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ABSTRACT 

In the last few years, optics has witnessed the emergence of two fields namely metasurfaces 

and parity-time (PT) symmetry. Optical metasurfaces are engineered structures that provide 

unique responses to electromagnetic waves, absent in natural materials. On the other hand, 

PT symmetry has emerged from quantum mechanics, when a new class of non-Hermitian 

Hamiltonian quantum systems was shown to have real eigenvalues.  In this work, we 

demonstrate how PT-symmetric diffractive structures are capable of eliminating diffraction 

orders in specific directions, while maintaining/enhancing the remaining orders. In the 

second part of this work, we emphasize on supersymmetry (SUSY) and its applications in 

optics. Even though the full ramification of SUSY in high-energy physics is still a matter of 

debate that awaits experimental validation, supersymmetric techniques have already found 

their way into low-energy physics. In this work, we apply certain isospectral techniques in 

order to achieve single mode lasing in multi-element waveguide systems, where multimode 

chaotic emission is expected.  In the third part of this dissertation, we emphasize on 

dynamically reconfigurable nanoparticle platforms. By exploiting the dielectrophoresis 

effect, we demonstrate how controllable lasing can be achieved in random photonic 

arrangements. Although this work focuses on the case of controlling random lasers, we 

expect that the proposed nanoparticle architecture can incorporate heterogeneous materials 

of a wide range of optical functionalities, including gain, scattering, plasmonic resonance, and 

nonlinearity. In the last part of the dissertation, we demonstrate the capability of 

synthesizing space-time (ST) wave packets, based on new propagation-invariant elementary 
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solutions of the wave equation identified through a complexification of the spatial and 

temporal degrees of freedom. By establishing the connection between ST propagation-

invariant pulses and tilted-pulse-front pulses, a path is opened to exploiting the unique 

attributes of such wave packets both in nonlinear and quