-based,

state/action-based, and hybrid) did not achieve such high scores, despite having the same feature

values. Thus, the MFs in those traces were responsible for diminishing the F1 score for those

traces. It is possible that Human L’s behavior during the test portion of the evaluation was largely

different from that for the training portion.

Figure 8.39: LMS Results, Human L, J.48 Tree, Train/Test Split

8.3.4.9 Human P

Tables 8.29, 8.30, and 8.31 show Memory Parameter statistics for Human P’s action-based, state-

based, and state/action-based memory-enhanced traces, respectively.

330

Table 8.29: Action-Based Memory Parameters – Human P

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

P DG 0.05 0.05 36 242 81 4

P F1 0.025 0.025 42 310 80 3

P F2 0.05 0.05 26 216 65 2

P G1 0.025 0.025 63 421 135 3

P G2 0.05 0.05 61 365 179 3

P GH 0.05 0.05 45 234 90 1

P GP 0.05 0.05 36 273 95 2

P L 0.05 0.05 32 274 73 2

P R 0.05 0.05 22 212 44 2

P Sn1 0.05 0.05 48 283 96 3

P Sn2 0.05 0.05 50 328 140 2

P Sp1 0.05 0.05 27 318 76 4

P Sp2 0.05 0.05 38 297 76 3

In Table 8.29, we observe typical HF/LF parameter values for action-based traces. The MF counts

for each scenario are also relatively low. However, the default context sizes are also relatively

small when compared to the sizes observed for the previous humans.

331

Table 8.30: State-Based Memory Parameters – Human P

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

P DG 0.05 0.05 83 153 170 0

P F1 0.05 0.05 52 208 182 1

P F2 0.05 0.05 51 134 147 0

P G1 0.05 0.05 61 317 239 1

P G2 0.025 0.01 13 523 21 11

P GH 0.05 0.05 32 214 110 1

P GP 0.05 0.05 54 231 137 0

P L 0.05 0.05 33 251 96 2

P R 0.05 0.05 10 230 26 0

P Sn1 0.05 0.05 42 228 151 0

P Sn2 0.05 0.05 26 354 114 1

P Sp1 0.05 0.05 80 216 178 2

P Sp2 0.05 0.05 17 307 66 4

Table 8.30 also shows typical HF/LF parameter values for state-based traces. The MF counts are

also low, as was also observed for the previous humans. However the variance in the default context

size is high among the scenarios, ranging from 21 cases (scenario G2) to 239 cases (scenario G1).

332

Table 8.31: State/Action-Based Memory Parameters – Human P

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

P DG 0.025 0.01 36 286 37 6

P F1 0.025 0.01 42 343 47 4

P F2 0.025 0.01 27 258 23 6

P G1 0.025 0.01 63 459 97 4

P G2 0.025 0.01 61 458 86 5

P GH 0.025 0.01 45 273 51 3

P GP 0.025 0.01 36 328 40 6

P L 0.025 0.01 32 312 35 5

P R 0.025 0.01 22 235 21 3

P Sn1 0.025 0.01 48 322 57 5

P Sn2 0.025 0.01 50 402 66 6

P Sp1 0.025 0.01 29 359 35 7

P Sp2 0.025 0.01 38 330 43 4

Table 8.31 shows the typical trends for state/action-based traces. The HF/LF parameter values

are low. Default context sizes are small. MF counts are higher than those for the state-based or

action-based traces.

The MFs learned for Human P’s action-based traces are listed below.

• DG: t-Action(SE), t-Action(sE), v-Action(1), v-Action(2)

• F1: v-Action(1), v-Action(2), v-Action(3)

• F2: v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3)

333

• G2: v-Action(1), v-Action(2), v-Action(3)

• GH: v-Action(1)

• GP: v-Action(1), v-Action(2)

• L: v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: v-Action(1), v-Action(2), v-Action(3)

• Sn2: v-Action(1), v-Action(2)

• Sp1: t-Action(SE), t-Action(sE), v-Action(1), v-Action(2)

• Sp2: v-Action(1), v-Action(2), v-Action(3)

In addition to the typical value-back Action MFs that have been observed in the action-based

traces of the previous humans, we observe that the southeast (down/left) joystick inputs are the

value parameters of four time-back Action MFs (see scenarios DG and Sp1).

The following MFs were learned for the state-based traces for Human P:

• DG: none

• F1: t-FairyW2State(Wait)

• F2: none

• G1: t-RockW4Dist(1000.0)

• G2: t-GrassW1Dist(3.7), t-GrassW1Dist(3.900), t-GrassW6Dist(2.900), t-GrassW6Dist(3.0),

t-GrassW6Dist(3.1), t-GrassW6Dist(3.6), t-GrassW6Dist(3.800), v-GrassW1Dist(19), v-GrassW1Dist(22),

v-GrassW1Dist(23), v-GrassW1Dist(24)

334

• GH: t-GrHogW2Dist(0.8)

• GP: none

• L: t-GrassW4Dist(1000.0), t-GrassW6Dist(1000.0)

• R: none

• Sn1: none

• Sn2: t-GrassW4Dist(1000.0)

• Sp1: t-GrassW7Dist(1000.0), t-SprinklerW7Dist(1000.0)

• Sp2: t-GrassW0Dist(5.0), t-SprinklerW2Dist(1000.0), t-SprinklerW5Dist(1000.0), t-SprinklerW7Dist(3.5)

Several MFs in the G2 are used to track grass patches in Wedges 1 and 6 (northeast and northwest,

respectively). We can see that it has taken several MFs to track essentially the same time-back

parameter (e.g. t-GrassW6Dist(3.1), t-GrassW6Dist(3.6), t-GrassW6Dist(3.800) all track the time

since the distance to a grass patch in Wedge 6 was around 3). This suggests that discretization

may have been too fine-grained for this behavior, necessitating multiple MFs to convey a single

memory influences.

The following MFs were learned for Human P’s state/action-based traces.

• DG: t-Action(SE), t-Action(sE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F2: t-Action(E), t-Action(nE), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

335

• G2: t-Action(S), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• GH: t-Action(S), v-Action(1), v-Action(2)

• GP: t-Action(Sw), t-Action(S), t-Action(Se), v-Action(1), v-Action(2), v-Action(3)

• L: t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• R: v-Action(1), v-Action(2), v-Action(3)

• Sn1: t-Action(S), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sn2: t-Action(E), t-Action(nE), t-Action(SE), v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(SW), t-Action(Se), t-Action(SE), t-Action(sE), v-Action(1), v-Action(2), v-

Action(3)

• Sp2: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

Similar to what was observed for previous humans’ state/action-based traces, no perception MFs

were learned and a combination of value-back MFs (with small time-back parameters) and time-

back MFs were learned.

Figure 8.40 shows the Bayes Net cross validation F1 scores. In every scenario, the action-based,

state/action-based, and hybrid traces had F1 scores that exceeded those for the baseline traces. In

about half of those scenarios, the state/action-based trace had the highest F1 score and the hybrid

trace (tied with the action-based trace) had the highest score in the other half of those scenarios.

Similar trends are observed in the train/test split evaluation, as seen in Figure 8.41. In Figure 8.41,

we also note that F1 scores for for the Sn1 scenario were almost 0, but that scores for action-based,

state/action-based, and hybrid traces were much higher. This could indicate a switch from behavior

based on perception memory influences to that based on action memory influences partway through

the scenario.

336

Figure 8.40: LMS Results, Human P, Bayes Net, Cross Validation

Figure 8.41: LMS Results, Human P, Bayes Net, Train/Test Split

337

Figure 8.42: LMS Results, Human P, J.48 Tree, Cross Validation

Figure 8.43: LMS Results, Human P, J.48 Tree, Train/Test Split

Figure 8.42 shows the J.48 Decision Tree cross validation results. Except for scenario R (where

338

all traces had roughly the same F1 score), the memory-enhanced traces (except state-based) had

F1 scores that exceeded the baseline trace F1 scores across all scenarios. This trend is generally

present in the train/test split evaluation, except for the F1 scenario where the state-based trace

actually has the highest F1 score by a small margin (see Figure 8.43).

8.3.4.10 Human T

Tables 8.32, 8.33, and 8.34 show Memory Parameter statistics for action-based, state-based, and

state/action-based memory-enhanced traces for Human T, respectively.

Table 8.32: Action-Based Memory Parameters – Human T

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

T DG 0.05 0.05 22 183 56 1

T F1 0.05 0.05 40 213 80 2

T F2 0.05 0.05 27 195 54 4

T G1 0.05 0.05 43 335 110 2

T G2 0.05 0.05 77 262 238 4

T GH 0.05 0.05 55 212 116 2

T GP 0.05 0.05 57 275 130 2

T L 0.05 0.05 78 267 186 3

T R 0.05 0.05 29 202 59 2

T Sn1 0.05 0.05 60 279 231 2

T Sn2 0.05 0.05 50 312 139 3

T Sp1 0.05 0.05 54 368 225 2

T Sp2 0.05 0.05 59 262 166 5

In Table 8.32, we see typical HF=0.05 and LF=0.05 threshold values. The MF counts for each

scenario are also low and the default context sizes are relatively high.

339

Table 8.33: State-Based Memory Parameters – Human T

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

T DG 0.05 0.05 23 171 68 1

T F1 0.05 0.05 46 163 130 0

T F2 0.05 0.05 23 169 80 2

T G1 0.025 0.025 64 275 170 0

T G2 0.05 0.05 17 425 75 3

T GH 0.05 0.05 32 255 73 0

T GP 0.05 0.05 31 283 122 0

T L 0.05 0.05 59 251 202 6

T R 0.05 0.05 12 223 38 0

T Sn1 0.05 0.05 57 245 265 0

T Sn2 0.05 0.05 44 282 169 2

T Sp1 0.05 0.05 59 384 209 2

T Sp2 0.05 0.05 43 205 223 8

In Table 8.33, the HF and LF thresholds are usually set to 0.05 to get the smallest default context.

However, the default context sizes are still relatively large, even though they have been smaller for

other humans. Also, the MF counts range from 0 all the way to 8.

340

Table 8.34: State/Action-Based Memory Parameters – Human T

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

T DG 0.025 0.01 22 223 16 6

T F1 0.025 0.01 38 256 37 5

T F2 0.025 0.01 27 225 24 5

T G1 0.025 0.01 43 367 78 4

T G2 0.025 0.01 77 399 101 8

T GH 0.025 0.01 55 272 56 6

T GP 0.025 0.01 57 338 67 5

T L 0.025 0.01 78 361 92 6

T R 0.025 0.01 29 240 21 6

T Sn1 0.025 0.01 60 423 87 9

T Sn2 0.025 0.01 50 388 63 6

T Sp1 0.025 0.01 58 516 77 7

T Sp2 0.025 0.01 59 347 81 9

Table 8.34 shows the statistics for state/action-based traces. The smallest default context sizes are

achieved with the lowest possible HF and LF alues. The MF counts are high and the default context

sizes are generally low.

The following MFs were learned for the action-based memory-enhanced traces for Human T.

Value-back MFs for Action at time-back values of 1 and 2 were the most common. Some time-

back Action MFs were learned, especially for the the motionless (C) and downward (south or S)

joystick inputs.

• DG: v-Action(1)

• F1: v-Action(1), v-Action(2)

341

• F2: t-Action(w), t-Action(C), v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2)

• G2: t-Action(S), v-Action(1), v-Action(2), v-Action(3)

• GH: v-Action(1), v-Action(2)

• GP: v-Action(1), v-Action(2)

• L: t-Action(C), v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: v-Action(1), v-Action(2)

• Sn2: v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(C), v-Action(1)

• Sp2: t-Action(w), t-Action(C), t-Action(s), v-Action(1), v-Action(2)

The following MFs were learned for Human T’s state-based memory-enhanced traces.

• DG: t-GrassW2Dist(1000.0)

• F1: none

• F2: t-FairyW4Dist(1000.0), t-GrassW4Dist(1.3)

• G1: none

• G2: t-GrassW6Dist(2.2), t-GrassW6Dist(2.400), v-GrassW1Dist(71)

• GH: none

342

• GP: none

• L: t-GrassW0Dist(1000.0), t-GrassW4Dist(1000.0), t-GrassW6Dist(1000.0), t-RockW6Dist(1000.0),

t-SnakeW2Dist(8.6), t-SnakeW2Dist(8.8)

• R: none

• Sn1: none

• Sn2: t-SnakeW4Dist(1000.0), v-GrassW4Dist(19)

• Sp1: t-GrassW5Dist(1000.0), t-GrassW5Dist(6.100)

• Sp2: t-GrassW4Dist(1000.0), t-GrassW5Dist(1000.0), t-GrassW5Dist(0.700), t-GrassW7Dist(4.0),

t-SprinklerW0Dist(5.0), t-SprinklerW3Dist(1000.0), v-GrassW1Dist(76), v-SprinklerW0Dist(77)

Several MFs based on wedge distance features were parameterized with the maximum distance

value 1000.0, but some were parameterized with smaller values. A couple value-back MFs (one in

the G2 scenario, two in the Sp2 scenario) were also created, tracking the distance to objects above

the lawn mower from approximately seven seconds prior to the present time step.

The following MFs were learned for Human T’s state/action-based traces.

• DG: t-Action(E), t-Action(Nw), t-Action(N), t-Action(Ne), v-Action(1), v-Action(2)

• F1: t-Action(C), t-Action(e), v-Action(1), v-Action(2), v-Action(3)

• F2: t-Action(w), t-Action(C), t-Action(E), v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G2: t-Action(S), t-Action(N), t-Action(se), v-Action(1), v-Action(2), v-Action(3), v-Action(4),

v-Action(5)

343

• GH: t-Action(E), t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• GP: t-Action(E), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• L: t-Action(C), t-Action(e), t-Action(Se), v-Action(1), v-Action(2), v-Action(3)

• R: t-Action(Nw), t-Action(N), t-Action(NE), v-Action(1), v-Action(2), v-Action(3)

• Sn1: t-Action(C), t-Action(e), t-Action(E), t-Action(nE), t-Action(se), v-Action(1), v-Action(2),

v-Action(3), v-Action(4)

• Sn2: t-Action(C), t-Action(Nw), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(w), t-Action(C), t-Action(e), t-Action(n), v-Action(1), v-Action(2), v-Action(3)

• Sp2: t-Action(w), t-Action(C), t-Action(nw), t-Action(n), t-Action(s), v-Action(1), v-Action(2),

v-Action(3), v-Action(4)

No perception MFs are learned. Instead several value-back and time-back MFs are learned for

each scenario.

Figure 8.44 shows the Bayes Net cross validation F1 scores. Except for state-based traces, the

memory-enhanced traces had higher F1 scores than the baseline trace, especially in the G1 and

G2 scenarios (Grass Test and Grass Train levels). This trend is also evident in the train/test split

evaluation, seen in Figure 8.45.

Figure 8.46, which shows the J.48 Decision Tree cross validation F1 scores, shows the same trends

as those observed for the Bayes Net results, except for the Sn1 (Snake 1) scenario where the

baseline and state-based traces have a tied F1 score that exceeds those for the other memory-

enhanced traces. However, that second trend is not seen in the train/test split evaluation, as seen in

Figure 8.47.

344

Figure 8.44: LMS Results, Human T, Bayes Net, Cross Validation

Figure 8.45: LMS Results, Human T, Bayes Net, Train/Test Split

345

Figure 8.46: LMS Results, Human T, J.48 Tree, Cross Validation

Figure 8.47: LMS Results, Human T, J.48 Tree, Train/Test Split

346

8.3.4.11 Human W

Tables 8.35, 8.36, and 8.37 show the Memory Parameter statistics for action-based, state-based,

and state/action-based memory-enhanced traces for Human W, respectively.

Table 8.35: Action-Based Memory Parameters – Human W

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

W DG 0.05 0.05 67 294 153 3

W F1 0.05 0.05 59 284 116 3

W F2 0.05 0.05 33 169 69 2

W G1 0.05 0.05 70 402 165 3

W G2 0.05 0.05 61 388 175 4

W GH 0.05 0.05 55 260 95 2

W GP 0.05 0.05 48 322 128 4

W L 0.05 0.05 44 204 128 3

W R 0.025 0.025 32 231 57 2

W Sn1 0.025 0.025 43 236 79 3

W Sn2 0.05 0.05 55 231 128 2

W Sp1 0.05 0.05 69 342 300 2

W Sp2 0.05 0.05 64 285 114 4

In Table 8.35, the HF=0.05 and LF=0.05 are the most common threshold values. The default

context sizes are still relatively high. The MF counts range from 2 to 4.

347

Table 8.36: State-Based Memory Parameters – Human W

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

W DG 0.05 0.05 30 308 139 4

W F1 0.05 0.05 40 257 143 3

W F2 0.05 0.05 20 165 73 2

W G1 0.05 0.05 66 270 297 0

W G2 0.025 0.025 15 515 48 0

W GH 0.05 0.05 5 334 21 1

W GP 0.05 0.05 33 323 127 0

W L 0.05 0.05 20 268 64 2

W R 0.05 0.05 13 223 65 0

W Sn1 0.05 0.05 20 247 68 2

W Sn2 0.05 0.05 24 260 99 0

W Sp1 0.05 0.05 30 444 198 2

W Sp2 0.05 0.05 27 274 125 6

Table 8.36 shows the statistics for state-based traces. The MF counts range from 0 to 6. Default

context sizes vary from 21 cases(GH scenario) to 297 cases (G1 scenario). HF=0.05 and LF=0.05

are the most common threshold values.

348

Table 8.37: State/Action-Based Memory Parameters – Human W

Person Scenario HF LF Set Count Mem Cases Default Cases MF Count

W DG 0.025 0.01 67 367 80 7

W F1 0.025 0.01 59 336 64 6

W F2 0.025 0.01 33 211 27 9

W G1 0.025 0.01 70 455 112 4

W G2 0.025 0.01 61 467 96 7

W GH 0.025 0.01 55 290 65 3

W GP 0.025 0.01 48 396 54 7

W L 0.025 0.01 44 278 54 9

W R 0.025 0.01 32 259 29 4

W Sn1 0.025 0.01 43 270 45 5

W Sn2 0.025 0.01 55 290 69 6

W Sp1 0.025 0.01 69 546 96 8

W Sp2 0.025 0.01 64 327 72 5

Table 8.37 shows that HF and LF assume the lowest values possible. The default context sizes are

small and the MF counts are higher than those for action-based and state-based traces for Human

W.

The following MFs were learned for the action-based memory-enhanced traces for Human W. The

majority of them are value-back Action MFs with time-back parameter values less than four.

• DG: v-Action(1), v-Action(2), v-Action(3)

• F1: v-Action(1), v-Action(2), v-Action(3)

• F2: v-Action(1), v-Action(2)

349

• G1: v-Action(1), v-Action(2), v-Action(3)

• G2: t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• GH: v-Action(1), v-Action(2)

• GP: t-Action(e), t-Action(E), v-Action(1), v-Action(2)

• L: t-Action(N), v-Action(1), v-Action(2)

• R: v-Action(1), v-Action(2)

• Sn1: v-Action(1), v-Action(2), v-Action(3)

• Sn2: v-Action(1), v-Action(2)

• Sp1: t-Action(C), v-Action(1)

• Sp2: t-Action(N), v-Action(1), v-Action(2), v-Action(3)

The following MFs were learned for the state-based memory-enhanced traces for Human W. Sev-

eral time-back MFs based on wedge distance features used maximum distance 1000.0 for the value

parameter, but some used smaller numbers.

• DG: t-DarkGrassW3Dist(3.300), t-DarkGrassW3Dist(3.5), t-DarkGrassW4Dist(1000.0), t-

DarkGrassW7Dist(1000.0)

• F1: t-FairyW3State(Peek), t-FairyW4Dist(1000.0), t-RockW4Dist(1000.0)

• F2: t-FairyW3Dist(1000.0), t-GrassW7Dist(1000.0)

• G1: none

• G2: none

350

• GH: t-GrassW2Dist(8.6)

• GP: none

• L: t-GrassW3Dist(1000.0), t-RockW4Dist(2.5)

• R: none

• Sn1: t-SnakeW0Dist(1000.0), t-BarrierW4Dist(4.4)

• Sn2: none

• Sp1: t-GrassW5Dist(1000.0), t-SprinklerW5Dist(1000.0)

• Sp2: t-BarrierW0Dist(3.300), t-GrassW3Dist(1000.0), t-GrassW4Dist(1000.0), t-SprinklerW2Dist(1000.0),

t-SprinklerW4State(Spray), t-SprinklerW5Dist(1000.0)

The following MFs were learned for the state/action-based memory-enhanced traces for Human W.

As observed with the previous humans, no perception MFs were learned, but rather a combination

of value-back and time-back Action MFs.

• DG: t-Action(C), t-Action(e), t-Action(E), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F1: t-Action(e), t-Action(E), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• F2: t-Action(C), t-Action(e), t-Action(E), t-Action(n), t-Action(ne), t-Action(nE), t-Action(NE),

v-Action(1), v-Action(2)

• G1: v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• G2: t-Action(S), t-Action(N), t-Action(Se), t-Action(SE), v-Action(1), v-Action(2), v-Action(3)

• GH: t-Action(N), v-Action(1), v-Action(2)

351

• GP: t-Action(e), t-Action(E), t-Action(n), t-Action(N), v-Action(1), v-Action(2), v-Action(3)

• L: t-Action(w), t-Action(C), t-Action(e), t-Action(E), t-Action(n), t-Action(N), v-Action(1),

v-Action(2), v-Action(3)

• R: t-Action(NE), v-Action(1), v-Action(2), v-Action(3)

• Sn1: t-Action(S), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

• Sn2: t-Action(C), t-Action(e), t-Action(E), v-Action(1), v-Action(2), v-Action(3)

• Sp1: t-Action(C), t-Action(n), t-Action(nE), t-Action(N), t-Action(Ne), t-Action(s), v-Action(1),

v-Action(2)

• Sp2: t-Action(N), v-Action(1), v-Action(2), v-Action(3), v-Action(4)

Figure 8.48 show the Bayes Net cross validation F1 scores for Human W’s traces. We observe

that state-based traces had F1 scores that are approximately equivalent to those of the baseline

traces, but the other memory-enhanced traces had higher F1 scores for all scenarios. This was also

observed in the train/test split evaluation, as seen in Figure 8.49. However, the F1 scores for the

GP (Gold Pot) scenario for Human W were unusually high, which is perhaps evidence of Human

W behaving extremely consistently throughout the trace.

Figure 8.50 and Figure 8.51 show J.48 Decision Tree F1 scores for cross validation and train/test

split evaluations, respectively. The action-based, state/action-based, and hybrid traces generally

had higher F1 scores than the baseline traces, with the exception being the Sn1 scenario (where the

scores were slightly worse for both evaluations) and the F2 scenario in the train/test split evaluation

(where the scores were roughly the same). Another interesting observation is that the state-based

memory-enhanced trace had the highest cross validation F1 score in the Sp2 scenario, which also

exceeded the baseline trace F1 score.

352

Figure 8.48: LMS Results, Human W, Bayes Net, Cross Validation

Figure 8.49: LMS Results, Human W, Bayes Net, Train/Test Split

353

Figure 8.50: LMS Results, Human W, J.48 Tree, Cross Validation

Figure 8.51: LMS Results, Human W, J.48 Tree, Train/Test Split

354

8.3.4.12 Comparison with Temporal Backtracking

This section compares the results of using supervised learning with memory-enhanced traces gen-

erated by MCLvN with those of standard Temporal Backtracking [20]. For each human and sce-

nario, we compare the F1 scores generated by the following algorithms, using 10-fold cross vali-

dation:

• J.48 Tree, trained on the state/action-based (STAC) memory-enhanced trace from MCL (de-

noted “Stac CV-J48”).

• Bayes Net (BN), trained on the state/action-based (STAC) memory-enhanced trace from

MCL (denoted “Stac CV-BayesNet”).

• Temporal Backtracking (TB), trained on the original baseline trace (denoted “Base-Tb”).

• TB, trained on the STAC memory-enhanced trace (denoted “Stac-Tb”). We wanted to see if

TB could benefit from the MFs learned by MCL.

Figures 8.52, 8.53, 8.54, 8.55, 8.56, 8.57, 8.58, 8.59, 8.60, 8.61, and 8.62 show the results of this

comparison for Humans AJ, AK, AW, CA, CH, D, G, L, P, T, and W, respectively.

355

Figure 8.52: LMS Results, Human AJ, Cross Validation, Cross-Methods Comparison

In Figure 8.52, we observe that in all scenarios except the Rock (R) scenario for Human AJ, the

J.48 learner with STAC traces had the best performance. The second observation we see is that the

F1 score for TB on the original traces generally had the worst performance for all scenarios. The

third observation we see is that TB’s F1 score when using the STAC traces is always above that of

TB on the baseline traces. In certain instances, TB with STAC traces will outperform the Bayes

Net learner (with STAC traces), namely in the Fairy 2 (F2) and Leprechaun (L) scenarios, but it

generally did not achieve F1 scores as high as those for the Bayes Net and J.48 tree learners.

356

Figure 8.53: LMS Results, Human AK, Cross Validation, Cross-Methods Comparison

Figure 8.54: LMS Results, Human AW, Cross Validation, Cross-Methods Comparison

In Figure 8.53, we see the results for Human AK. We observe that the F1 scores for TB with STAC

357

traces are higher than those for TB with baseline traces across all scenarios. In the F1, GH, R, Sp1,

and Sp2 scenarios, the F1 score for TB (STAC traces) can outperform either Bayes Net or J.48

tree, but never both for the same scenario. In all but one scenario (F1), J.48 tree with STAC traces

has the highest F1 score.

In Figure 8.54, we see the results for Human AW. We observe that J.48 tree has the highest F1

score in all scenarios. Bayes Net generally has the next highest score, but in the F2, L, and R

scenarios, TB with STAC traces has a higher score. TB with baseline traces has the lowest score

in all scenarios.

In Figure 8.55, we see the results for Human CA. Except for the G2 scenario, J.48 tree has the

highest F1 score. In the F2 and Sp2 scenarios, TB with STAC traces has a higher F1 score than

that of the Bayes Net learner, but the Bayes Net learner has the higher score in the other scenarios.

Once again, TB with baseline traces has the lowest F1 score in all scenarios.

Figure 8.55: LMS Results, Human CA, Cross Validation, Cross-Methods Comparison

358

Figure 8.56: LMS Results, Human CH, Cross Validation, Cross-Methods Comparison

In Figure 8.56, we see the results for Human CH. In all scenarios, J.48 tree has the highest F1

score, followed by Bayes Net, followed by TB with STAC traces, followed lastly by TB on the

baseline traces.

In Figure 8.57, we see the results for Human D. Except in the Rock (R) scenario, J.48 tree has the

highest F1 score. The Bayes Net learner has the second highest F1 score in all scenarios except F2

and GP. TB with STAC traces always has a higher F1 score than that of TB with baseline traces.

Notably, TB with baseline traces has a roughly equivalent score to the Bayes Net learner in the F2

scenario.

359

Figure 8.57: LMS Results, Human D, Cross Validation, Cross-Methods Comparison

Figure 8.58: LMS Results, Human G, Cross Validation, Cross-Methods Comparison

Figure 8.58 shows the results for Human G. One notable result is seen in the Sp1 scenario, where

360

TB with the STAC trace has a F1 score that is roughly equivalent to those of the Bayes Net and

J.48 tree learners. In the Sn1 scenario, TB with STAC outperforms Bayes Net, but not J.48. It

performs similarly to Bayes Net in the DG, F2, and L scenarios. However, the typical trend is that

TB F1 scores (both with STAC and baseline traces) are generally lower than those for the J.48 and

Bayes Net learners.

Figure 8.59 shows the results for Human L. We observe the common trend of TB with STAC traces

having a higher F1 score than TB with baseline traces; we also observe the trend of the J.48 tree

and Bayes Net learners generally having higher F1 scores than TB with STAC, though TB with

STAC performs similarly to Bayes Net in the Sp2 and F2 scenarios.

Figure 8.59: LMS Results, Human L, Cross Validation, Cross-Methods Comparison

361

Figure 8.60: LMS Results, Human P, Cross Validation, Cross-Methods Comparison

Figure 8.61: LMS Results, Human T, Cross Validation, Cross-Methods Comparison

Figure 8.60 shows the results for Human P. Similar to Human CH, the J.48 tree has the highest F1

362

score, followed by Bayes Net, followed by TB with STAC traces, followed by TB with baseline

traces across all scenarios.

Figure 8.61 shows the results for Human T. The scenarios in which the results deviate from the

common trends seen for the other humans include scenario R, where TB with the STAC trace

outperforms Bayes Net and performs similarly to J.48 tree, and scenario Sp2 where Bayes Net has

the lowest F1 score (even lower than TB with the baseline trace).

Figure 8.62 shows the results for Human W. For the F1, F2, and R scenarios, TB with STAC traces

has a higher F1 score than the Bayes Net learner. For all other scenarios, TB with STAC traces has

a lower F1 score than Bayes Net, though it has a higher F1 score than TB with the baseline traces.

Also, J.48 tree has the highest F1 score for all scenarios except scenario G2.

Figure 8.62: LMS Results, Human W, Cross Validation, Cross-Methods Comparison

363

Figure 8.63: LMS Results, Human W, Cross Validation, Cross-Methods Comparison

Figure 8.63 shows the F1 scores for each learner, averaged over all humans for each scenario.

These overall results exemplify the general trends that we have seen across learning methods,

which are summarized here:

1. In general, the J.48 tree learner seemed to achieve the highest performance when using the

STAC memory-enhanced traces.

2. Temporal Backtracking, when using the original/baseline traces, did not achieve F1 scores

as high as those of the learners which used the STAC traces generated by MCL.

3. Temporal Backtracking sees an increase in F1 score when using the STAC traces instead

of the original/baseline traces. These F1 scores typically do not exceed those for the J.48

tree and Bayes Net learners, which are reactive learners. However, TB with STAC traces can

sometimes achieve performance as good as that of the Bayes Net learner in certain scenarios.

364

We have thus shown that MCL advances the state of the art, allowing standard supervised learning

to use memory-enhanced traces to achieve learning performance that is both better than its own

when using the original memoryless traces and that is comparable to (and generally better than)

Temporal Backtracking, a memory-based CBR LfO algorithm. We now discuss overall results of

MCLvN for the lawn mower domain.

8.3.4.13 Overall Results

This section presents the overall results for the learning performance F1 scores, averaged over all

humans. We also discuss common trends that were observed over all humans.

The following is a summary of the memory-based behaviors that were facilitated by each scenario

in LMS.

• Dark Grass (DG): In this level, dark grass patches look the same both mowed and uncut. The

human must remember which patches were already mowed.

• Fairy 1/2 (F1 and F2): In these levels, fairies restore all health, but follow a finite state

machine. To utilize a fairy, the human must remember which part of the behavior sequence

the fairy is in.

• Gold Pot (GP): In this level, a gold pot restores one health point. It reveals itself once, then

may be hidden by grass. The human must remember where gold pots were sighted.

• Grass Test (G1): This level combines grass, dark grass, and rocks in one level.

• Grass Train (G2): This level features many grass patches, which each can be mowed once.

No significant memory is required.

365

• Ground Hog (GH): Ground hogs damage the lawn mower. They reveal themselves, then hide

under grass. The human must remember ground hog sightings and avoid those locations.

• Leprechaun (L): Leprechauns can move. They restore one health point, but are invisible

when moving through grass. The human must remember the Leprechauns’ direction and last

sighting to predict/infer their location.

• Rock (R): Rocks damage the lawn mower upon contact. They are always visible and do not

require significant memory.

• Snake 1/2 (Sn1 and Sn2): Snakes can move. They damage the lawn mower and are invisi-

ble when moving through grass. The human must remember the snakes’ direction and last

sighting to predict/infer their location.

• Sprinkler 1/2 (Sp1 and Sp2): Sprinklers damage the lawn mower within an area of effect,

but they follow a finite state machine. To safely proceed past a sprinkler, the human must

remember which part of its behavioral sequence a sprinkler is in.

Table 8.38 shows the LMS scenarios, from lowest baseline F1 score to highest baseline F1 score.

The Rock (R) scenario has the highest score. It also has no memory-based entities – its primary

purpose was to serve as a soft tutorial showing the human that rocks cause damage. The Grass

Train (G2) scenario has the lowest score. Even though it has no explicit memory-based entities

(just grass), it is potentially one of the longest scenarios and has potentially the one of the largest

number of entities – it essentially serves as a soft tutorial and initial practice session for controlling

the lawn mower with a joystick.

366

Table 8.38: Baseline F1 scores

BN Scenario BN F1 J48 Scenario J48 F1

G2 0.27 G2 0.54

GH 0.38 DG 0.59

DG 0.41 GH 0.60

Sn2 0.42 Sn2 0.60

F1 0.49 F1 0.62

G1 0.50 G1 0.63

Sn1 0.51 Sn1 0.63

L 0.54 L 0.66

GP 0.63 GP 0.70

F2 0.68 F2 0.73

Sp1 0.68 Sp1 0.73

Sp2 0.69 Sp2 0.73

R 0.77 R 0.79

Dark Grass (DG), Ground Hog (GH), and Snake 2 (Sn2) are the scenarios with the next lowest

baseline F1 scores. The DG scenario is unique in that the entities requiring memory change state,

but remain visible. In contrast, the ground hogs in GH and the snakes in Sn2 change visibility.

In other words, dark grass patches appear to remain the same and memory of their actual state is

required, but ground hogs (and snakes) appear to cease to exist and memory of their actual location

is required. The latter type of memory is also used for other memory-based entities.

367

Figure 8.64: LMS Results, Human Overall, Bayes Net, Cross Validation

Figure 8.65: LMS Results, Human Overall, J.48 Tree, Cross Validation

Figure 8.64 shows the average F1 scores for each scenario for the baseline traces and the four types

368

of memory-enhanced traces, under the cross validation evaluation of the Bayes Net learner. Figure

8.65 shows the average F1 scores for each scenario for the cross validation evaluation of the J.48

Decision Tree learner.

We note the following observations:

1. In all scenarios, the F1 score for the state-based memory-enhanced trace is roughly equiva-

lent to that of the baseline trace. (Again, this analysis is made using absolute comparisons,

not statistical analysis.)

2. The action-based, state/action-based, and hybrid memory-enhanced traces, based on an ab-

solute comparison, on average have higher F1 scores than the baseline trace F1 score in the

majority of the scenarios. (The increase is very small for the Rock scenario.) The F1 score

increases are more pronounced in the Bayes Net results.

3. If the scenarios are ordered by F1 score on a memory-enhanced trace (excluding state-based

trace), then the order will be approximately the same as the scenario order for F1 scores on

baseline traces.

4. In several scenarios, the state/action-based traces have the highest F1 score out of all the

memory-enhanced traces for a given scenario.

369

Figure 8.66: LMS Results, Human Overall, Bayes Net, Train/Test Split

Figure 8.67: LMS Results, Human Overall, J.48 Tree, Train/Test Split

For our discussion, we reiterate the caveats to our results. First, results for stochastic learners

370

(e.g. Bayes Net) are computed for only a single trial instead of averaged over multiple runs.

Second, learning results for a given human in a given scenario are only computed for the human’s

last attempt on the scenario, and so no statistical analysis is performed. Comparisons between

results are based on an absolute comparison only. We also note here that even though we present

and analyze results that are aggregated across all humans, MCL is geared toward modeling the

memory influences for a specific observed actor, not the memory influences across actors for a

given task. Furthermore, our use of only 11 human subjects in the LMS domain does not allow for

strong statistical power. To perform an effective power analysis or to prove statistical significance

for a claim that MCL improves learning performance for all humans in general for the lawn mower

domain, more human subject testing is recommended.

Figure 8.66 shows the average F1 scores for each scenario for the train/test split evaluation of the

Bayes Net learner. Figure 8.67 shows the average F1 scores for for each scenario for the train/test

split evaluation of the J.48 Decision Tree learner. From these graphs, we note the following obser-

vations:

1. The memory-enhanced traces (except the state-based variant) still result in improved F1

scores across all scenarios.

2. The improvements in F1 score are more pronounced in the Bayes Net results.

3. The scenarios, ordered by F1 score on memory-enhanced traces, will be ordered largely in

the same way as they would be if they were ordered by baseline F1 score.

During our analysis of the results for the individual humans, the following trends were observed:

1. For action-based memory-enhanced traces, the number of MFs learned by MCL is relatively

low and the default context size is relatively high.

371

2. For state-based memory-enhanced traces, the number of MFs learned by MCL is even lower

than that for action-based memory-enhanced traces.

3. For state/action-based memory-enhanced traces, the default context size is generally small.

This is achieved through very low High Filter (HF) and Low Filter (LF) thresholds. The MF

count is relatively high in general.

4. The learned MFs for action-based memory-enhanced traces will mostly be value-back.

5. The learned MFs for state-based memory-enhanced traces will typically take one of two

forms. Either it will track the time since a distance was last at its maximum value or it will

track the time since a distance was nearly zero. Nominal features will very rarely be the

basis of learned perception MFs. This trend could be an artifact of the lawn mower domain

in that the mere presence (or absence) of an entity may have been enough to inform human

behavior, rather than precisely how far away the entity was.

6. The learned MFs for state/action-based memory-enhanced traces will be mostly if not en-

tirely based on the Action feature. The value-back MFs learned will track the most recent

Action values. The time-back MFs may or may not be strongly associated with particular

directional inputs of the joystick, depending on the human’s behavior.

The most interesting observation from these results is that MCL prefers not to create MFs based

on perception for state/action-based memory-enhanced traces, and yet these traces learn more MFs

than action-based memory-enhanced traces. The reason for this is likely because of the percep-

tion/action and nominal/numeric imbalances mentioned previously. There are many perception

features and only one action feature. Thus, MCL’s tree extraction will quickly create raw MFs

for the Action feature, but it will be slower to create raw MFs for particular perception features

because there are so many of them to choose from. Furthermore, most of the perception features

372

are numeric, so they many not experience significant enough change to warrant the creation of

raw MFs until several time steps have occurred. In contrast, nominal features, such as the Action

feature, will generate a raw MF if their value changes at all, even in a single time step. Therefore,

memory influences are more readily resolved through Action MFs.

We reduced the sampling rate of our traces to 10 Hz and evaluated hybrid traces (which combine

perception MFs from state-based traces and action MFs from action-based traces) to mitigate these

imbalances. However, the state/action-based memory-enhanced traces generally outperformed hy-

brid traces.

Thus, there are three take-aways from the lawn mower domain experiments with regards to the

impact on this investigation:

1. The strong emphasis on learning MFs based on a human’s choice of Action indicates the

importance of including memory mechanisms that store “past intent” or facilitate the con-

tinuation of immediate activities in progress. In other words, the burden on LfO is greatly

reduced when a mechanism (such as MFs) store information about immediate.

2. As seen by the high performance of state/action-based memory enhanced traces over hy-

brid traces, despite the observed feature imbalance between nominal/numeric and percep-

tion/action features, the consideration of perceptions and actions in tandem for the formation

of appropriate MFs is key to effective learning, even if one set of features do not contribute

directly to the formation of MFs based on those features themselves, but rather indirectly to

the formation of MFs based on other features.

3. Memory is unobservable, but we do see evidence of a positive impact on LfO as a result

of including memory, which was the goal of our research. Our memory-enhanced traces

generally resulted in improved learning performance both when coupled with memoryless

373

supervised learning and when compared to the memory-based learner Temporal Backtrack-

ing.

8.4 Discussion

This chapter described the experiments for two domains, vacuum cleaner and lawn mower, which

were conducted to investigate the hypothesis in Chapter 3. We evaluated our approach, MCLvN, as

it was defined in Chapter 6, pertaining to its ability to model memory that can be used to improve

LfO.

In the vacuum cleaner domain, we ran the same set of experiments that we conducted to test

MCLv0 and we found that MCLvN achieved learning performance that was as effective as that of

MCLv0 regarding learning performance and more concise in its representation of memory influ-

ences through the removal of certain extraneous MFs.

In the lawn mower domain, we evaluated MCL on human data, which contains inconsistent be-

havior and continuously-valued features in a real-time environment. We included various memory-

based entities in several scenarios to facilitate memory-based behaviors in our human subjects. For

this domain, we tested four memory-enhanced trace types: action-based, state-based, state/action-

based, and hybrid. Our results indicate that state/action-based memory-enhanced traces are best

suited for the lawn mower domain and we observed increased learning performance for the major-

ity of the lawn mower scenarios across all humans.

Thus, we have empirically demonstrated the feasibility of our approach in fulfilling the objective

of our investigated hypothesis. MCL can automatically learn and model the memory influences on

observed human behavior and present its learned memory features as additional input for improv-

ing LfO performance.

374

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

This chapter summarizes the research undertaken in this dissertation as well as its impact on the

field and future research. It is organized as follows:

• Section 9.1 summarizes the scope of the research undertaken in this dissertation, its motiva-

tion, and main contributions.

• Section 9.2 discusses the difficulties that were encountered during this research and how they

were addressed.

• Section 9.3 summarizes the main findings of this research.

• Section 9.4 outlines possible directions for future research stemming from the findings in

this dissertation.

9.1 Summary

The research in this dissertation was motivated by the many impactful steps made by Learning from

Observation (LfO) toward automatically modeling human behavior. Models of human behavior

can be used to create artificially intelligent agents that can replace the human operator, analyze hu-

man behavior for abnormalities, or automate low-level decision-making for human-directed tasks.

These models of human behavior can be constructed manually through knowledge engineering or

they can be created automatically through machine learning, specifically LfO.

LfO, as discussed in Chapter 2, has the potential to more quickly and accurately transfer the knowl-

edge of how to perform a tactical task from an observed expert agent to a learning agent solely from

external observation. This notion of learning follows the intuition of how humans learn from each

375

other by watching how others perform a task rather than through explicit verbal articulation of spe-

cific procedures. LfO has been applied to many practical applications in simulated and physical

agents. However, the problem of failing to properly account for the effects of internal state influ-

ences, such as memory of past events, still remained [58]. The call for LfO-specific algorithms that

deviated from the family of standard supervised learning techniques was the ultimate motivation

behind this research.

Various approaches to accounting for memory in LfO already existed. In particular, the intuition

behind Floyd’s work [20] seemed like an appealing manner by which entire runs of observed per-

formance (e.g. memory of everything that has occurred) could be converted into usable procedural

knowledge without any training. This research originally germinated from an introspective analy-

sis of the strengths and weaknesses of Temporal Backtracking [20]. Temporal Backtracking was an

advantageous memory-based learning algorithm because it discriminates between different cases

in a case base by analyzing where they differ in their history (memory) without making any as-

sumptions about where those discrepancies in cases’ run histories were located. TB goes as far

back in time as necessary to resolve differences in memory between cases recommending different

actions. However, the notion that resulted from this introspection was how TB would be much

more efficient if it could only remember certain aspects of an observed actor’s performance, such

as the last action taken or the time since the last observed instances of certain feature values.

Thus, the idea behind this dissertation research was created from the idea that TB only compares

cases at time steps prior to the present time step because there is some sort of memory influence,

but if the cause of that memory influence could be memorized, then TB would not have to analyze

that part of a case’s run history. Thus, TB could be used to find the memory influences in an

observed actor’s performance (and never again have to infer that influence). If TB could infer

every memory influence, as would be evidenced by TB being immediately resolved in its first

iteration, then it would be possible to combine these memory influences with learning algorithms

376

that would otherwise not use information from memory. These ideas were discussed in Chapter 4.

The validation of the hypothesis described in Chapter 3 formed the scope of the investigation in

this dissertation. The hypothesis we sought to validate is listed here:

“The internal state of an observed entity exhibiting a behavior possibly reliant on memory of past

events can be modeled through a set of memory features that approximate the influence of memory

on the entity’s decisions.”

Put more concisely, we hypothesize that a preprocessing step can learn a set of memory features

that summarize the influences of memory on observed behavior and improve LfO. Thus, Memory

Composition Learning (MCL) was created to adapt TB to learning memory influences, as dis-

cussed in Chapter 5. The first step was to learn memory influences that “resolved” a single case

via an extraction process modeled after a series of modified TB operations (called Memory TB).

Then, the results for each case would be combined in a refinement process to find an appropri-

ate manner of expressing memory influences that affect the observed behavior as a whole over

all cases; such memory influences were expressed as Memory Features (MFs), which comprise

a “memory model” of the observed entity. In Chapter 5, this approach was validated in a simple

simulated vacuum cleaner domain (also used in [58]) such that memoryless learning algorithms

could use the learned MFs to improve learning performance for behaviors requiring memory.

However, the minimalist approach, as discussed in Chapter 6, had several limitations that hin-

dered the application of MCL to realistic human data. These limitations were 1) ignoring context,

2) inefficient MF extraction, 3) inability to handle continuous data, 4) extraneous memory rep-

resentations, 5) not accounting for stochastic effects. Human data is context-based, large-scale,

continuous, complex, and inconsistent/random/stochastic. Thus, the remainder of the dissertation

addressed these aspects of human behavior in learning a memory model through MCL.

377

A comprehensive approach to MCL, labeled MCLvN, was implemented. It had the following

improvements, as described in Chapter 6:

1. To account for context, a new contextualization mechanism was added to MCL’s refinement

stage. It was inspired by the approach to contextualization used in COPAC [81], but it takes

certain liberties due to the inherent difference between behavioral contexts and memory

contexts.

2. To account for inefficiencies in MF extraction, MCL was modified to deviate from TB’s need

to address each case separately. Instead, the case base was treated like a tree-based graph

such that the memory influences from all cases in the case base could be extracted all at

once.

3. To account for continuous data, a discretization module was added to MCL to convert contin-

uous data into discretized data. The trace enhancement step was also modified to incorporate

learned MFs back into continuous traces.

4. To address the simplicity of the basic value-back and time-back MFs, the MF refinement

stage was modified to more intelligently use these MFs to express extracted memory in-

fluences. First, the specialization of raw memory influences as value-back or time-back

was transferred from the extraction stage to the refinement stage. Second, the refinement

stage was modified to use “combination counts” as part of a greedy approach to iteratively

choose specialized MFs that comprehensively express the raw memory influences that were

extracted for each case in the case base.

5. To address the effects of stochastic, random, and inconsistent behavior, the MF refinement

stage of MCL was modified to analyze sets of extracted MFs within memory contexts in-

stead of analyzing MFs individually. The intuition behind this change is that it is easy for

378

individual MFs to appear repeatedly in random behavior, but it is much harder for these MFs

to repeatedly appear together as a set.

In Chapter 8, we outlined a series of experiments to assess the effectiveness of MCLvN in address-

ing human behavior in a new lawn mower simulation (LMS). In the LMS, humans were tasked

with controlling a lawn mower in a simulation to mow as many grass patches as possible while

interacting with various simulation entities with memory-based behaviors. Our results showed that

a human’s behavior is strongly correlated with memory of their previous actions, as if the human’s

actions occur as a continuation of past intent. The end result of including this information in the

learned MFs was an increase in learning performance for the majority of scenarios in the LMS for

our human subjects.

9.2 Issues Encountered

Several unexpected challenges were encountered during the investigation of the dissertation hy-

pothesis. A brief summary is presented here.

9.2.1 Test Domain Selection

After the validation of the MCLv0 approach in the vacuum cleaner domain, the first problem for the

investigation was finding a suitable test domain for the final MCL implementation. The selected

test domain had to fulfill three criteria:

1. The test domain had to involve human data.

2. The test domain had to involve continuously-valued features.

379

3. The test domain had to include memory-based behaviors.

There were several test domains at our disposal that fulfilled the first two criteria, but fulfilling

the third criterion was difficult. To guarantee that memory was being used, we not only needed

to know precisely when a human would be employing memory, but we had to know how memory

would be used and what it would be influenced by, so that we could test for correctness in MCL.

We ultimately decided that a custom simulation was required to be able to control which memory-

based behaviors would be used and when.

The idea of a lawn mower came from a desire to use a test domain similar to the vacuum cleaner

domain, but more advanced and catered to the needs of the research. Similar to a vacuum cleaner,

a lawn mower is viewed top-down and it moves about an environment encountering consumable

objects and impassable obstacles. However, grass objects can used to obscure objects, such that a

human controlling the mower would have to remember where those objects are and react appropri-

ately. The decision to use a custom simulation was a wise choice in that we had complete control

over the memory-based entities that a human would interact with and we could modify and add

whatever was required for the research. However, our choice produced two issues:

1. The use of an external game engine (i.e. Unity) allowed us to automate various aspects of

simulation development, but such aspects of the game engine were largely inaccessible for

modification.

2. The concept of a lawn mower provided intuitive support behind some of the memory-based

behaviors in the simulation because they were derived from real human experience. How-

ever, remaining completely faithful to the realm of what would be possible for a real lawn

mower would have limited the types of memory-based behaviors that could be tested.

The first issue was mitigated through extensive research into the documentation behind Unity. The

380

second issue was addressed by allowing the lawn mower simulation to define its own rules, entities,

and mechanisms. The objective was not to recreate a faithful rendition of a lawn mowing experi-

ence, but rather to develop an environment where memory-based behaviors could be exhibited.

9.2.2 Instructing Human Subjects

As the test domain was being developed, another problem that arose was how to teach a human

subject how to operate the lawn mower and how to react to the entities in the environment. Possible

solutions included simply demonstrating the simulation mechanics to a new human subject, or

incorporating mechanisms into the simulation itself that would help the human subject figure it out

themselves. The latter choice was selected for the sake of expediency during testing. This was

accomplished through the incorporation of “soft tutorials” in the simulation, or mechanisms that

would not allow a human to progress unless they demonstrated understanding of how to perform

the desired behavior. In the LMS, soft tutorials were incorporated into the layout of the different

scenarios combined with a timer and health points. In short, a human could not pass a scenario

unless they performed the desired memory-influenced behavior correctly. Additionally, description

screens explaining in text how new memory-based entities worked were also provided.

However, the following unintended consequences ensued as a result of this decision:

1. Many human subjects simply choose not to read the directions, either due to impatience

or the assumption that they could figure it out on their own. The result was that several

participants failed their first attempt at a scenario and had to redo the scenario.

2. If a human redid a scenario, their behavior was likely affected by what they remembered from

their previous attempts, possibly confounding how they used memory during the attempt

during which they were successful.

381

3. The possibility of “failing” was a possible source of stress for the human participants, which

may have affected their behavior. On one hand, such stress is desired in that it may cause

the human to behave slightly erratically, an inherent part of human behavior that we wanted

MCL to overcome. On the other hand, the human’s focus was inevitably on “passing” the

scenario rather than demonstrating the memory-influenced behaviors. The simulation me-

chanics were designed to make it impossible for a human to pass a scenario without demon-

strating the desired behavior, but sometimes a human would deliberately encounter hazards

on their way to the scenario’s exit point if they had sufficient health points. This was es-

pecially evident during the attempt where a human was given infinite health (after they had

exhausted their attempts and were essentially given a consolation prize for being unable to

complete the scenario successfully).

Another ill-advised decision during the investigation was the decision to solicit human participants

for the lawn mower study before validating MCL’s capability for processing that data beforehand.

On one hand, a test domain should not be catered to the capabilities of the object of evaluation

because failure should be a possible outcome. However, a test domain that does not test the ex-

pected attributes of the object of evaluation cannot render a definitive verdict of success or failure.

In particular, even though the concepts behind the memory-based entities in the LMS were sound,

their placement in a scenario can affect to what degree a human uses memory when interacting

with them. Further testing could have ensured that the scenario layouts were optimal.

9.2.3 Incorporating Context

Regarding the development of MCL itself, there were several issues that had to be addressed. The

first issue was how to incorporate context into MCL, which would comprise a completely new

module. The motivation behind including context was to provide a mechanism for capturing rare

382

memory influences while filtering raw MFs that are the product of random behavior. The Context-

Based Reasoning (CxBR) paradigm was the best choice, given its basis in tactical behavior and the

heavy precedent it had within the LfO literature. With this determination, we had to address two

questions:

1. How should contexts be defined within the scope of modeling memory from observation?

2. How should such contexts be learned?

9.2.3.1 Defining Memory Contexts

To answer the first question, we defined a memory context as

Any recognized situation defined by a set of similar memory influences that represent

the relationships between past observations and present actions by an observed actor

within the situation.

Essentially, a memory context is “a situation wherein a common set of memory influences are

relevant to a behavior”. As long as the memory influences belonging to a given context are relevant

to an agent a given point in time, the agent can be said to be in that context.

To answer the second question, we turned to COPAC, the first known context discovery algorithm

for the CxBR paradigm. COPAC first partitions a trace into executed contexts, which are instances

of context activation. Then, these instances are clustered to create context definitions. However,

the contexts that were discovered by COPAC were defined by similarity of behavior within a given

situation, not by which memory influences were at work. Furthermore, the executed contexts are

created by finding points in a trace where behaviors change significantly in response to environ-

mental stimuli.

383

We first tried to partition a trace based on drastic changes in the raw MF sets that were extracted

for two cases representing adjacent time steps. However, the problem with this approach was that

raw MFs vary greatly, and many raw MFs may actually be manifestations of the same specialized

MF, which represents the true memory influence we wish to capture. Thus, it made sense to

partition traces in places where specialized MF sets that were relevant to adjacent time steps were

significantly different.

However, choosing which specialized MF type (value-back or time-back) was the best for repre-

senting a raw MF had only been superficially addressed in MCLv0. Basically, the best specialized

MF type was chosen based on which type reduced the number of Memory TB iterations in the MF

Extraction phase, but if there was a tie, then both types were chosen in order to err on the side

of including too many MFs instead of too few. Testing both types of MFs was computationally

expensive, which inspired the Memory Singularity Principle (MSP). MSP extracts raw MFs by

comparing trace elements (raw MFs) directly instead of creating specialized MFs for comparison.

However, since MSP only works on raw MFs, the decision was made to delay the generation of

appropriate specialized MFs to the MF Refinement stage.

9.2.3.2 Capturing Correlated Memory Influence

A parallel problem that was being addressed at the time was that of dealing with memory influences

that are correlated with other memory influences. For example, the issue of defining the value of

one feature immediately after the observance of some other value of another feature seemingly re-

quired more complex MFs than just value-back or time-back MFs. Two possible solutions emerged

– compound MFs and MF sets. Compound MFs explicitly combine atomic MFs (e.g. time-back

or value-back) so that the compound MF only activates when its component MFs both activate.

However, an easier solution was that of MF sets – only include the MFs in the MF set if all of

384

them are relevant. The intuition behind this decision was that an MF is only useful if all MFs upon

which it depends are present. Interestingly, this had the effect of effectively filtering MFs that were

the result of random behavior, because randomly generated MFs don’t occur together repeatedly.

The concept of a MF set also impacted the contextualization process in MCL. Because memory-

based contexts are inherently different from contexts, as defined in CxBR or the work in COPAC, it

became permissible for memory-based contexts to be defined and discovered in a slightly different

way. Thus, we created a working context structure: a context and a MF set are one and the same.

The ramifications of this decision were as follows:

1. MF sets may only be relevant for an instant. Thus, the temporal nature of behavioral contexts

from CxBR no longer applied to our memory contexts.

2. MF sets lose effectiveness when a subset of the MFs are missing. Thus, MF sets are ei-

ther completely similarly or completely different. This eliminated the need for the context

comparison mechanisms that were used by COPAC.

3. Context thus became intertwined with the MF Refinement module inherently and no longer

required a separate module. Instead, it became a conceptual construct by which we could

understand and articulate the transformation of memory influences over time.

With the definition for memory contexts that was used in this research, there are two positive effects

of context for memory modeling in MCLvN:

1. The evaluation of MFs as a group (i.e. memory context) instead of individually made it less

likely for MFs to be retained if they were generated as a result of random behavior instead

of true memory influences. This benefit applies to all LfO algorithms, even those that are

context-free.

385

2. For context-based LfO, contexts allow LfO for more specialized situations to focus on a

small set of MFs that are relevant for the given situation, thus reducing the learning burden

for each individual context by ignoring MFs not relevant to the context. Furthermore, the use

of contexts can help identify which specialized MFs are common across multiple contexts

rather that just those that appear in a sheer number of time steps. In our experiments, we use

the F1 score instead of accuracy to evaluate whether all actions, no matter how rare, can be

predicted correctly, instead of just the most common action. In the same way, contexts can

show which MFs are common across multiple situations, rather just those that appear in the

most common memory-based situation.

9.2.4 Considerations for Continuous Data

In order to handle continuous data, we had two choices. We could either redesign the components

of MCLv0 to handle both continuous and discrete data or we could process data to be usable in

discretized form by MCL’s components as they currently were. In order words, we could either

change MCL to properly process continuous data or we could change continuous data to be pro-

cessed by MCL. We chose the latter option, as a simple discretization module would allow us to

modify MCL to address the other needs of the research without regard to data types. However, this

caused some issues:

1. Discretization requires tuning hyperparameters of its own. Improper discretization could

have impacted the results of MCL. Garbage in, garbage out.

2. Discretization affects the complexity of the memory modeling task and it affects the degree

to which memory can be modeled. On one hand, having finely discretized data (e.g. many

possible discrete values) allows a wide variety of memory influences to be expressed, but it

also increases the burden on MCL because MCL will have to parse through more raw MFs

386

to find appropriate refined MFs. On the other hand, coarsely grained discretized data can

be more easily parsed by MCL, but it risks the possibility of losing precision in expressing

memory influences.

It might have been better to investigate the development of new MFs that can process continu-

ous data, perhaps by defining a range of values that the MF would account for (instead of just a

single discrete value). Furthermore, future work could look into using different distributions for

discretizing data and investigating the sensitivity of memory to different discretization hyperpa-

rameter settings.

9.2.5 Memory Feature Extraction Hyperparameter Tuning

Another issue was how to properly tune MF Extraction hyperparameters. In particular, the PPT

and PAT thresholds have profound effect on extraction results, and yet it is unknown what their

precise values should be for a given domain. The problem is that if a threshold is too high, it will

result in an unnecessarily branching factor during tree extraction, creating too many extraneous

raw MFs. However, if the threshold is too low, then crucial raw MFs may not be generated. To

tackle this issue, we employed two solutions:

• Instead of exhaustively testing all possible PPT/PAT threshold values, we only tested the

three used in Floyd’s research [20]. He tested PPT=0.0/PAT=0.9, PPT=0.9/PAT=0.0, and

PPT=0.9, PAT=0.9 to address action-based, state-based, and state/action-based behaviors.

• If we err on the side of having PPT/PAT thresholds that are too high, we can filter out

extraneous MFs through MF Refinement filtering thresholds. Basically, we have a Low

Filtering (LF) threshold, which determines which memory contexts are allowed to contribute

to the final refined set. However, the High Filtering (HF) threshold determines which MFs

387

from these sets are included in the final refined set. If an MF belongs to a MF set that

passes the LF threshold, but itself does not pass the HF threshold, then it is not included.

Even though this goes against the principle that a MF set/memory context is only effective

if all its component MFs are used, it is a compromise that allows more flexibility in setting

appropriate PPT/PAT thresholds.

9.2.6 Feature Imbalance

Finally, the last issue that we encountered was feature imbalance, which comes in two forms:

perception/action imbalance and nominal/numeric imbalance. In short, if there are more perception

features than action features (or vice versa), then it may be more difficult to generate perception

MFs than action MFs. This would make MCL potentially overcompensate by learning extraneous

action MFs to try to explain memory influences from perception MFs. Regarding nominal/numeric

imbalance, it takes more time in a real time environment for numeric features to change in value

sufficiently to warrant the creation of a raw MF during MF Extraction, but any change in a nominal

feature’s value will generate a raw MF. Therefore, it is more likely for nominal features to generate

raw MFs than numeric features.

To mitigate these imbalances, we downsampled our traces in the LMS domain to allow numeric

features to change more in value from time step to time step. Additionally, we experimented with

hybrid traces, which allow perception and action MFs to be learned separately in two different

MCL operations before combining them into a single memory-enhanced hybrid trace.

However, these countermeasures were only partially effective. Down-sampling a trace risks losing

important information about memory from time steps that are removed from a trace. Furthermore,

hybrid traces do not allow perception and action MFs to be generated together via the MSP or to

be joined together in MF sets, which are the working definition for memory contexts. Future work

388

could investigate the possibility of creating raw MFs for multiple perception features, to overcome

the perception/action imbalance.

9.3 Conclusions

The research described in this dissertation looked at a possible means of solving the general prob-

lem of incorporating the influences of memory into the LfO task. The specific problem addressed

by this research was investigating how to learn a memory model of observed behavior that avoids

limitations of prior approaches to memory-based learning. The novel technique proposed by this

research is MCL, a memory modeling technique that learns a set of MFs that are tailored to spe-

cific observed actors. Such MFs summarize pertinent information from an actor’s history that are

important for future decisions. These MFs are usable by other standard supervised learning al-

gorithms to allow them to learn memory-based Level 3 behaviors when they would otherwise be

limited to learning Level 2 reactive behaviors.

This research is novel in that it differs from several prior approaches to memory-based learning.

This research differs from lazy learning approaches to memory-based learning in that a model of an

actor’s internal state is maintained over time. In lazy learning approaches, such as the work in [20],

the effects of memory must be inferred for every decision instead of maintaining an internal state.

This research differs from probabilistic approaches to memory-based learning in that the possible

internal state values are not predefined. In contrast to works that limit the influence of memory to a

finite number of time steps in the past [76] or that predefine the number of possible internal states

[58], MCL makes no assumption about the limits or possible values of the internal state, but rather

composes the internal state (as influenced by memory) from a minimal set of MFs that are needed

to resolve influences of memory that are observed in an actor’s behavior. Finally, this research

differs from connectionist approaches to machine learning, such as MANNs [64] or LSTMs [26].

389

Connectionist approaches ultimately consolidate memory influences into a subsymbolic structure

that is indecipherable outside of the network. In contrast, MCL learns MFs that are more human-

understandable and which can be coupled with other supervised learning algorithms for enhanced

performance. The MFs learned by MCL could even be combined with these memory-based LfO

algorithms by lessening the burden of learning from memory.

This research was difficult for several reasons. The main challenge was that it was not possible

to compare the MFs learned by MCL to any ground truth, because the cognitive processes of

humans are unobservable. This makes memory modeling an unsupervised learning problem. The

validity of the technique thus had to be evaluated through human inspection of MFs and through

improvements in learning performance. The second challenge was that the effectiveness of MCL

had to be evaluated independent of the learning algorithm that learned from the memory-enhanced

traces it produced. Thus, a general-purpose memory model had to be created by MCL that was

usable by a variety of learning algorithms. The final challenge came from the human behaviors

themselves, which are inherently inconsistent in their use of memory. Thus, it could not be assumed

that memory influences remained constant throughout an actor’s performance.

However, the impact and benefit of this research is twofold. First, the benefit to LfO research

is that we have proposed a technique for consolidating memory influences into a concise set of

MFs comprising the internal state (as influenced by memory) rather than having to save the entire

history of an agent’s run or having to predefine the possible internal state values or structure.

Second, the benefit to machine learning in general is that MCL can be combined with any standard

supervised learning algorithm (without modifying the algorithm itself) because the learned MFs

can be treated like any other feature. Because the MFs summarize the relevant information from

memory, including these MFs restores the Markov assumption that all pertinent information needed

for a decision at a given time step is present in the feature values for that time step. This will allow

supervised learning algorithms, which rely on the Markov assumption (also known as the i.i.d.

390

assumption) to learn all three levels of LfO instead of being limited to just Levels 1-2.

In conclusion, the hypothesis from Chapter 3 has been investigated and validated by this disser-

tation. The main contribution of this research is the novel MCL algorithm. MCL automatically

learns the memory influences of observed behavior and codifies them with a set of MFs, which can

create memory-enhanced traces that possess relevant information from memory for each time step.

This research expands the set of behaviors that can be learned by machine learning techniques

and provides a means toward shedding insight into the effects of unobservable phenomena (e.g.

memory) on human behavior.

9.4 Future Research

Even though the research in this dissertation was sufficient for validating the hypothesis, there are

still several ways to improve or extend this research.

9.4.1 Algorithmic Improvements

This section describes modifications to MCL that can be investigated by future research to see if

such modifications are more effective in modeling memory influences on observed behavior.

9.4.1.1 Combining Extraction and Refinement

Both MCLv0 and MCLvN follow a extract-refine-enhance procedure, but there is no reason why

future iterations of MCL could not deviate from this. Thus, the first modification would be to com-

bine the extraction and refinement stages of MCL. In Chapter 6, we mentioned that the extraction

process in MCLvN was analogous to traversing a tree-based graph. However, it might be insight-

391

ful for future research to actually create a tree-based graph structure, where each location in the

tree where a split occurs represents a memory influence that separates some cases in the case base

from other cases with a different memory influence at that point in their run. With such a tree like

structure, the relationship between the different locations in the tree with splits could be used to

inform which specialized MFs are created.

Figure 9.1: Analyzing Memory Features with Tree Structure

An example of this tree like process is in Figure 9.1. In the figure, we begin with 10 cases that have

not been differentiated from each other. Suppose these cases only track a single feature F which

has four possible values. At time t− 1, we can see that there are four groups formed, one for each

possible value of F . These groups are formed by cases 1-5, 6-7, 8-9, and 10, respectively. At times

t − 2 and t − 3, cases 1-5 (from the first group) are further split based on the value of feature F .

From this simple example, we can see that a value-back MF vF (1) (the value of F at time t − 1)

392

can be formed because there are multiple tree splits at the first node, denoted by the dashed arrows

from the root node of the tree. We can also see that a time-back MF tF (F = 1) (the time back

to the last occurrence of F = 1) should be formed, based on how many time steps this value is

observed, as evidenced by the boxes in the figure with a dashed outline (these are where the splits

occur where F = 1 is one of the splits).

9.4.1.2 Alternative Discretization Distributions

Another possible improvement would be the use of different distributions to use for discretization.

We opted to discretize our traces to keep the inner mechanisms for MCL the same for both discrete

and continuous data. Our implementation of discretization requires the developer to specify the

center values and discretizing increment for each feature, which requires knowledge of the domain.

However, it may be more meaningful to discretize the traces using an empirically derived Gaussian

distribution. This would involve empirically determining the mean and standard deviation of each

feature in the trace. The advantage of using a Gaussian distribution would be that discretization

would be an automatic process that is not reliant on domain knowledge. However, the disadvantage

is that discretization results would differ between individuals; a value of 1 for a given feature may

not be the same for different observed actors. Future research could investigate the efficacy of both

approaches to discretization, or other methods of discretization in the literature. Along the lines

of processing continuous data with MCL, future work might investigate the efficacy of processing

continuous data directly instead of discretizing it. This would require significant alterations to the

MCL modules described in this dissertation, but the end product, memory-enhanced traces, would

still remain the output of MCL.

393

9.4.1.3 Improved Memory Feature Specialization

One avenue for potential improvement to MF Refinement would be investigating the use of dy-

namic programming to select specialized MFs that express a collection of raw MFs. The approach

described in this dissertation uses a greedy approach to select the next specialized MF that ex-

presses the most remaining raw MFs. However, it may be more optimal to select two specialized

MFs that are less expressive, but more effective together than the specialized MF that would oth-

erwise be selected via the greedy approach.

9.4.1.4 Incorporating Parallelism

The extraction phase in MCLvN analyzes all cases in the case base simultaneously for memory in-

fluences, but in MCLv0, all cases are processed mostly independently of each other. Both versions

of extraction theoretically have the same result, with MCLvN being much more computationally

efficient. However, it may be possible to leverage hardware parallelism to achieve even greater

efficiency with a hybrid version of MCLv0 and MCLvN.

9.4.1.5 Feature Discrimination in Memory Feature Extraction

During the extraction phase of MCLvN, one raw MF is created every time there are cases that are

removed from the pool of candidate cases that are similar to a test case. This raw MF tracks a

single feature, depending on which feature was the most discriminative between cases retained in

the pool and cases removed from the pool. However, it’s possible that multiple features are exert a

memory influence at that time step. Future work could see if MCL’s modeling efficacy is increased

when creating multiple raw MFs instead of just one. For example, raw MFs could be created for

all features with sufficient discriminative power (instead of just the one feature with the highest

394

discriminative power).

Additionally, the “discriminative” power of a feature is computed via a relatively simple metric,

which could be replaced by a more complex metric that also accounts for other factors. For ex-

ample, certain features may be deemed more important inherently by a domain expert. Also, a

feature that was already used for a raw MF in an earlier time step may be less important than a

discriminative feature that has not yet been incorporated into a raw MF (or vice versa). Additional

factors for feature discrimination in order to determine the composition of a raw MF during the

extraction phase could be investigated in future work.

9.4.1.6 Alternative Casebase Representations

Future work could also investigate alternative representations for the case base. Temporal Back-

tracking was case-based, but it may be possible to represent such cases with structures such as

matrices or tree-based graphs. Matrices would allow cases to be processed with computationally

and space efficient operations, and possibly connectionist methods (such as deep neural networks).

9.4.1.7 Automatic Hyperparameter Tuning

Another subject of future work might involve the investigation of possible mechanisms for tun-

ing MCL’s hyperparameters, particularly those involving case comparisons in the extraction phase

and those involving the formation of memory-based contexts during contextualization. In essence,

these hyperparameters influence how likely it is for cases to be “similar” to each other and how

likely it is for memory contexts to used to contribute specialized MFs to the final refined MF set.

These parameters were manually tuned in this research, but this process could be done automati-

cally. This would be an important extension to the work done in this dissertation because memory

395

is unobservable. The desired outputs of MCL cannot be verified by human inspection in very com-

plex domains, so an automatic means for tuning these hyperparameters is necessary to evaluate

MCL outputs based on criteria other than final learning performance.

9.4.2 More Complex Memory Features

This research was conducted using a combination of value-back and time-back MFs. However, it’s

possible that more complex MFs may more concisely and intuitively codify memory influences of

observed behavior. In this section, we discuss some possible MF extensions for future research.

One modification to the time-back MF could be to add a “skip” parameter that dictates how many

observations of a specific feature value should be ignored. For example, the time-back MF de-

scribed in this research will only report the time back to the latest observation of a given feature

value. However, some memory influences could be expressed as two feature values happening

back-to-back (e.g. two “up” actions by the observed actor). It would not be possible to track

the time back to the second-to-last “up” action with the time-back MF described in this research.

However, we could track it with a modified time-back MF that has a skip parameter set to the

value 1; this time-back MF would ignore the latest “up” action and instead report the time back to

the second-to-last “up” action observed. This type of MF would be useful for expressing memory

influences where the same value is repeatedly observed in a trace (e.g. a car skidding to a stop over

a period of a few seconds).

Durative MFs might be a meaningful type of basic MF that tracks how long a specific feature

value has been observed. Certain behaviors might be predicated on how long a certain event

has transpired. With only time-back and value-back MFs, this memory influence could only be

expressed with time-back MFs for every other possible value of the feature, which track essentially

how long a given feature has not assumed any other value except the one in question. A durative

396

MF may be a more intuitive way to express this memory influence.

Last-value MFs might be another meaningful type of basic MF. This MF tracks the last observed

value, excluding a certain default value. For example, in the car driving domain, a driver (hope-

fully) adheres to the value of the last speed limit sign they observed. The default value for an

observed speed limit is N/A, given that a speed limit sign is often not observed. However, a last-

value MF would remember the last non-N/A value of the speed limit sign, which is what we care

about and what other memory influences might also require.

So far, we have only described basic or “atomic” MFs, but it’s possible to have compound MFs

whose constituent components are also MFs. One example is memory bigrams. Bigrams are

features that are frequently used in natural language processing to track two specific words that

occur together. In the same way, it may be useful to track two basic MFs that occur in adjacent

time steps with a single memory bigram. Memory bigrams could be used to express memory

influences such as “the value of the last action when the last value of feature F was value v”. In

keeping with the insight for MCLvN refinement that meaningful MFs occur together rather than

separately in a given time step, it makes sense that meaningful MFs would also occur together

in adjacent time steps. It might also be useful to have memory trigrams (tracking three MFs that

occur together in adjacent time steps).

Finally, “memory of memories” or “recursive memories” may be a useful avenue for future inves-

tigation. Allowing MFs to track the value of other previously learned MFs, or allowing MFs to be

parameterized with the value of other MFs, may allow certain memory influences to be expressed

more intuitively. For example, the value of a feature F after the last observance of value V for

feature G could be expressed by a compound MF vF(t-tG(V)+1) or “the value of F in the

time step before t that immediately follows the last observance of value V for feature G”.

Any future work in the creation of new MFs should maintain a modular design such that MCL

397

does not need to be modified each time a new MF is created. However, it might be necessary to

modify MCL to handle compound MFs and other types of MFs that are parameterized with factors

other than time values and feature values.

9.4.3 Behavioral Analysis

One interesting future work from this dissertation research would be to analyze the learned memory

models created by MCL. This could serve two purposes. First, memory models can be used to

detect abnormal behavior from observation [88]. Basically, in order to determine whether someone

appears to be using memory according to one condition versus another, one can create memory

models of both conditions and then compare a person’s memory usage to both memory models

to see which one more closely matches the person’s memory usage. This would be useful for

determining whether someone is paying attention to key aspects of the environment. Perhaps

as a person continues to perform a task, fatigue sets in and a person stops responding to certain

environmental stimuli (e.g. memories of past events are no longer affecting the person’s decisions).

A system that notices that memory usage has changed from what is acceptable could be used to

flag dangerous operating conditions for the performing person.

In order to determine whether an observed actor performing in real-time is acting abnormally, it

may be useful to create online memory analysis techniques. One way to do this would be to train

machine learning classifiers by using MCL. During training, the classifier would learn from MCL

which MFs are useful for detecting abnormal behavior. Once trained, the classifier can be used

in real-time to detect whether someone’s use of memory appears to indicate danger to others (e.g.

perhaps the person has stopped paying attention to crucial aspects of the environment or is not

following the correct sequence of actions).

Another possible extension of this research would be to investigate aspects of certain tasks that are

398

common between different actors versus those aspects that vary between different actors. MCL

learns memory models of observed behavior that are specific to particular observed actors; the

learned memory model will only apply to the actor that was observed. However, if multiple mem-

ory models are learned for different actors, those memory models could be analyzed to see which

MFs are common between actors and which MFs differ. For example, in the car driving domain,

one might observe that the majority of drivers respond to the memory of the speed limit sign,

but that certain drivers forget about the speed limit sign and start matching the speed of other

surrounding cars sooner than other drivers. These insights could be the key to creating generic

behavior models that model task-specific procedural knowledge and then adapting them to specific

observed actors by only modifying those aspects of the model that are known to vary greatly across

different persons.

9.4.4 Informing Transfer Learning

Transfer learning [59] allows a learning task for a given target task in a target domain to capitalize

on learning results in a related source domain and task. Transfer learning is useful in situations

where labeled data in a task/domain of interest is scarce, but it is more plentiful in a different but

related task/domain. For example, a transfer learning algorithm can learn how to detect bunnies in

online videos by learning to detect cats in online videos (which are more common). By learning

to detect the friendly fuzzy features of felines, a learner can learn to detect the similarly endearing

attributes of bunnies in videos.

In the context of transfer learning, as surveyed in [59], a domain is the space of inputs available for

learning and a task is the space outputs that must be determined by learning, given a classification

problem. Two domains are different if the feature sets differ or if the distributions of input samples

are different. Two tasks are different if the set of classes differs or if the distribution over the

399

classes is different.

There are three types of transfer learning, briefly summarized from [59] as follows:

• Inductive transfer learning allows for learning for one task to benefit learning for a different

task, whether or not the source and target domains are the same.

• Transductive transfer learning involves the source and target tasks being similar, but the

source and target domains being different.

• Unsupervised transfer learning involves the improvement of unsupervised learning for a

target task via learning for a different source task.

A special case of inductive transfer learning, called “self-taught learning” [61], involves learning

for a target task by using unlabeled data from a potentially unrelated source domain. Raina et. al.

[61] compare self-taught learning with other types of learning as follows:

• Supervised learning solves a target task by learning from labeled data from a source domain

that is the same as the target domain.

• Semi-supervised learning solves a target task by learning from both labeled and unlabeled

data from a source domain that is the same as the target domain.

• Transfer learning solves a target task by learning a different but related source task for la-

beled data from a source domain that is related but different from the target domain.

• Self-taught learning solves a target task by learning a different source task using unlabeled

data from a potentially unrelated source domain.

In the realm of LfO, transfer learning could be applied in two ways:

400

1. Application 1: Given relatively many traces of a source person’s observed behavior, and

given a relatively fewer number of traces of a target person’s observed behavior, use transfer

learning to learn how to perform a task similar to the target person.

2. Application 2: Given a person’s relatively many traces of observed behavior in one domain,

learn how to behave in manner similar to this person in a different but related domain with

fewer example traces of this person’s behavior.

Regarding the first application of transfer learning to LfO, it may be difficult to obtain many traces

or examples of a specific person performing a given task. This is particularly problematic if the

task involves behavior that merely requires satisficing, or behaviors that “satisfy” requirements by

picking the next available option that “suffices”. In other words, a person may elect to pursue a

different sequence of actions each time they are presented with the same set of initial conditions.

If a person is only observed performing a task once, then it is not possible to learn acceptable

variations of their behavior in specific situations.

However, it can be possible to learn reasonable variations in behavior through transfer learning if

there are examples of another person performing the same task. The target and source domains

are different because different people (who inherently perform differently) are being observed.

However, transfer learning is possible because the tasks are the same. This is an example of

transductive transfer learning.

Regarding the second application of transfer learning to LfO, it may be possible to model how a

specific person operates in different environments. For example, a soldier be trained many times

to perform a search-and-rescue operation within an indoor environment. However, an after-action

review may be conducted once on the soldier’s execution of this same operation within an outdoor

forest environment. For a LfO application to model the soldier’s behavior in the forest environment

(which only occurs once), it may be beneficial to use transfer learning to learn a model of the

401

soldier’s behavior within the indoor environment (for which there are many examples) in order to

learn a behavior model for the forest environment. One would expect the soldier to exhibit similar

behaviors between both environments. This is an example of inductive transfer learning.

If observations of many different soldiers performing various navigation operations were available

(e.g. retreating, supply gathering, moving through a crowd, etc.), then self-taught learning could

be executed to learn general human navigation techniques, which would inform LfO for a given

soldier for a given operation.

The application of MCL to these instances of using transfer learning to improve LfO depends on

how the feature sets are structured. In transfer learning and even self-taught learning, it is assumed

that all learning data comes from the same modality (e.g. images, audio, etc.). However, MCL was

designed for LfO tasks with domain-specific features.

The potential for MCL to aid in the transfer learning task lies in the fact that the internal state

memory models that are created for specific observed actors’ behaviors are comprised of compos-

able MFs. It is possible for different actors to share several MFs in common when performing the

same task. Thus, the first application of transfer learning to LfO can benefit from MCL as MCL

currently exists. This is because the environment and actor’s actions share the same set of features

— it is only the distribution of values for these features that differs between actors.

However, the ability to use MCL in the second application of transfer learning to LfO depends on

how the source and target domains are described. Even though the source task and target task are

being performed by the same observed actor, a different set of features may be used to describe the

actor’s actions (and perceptions of the environment) in the source domain versus the target domain.

MCL can still be used in this situation as long as there is at least one feature in common between

the domains. This is because MCL forms MFs that codify information for a given feature, and

thus MFs that are learned for any features that are used in both domains can be used by transfer

402

learning. For example, if the source domain uses features A, B, C, and D, and the target domain

uses features C, D, E, and F, then transfer learning can use MFs based on features C and D.

The applicability of MCL to the second application of transfer learning to LfO could be extended

by including information about which features in the source domain can be treated like which

features from the target domain. For example, if certain entities in the source domain are similar

to other types of entities in the target domain, then memory influences based on an entity in the

source domain can be applied to the corresponding entity in the target domain.

9.4.5 High-Density Applications

High-density applications involve numerous feature values that are only meaningful to the degree

to which the aggregate collection of their values holds meaning in a more abstract space. For

example, in image processing, individual pixel values are not meaningful in most applications, but

the detection of objects in such images or activities in steams of images (e.g. video streams) are

meaningful. Even though specific objects and actions may be repeated when viewing an image as

a whole, individual pixel values are not likely to repeat in a predictable manner.

MCL can only be applied if values repeat often enough to be sufficiently correlated with specific

actions taken by an observed actor. This means that feature values should oscillate within a mean-

ingful range (i.e. they should assume the same value multiple times) and coincide with repeated

actor actions. Otherwise, MCL will assume the observed behavior is random and no MFs will be

learned.

In order for MCL to be used in high-density domains where the above assumptions do not hold,

higher-level features will have to be learned by a separate module. This requirement is not specific

to MCL. In general, various learning “tasks... require the construction of good internal represen-

403

tations of the world (or ‘features’), which must be invariant to irrelevant variations of the input

while, preserving relevant information” [42]. For example, two different people will write the

character ‘e’ in different ways, but but both written instances should still register as the letter ‘e’ to

a computer system [41].

Figure 9.2: Convolutional Network. Reprinted with permission from [42].

Reprinted by permission from IEEE: Convolutional Networks and Applications in Vision by Y.
LeCun, K. Kavukcuoglu, and C. Farabet c©2010 IEEE

Convolutional neural networks (CNNs) [41] can be used to learn higher-level features from lower-

level high-density features. Figure 9.2 shows an example CNN that takes as input a single image

and outputs a classification decision (e.g. reading an image of a handwritten character and deter-

mining which character was written).

CNNs work by alternating between convolutional layers and sub-sampling layers. Convolutional

layers transform inputs from the previous layer into higher-level outputs in a series of feature

maps. Each output in a feature map represents the network’s analysis of regions in the previous

layer of the CNN. For example, the first convolutional layer that processes the input image itself

essentially looks for a given aspect of an image in every region of the image. This allows the CNN

to recognize patterns regardless of where they occur in the image. It also allows the CNN to learn

404

fewer parameters, since the same set of parameters for a given feature map are reused over multiple

regions of an input. Sub-sampling layers compute averages over regions of the previous layer in

order to reduce the number of inputs that are presented to the next convolutional layer.

The combination of a CNN and MCL could allow MCL to be used in high-density data applica-

tions, such as auditory and image processing. The CNN would be used to detect high-level features

specified by a developer (such as the presence of cats in videos) and then MCL would used to de-

termine how these features (as detected by the CNN) influenced decisions over time. For example,

this could be used in activity detection in videos, wherein certain images of a person moving in

sequence could be processed by MCL to learn that memory of certain human poses usually pre-

cede other human poses for a given activity. For example, a human usually crouches a bit before

jumping and a human usually blinks and inhales before sneezing.

9.4.6 Informing General Decision Making

We define General Decision Making (GDM) informally as as the process of reasoning about cur-

rent knowledge to achieve some goal. Gonzalez and Dankel [22] use the example of diagnos-

ing problems in a lawn mower (coincidentally) to illustrate the difference between three types of

knowledge:

• General Knowledge stores prior information about a domain that is applicable to various

types of tasks.

• Specific Knowledge stores knowledge that is particular to a given problem. This knowledge

can be modified as additional information about the problem is derived or learned.

• Problem-Solving Knowledge is a set of procedures that determine how the general and spe-

cific knowledge are used to derive a solution to the problem at hand. Problem-solving knowl-

405

edge is constant across domains.

The implementation of GDM within computer systems, as noted by Gonzalez and Dankel [22],

can either be accomplished through traditional software engineering or through knowledge engi-

neering. Software engineering uses traditional search algorithms to find a solution within some

solution space to solve problems. This is essentially a general-purpose approach to solving prob-

lems and making decisions in any domain. However, more nuanced and domain-specific problems

are better addressed with knowledge-based (KB) systems.

A KB system is defined in [22] as a “computerized system that uses knowledge about some domain

to arrive at a solution to a problem from that domain. This solution is essentially the same as that

concluded by a person knowledgeable about the domain of the problem when confronted with

the same problem.” KB systems are most suited for capturing associational expertise, wherein a

blackbox system is understood solely by its effect on an environment [22].

LfO, as noted in Chapter 1, can be considered a means of automatically generating a KB system

from observation of someone’s performance. The blackbox in this example is the observed actor.

This dissertation describes how MCL can approximate the influence of memory on the observed

actor for more informed LfO. However, the next step is the analysis of memories of the perfor-

mance a LfO agent (e.g. a KB system) with regards to some goal.

Gonzalez and Dankel [22] describe a case study surrounding a KB system called GenAID (Gen-

erator Artificial Intelligence Diagnostics). The purpose of GenAID was to use expert heuristics to

analyze data from power generators and determine the presence of possible minor system flaws.

These system flaws could then be addressed before they became major flaws that resulted in system

downtime, which could cost a power company thousands of dollars per day.

MCL can be used in a KB system such as GenAID to improve GDM over time, regardless of

406

how the KB system was initially created. If certain decisions by a KB system result in suboptimal

outcomes, then MCL can be used to assess which aspects of the KB system’s heuristics should

be adjusted. Thus, the iterative improvement of KB systems in this fashion becomes a long-term

reinforcement learning problem – decisions by the KB system are graded over time as “good” or

“not good” (either by some system metric or by a human).

Using GenAID as an example, suppose that GenAID fails to detect certain minor system flaws that

ultimately result in a system failure (generator downtime). In order to determine how GenAID

should be updated, MCL can be used to analyze the decisions of GenAID over the time period

leading up to the system failure (the trace of GenAID’s outputs for each perception of the system’s

state) to see which memory influences were missing from GenAID’s analysis. Then, developers

can update GenAID (or a modified version of GenAID can update itself) to pay more attention to

such aspects of the system.

In this example, MCL has aided in a reinforcement task. Even though MCL was developed to

work in tandem with LfO tasks, the output of MCL may be useful for a variety of learning tasks in

addition to LfO.

9.4.7 A New Learning from Observation Algorithm

A new class of learning algorithms are needed to address Level 3 memory-influenced behaviors.

Standard supervised learners are generally not suited for learning Level 3 memory-influenced be-

haviors [58]. In response, this dissertation presented MCL, an algorithm that learns information

about memory influences (codified by MFs) that can improve LfO algorithms (even standard super-

vised learners) without modifying the LfO algorithm itself. However, MCL does not accomplish

the LfO task by itself – it must be coupled with a preexisting LfO algorithm.

407

Thus, there are two ways in which MCL could be extended to create a new LfO algorithm. Specif-

ically, this new LfO algorithm would construct the procedural knowledge of the memory contexts

that are learned by MCLvN (as described in Chapter 6).

In general terms, MCL learns which memory-influences (codified by MFs in empty memory con-

texts) frequently occur with specific actions by the observed actor. However, the next logical step

is to structure procedural knowledge that says, “Do actions Y when memory influences M are

present.” In other words, MCL (as described in this dissertation) learns that memory influences M

are important in some way (leaving it up to another algorithm to learn how specifically); if MCL

were extended, it could learn that memory influences M, when present, require the agent to do

actions Y.

Chapter 6 discussed how a context-based LfO algorithm, such as GenCL [19], could benefit from

the memory contexts learned by MCL. MCL would automatically learn appropriate memory con-

texts describing situations where certain memory influences are relevant. Then, the LfO algorithm

would learn the action rules and transition rules for each memory context. However, there is a

concern that memory contexts are not suited for current context-based LfO algorithms because

memory contexts are inherently different from behavioral contexts, as defined in [81]. In the

CxBR paradigm [24], procedural knowledge in a context is expected to involve very similar ac-

tions. Memory contexts do not necessarily conform to this assumption because the only constant

for all actions in a memory context is that all actions can make use of the MFs forming that memory

context.

The following procedure loosely describes how to learn transition rules within MCL’s memory

contexts:

1. Load the next memory context m and do the following:

408

(a) Create positive training examples from the values of MFs for m in the time steps be-

longing to memory context m.

(b) Create negative training examples from the values of MFs for m in all time steps not

belonging to memory context m.

(c) Use symbolic supervised learning to learn the transition rule for m. “If values v are

observed for MFs χ, then set memory context m as the active context.”

2. If not all memory contexts have been processed, go to Step 1.

The following procedure loosely describes how to learn action rules within MCL’s memory con-

texts:

1. Load the next memory context m and do the following:

(a) For each possible action a, do the following:

i. Set all time steps within memory context m that have action a as a solution com-

ponent as positive training examples. Set all other time steps in m as negative

training examples.

ii. Use symbolic supervised learning to learn an rule for action a. “If memory context

m is active, then if features F have values V , then perform action a.”

(b) Alternatively, use standard supervised learning over all time steps in memory context

m.

2. If not all memory contexts have been processed, go to Step 1.

Thus, it is mostly the transition rules which would have to be specifically addressed by a new LfO

technique integrated with MCL. Memory contexts are defined specifically by memory influences,

409

so we must ensure that the value of MFs specifically determine which memory context is active.

Because MCL attempts to restore the Markov assumption, we assume individual time steps can be

treated independently.

Additionally, it may be useful to combine both behavioral contexts and memory contexts by either

learning memory contexts within a given behavioral context or learning behavioral contexts within

a given memory context. Both types of contexts could even be combined to create a hybrid context

definition based on both behaviors within the context and on relevant memory influences.

9.4.8 Integration with Feature Construction

Feature construction [67] is the modification of an original feature set into a new feature set that

either more concisely models an environment or improves prediction accuracy. According to the

survey by Sondhi [67], the motivation behind feature construction are the twin problems of fea-

ture interaction (removing features that are correlated with each other) and feature irrelevance

(removing features that are unhelpful for a prediction task). The latter can be addressed via feature

selection (choosing a subset of the original feature set as the new feature set). The former can be

addressed by constructing features that are a combination of features from the original set; these

new features thus embody any correlative relationships between those component features.

The common thread between feature construction and MCL is that both methods create new fea-

tures that improve learning performance. The difference between feature construction and MCL

is that feature construction generates new features based on the utility of features as distinct dis-

criminators – features that improve information gain. In contrast, MCL constructs features that

embody memory influences – relationships of specific feature values with the current time step

that are correlated with an observed actor’s decisions.

410

It may be possible to investigate the use of various feature construction methods to improve MCL

or to implement alternative approaches to the modeling memory influences. For example, MFs

learned by MCL only track a single feature, but feature construction methods could be used to

create MFs that model memory influences from multiple features simultaneously.

9.4.9 Proving Memory Coverage

This dissertation investigated the feasibility of the MCL approach toward modeling memory influ-

ences for improving LfO. However, a limitation of this work is that there was no guarantee that

the learned memory model would improve LfO – it could only provide additional inputs that had

potential for improving learning performance. Thus, the degree to which learning improved could

be a factor of either MCL or the LfO algorithm itself.

Therefore, a fruitful venture for extending this research would be to develop methods for answering

the question, “Given a set of memory feature types (e.g. value-back, time-back, etc.), to what

degree can all possible memory-influenced behaviors involving feature set F be expressed?”

To answer this question, one would have to define the set of all possible memory-influenced be-

haviors for a given feature set and one would have to define all possible expressions of memory-

influences for a given memory feature set.

The set of all memory-influenced behaviors could be defined in a brute force manner by enumer-

ating the power set of all features, values, and temporal constants for every time step (up to a

maximum constant T). Or, one could define a distribution of relevant internal states according

to some empirical data (e.g. a Monte Carlo simulation). The set of all expressions of memory

influences, given a memory feature set, could be defined in a similar manner. The question then

becomes how to compare the set of possible memory-influenced behaviors with the set of mem-

411

ory feature expressions. Such an endeavor would likely require an algebraic proof involving the

notation of stochastic processes, as in [58].

9.5 Afterword

The formulation of new approaches to learning memory-influenced behaviors from observation

is a promising venture toward enabling the creation of AI programs that can both approximate,

understand, and benefit from the cognitive intricacies of observed entities. MCL exemplifies just

one approach to this problem and perhaps it may inform future improvements or new approaches.

The reader who has persevered to this point of the dissertation (or who just jumped to the end) is

encouraged everyday to keep imagining, keep creating, and keep discovering the secrets tucked

away by our Maker for us to find. Whatever your journey or pursuit, know that you are loved and

that you matter.

412

APPENDIX A: ANALYSIS OF MEMORY FEATURE EXTRACTION

ALGORITHMIC COMPLEXITY

413

This appendix discusses the run time complexity of the MF Extraction phase of the MCLv0 and

MCLvN approaches, discussed in Chapters 5 and 6, respectively.

A.1 MCLv0 Extraction Algorithmic Complexity

We now discuss the algorithmic complexity of the Memory Feature Extraction step in MCLv0,

described in Section 5.2.1. Suppose that in a certain domain, MCLv0 must learn from T traces

that are at most N time steps in length that record values for F features. (Let us assume that F

and T are constants.) This means that the case base created from these traces will have TN cases

according to the Memory Feature Extraction (see Algorithm 2 from Section 5.1). In Algorithm 3,

Memory Temporal Backtracking (MemTB) is invoked three times for a given case c. Each call to

MemTB in the worst case compares every time step in the problem component sub-run of c to that

of every other case’s problem component sub-run in the case base.

A paraphrased algorithm for the MCLv0 MF Extraction algorithm is seen in Algorithm 12. Here,

N cases are processed in procedure mem-feat-extract-v0. For each case, a call to extract-

v0 is made (see Algorithm 13), which is shown in Algorithm 13. In the while loop, up to two MFs

are added to the test case and case base each turn. In the worst case, MFs are added for each time

step in the test case (for a maximum ofN time steps). In each of these loop iterations, three calls to

the recursive procedure mem-tb are made (see Algorithm 14). In each recursive call, the test case

is compared to all candidate cases, which is all TN cases in the worst case. The recursive depth

can be a maximum of N (the number of time steps in the test case’s problem component sub-run).

Algorithm 12 MCLv0 MF Extraction
1: procedure MEM-FEAT-EXTRACT-V0(casebase)
2: mem-feat-lists← (empty-set)
3: for test-case in casebase do
4: mem-feats← extract-v0(test-case, casebase)

414

Algorithm 13 MCLv0 Single Case Extraction
1: procedure EXTRACT-V0(test-case, casebase)
2: mem-feats← (empty-set)
3: while True do
4: recurs, raw-mem-feat← mem-tb(test-case, casebase, 0)
5: if recurs = 0 then
6: return mem-feats
7: val-test-case, val-casebase← add-val-mem-feat(test-case, casebase)
8: recurs-val, rmf-val← mem-tb(val-test-case, val-casebase, 0)
9: tback-test-case, tback-casebase← add-tback-mem-feat(test-case, casebase)

10: recurs-tback, rmf-tback← mem-tb(tback-test-case, tback-casebase, 0)
11: if recurs-val geq recurs-tback then
12: test-case, casebase← add-val-mem-feat(test-case, casebase)
13: mem-feats.add(rmf-val.as-value-back())
14: if recurs-tback geq recurs-val then
15: test-case, casebase← add-tback-mem-feat(test-case, casebase)
16: mem-feats.add(rmf-val.as-time-back())

Algorithm 14 Memory Temporal Backtracking
1: procedure MEM-TB(test-case, candidate-cases, time-back)
2: if solutions-agree(candidate-cases) then
3: best-feat← get-best-feat(candidate-cases, time-back)
4: return raw-mem-feat(best-feat, time-back, test-case.value(best-feat))
5: new-candidates← (empty-set)
6: for cur-case in candidate-cases do
7: sim← compare-cases(cur-case, test-case)
8: if sim geq THRESHOLD then new-candidates.add(cur-case)
9: return mem-tb(test-case, new-candidates, time-back− 1)

The algorithmic complexity for this operation is computed as follows:

1. There are TN cases, each with problem component sub-runs up to N time steps in length.

2. MemTB is invoked each time a new MF is required for a case c. A case c may have up to

2N MFs (two per time step), thus requiring at worst N MemTB calls.

3. During each call of MemTB, a recursion depth of N will be achieved in the worst case.

415

4. During each MemTB recursive call, case c will compared with at most TN cases.

5. When perceptions are compared, all F feature values must be compared. However, MemTB

adds one MF to the cases after each iteration, so there will be F , F + 1, F + 2, etc. feature

comparisons per MemTB iteration. However, we assume F is a constant.

For TN cases, there are at most N calls to MemTB per case (one per time step), at most N

recursive iterations per MemTB call (one per time step), and at most TN case comparisons per

recursive iteration. Thus, the algorithmic complexity for MF Extraction for all cases is O(N4), if

we treat T as a constant.

For certain real-world applications, this runtime may be prohibitively slow. This is the motiva-

tion behind the improvements made in MCLvN in the Memory Feature Extraction phase (Step 1a

“Extract Memory Features” in Figure 6.1).

A.2 MCLvN Extraction Algorithmic Complexity

In MCLvN, there are still TN cases, but this time all cases are processed with a single call to

MemTB+ as a result of the Memory Singularity Principle (MSP). Furthermore, Tree Extraction

processes “reject cases” from the point in time when they diverge from a test case, rather than

extracting MFs for them from scratch.

In Algorithm 15, the function call to procedure extract-vN is invoked only once, for all cases

in the case base. This procedure extract-vN (see Algorithm 16) is very similar to Memory

Temporal Backtracking, except it implements MSP and tree extraction. It first checks if all solu-

tions in the candidates case pool have the same solution, in which case recursion ends. Otherwise,

various “case groups” are computed by the procedure get-case-groups.

416

Algorithm 15 MCLvN Memory Feature Extraction
1: procedure MEM-FEAT-EXTRACT-VN(casebase)
2: extracted-mem-feats← (empty-set)
3: extract-vN(casebase, extracted-mem-feats, 0)

Algorithm 16 MCLvN Tree Extraction
1: procedure EXTRACT-VN(candidate-cases, mem-feats, time-back)
2: if solutions-agree(candidate-cases) then
3: best-feat← get-best-feat(candidate-cases, time-back)
4: for case in candidate-cases do
5: test-val← test-case.value(best-feat)
6: raw-mf← raw-mem-feat(best-feat, time-back, test-val)
7: mem-feats.at(case).add(raw-mf)
8: return
9: case-groups← get-case-groups(candidate-cases)

10: for group in case-groups do
11: test-case← group.at(0)
12: best-feat← get-best-feat(group)
13: for case in group do
14: test-val← test-case.value(best-feat)
15: raw-mf← raw-mem-feat(best-feat, time-back, test-val)
16: mem-feats.at(case).add(raw-mf)
17: extract-vN(group, mem-feats, time-back - 1)

Algorithm 17 MCLvN Case Groups Computation
1: procedure GET-CASE-GROUPS(candidate-cases)
2: unmapped-cases← candidate-cases.copy()
3: case-groups← (empty-set)
4: while unmapped-cases.size > 0 do
5: group← (empty-set)
6: test-case← unmapped-cases[0]
7: for cur-case in unmapped-cases do
8: sim← compare-cases(cur-case, test-case)
9: if sim > THRESH then

10: group.add(cur-case)
11: unmapped-cases.remove(cur-case)
12: case-groups.add(group)
13: return case-groups

417

In procedure get-case-groups (see Algorithm 17), all candidate cases are initially “unmapped”.

The while loop creates a new group of similar cases. In the worst case, this loop creates a new

group for every case, resulting in about (TN)2 case comparisons (the summation of 1 to TN

cases). However, if this event occurs, then recursion will end after a single call. On the other

extreme, if procedure get-case-groups creates just a single group (after only TN case com-

parisons), then in the worst case, a recursion depth of TN is achieved (where there is only one case

group until the beginning of the behavioral trace is reached).

So whether procedure get-case-groups has (TN)2 case comparisons and procedure extract-

vN has a recursion depth of 1 or procedure get-case-groups has TN case comparisons and

procedure extract-vN has a recursion depth of TN (calling procedure get-case-groups

each time), MF Extraction in MCLvN has a worst-case algorithmic complexity of O(N2) (where

T is a constant), which is significantly better than that of MCLv0.

418

APPENDIX B: IRB LETTER OF APPROVAL FOR LAWN MOWER

STUDY

419

Institutional Review Board
FWA00000351
IRB00001138
Office of Research
12201 Research Parkway
Orlando, FL 32826-3246

 Page 1 of 1

EXEMPTION DETERMINATION

April 3, 2019

Dear Josiah Wong:

On 4/3/2019, the IRB determined the following submission to be human subjects
research that is exempt from regulation:

Type of Review: Initial Study, Category
Title: Learning Behavioral Memory Representations from

Observation in a Simulated Lawn Mower Task
Investigator: Josiah Wong

IRB ID: STUDY00000341
Funding: Name: National Science Foundation (NSF)
Grant ID:

This determination applies only to the activities described in the IRB submission
and does not apply should any changes be made. If changes are made, and
there are questions about whether these changes affect the exempt status of the
human research, please contact the IRB. When you have completed your
research, please submit a Study Closure request so that IRB records will be
accurate.

If you have any questions, please contact the UCF IRB at 407-823-2901 or
irb@ucf.edu. Please include your project title and IRB number in all
correspondence with this office.

Sincerely,

Racine Jacques, Ph.D.
Designated Reviewer

420

APPENDIX C: DESIGN OF LAWN MOWER SIMULATION

421

This appendix describes the layouts of each scenario in the lawn mower simulation (LMS). The

scenarios are described in the order in which they appeared to the human participants during the

collection of human behavior data. These are the scenarios in the LMS that were used to collect

human behaviors involving memory. Depending on how many attempts it took a participant to

complete each scenario, all scenarios took anywhere from 15 to 30 minutes to complete. Even

though the LMS is presented in the guise of a lawn mower simulation, it was not meant to resemble

a completely realistic lawn mower experience (as evidenced by the presence of entities based on

mythical creatures, such as Leprechauns and fairies). Therefore, certain scenarios have very little

grass to cut; the number and placement of grass patches was such that the human subjects, in their

pursuit of mowing the required number of grass patches, had maximum exposure to the simulation

entities requiring memory-based behaviors. LMS is a test bed designed to facilitate memory-based

behaviors in humans. For each scenario, we describe the purpose of the scenario (what we were

trying to accomplish), the memory-based behaviors that were required by the human to fulfill the

requirements of the scenario, and any difficulties the human may have encountered during game

play. Generic details about the LMS are discussed in Section 8.3.1.

Figure C.1 shows the first scenario. Its purpose was to introduce the human to the user interface,

joystick controls, and basic lawn mower movement. The human is introduced to a points require-

ment (e.g. number of grass patches required to enable the exit) and a time limit. The human learns

that barriers (gray squares) are impassable and that grass patches can be mowed exactly once for

one point. This scenario serves as a baseline to which a human’s performance in other scenarios

can be compared.

422

Figure C.1: LMS Scenario 1. Simulation entity introduced: Grass.

There are no explicit memory elements in this scenario. However, a learning agent observing the

human’s behavior may still require memory in order to remember which direction the human is

moving in, similar to how memory was required in the vacuum cleaner domain for the straight line

and zig zag agents. The time limit was set such that unless the human is reasonably methodical in

their mowing behavior, they will not complete the scenario in time. One strategy that the humans

can utilize is mowing two grass patches simultaneously by moving in between them. Thus, a

human who employs this strategy will not be aiming directly at a single patch of grass, but rather

at a group of grass patches, which is a possible challenge when generating MFs with MCL.

This scenario involves the following memory-based behaviors:

1. Remember which direction the human was moving.

2. If mowing in a zig zag, circular, or random pattern, remember which part of the pattern (if

any) was just executed. Execute the next part of the movement pattern.

423

Figure C.2 shows the second scenario. It introduces the human to dark grass patches. A few regular

grass patches are present to demonstrate to the human that dark grass patches, unlike regular grass

patches, look the same both mowed and uncut. However, an audible sound is made each time

a grass patch or dark grass patch is cut as feedback that a human’s exploratory movements are

moving in the right direction.

Figure C.2: LMS Scenario 2. Simulation entity introduced: Dark Grass.

The memory-based behavior required in this scenario is remembering which dark grass patches

the human has already visited. A human with perfect memory will mow them in the same fashion

as they would for regular grass patches. A human with a less confident memory may employ more

random mowing behaviors in search of unmowed dark grass if they don’t remember which exact

patches were mowed. The main difficulty of this scenario is that the human does not have sufficient

time to mow over all dark grass patches twice to make sure they were mowed — the human will

have to remember at least some of the dark patches that were mowed in order to complete the

scenario in time.

424

This scenario involves the following memory-based behaviors:

1. Remember whether a region of dark grass patches has been visited.

2. If mowing in a zig zag, circular, or random pattern, remember which part of the pattern (if

any) was just executed. Execute the next part of the movement pattern.

Figure C.3 shows the third scenario. Its main purpose is to demonstrate that rocks should be

avoided because they damage the lawn mower. This scenario also gives the human some practice

with precise joystick handling.

Rocks, like grass, are entities that do not explicitly require memory on part of the human. Rocks

are the hazard-equivalent of grass, except they can damage the lawn mower multiple times, since

they are indestructible. However, memory may be required from a learning agent observing the

human in order to remember which direction the human is going. This is because the scenario

environment is laid out such that the human is almost never going directly toward the exit in order

to avoid the rocks. Each pathway between the rocks has two exits and a learning agent must use

memory to remember which way the lawn mower was going. Specifically when the human is

making a turn around the rocks, the learning agent must remember which pathway the human

came from in order to know that it should go for the other pathway.

425

Figure C.3: LMS Scenario 3. Simulation entity introduced: Rocks.

This scenario involves the following memory-based behaviors:

1. Remember which direction the human was moving. Continue moving in that direction.

2. When rounding a corner around a column of rocks, remember which direction the human

came from and don’t go back in that direction.

Figure C.4 shows the fourth scenario. It combines grass, dark grass, and rocks into one scenario as

a sort of “test scenario” to assess the human’s abilities with all these entities all at once.

426

Figure C.4: LMS Scenario 4. Features grass, dark grass, and rocks.

The intended strategy is for the human to first mow the region of dark grass in the top left, and

then proceed in a counter-clockwise fashion through the environment, though the human could use

an alternate route. Dark grass patches are the main entity requiring memory on part of the human,

especially those in the top left region. The main difficulty on part of the human would be handling

the joystick precisely enough to successfully navigate through two rocks. The four regions of

regular grass in the middle and the navigation from the eight regular grass patch region to the

dark grass patch region to its right would require this behavior when using the intended navigation

strategy. Because this scenario has four regions of dark grass, the human must also remember (on

a higher level) which dark grass regions have been visited, in addition to which individual dark

grass patches have been mowed within a given region.

This scenario involves the following memory-based behaviors:

1. Remember whether a region of dark grass patches has been visited.

427

2. Within a given dark grass patch region, remember which individual dark grass patches have

been mowed.

Figure C.5 shows the fifth scenario, which introduces ground hogs. The screen shot shows the

locations of all ground hog locations, with the ground hogs that are hidden grass enclosed in a red

circle in the figure. However, one should note that ground hogs do not become visible to the human

until the human gets close enough to them — the figure simply shows all of them as visible for the

benefit of the reader.

Figure C.5: LMS Scenario 5. Simulation entity introduced: Ground hogs.

Ground hogs are the first instance of static memory elements the human encounters — ground

hogs are temporarily visible, then unmoving and invisible until a collision with the lawn mower.

The grass patches not concealing a ground hog do not have to be mowed to enable the scenario’s

exit.

Ground hogs produce an interesting behavior in the human in that a human’s intended trajectory

428

may be interrupted by a ground hog that reveals itself along that trajectory, thus requiring an

immediate path readjustment by the human. The human does not need to remember the locations

of all ground hogs that revealed themselves, but only those that are among grass patches that are

yet to be mowed.

This scenario involves the following memory-based behaviors:

1. Remember whether a ground hog was seen a particular patch of grass. Avoid that grass patch

if a ground hog peeked above ground in that grass patch.

2. Remember whether the human has come within close proximity of a grass patch. A ground

hog may yet be revealed in that grass patch and an approach at slower speed may be advised

for such a situation.

Figure C.6: LMS Scenario 6. Simulation entity introduced: Gold pots.

Figure C.6 shows the sixth scenario, which introduces gold pots. All gold pots are initially invisible

429

until the lawn mower gets close enough to them. The gold pots surrounded by a red circle in the

figure will be obscured by a grass patch after they are revealed.

In this scenario, it is necessary for the lawn mower to take damage by passing over successive

columns of rocks while replenishing health points with gold pots. Gold pots are similar to ground

hogs, except they replenish health once before vanishing. This does not require as much memory

from the human as ground hogs because 1) gold pots are only hidden by grass, which the human

knows to collide with anyway, and 2) gold pots are only usable once. In contrast, ground hogs

must be perpetually remembered and avoided for the duration of the scenario. Only two gold pots

are obscured by grass in this scenario, but it was a curiosity as to how memory-based behaviors

would be affected by a positive version of a ground hog.

This scenario involves the following memory-based behaviors:

1. Remember whether a gold pot was seen in a particular patch of grass. Go to that patch of

grass.

2. Remember whether a particular end section of the environment between rock columns has

been visited. A gold pot may reveal itself if that section is unvisited.

Figure C.7 shows the seventh scenario, which introduces snakes. It was created because the sce-

nario which comes after it (which was created first) was a little difficult and we wanted a simpler

version of that scenario to ensure the human subjects could exhibit correct behavior in reaction to

snakes.

430

Figure C.7: LMS Scenario 7. Simulation entity introduced: Snakes.

The snakes that move horizontally are surrounded by a red circle in the figure; the rest move

vertically (including the one with a pink square outline around it, which is partially occluded by

grass in the figure). Snakes are invisible when moving through grass, which requires the human to

remember where the snake first became invisible and then project where the snake’s likely location

is.

There are two memory-based behaviors the human may exhibit when dealing with snakes. First,

if the human wants to take a path perpendicular to the snake’s path, then the human can simply

remember whether or not the snake is located in the position where the human wishes to cross.

Most snake paths in this scenario only go through two or three consecutive grass patches at a time.

However, the snake in the bottom right of the environment goes through seven grass patches, which

requires significant memory from the human. Additionally, the human cannot simply mow across

the path because of the barrier above the grass patches. However, if the human mows those grass

patches, the snake will no longer be invisible on that part of the path, thus reducing the amount of

431

memory required by the human to address that snake.

This scenario involves the following memory-based behaviors:

1. Remember where a snake first enters a patch of grass and becomes invisible. Remember

which direction the snake was moving.

2. Remember how long a snake has remained invisible. Based on this duration of invisibility,

project whether the snake is located in the grass of patch that will be mowed next.

3. In the case of the snake in the bottom right of the scenario, project whether the snake has

changed directions.

Figure C.8 shows the eighth scenario. It is a challenging scenario with snakes. The snakes that

move horizontally are circled in red in the figure.

Figure C.8: LMS Scenario 8. Features snakes.

432

The first two snakes encountered have a very short path, because they switch directions upon

hitting a barrier. Thus, the human must move quickly through these snakes. The second snake,

whose path is covered by two grass patches, requires precise memory as a result. The next two

snakes encountered move vertically at the same rate. Thus, if one of those snakes is hidden and the

other is visible, the human can infer that the hidden snake is right next to the other snake within

the grass, which reduces the memory requirement for those snakes. The five snakes arranged in

a diagonal are difficult to navigate, but it is possible to avoid the grass patches in that region if

more grass patches are mowed form other regions of the environment. In contrast, the snake at

the bottom of the play area has a path that goes over the exit. The only way to hit the exit is

to literally follow the snake through the line of grass patches leading to the exit, which requires

careful memory of where the snake is. As an extra challenge, the lawn mower is slightly faster

than the snake, so moving at full speed may result in a collision with the snake.

This scenario involves the following memory-based behaviors:

1. Remember where a snake first enters a patch of grass and becomes invisible. Remember

which direction the snake was moving.

2. Remember how long a snake has remained invisible. Based on this duration of invisibility,

project whether the snake is located in the grass of patch that will be mowed next.

Figure C.9 shows the ninth scenario, which introduces Leprechauns. Because Leprechauns replen-

ish health, the scenario is designed similarly to the gold pots scenario so that it is necessary for the

lawn mower to take damage in order to make it to the exit.

433

Figure C.9: LMS Scenario 9. Simulation entity introduced: Leprechauns.

The two Leprechauns that move horizontally (instead of vertically) are surrounded by red circles in

the figure. (One of the Leprechauns is being rendered under the grass patch in the figure, just right

of the fifth column of rocks from the left.) The intended strategy for this scenario is to remember

which direction a Leprechaun is going move toward if it is moving vertically or else wait in its path

if it is moving horizontally (because Leprechauns can move through rocks unencumbered).

This scenario involves the following memory-based behaviors:

1. Remember which direction a Leprechaun is moving (away or towards the lawn mower; hor-

izontally or vertically).

2. Remember where a Leprechaun first entered a patch of grass and became invisible. Project

its future location. Move toward that location if lawn mower is within close proximity to its

projected path.

434

Figure C.10 shows the tenth scenario, which introduces Sprinklers. In this scenario, the grass

patches represent “safe” locations beyond the reach of the sprinklers’ spray radii. In the figure, all

sprinklers are visible in the “spray” phase, but sprinklers do not begin their phased behavior until

the lawn mower gets within a certain proximity of them and thus are all initially invisible when the

human begins the scenario. The human must remember which “phase” a sprinkler is in (even if it

is invisible) and how long the sprinkler has been in that phase.

Figure C.10: LMS Scenario 10. Simulation entity introduced: Sprinklers.

This scenario involves following memory-based behaviors:

1. Remember which direction the human was previously moving in. This is critical because the

human spends most of their time remaining still, waiting for a sprinkler to cease spraying.

2. If a sprinkler just revealed itself and entered the invisible “standby” phase, remember that

there was a sprinkler there and get a safe distance away.

435

3. If the sprinkler has finished spraying and is in the “cooldown” phase, remember how long

it has been since the sprinkler entered cooldown because it is safe to traverse the sprinkler’s

area of effect while it is in cooldown.

Figure C.11 shows the eleventh scenario, which features sprinklers.

Figure C.11: LMS Scenario 11. Features sprinklers.

In contrast to the previous sprinkler scenario, the grass patches are located within the sprinklers’

spray areas and the human must time their approach to coincide with the sprinkler cooldown

phases. This scenario was the original sprinkler scenario, but since it only featured two sprinklers,

the previous sprinkler scenario was created to facilitate more human behavior around sprinklers.

The human exhibits the same memory-based behaviors in this scenario as they do in the previous

scenario, with some exceptions:

1. The two sprinklers are right next to each other, so there is no “safe” zone between them.

436

The human must remember the phases for both sprinklers simultaneously instead of just the

“next” one on their path.

2. The grass patches are located within the sprinklers’ areas of effect. Therefore, it is even

more crucial for the human to remember how long a sprinkler has been in cooldown so that

the human has enough time to leave the area of effect if the sprinkler pokes its head above

ground to begin its cycle again.

Figure C.12 shows the twelfth scenario, which introduces fairies. Like the sprinklers in the previ-

ous scenario, the fairies are shown in the “spray” phase in this figure, but are initially invisible to

the human until the human gets close enough.

Figure C.12: LMS Scenario 12. Simulation entity introduced: Fairies.

There are a few possible routes through the scenario, but the lawn mower must take at least five

instances of damage throughout the scenario to make it to the exit, ensuring that the human will

need to use at least two fairies in order to fulfill the scenario requirements. Because fairies restore

437

all health, this scenario and the next fairy scenario are more forgiving of mistakes by the human

than the sprinkler scenarios are.

This scenario involves following memory-based behaviors:

1. Remember how long a fairy has been in their spray phase. Go to the fairy if there is sufficient

time to get within its area of effect before it exits spray phase.

2. Remember where a fairy previously spawned and how long it has been in cooldown. If health

is sufficiently low, revisit a previous fairy location if a sufficient amount of time has passed

since the fairy entered cooldown.

Figure C.13: LMS Scenario 13. Features fairies.

Figure C.13 shows the thirteenth and final scenario, which features fairies. This was the original

scenario meant to introduce the fairy entity, but since there were only two fairies, an additional

scenario (the previous one) was created to facilitate additional human behavior around fairies.

438

This scenario facilitates the same memory-based behaviors as the previous fairy scenario, except

the second fairy (the one on the right of the play area) is especially critical. The deluge of rocks on

the right of the environment can only be traversed while the fairy is in the spray phase. The lawn

mower cannot just touch the fairy’s area of effect once — the lawn mower must travel through it.

If the human does not time their approach through the fairy’s spray area just as the spray phase

begins, then the human risks losing all their health to damage by the rocks. A more risky (but

faster) approach would be to begin traversal through the rocks immediately after the fairy peeks

(enters the standby phase) and time the approach such that the fairy’s spray phase begins right

before all health is lost.

439

APPENDIX D: LAWN MOWER STUDY SURVEY RESULTS

440

This appendix provides aggregate survey results from the research study that was conducted for

the lawn mower domain. After each of our eleven human subjects experienced each scenario in the

lawn mower simulation, they filled out a survey. The purpose of the survey was to solicit qualitative

responses from the participants about memory-based strategies they used to address the entities in

the simulation and to quantitatively gauge the degree to which each person reported using memory

for each entity. The survey responses did not have a direct effect on the success of the research,

but they provided interesting insights that we share here.

The survey solicited demographic information (e.g. gender, age, major) and information about the

person’s experience with joysticks and mowing lawns.

The following questions required a response via a five-point Lickert scale, where “1” was strongly

disagree and “5” was strongly agree. Some of the questions were repeated for each simulation

entity.

1. I found the lawn mower controls to be natural, as if operating a real lawn mower.

2. I found the simulation to be realistic.

3. I found that it was easy to understand the mechanics behind (simulation entity).

4. I found that it was easy to know/remember/infer the locations of (simulation entity).

5. The simulation contained a manageable number of (simulation entity).

6. It required a significant amount of memory on my part to address (simulation entity).

7. The lawn mower simulation required me to use memory in my mowing behavior.

The following questions were open-ended:

441

1. What strategy did you use to address (simulation entity) in the simulation?

2. If you could play the game again, what would you do differently?

3. How would you improve the simulation?

4. Please provide any final thoughts or comments about your experience.

Figure D.1: Lawn Mower Survey – Gender

Figure D.1 shows the gender distribution of the human subjects. We had 3 females and 8 males

participate in the study.

442

Figure D.2: Lawn Mower Survey – Age

Figure D.2 shows the age distribution of the human subjects. All human subjects were above the

age of 18.

Figure D.3: Lawn Mower Survey – Major

Figure D.3 shows the educational backgrounds of our participants. The majority of our participants

were Computer Science majors.

443

Figure D.4: Lawn Mower Survey – Joystick Experience

Figure D.4 shows how experienced our participants were with joysticks, which may have affected

their performance in the simulation. The majority of our participants had at least some experience

with joysticks.

Figure D.5: Lawn Mower Survey – Mowing Experience

Figure D.5 shows the mowing experience that our participants had, which may have impacted their

decisions in the lawn mowing simulation. About half of our participants had no experience while

444

half had at least some if not much experience with mowing lawns.

Figure D.6: Lawn Mower Survey – Naturalness of Controls

Figure D.6 shows the results for how participants perceived the naturalness of controls, when

compared to mowing a lawn. Granted, about half of our participants had no lawn mower experience

and had to guess. The responses were split roughly three ways between a strong belief that the

controls were natural, a very strong belief that the controls were natural, and a strong disbelief in

the assertion that the mower controls were natural. Of course, real lawn mowers are not operated

by joysticks, but perhaps some of the participants judged that the movement of the mower in

the simulation and its interaction with the simulation elements was believable and akin to those

expected from a real mower.

Figure D.7 shows the degree to which our participants believed our simulation was realistic. Again,

the responses were mixed, with the participants generally believing that the simulation was semi-

realistic. Perhaps the presence of simulation elements modeled after mythical creatures (e.g. Lep-

rechauns, Fairies) and our decision to not allow creatures to die when colliding with the mower

detracted from the realistic quality of the simulation. However, the purpose of the simulation was

not to recreate a real lawn mowing experience, but to facilitate the exhibition of memory-based

445

behaviors in humans.

Figure D.7: Lawn Mower Survey – Simulation Realistic Perception

Figure D.8 shows how easily the participants understood the mechanics behind the simulation

elements. Any response other than “Agree” or “Strongly Agree” is a cause for concern. The

simulation was designed to be a soft tutorial for addressing each entity, allowing the participant to

learn from mistakes within a scenario (e.g. losing health) and correct them on subsequent attempts

on the scenario if necessary. However, this design may be improved for certain simulation entities.

Rocks and Grass were intuitive to all participants, while all other entities were at least partially

misunderstood by certain participants.

Figure D.9 shows the ease with which each simulation entity’s location was inferred by the par-

ticipants. Generally, most participants found that knowing the locations of the entities was not

difficult. Some participants found certain elements difficult to remember (e.g. Ground Hogs, Lep-

rechauns, Fairies). Rocks, which are always visible, were labeled as being “challenging” to infer

the location for by one participant, the reason for which is unknown (perhaps due to a misunder-

standing of the question).

446

Figure D.8: Lawn Mower Survey – Ease of Understanding Mechanics

447

Figure D.9: Lawn Mower Survey – Ease of Remembering Locations

448

Figure D.10: Lawn Mower Survey – Manageability of Entity Quantities

Figure D.10 shows how “manageable” the quantities of each simulation entity were perceived to

be by the participants. In general, all simulation entities were presented in manageable quantities

449

according to the participant responses. Some entities that may have caused some trouble to partic-

ipants due to their quantity are Dark Grass, Rocks, Gold Pots, and Leprechauns (which received

one “Strongly Disagree” response).

Figure D.11: Lawn Mower Survey – Required Memory Per Entity

450

Figure D.11 shows how much memory the participants thought were required to address each

simulation entity. The results are varied and we break them down here. Generally, participants

thought Grass did not require memory. This is expected, given that grass is always visible. The

same trend in responses is seen for Rocks, which too are always visible.

For Dark Grass, participants’ responses generally were varied. Most responses labeled Dark Grass

as not requiring memory. Some responses strongly thought memory was required. The remaining

responses were middle of the road. On one hand, Dark Grass does require the human to remember

which patches were mowed, so that patches do not get mowed a second time (which would give

no points). However, it is possible to simply follow a path through dark grass regions without

explicitly remembering which patches were mowed (i.e. trusting the path to mow all dark grass

patches). Even though path following does require one to memorize which part of the path has

already been executed, this may not have been perceived by the participants as requiring memory

(which was not defined for the participants during the study).

For Ground Hogs and Gold Pots, the static memory elements of the simulation, participants gen-

erally though that these elements did not require a significant amount of memory. Perhaps they

thought that it did require memory, but that it was very easy to remember. For Gold Pots, perhaps

participants collided with the Gold Pots before they could disappear, thus removing the need to

memorize their locations once the Gold Pots are consumed.

Snakes and Leprechauns are memory dynamic simulation elements. For Snakes, there was a strong

belief by some participants that significant memory was required, but a majority of the participants

still labeled Snakes as not requiring significant memory. For Leprechauns, there was less belief

that memory was required. The Leprechaun scenario did have fewer grass patches for Leprechauns

to hide under. Furthermore, one did not have to avoid the Leprechauns, but simply had to wait for

them to come out of hiding.

451

For Sprinklers and Fairies, the phased memory simulation elements, there were some participants

who found that these elements required significant memory. However, there was a strong disbelief

of this assertion for Fairies. Because of the large areas of effect for Sprinklers and Fairies, there

were fewer of them in a given scenario, so it was easier to track their locations. Furthermore, the

memory required for Fairies does not need to be as precise as that for Sprinklers. To effectively

address Sprinklers, one must remember the precise boundaries of the spray area so as to avoid

damage. However, one simply needs to be within the general vicinity of a Fairy in order to move

within the area of effect once the Fairy’s spray phase begins (and the Fairy is visible during its

spray phase).

Figure D.12: Lawn Mower Survey – Required Memory Overall

Figure D.12 shows participant sentiment to the statement, “The lawn mower simulation required

me to use memory in my mowing behavior.” Five participants strongly agreed with the statement.

Four were not sure or did not have a response. Two did not agree with the statement. It is thus

important for future iterations of this survey to precisely define “memory” for participants, as some

participants may have different definitions.

452

The following open-ended question “What strategy did you use to address (simulation entity) in

the simulation?” was asked for each simulation entity. We paraphrase common responses for each

simulation entity below.

Strategies for Grass:

• Mow over two patches of Grass simultaneously by mowing between them.

• Mow small areas of grass over multiple rows, rather than column by column.

• Use a zig zag pattern combined with visual confirmation of cut grass.

• Minimize overall economy of motion to reduce overall path length.

Strategies for Dark Grass:

• Memorize which patches were mowed on a patch-specific basis.

• Rely on audio feedback to know if a patch was cut.

• Skip dark grass patches whenever possible.

• Treat dark grass the same as grass and just move on if one forgets which patches were cut.

• Mow less chaotically to remember which patches were cut.

• Trial and error.

Strategies for Rocks:

• Avoid entirely when possible.

453

• Treat them like a wall obstacle.

• Mow slower near rocks.

• Count how many collisions with rocks occurred.

Strategies for Ground Hogs:

• Remember explicit locations from ground hogs (even from previous attempts on the sce-

nario).

• Mow slower near known ground hog locations.

• Drive quickly over where they appeared once they have disappeared. It should be noted that

this last strategy was used by participants who falsely assumed that ground hogs posed no

danger once they were hidden from view.

Strategies for Gold Pots:

• Mow over gold pots as soon as they appear.

• Treat gold pots like grass patches.

• Count the number of times gold pot collisions occur.

Strategies for Snakes:

• Move to the furthest grass patch from snake’s location.

• Observe movement pattern first, then mow.

454

• Mow slower near snakes.

• Mow in a path that follows the snake’s trajectory.

• Use the passage of time to predict snake locations.

• Memorize the snake’s direction of movement and avoid their path if they are approaching.

• Only mow when the snake is invisible.

• Memorize snakes’ pattern of movement.

Strategies for Leprechauns:

• Immediately collide with a Leprechaun after colliding with a rock.

• No strategy.

• Count Leprechaun collisions (same as gold pots).

• Wait in a spot on the Leprechaun’s trajectory until the Leprechaun collides with the mower.

• Memorize Leprechaun movement patterns.

Strategies for Sprinklers:

• Move once the sprinkler’s spraying stops.

• Try to outrun sprinkler spray.

• Avoid. Memorize sprinkler locations from past attempts.

• Find “safe zone” away from sprinkler spray. Use passage of time to predict sprinkler behav-

ior.

455

Strategies for Fairies:

• Seek out a Fairy immediately after colliding with a Rock.

• Mow over anything (e.g. grass, rocks) to get to a Fairy.

• Use health level to gauge when a Fairy is needed.

• Avoid if possible. (This strategy was probably listed by a person who did not understand the

Fairy mechanic.)

The second open-ended question “If you could play the game again, what would you do differ-

ently?” received the following responses:

• Play the same way.

• Move faster.

• Read the directions.

• Count the number of rock collisions better.

• Pay more attention to the user-interface bar.

• Move slower.

• Practice using joysticks.

• Relax.

The third open-ended question “How would you improve the simulation?” received the following

responses:

456

• Use better graphics (e.g. sprites with transparency, 3D assets).

• Have a joystick that requires more force to move.

• Have functionality to enable sharp stops in the mower.

• Have functionality to enable faster mower movement.

• Make a tutorial video.

Regarding the comments about joystick stiffness, several participants found that the mower would

“drift” in the simulation, even when the human was not providing any joystick inputs. This was

because the joystick’s “haptic” mode was disabled during the study and the force of gravity allowed

the joystick to tilt slightly when the human wasn’t moving it. We originally decided to disable

haptic mode because we found that the joystick was difficult to move when haptic mode was

enabled. However, future iterations of the lawn mower simulation could enable haptic mode, but

have the mower move faster in the simulation so that less force is required to achieve maximum

speed.

We received the following responses for the final open-ended question, “Please provide any final

thoughts or comments about your experience.”

• The game was fun/cool/insightful/enjoyable.

• Prior video game experience made this simulation easy to handle.

• The research team should account for how the human uses memory of prior attempts on a

scenario when going through the scenario again.

• The mower could have an optional self-propelling mechanic.

• The simulation could be used for improving memory.

457

APPENDIX E: PERMISSIONS FOR REPRINTING FIGURES

458

���� ���� ����	
�� ������	����	
����������

���� !"#$%&!�'(#! �)'*+,-.�/-!"'+,-.�/,-�",0'1# 2�! 0�'3!14!*# 2
1'!- # 2�/-,"�,5('-3!*#,

�4*6,-7�8������	9��:;�<���=	�>	?���:�<@������	�>	A��B���B

C451#$!*#, 7�DE��F	8G����	H��	@����I�����

C451#(6'-7	D������F

�!*'7	J	8����K�F	LMJN

��GF���	O	LMJN	D������F	�P>	@��	F����	F���F��P>

Q'3#'+�R-0'-

S�����	F����H	��	�FP�F	P�����	��P	��	����I���P	�F��	��P	I��P�����>

T�	F�G�����	H���	K�	I��F��P	U�F	���	F�V��	F�WV��	����V��	G�V	�F�	F�WV�F�P	�	�K���	�	��I����	��P	I����G
H��	��	��I����	�F��	��P	I��P�����>	X�	�K���	��	��I����<	I��IY	��	@II��	KV��	K���H>

Z#$' ('0�[, *' *

Z#$' ('0�[, *' *

C451#(6'-
D������F

Z#$' ('0�[, *' *

C451#$!*#,

DE��F	8G����	H��

@����I�����

Z#$' ('0�[, *' *

\#*1'

@]G����Î_�G�����	T�H�FY

UF���H�FY	U�F	��P�����	��P

����V����	���F����	UF��

�K��F�����

Z#$' ('0�[, *' *

�4*6,-

8������	9��:;�<���=	�>

?���:�<@������	�>	A��B���B

Z#$' ('0�[, *' *

�!*'
J	8����K�F	LMJN

Z#$' ('0�[, *' *

,̀14"'
NJ

Z#$' ('0�[, *' *

a((4'
JJ

Z#$' ('0�[, *' *

C!2'(
Jb

c,4- !1�\�d' 8eX

	 R-0'-��'*!#1(

\�d'�,/�f(' F�V��	��	�	�����gP����F����

C,-*#, h�VF��g�K���g���V�F�����

)4"5'-�,/

i24-'(j*!51'(j#114(*-!*#, (
L

k,-"!* ���IF���I

�-'��,4�*6'�!4*6,-�,/

6#(�l1('3#'-�!-#$1'm
T�

n#11��,4�5'

-! (1!# 2m
T�

	

�5,4*�o,4-�n,-.

\#*1'

���F����	p��F���	8��

?���FG	q��F���������

UF��	9K��F�����

a (*#*4*#, � !"' r����F��G	�U	
��F��	s��F�P�

ltd'$*'0

d-'(' *!*#, �0!*'
���	LMLM

	 �00#*#, !1��!*!

C,-*#, (s��VF��	J	��P	u

	

459

����������������
	��
����������	���

������������

	����������������� ����!���"��#����$%&�'%(�"�)��*�������$%�*������%(�+���������,�-�'�
�+�����)��"���"�)�����������"�)�+��)�������.����)�)��-��*�������"�)���.-�������*�"�"�+�
������/

��+������'���� 01���0��2���3

��+�����)"�� ������������

��+����)���������4'�*������*������

��+����)��������
4'�*�+"����

�5.�����-������ �����..*�+"�����

��+����)���������	��*�
���-�"��+67"-���"����� ��8�,�"�� ��8�,�����)�*����"�)
��"*'"�����*�"������,����������"����

��+����)����������'���� �"���"�����"9:��!��;��/�
���"9"����*����!/�<��="*�=

��+����)����������"�� ��.�������0

��+����)�����������*'�� 0�

��+����)������������'� ��

��+����)���������4"��� �>

��"���4"�� >���

��)�4"�� >��2

460

���� ���� ����	
�� ������	����	
����������

���� !"#�$%� $&$'�(") *+*,�% $-�."-$*�')'+$*

��'/$ 0�12����	34	52����67����	
��2����68��9���	:�����612�	12�;����

<�&(+=)'+$*0�>�?��@�	��A	59�����9�	7B����

<�&(+�/" 0	C������2

D)'"0	EF	8�B	GHHI

��B2���	J	GHHK	C������2	14:4	5��	2����	2���2��A4

L ." �M$-N("'".

O���P	B�9	Q�2	B�92	�2A�24

O���	5�2�����	?�;���	������	����	RST�9SU	��A	C������2	RSC������2SU	@������	�Q	B�92	��@����	A�����	��A	��	�2��

��A	@��A�����	�2���A�A	?B	C������2	��A	
��B2���	
���2��@�	
���24

T�92	@��V2�����	�����	;���	@�����	B�92	�2A�2	�9�?�2	Q�2	Q992�	2�Q�2��@�4

W+="*�"�X�-&" YZFEYFHZ[GHKZ \2���?��	3�����

W+="*�"�.)'"]��	GH6	GHFI

W+="*�".�M$*'"*'

W+="*�".�M$*'"*'

<�&(+�/"
C������2

W+="*�".�M$*'"*'

<�&(+=)'+$*

>�?��@�	��A	59�����9�

7B����

W+="*�".�M$*'"*'

+̂'("

5	�92��B	�Q	2�?�	���2����

Q2��	A�����2����

W+="*�".�M$*'"*'

��'/$

12����	34	52����67����

��2����68��9���

:�����612�	12�;����

W+="*�".�M$*'"*'

D)'"
8�B	EF6	GHHI

W+="*�".�M$*'"*'

_$(�-"
Z̀

W+="*�".�M$*'"*'

a���"
`

W+="*�".�M$*'"*'

<),"�
F̀

b$� *)(�̂#N" 7cO

	 L ." �D"')+(�

#̂N"�$%�d�" 2�9��	��	�	�����eA����2����

<$ '+$* V�92��e�?���e���9�2�����

X�-&" �$%

f,� "�g')&("�g+((��')'+$*�
F

h$ -)' ���@2���@

� "�#$��'/"�)�'/$ �$%

'/+��i(�"!+" �) '+=("j
]�

k+((�#$��&"

')*�()'+*,j
]�

	

�&$�'�l$� �k$ m

+̂'("

���2����	n��2���	7��

8���2B	>��2���������

Q2��	o?��2�����

a*�'+'�'+$*�*)-" p����2��B	�Q	
��2��	q��2�A�

irN"='".

N "�"*')'+$*�.)'"
���	GHGH

	 �..+'+$*)(�D)')

<$ '+$*� q��92�	̀

	

461

���� ���� ����	
�� ������	����	
����������

���� !"��#$%�&'

(�#)%�*"+��,	-.����

/�0!12 #1%3*"4�.����.	�5��6

/�0!1')��*	4�.����.	7�8.�

9 #�*	���	:;	<=:<

��>.���	?	<=:<;	4�.����.@A�.���	-�B�	5�.���	���C��B�.�

D�E��"F%GH!�#�E

I���6	>�8	J�.	>�8.	�.C�.K

I���	+�.�����	B�L���	������	����	MNO�8NP	��C	4�.����.	7�8.�	MN4�.����.	7�8.�NP	Q������	�J	>�8.	��Q����

C�����	��C	��	�.��	��C	Q��C�����	�.���C�C	B>	4�.����.	7�8.�	��C	
��>.���	
���.��Q�	
���.K

O�8.	Q��R.�����	�����	L���	Q�����	>�8.	�.C�.	�8�B�.	J�.	J88.�	.�J�.��Q�K

S12�3'�"��G0�� TU:VTT=WT<TXX Y.���B��	Z�����

S12�3'�"E #� 7��	<:;	<=:[

S12�3'�E"F%3#�3#

S12�3'�E"F%3#�3#

/�0!1')��
4�.����.	7�8.�

S12�3'�E"F%3#�3#

/�0!12 #1%3
4�.����.	�5��6

S12�3'�E"F%3#�3#

\1#!�
7�8.��	7�L�.6�

S12�3'�E"F%3#�3#

(�#)%�
+��,	-.����

S12�3'�E"F%3#�3#

9 #�
���	:;	<=:<

	 D�E��"9�# 1!'

\]H�"%̂"_'� I�����̀Z����.����

a�b��'#%�"#]H�
�Q�C���Q̀8����.��>	�.

.����.Q�	����8�

c%�G # ���Q.���Q

/%�#1%3 R�8.��̀�B���̀���8�.�����

��G0��"%̂

de���'f# 0!�'f1!!�'#� #1%3'
g

h1!!"]%�"0�

#� 3'! #13ei
��

F1�2�! #1%3fE1'#�10�#1%3 <==	@	T[[

(�#)%�"%̂"#)1'

jH�13e��"� #���

2%3#�3#

��

	

(0%�#"k%��"h%�&

\1#!�

���.����	l��.���	4��

m���.>	n��.���������

J.��	oB��.�����

p3'#1#�#1%3"3 G� q����.��>	�J	
��.��	r��.�C�

stH�2#�E

H��'�3# #1%3"E #�
���	<=<=

	 (EE1#1%3 !"9 #

/%�#1%3'
r��8.��	VKV;	VKT;	TK:;	TK<;	��C

TKT

	

462

���� ���� ����	
�� ������	����	
����������

���� !"#!#$��#"%&$'&(")"*�+(&$&,�") *'&$�*$- �

.-$'� /"0��	12�

3-45&*)$&�(/"6�7	89���	��	:�;<�����;

3-45&#'� /	=������>

?)$�/	@2�2�	ABCA

��;>���	D	ABCC	=������>	�9E	:2F�����9	F;	=������>	�9E	@��	>����	>���>��9E

G H� "I��J5�$�H

K���L	;�2	M�>	;�2>	�>9�>E

K���	@�>�����	F�7���	������	����	NOP�2OQ	��9	=������>	NO=������>OQ	<������	�M	;�2>	��<����	9�����	��9	��	�>��

��9	<��9�����	�>���9�9	F;	=������>	��9	
��;>���	
���>��<�	
���>E

P�2>	<��R>�����	�����	7���	<�����	;�2>	�>9�>	�2�F�>	M�>	M22>�	>�M�>��<�E

S&*�(#�"T-�4� UVCWUWBXVYYCV :>���F��	Z�����

S&*�(#�"H)$� 6��	AC[ABCY

S&*�(#�H"I�($�($

S&*�(#�H"I�($�($

3-45&#'�
=������>

S&*�(#�H"I�($�($

3-45&*)$&�(
6�7	89���	��	:�;<�����;

S&*�(#�H"I�($�($

\&$5�

]���>;	�;����	7����	�

<�������	�><���<2>�

S&*�(#�H"I�($�($

.-$'�
0��	12�

S&*�(#�H"I�($�($

?)$�
@2�	C[ABCA

S&*�(#�H"I�($�($

�̂5-��
WB

S&*�(#�H"I�($�($

_##-�
A

S&*�(#�H"I�($�($

3)+�#
CU

�̀- ()5"\!J� 1aK

	 G H� "?�$)&5#

\!J�"�b"c#� >�2��	��	�	�����d9����>����

3� $&�(R�2>��d�F���d���2�>�����

T-�4� "�b

e+- �#f$)45�#f&55-#$)$&�(#
C

g� �)$ ���<>���<

. �"!�-"$'�")-$'� "�b

$'&#"h5#�,&� ") $&*5�i
6�

j&55"!�-"4�

$)(#5)$&(+i
6�

	

.4�-$"k�- "j� l

\&$5�

���>����	8��>���	1��

]���>;	0��>���������

M>��	mF��>�����

_(#$&$-$&�("()�� n����>��;	�M	
��>��	o��>�9�

hpJ�*$�H

J �#�($)$&�("H)$�
���	ABAB

	 .HH&$&�()5"?)$)

3� $&�(# o��2>�	A

	

463

���� ���� ����	
�� ������	����	
����������

���� !"�#$%$& '()�"*) +, -$�"..%&"$� /&"$�) 0""+1 2,*3."*"$��#(
!"�#$%$& '()�"*) 4�",#(53+��"+

/6��,#7 8��9����	:;��9��<8����	�����=��<�����	�>	?@
������A

B6C.%D��%,$7 E9��A�	��	
�������	F@���@��

B6C.%)�"#7	G������9

H��"7	�;�I	JKLM

N	JKLM	G������9	�A>	O��	9����	9���9��A>

P#+"# 2,*3."�"+

E���Q	I�;	R�9	I�;9	�9A�9>

E���	O�9�����	=�S���	������	����	TUV�;UW	��A	G������9	TUG������9UW	@������	�R	I�;9	��@����	A�����	��A	��	�9��

��A	@��A�����	�9���A�A	=I	G������9	��A	
��I9���	
���9��@�	
���9>

V�;9	@��X9�����	�����	S���	@�����	I�;9	�9A�9	�;�=�9	R�9	R;;9�	9�R�9��@�>

!%D"$)" 06*C"# YZL[Y[KZ\[][̂ _9���=��	8�����

!%D"$)" +��" �̀�	JL<	JKL̂

!%D"$)"+ 2,$�"$�

!%D"$)"+ 2,$�"$�

B6C.%)�"#
G������9

!%D"$)"+ 2,$�"$�

B6C.%D��%,$
E9��A�	��	
�������	F@���@��

!%D"$)"+ 2,$�"$�

4%�."

���	���9����	FI����	A�

a��������	O����	̀��Ab

���������9I	���9����

FI����	E���9I	c�A��A

!%D"$)"+ 2,$�"$�

/6��,#

8��9����	:;��9��<8����

�����=��<�����	�>	?@
������A

!%D"$)"+ 2,$�"$�

H��"
�;�	L<	JKLM

!%D"$)"+ 2,$�"$�

d,.6*"
JK

!%D"$)"+ 2,$�"$�

-))6"
Z

!%D"$)"+ 2,$�"$�

B�&")
J[

e,6#$�. 4(3" FfE

	 P#+"# H"��%.)

4(3" ,g 5)" 9�;��	��	�	�����hA����9����

B,#�%,$ X�;9��h�=���h���;�9�����

06*C"# ,g

i&6#")j��C.")j%..6)�#��%,$)
L

k,#*�� ���@9���@

/#" (,6 ��" �6��,# ,g

��%) l.)"m%"# �#�%D."1
�̀

�%.. (,6 C"

�#�$).��%$&1
�̀

	

/C,6� n,6# �,#o

4%�."

���9����	a��9���	F��

?���9I	p��9���������

R9��	q=��9�����

-$)�%�6�%,$ $�*" c����9��I	�R	
��9��	r��9�A�

ls3"D�"+

3#")"$���%,$ +��"
���	JKJK

	 /++%�%,$�. H���

B,#�%,$) r��;9�	L

	

464

���� ���� ����	
�� ������	����	
����������

���� !"#"$%&'�$()*(+, -).&�) -�$"$%/&0&��.)!"$%&1 � ."%�&2��
�)1�)-)$("$%&('("' !&34� $&,)3 5"��

04(3��/&6��7�8	9�88�:	98���	;<	;���8=>:	?������	�<	6��@���@

A4,!"' ("�$/&B��8�������	��=8���	�C	B��������	;D����

A4,!"-3)�/	����	����D	��>	;���

E ()/	F�D	GH:	GIIH

��D8���	J	GIIH	����D	K�8��>�L���:	B�L<:	?	����D	
�����D

M�.)�&N��1!)().

O���P	D�=	C�8	D�=8	�8>�8<

O���	?�8�����	7�Q���	������	����	RST�=SU	��>	����	����D	��>	;���	RS����	����D	��>	;���SU	L������	�C	D�=8

��L����	>�����	��>	��	�8��	��>	L��>�����	�8���>�>	7D	����	����D	��>	;���	��>	
��D8���	
���8��L�	
���8<

T�=8	L��V8�����	�����	Q���	L�����	D�=8	�8>�8	�=�7�8	C�8	C==8�	8�C�8��L�<

W"')$-)&X4�,)� YZ[\Y\[IY[ZYH K8���7��]�����

W"')$-)&. () �̂�	G[:	GI[_

W"')$-).&N�$()$(

W"')$-).&N�$()$(

A4,!"-3)�
����	����D	��>	;���

W"')$-).&N�$()$(

A4,!"' ("�$

B��8�������	��=8���	�C

B��������	;D����

W"')$-).&N�$()$(

"̀(!)

a�8����@���	L���bc7���>

8��������d	?	��>�����

��8�>���	C�8	8��8�������

�L�L��	�=���	7������8

W"')$-).&N�$()$(

04(3��

6��7�8	9�88�:	98���	;<

;���8=>:	?������	�<	6��@���@

W"')$-).&N�$()$(

E ()
F�D	GH:	GIIH

W"')$-).&N�$()$(

e�!4�)
G\

W"')$-).&N�$()$(

f--4)
Z

W"')$-).&N�$()$(

A %)-
Gg

	 M�.)�&E)("!-

h̀1)&�2&4-)]����8����iO�����

j)k4)-(��&(h1) l����8��Di?L�>���L

���� (m��L8���L

A��("�$ a��=8�i�7��

X4�,)�&�2

n%4�)-o(,!)-
\

p"!!&h�4&,)

(� $-! ("$%q
�̂

	

0,�4(&r�4�&p��s

"̀(!)&�2&h�4�&(3)-"-&o

."--)�(("�$

���8����	B��8���	;��

F���8D	t��8���������

C8��	u7��8�����

v*1)'().&'��1!)("�$

. ()
���	GIGI

v*1)'().&-"#)

w$4�,)�&�2&1 %)-x
[

	 0.."("�$!&E (

M�"%"$!&p"!)h

n%4�)o(,!)

$4�,)�w-x

a��=8��	[:	G:	��>	\

	

465

���� ���� ����	
�� ������	����	
����������

���� !�"#$�%&'("%�)"*!+,%�%�'��"'�"���� !�-%,"./%+01

2-�0�/3"4�5�67	859:�����

;-<,'(%�'��3"=�5����5	�8��7

;-<,'10 /3	=�5����5	>�?5�

#%� 3	���	@A	BCCD

��E5���	F	BCCDA	=�5����5GH�5���	8�5���	���I��J�5�

K/) /"��&+, �)

L���7	E�?	M�5	E�?5	�5I�5N

L���	O�5�����	J�P���	������	����	QRS�?RT	��I	=�5����5	>�?5�	QR=�5����5	>�?5�RT	6������	�M	E�?5	��6����

I�����	��I	��	�5��	��I	6��I�����	�5���I�I	JE	=�5����5	>�?5�	��I	
��E5���	
���5��6�	
���5N

S�?5	6��U5�����	�����	P���	6�����	E�?5	�5I�5	�?�J�5	M�5	M??5�	5�M�5��6�N

V'(�1 "W-&< / XY@DBXCCCYZD@ 45���J��	[�����

V'(�1 ")%� >��	BCA	BC@\

V'(�1)"���� ��

V'(�1)"���� ��

;-<,'10 /
=�5����5	>�?5�

V'(�1)"���� ��

;-<,'(%�'��
=�5����5	�8��7

V'(�1)"���� ��

]'�,

���̂	[E����6	��I

_̂��������	��	
���̂?��

5̀����

V'(�1)"���� ��

2-�0�/
4�5�67	859:�����

V'(�1)"���� ��

#%�
���	@A	BCCD

	 K/) /"# �%',1

]$+ "�a"b1 L�����c[����5����

d e- 1��/"�$+
�6�I���6c?����5��E	�5

5����56�	����?�

f�/&%� ���65���6

;�/�'�� U�?5��c�J���c���?�5�����

W-&< /"�a

gh-/ 1i�%<, 1i',,-1�/%�'��1
@

j',,"$�-"<

�/%�1,%�'�hk
��

�'/(-,%�'��i)'1�/'<-�'�� BCC	G	X\\

2-�0�/"�a"�0'1

l+/'�h /"W%�-/

(��� ��

��

	

2<�-�"m�-/"j�/n

]'�,

���5����	o��5���	=��

p���5E	q��5���������

M5��	rJ��5�����

s�1�'�-�'��"�%& t����5��E	�M	
��5��	u��5�I�

*!+ (�)

+/ 1 ��%�'��")%�
���	BCBC

	 2))'�'��%,"#%�%

;�/�'��1 u��?5�	@

	

466

���������������	�
	�������	�

����
����������������������

����� !"#$�� %&�'(!"#$)*)+,-./%"&$0!)+,-)��+1

� !"#$2

3 +�$#4��56�7�85"!!" %�0 �+!��-"&+8�����-8 5�56��"!!�80#0" %)

�#5�!�� 99"!0�82��$:

;

<=>?@ABCDEFGAHCIJAKLCDEFGMNMOPQRSIEJGTDMOPQMUVOW

XYZ[@AHUVIUDVF\]ÂC_Ù aUbAcd]AcdefAcgchAij

k>@ABlAm

XnopYq[@AlUrOUDTATCAbUsbEITAtJObU
A

uUFbAubMABF̀ UDAmCvvEDTUb]

wbUUxIJDyAAzAF̀ AFAiGMuMADTOVUITAFTATGUA{IE_UbDET\ACQA|UITbFvA}vCbEVFA~{|}�MAAzANCOvVAvESUAEIPvOVUAEIÀ\
VEDDUbTFxCIA}EJObUAceAQbC̀ A|GFsTUbA�A~sFJUAee��ACQA\CObAVEDDUbTFxCIAEIÀ\AVEDPODDECIACQA\COb
|CCsUbFxIJA|CITU�TAjUTGCVMAAj\AVEDDUbTFxCI]AxTvUVA��UFbIEIJAzITUbIFvA�TFTUAjÙ Cb\AlUsbUDUITFxCID
QbC̀ A�aDUb_FxCI�]AEIPvOVUDAFAVEDPODDECIACQA_FbECODAPCITU�TOFvAbUFDCIEIJAQbF̀ UNCbSD]AEIPvOVEIJATGUACIU
\COAsbCsCDUVAEIA\CObAVEDDUbTFxCIMAAj\AVEDDUbTFxCIANEvvAaUAsOavEDGUVAUvUPTbCIEPFvv\Aa\A{|}MAA

HCOvVA\COAaUANEvvEIJATCAJbFITÀUAsUb̀EDDECIATCAbUsbEITATGEDAtJObUAEIÀ\AVEDDUbTFxCI�AA�GFISA\COAFIV
GF_UAFAJbUFTAVF\M

�EIPUbUv\]
BCDEFGAHCIJ

467

���� ���� ����	
�� ����	��
����	������

�	����	
�������	�	���	�����	�������� � 	
�������	
��������	
���� 	!��"� 	#������	������ � $����	���	
��������

%&'()*+&,-

./012345/678926:4;:08<52=8>?04534@8AB=C68D45<25=C614

EB:F25G8H��	
"	$����

DB?I/1C:/26G8������J������	������ 	!KKK	$����������	��

DB?I/0F45G	!KKK

.C:4G	L���	���M

�������	�	���M 	!KKK

NF40/08O8./0045:C:/268P4B04

NF48QRRR8@240862:854SB/548/6@/3/@BCI08T25U/678268C8:F40/08:282?:C/68C8<25=CI854B048I/14604V8F2T4345V8W2B8=CW
X5/6:82B:8:F/080:C:4=46:8:28?48B04@8C08C8X45=/00/26875C6:G8

��Y��������	�	Z�	[����\��	\���	�����	���	������]�"�" 	̂���� 	����� 	�Z�� 	��	�_���	�������̀	�[��	!KKK
����������	�����	��	�	�����a

�̀	!�	��	����	�[�_���	�������]�"�" 	�����	����	Y����	��	��[������	�	��	\��b	\����	����	������̀	�����	���
����	[���	�����	�	��	��������	������]����� 	����� 	��Z�������̀	[����\��	Z�	��	!KKK	��������	����	�	����	!KKK"	
�̀	!�	��	����	�[�����������	��	�Z����	������� 	\�	��Y����	��	��	��������	����	�	cd���	�[��������	��Z�������e
!KKK	������	����������	\��	����	��������	̂����	���f��	�Z��"	
M̀	![�	��Z������	������	�[��	��������	�����	��	�	Z�	���� 	���	�[���	���	��	��	������	����� 	����	�Z���	��
������	�����g�	��������"	

��Y��������	�	Z�	[����\��	\���	�����	��	�����	!KKK	����������	�����	��	�	�����a	

�̀	$��	[����\���	!KKK	��������f	�����	�����	������	Z�	������	����������	��	��	��[�������a	�	c����	�[��������
��Z�������e	!KKK"	�������� 	\��	���������� 	[���	c�����	����� 	�����	��� 	!KKK	��Z�������	��� 	���	����f����
�[��Z�������e	
�̀	h���	��	�������	�������	�[��	!KKK	����������	�����	���	Z�	����	\���	������	��	�����	��	����	�����	���
����"
M̀	!�	�������	��	�����	��	��	�����g�	���������	\�Z��� 	������	�������	��	[����\���	�������	��	�	��������	�����
��	��	\�Z���a	!�	��[������	�	!KKK	����������	�������	\����	��	����	\��	����������	��	���	����� 	��	!KKK	����
��	�������	���	�[c���������f����������	����g�	����	����	����eg�	�������	��	��������"	!������	��	��������	���
�[���	�������	��	�������"	![��������	��	���������f����Z�������	!KKK	����������	�������	[��	����������	��
����������	��������	��	[��	�������	��\	���������	\��b�	[��	������	��	�������Z���� 	������	��	�
��aff\\\"����"���f��Z��������i��������f��Z��������f�����f�����i���b"���	�	�����	��\	�	�Z���	�	�������
[���	��������b"	

![�������Z�� 	j��������	J����̂���	���f��	#��k���	��Z���� 	��	��	��������	�[
�����	���	������	������	������	�[
��	����������"

lE9m 9n>oR

������p	q�	\����	��b�	�	����	[���	���"	K�����	��	�	�����������r��������"���

468

���� ���� ����	
�� ����	��
����	������

�	����	
�������	�	���	�����	�������� � 	
�������	
��������	
���� 	!��"� 	#������	������ � $����	���	
��������

%&'()*+&,-

./01/2345/06270849/:;<760=76>>25?645/0<750715<5/0

./0@8:80?87A:/?88=50B<C

#����������	�D	����	!EEE	!����������	���������	��	
������	���	������

F34G/:C7H���	��
��

A3I25<G8:C	!EEE

J648C	K��	����

�������	�	���� 	!EEE

LG8<5<7M7J5<<8:4645/07N83<8

LG87OPPP7=/8<70/47:8Q35:8750=515=362<79/:;50B7/07674G8<5<74/7/I4650767@/:R627:83<8725?80<8S7G/9818:S7T/37R6T
>:5047/3474G5<7<4648R80474/7I873<8=76<767>8:R5<<5/07B:604C7

��U��������	�	V�	D����W��	W���	�����	���	������	X�"�" 	Y���� 	����� 	�V�� 	��	�Z���	�������[�D	��	!EEE
����������	�����	��	�	�����\

�[!�	��	����	�D	�Z���	�������	X�"�" 	�����	����	U����	��	��D������	�	��	W��]	W����	����	������[�����	���
����	D���	�����	�	��	��������	������	X����� 	����� 	��V�������[D����W��	V�	��	!EEE	��������	����	�	����	!EEE"	
�[!�	��	����	�D	�����������	��	�V����	������� 	W�	��U����	��	��	��������	����	�	̂H���	�D	��������	��V�������_
!EEE	������	����������	W��	����	��������	Y����	���̀��	�V��"	
a[!D	�	��V������	������	�D	��	��������	�����	��	�	V�	���� 	���	�D	���	���	��	��	������	����� 	����	�V���	��
������	�����b�	��������"	

��U��������	�	V�	D����W��	W���	�����	��	�����	!EEE	����������	�����	��	�	�����\	

�[$��	D����W���	!EEE	��������̀	�����	�����	������	V�	������	����������	��	��	��D�������\	�	̂����	�D	��������
��V�������_	!EEE"	�������� 	W��	���������� 	D���	̂�����	����� 	�����	��� 	!EEE	��V�������	��� 	���	����̀����
�D	��V�������_	
�[c���	��	�������	�������	�D	��	!EEE	����������	�����	���	V�	����	W���	������	��	�����	��	����	�����	���
����"
a[!�	�������	��	�����	��	��	�����b�	���������	W�V��� 	������	�������	��	D����W���	�������	��	�	��������	�����
��	��	W�V���\	!�	��D������	�	!EEE	����������	�������	W����	��	����	W��	����������	��	���	����� 	��	!EEE	����
��	�������	���	�D	̂���������̀����������	����b�	����	����	����_b�	�������	��	��������"	!������	��	��������	���
�D	���	�������	��	�������"	!D	��������	��	���������̀����V�������	!EEE	����������	�������	D��	����������	��
����������	��������	��	D��	�������	��W	���������	W��]�	D��	������	��	�������V���� 	������	��	�
��\̀̀WWW"����"���̀��V��������d��������̀��V��������̀�����̀�����d���]"���	�	�����	��W	�	�V���	�	�������
D���	��������]"	

!D	�������V�� 	e��������	K����Y���	���̀��	#��f���	��V���� 	��	��	��������	�D	
�����	���	������	������	������	�D
��	����������"

gF.h .ijkP

������l	m�	W����	��]�	�	����	D���	���"	E�����	��	�	�����������n��������"���

469

LIST OF REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. Proceed-

ings of the Twenty-First International Conference on Machine Learning, pages 1–8. ACM,

2004.

[2] D. Aihe and A. Gonzalez. Context-driven reinforcement learning. Proceedings of the Second

Swedish-American Workshop on Modeling and Simulation, 2004.

[3] J. R. Anderson. Act: A simple theory of complex cognition. American psychologist,

51(4):355, 1996.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

[5] M. A. Bauer. Programming by Examples, pages 317–327. Elsevier, 1986.

[6] D. C. Bentivegna and C. G. Atkeson. Learning from observation using primitives. Interna-

tional Conference on Robotics and Automation (ICRA), volume 2, pages 1988–1993. IEEE.

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,

M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv

preprint arXiv:1604.07316, 2016.

[8] J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems.

Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[9] P. Brézillon. Context in problem solving: A survey. The Knowledge Engineering Review,

14(1):47–80, 1999.

[10] P. Brézillon. Context dynamic and explanation in contextual graphs. International and Inter-

disciplinary Conference on Modeling and Using Context, pages 94–106. Springer, 2003.

470

[11] C. Brom and J. Lukavsky. Towards virtual characters with a full episodic memory ii: The

episodic memory strikes back. Proc. empathic agents, AAMAS workshop, pages 1–9, 2009.

[12] J. Campos and A. Paiva. May: My memories are yours. International Conference on Intelli-

gent Virtual Agents, pages 406–412. Springer, 2010.

[13] T. G. Dietterich. Machine learning for sequential data: A review. Joint IAPR International

Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syn-

tactic Pattern Recognition (SSPR), pages 15–30. Springer, 2002.

[14] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zliner, and M. Bordegoni. Learning robot

behaviour and skills based on human demonstration and advice: the machine learning

paradigm, pages 229–238. Springer, 2000.

[15] M. Elvir, A. J. Gonzalez, C. Walls, and B. Wilder. Remembering a conversationa conversa-

tional memory architecture for embodied conversational agents. Journal of Intelligent Sys-

tems, 26(1):1–21, 2017.

[16] Z. Faltersack, B. Burns, A. Nuxoll, and T. L. Crenshaw. Ziggurat: Steps toward a general

episodic memory. AAAI fall symposium: Advances in cognitive systems, pages 106–111,

2011.

[17] H. Fernlund, A. J. Gonzalez, J. Ekblad, and A. Rodriguez. Trainee evaluation through after-

action review by comparison. The Journal of Defense Modeling and Simulation, 6(3):135–

150, 2009.

[18] H. K. Fernlund, A. J. Gonzalez, M. Georgiopoulos, and R. F. DeMara. Learning tactical

human behavior through observation of human performance. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 36(1):128–140, 2006.

[19] H. K. G. Fernlund. Evolving models from observed human performance. 2004.

471

[20] M. Floyd. A General-Purpose Framework for Learning by Observation. Carleton University,

2013.

[21] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodrı́guez, F. Fontana, M. Faessler,

C. Forster, J. Schmidhuber, G. Di Caro, et al. A machine learning approach to visual percep-

tion of forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667,

2015.

[22] A. J. Gonzalez and D. D. Dankel. The Engineering of Knowledge-Based Systems, Theory

and Practice. Prentice Hall, New Jersey, 1993.

[23] A. J. Gonzalez, J. Nguyen, S. Tsuruta, Y. Sakurai, K. Takada, and K. Uchida. Using contexts

to supervise a collaborative process. Systems, Man and Cybernetics, 2008. SMC 2008. IEEE

International Conference on, pages 2706–2711. IEEE, 2008.

[24] A. J. Gonzalez, B. S. Stensrud, and G. Barrett. Formalizing context-based reasoning: A mod-

eling paradigm for representing tactical human behavior. International Journal of Intelligent

Systems, 23(7):822–847, 2008.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. Generative adversarial nets. Advances in neural information processing

systems, pages 2672–2680, 2014.

[26] A. Graves. Supervised sequence labelling. Supervised sequence labelling with recurrent

neural networks, pages 5–13. Springer, 2012.

[27] A. S. E. Gunaratne, B. Esfandiari, and A. Fawaz. A case-based reasoning approach to learning

state-based behavior. The Thirty-First International Florida Artificial Intelligence Research

Society Conference (FLAIRS-31), pages 377–382. AAAI, 2018.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The weka data

mining software: An update. 2009.

472

[29] A. Henninger, A. Gonzalez, M. Georgiopoulos, and R. DeMara. The limitations of static

performance metrics for dynamic tasks learned through observation. 2001.

[30] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural informa-

tion processing systems, pages 4565–4573, 2016.

[31] W. C. Ho, K. Dautenhahn, M. Y. Lim, P. A. Vargas, R. Aylett, and S. Enz. An initial memory

model for virtual and robot companions supporting migration and long-term interaction. The

18th IEEE International Symposium on Robot and Human Interactive Communication, pages

277–284. IEEE, 2009.

[32] W. C. Ho, K. Dautenhahn, and C. L. Nehaniv. Computational memory architectures for

autobiographic agents interacting in a complex virtual environment: a working model. Con-

nection Science, 20(1):21–65, 2008.

[33] J. Hollister. A contextual approach to real time interactive narrative generation. Thesis,

2016.

[34] A. Jackson and G. Sukthankar. Learning continuous state/action models for humanoid robots.

FLAIRS conference, pages 392–397, 2016.

[35] C. L. Johnson and A. J. Gonzalez. Learning collaborative team behavior from observation.

Expert Systems with Applications, 41(5):2316–2328, 2014.

[36] F. Kamrani, L. J. Luotsinen, and R. A. Lvlid. Learning objective agent behavior using a data-

driven modeling approach. Systems, Man, and Cybernetics (SMC), 2016 IEEE International

Conference on, pages 002175–002181. IEEE, 2016.

[37] B. Kim and J. Lee. Analysis of enumeration strategy use in the act-r cognitive architecture.

Natural Computation, 2007. ICNC 2007. Third International Conference on, volume 5, pages

526–530. IEEE.

473

[38] D. Kumaran, D. Hassabis, and J. L. McClelland. What learning systems do intelligent

agents need? complementary learning systems theory updated. Trends in cognitive sciences,

20(7):512–534, 2016.

[39] T. Knik and J. E. Laird. Learning goal hierarchies from structured observations and expert

annotations. Machine Learning, 64(1-3):263–287, 2006.

[40] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general intelligence.

Artificial intelligence, 33(1):1–64, 1987.

[41] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[42] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in

vision. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pages

253–256. IEEE, 2010.

[43] M. Y. Lim. Memory models for intelligent social companions, pages 241–262. Springer,

2012.

[44] M. Y. Lim, R. Aylett, W. C. Ho, S. Enz, and P. Vargas. A socially-aware memory for com-

panion agents. International Workshop on Intelligent Virtual Agents, pages 20–26. Springer,

2009.

[45] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate

behaviors from raw video via context translation. 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018.

[46] R. A. Løvlid, S. Bruvoll, K. Brathen, and A. Gonzalez. Modeling the behavior of a hierarchy

of command agents with context-based reasoning. The Journal of Defense Modeling and

Simulation, 2017.

[47] Merriam-Webster. Merriam-webster dictionary, 2017.

474

[48] R. S. Michalski and R. E. Stepp. Learning from observation: Conceptual clustering, pages

331–363. Springer, 1983.

[49] A. Mohammed Ali. Machine learning from casual conversation. Thesis, 2019.

[50] C. L. Moriarty and A. J. Gonzalez. Learning human behavior from observation for gaming

applications. FLAIRS Conference, 2009.

[51] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa, and

K. Ikeuchi. Learning from observation paradigm: Leg task models for enabling a biped

humanoid robot to imitate human dances. The International Journal of Robotics Research,

26(8):829–844, 2007.

[52] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. ICML, pages

663–670, 2000.

[53] M. Norouzitallab, A. Javari, M. Mohajer, S. Ismael, and S. Salehizadeh. Nemesis 2011 team

description paper.

[54] S. Ontañón. Case acquisition strategies for case-based reasoning in real-time strategy games.

Twenty-Fifth International FLAIRS Conference, 2012.

[55] S. Ontañón and M. Floyd. A comparison of case acquisition strategies for learning from

observations of state-based experts. The Twenty-Sixth International FLAIRS Conference,

2013.

[56] S. Ontañón, Y.-C. Lee, S. Snodgrass, D. Bonfiglio, F. K. Winston, C. McDonald, and A. J.

Gonzalez. Case-based prediction of teen driver behavior and skill. International Conference

on Case-Based Reasoning, pages 375–389. Springer, 2014.

[57] S. Ontañón, J. Montaña, and A. Gonzalez. Towards a unified framework for learning from

observation. IJCAI Workshop on Agents Learning Interactively from Human Teachers, 2011.

475

[58] S. Ontañón, J. L. Montaña, and A. J. Gonzalez. A dynamic-bayesian network framework

for modeling and evaluating learning from observation. Expert Systems with Applications,

41(11):5212–5226, 2014.

[59] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and

data engineering, 22(10):1345–1359, 2010.

[60] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in

neural information processing systems, pages 305–313, 1989.

[61] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning

from unlabeled data. Proceedings of the 24th international conference on Machine learning,

pages 759–766. ACM.

[62] S. Ross and D. Bagnell. Efficient reductions for imitation learning. Proceedings of the

thirteenth international conference on artificial intelligence and statistics, pages 661–668,

2010.

[63] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly, pages 385–393. Elsevier,

1992.

[64] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with

memory-augmented neural networks. International conference on machine learning, pages

1842–1850, 2016.

[65] S. Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences,

3(6):233–242, 1999.

[66] T. A. Sidani and A. J. Gonzalez. A framework for learning implicit expert knowledge through

observation. Transactions of the Society for Computer Simulation, 17(2):54–72, 2000.

[67] P. Sondhi. Feature construction methods: a survey. sifaka. cs. uiuc. edu, 69:70–71, 2009.

476

[68] K. Stanley, N. Kohl, R. Sherony, and R. Miikkulainen. Neuroevolution of an automobile

crash warning system. Proceedings of the 7th annual conference on Genetic and evolutionary

computation, pages 1977–1984. ACM, 2005.

[69] G. Stein. Falconet: Force-feedback approach for learning from coaching and observation

using natural and experiential training. 2009.

[70] G. Stein and A. J. Gonzalez. Building high-performing human-like tactical agents through

observation and experience. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 41(3):792–804, 2011.

[71] G. Stein and A. J. Gonzalez. Learning in context: enhancing machine learning with context-

based reasoning. Applied intelligence, 41(3):709–724, 2014.

[72] B. S. Stensrud and A. J. Gonzalez. Discovery of high-level behavior from observation of hu-

man performance in a strategic game. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 38(3):855–874, 2008.

[73] R. Sun. Memory systems within a cognitive architecture. New Ideas in Psychology,

30(2):227–240, 2012.

[74] W. Sun, A. Vemula, B. Boots, and J. A. Bagnell. Provably efficient imitation learning from

observation alone. arXiv preprint arXiv:1905.10948, 2019.

[75] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 1998.

[76] C. Tı̂rnǎucǎ, J. L. Montaña, S. Ontañón, A. J. Gonzalez, and L. M. Pardo. Behavioral mod-

eling based on probabilistic finite automata: An empirical study. Sensors, 16(7):958, 2016.

[77] F. Torabi, S. Geiger, G. Warnell, and P. Stone. Sample-efficient adversarial imitation learning

from observation. arXiv preprint arXiv:1906.07374, 2019.

[78] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv preprint

arXiv:1805.01954, 2018.

477

[79] F. Torabi, G. Warnell, and P. Stone. Recent advances in imitation learning from observation.

arXiv preprint arXiv:1905.13566, 2019.

[80] J. G. Trafton, A. C. Schultz, M. Bugajska, and F. Mintz. Perspective-taking with robots:

experiments and models. ROMAN 2005. IEEE International Workshop on Robot and Human

Interactive Communication, 2005., pages 580–584. IEEE, 2005.

[81] V. Trinh. Contextualizing observational data for modeling human performance. Thesis,

2009.

[82] V. C. Trinh and A. J. Gonzalez. Discovering contexts from observed human performance.

IEEE Transactions on Human-Machine Systems, 43(4):359–370, 2013.

[83] R. M. Turner. Context-mediated behavior: An approach to explicitly representing contexts

and contextual knowledge for ai applications. Working Notes of the AAAI-99 Workshop on

Modeling and Using Context in AI Applications, AAAI Technical Report, 1999.

[84] M. van Lent and J. Laird. Learning by observation in complex domains. Ann Arbor,

1001:48109, 1998.

[85] X. Wang. Learning by observation and practice: An incremental approach for planning

operator acquisition, pages 549–557. Elsevier, 1995.

[86] Wiktionary. Wiktionary, the free dictionary, 2017.

[87] J. Wong and A. J. Gonzalez. Learning behavioral memory representations from observation.

32nd International Florida Artificial Intelligence Research Society Conference. AAAI Press,

pages 86–91, 2019.

[88] J. Wong, L. Hastings, K. Negy, A. J. Gonzalez, S. Ontañón, and Y.-C. Lee. Machine learning

from observation to detect abnormal driving behavior in humans. 31st International Florida

Artificial Intelligence Research Society Conference. AAAI Press, pages 152–157.

[89] M. Woolridge. Multi-agent systems: An introduction, 2001.

478

	Learning Internal State Memory Representations from Observation
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: LEARNING FROM OBSERVATION AND RELATED RESEARCH
	2.1 Learning from Observation
	2.1.1 Formalization of Learning Tasks and Learning from Observation
	2.1.2 A Brief History
	2.1.3 Memory-Aware Learning from Observation
	2.1.4 Summary

	2.2 Related Research
	2.2.1 Temporal-Based Learning
	2.2.2 Memory Models
	2.2.3 Context

	2.3 Imitation Learning from Observation
	2.4 Summary

	CHAPTER 3: PROBLEM DEFINITION
	3.1 General Problem
	3.2 Specific Problem
	3.3 Hypothesis
	3.4 Limitations of the State of the Art Addressed by Dissertation Research
	3.5 Contributions

	CHAPTER 4: BEHAVIORAL REPRESENTATIONS
	4.1 Behavioral Agents
	4.2 The XYZ Domain
	4.3 Case Based Reasoning Conventions
	4.4 Temporal Backtracking
	4.5 Memory Features
	4.5.1 Memory Features - Conceptual Description
	4.5.2 Memory Features - Formal Description

	4.6 Behavioral Representations Summary

	CHAPTER 5: BASELINE CONCEPTUAL APPROACH
	5.1 High Level Conceptual Approach
	5.2 Memory Feature Extraction
	5.2.1 Memory Feature Extraction Algorithm
	5.2.2 Memory Temporal Backtracking Analysis
	5.2.3 Memory Feature Extraction Example

	5.3 Memory Feature Refinement
	5.3.1 Memory Feature Refinement Algorithm
	5.3.2 Memory Feature Refinement Example

	5.4 Trace Enhancement
	5.5 Assessment of MCLv0 Approach
	5.5.1 The Vacuum Cleaner Domain
	5.5.2 Experiments and Results

	5.6 Minimal Conceptual Approach Summary

	CHAPTER 6: COMPREHENSIVE CONCEPTUAL APPROACH
	6.1 Baseline Approach Synopsis
	6.1.1 Memory Features
	6.1.2 Memory Composition Learning, Version 0
	6.1.3 Baseline Memory Feature Extraction
	6.1.4 Baseline Memory Feature Refinement
	6.1.5 Baseline Trace Enhancement

	6.2 Limitations of MCLv0 Approach
	6.3 MCLvN Approach Overview
	6.3.1 MCLvN Preprocessing Overview
	6.3.2 MCLvN Memory Feature Extraction Overview
	6.3.3 MCLvN Memory Feature Refinement Overview
	6.3.4 MCLvN Trace Enhancement Overview
	6.3.5 MCLvN Holistic Overview

	6.4 Trace Preprocessing
	6.5 Improved Memory Feature Extraction
	6.5.1 Comparison of MF Extraction Methods
	6.5.1.1 MCLv0 Memory Feature Extraction
	6.5.1.2 MCLvN Memory Feature Extraction

	6.6 Improved Memory Feature Refinement
	6.7 Improved Trace Enhancement
	6.8 Comprehensive Approach Summary

	CHAPTER 7: PROTOTYPE IMPLEMENTATION
	7.1 System Inputs and Outputs
	7.2 Code Implementation
	7.3 Prototype Summary

	CHAPTER 8: EXPERIMENTS AND RESULTS
	8.1 Description of Experiments
	8.1.1 Success Criteria
	8.1.2 Specific Tests
	8.1.3 Experimental Setup

	8.2 Vacuum Cleaner Experiments
	8.2.1 Vacuum Cleaner Domain Description — Recap
	8.2.2 Results — MCL Version 0
	8.2.3 Results — MCL Version N
	8.2.3.1 Analysis of Learned Memory Features
	8.2.3.2 Analysis of Learning Performance

	8.3 Lawn Mower Experiments
	8.3.1 Lawn Mower Simulation Domain
	8.3.2 Test Procedures
	8.3.3 Experiments
	8.3.4 Results — MCL Version N
	8.3.4.1 Human AJ
	8.3.4.2 Human AK
	8.3.4.3 Human AW
	8.3.4.4 Human CA
	8.3.4.5 Human CH
	8.3.4.6 Human D
	8.3.4.7 Human G
	8.3.4.8 Human L
	8.3.4.9 Human P
	8.3.4.10 Human T
	8.3.4.11 Human W
	8.3.4.12 Comparison with Temporal Backtracking
	8.3.4.13 Overall Results

	8.4 Discussion

	CHAPTER 9: CONCLUSIONS AND FUTURE WORK
	9.1 Summary
	9.2 Issues Encountered
	9.2.1 Test Domain Selection
	9.2.2 Instructing Human Subjects
	9.2.3 Incorporating Context
	9.2.3.1 Defining Memory Contexts
	9.2.3.2 Capturing Correlated Memory Influence

	9.2.4 Considerations for Continuous Data
	9.2.5 Memory Feature Extraction Hyperparameter Tuning
	9.2.6 Feature Imbalance

	9.3 Conclusions
	9.4 Future Research
	9.4.1 Algorithmic Improvements
	9.4.1.1 Combining Extraction and Refinement
	9.4.1.2 Alternative Discretization Distributions
	9.4.1.3 Improved Memory Feature Specialization
	9.4.1.4 Incorporating Parallelism
	9.4.1.5 Feature Discrimination in Memory Feature Extraction
	9.4.1.6 Alternative Casebase Representations
	9.4.1.7 Automatic Hyperparameter Tuning

	9.4.2 More Complex Memory Features
	9.4.3 Behavioral Analysis
	9.4.4 Informing Transfer Learning
	9.4.5 High-Density Applications
	9.4.6 Informing General Decision Making
	9.4.7 A New Learning from Observation Algorithm
	9.4.8 Integration with Feature Construction
	9.4.9 Proving Memory Coverage

	9.5 Afterword

	APPENDIX A: ANALYSIS OF MEMORY FEATURE EXTRACTION ALGORITHMIC COMPLEXITY
	A.1 MCLv0 Extraction Algorithmic Complexity
	A.2 MCLvN Extraction Algorithmic Complexity

	APPENDIX B: IRB LETTER OF APPROVAL FOR LAWN MOWER STUDY
	APPENDIX C: DESIGN OF LAWN MOWER SIMULATION
	APPENDIX D: LAWN MOWER STUDY SURVEY RESULTS
	APPENDIX E: PERMISSIONS FOR REPRINTING FIGURES
	LIST OF REFERENCES

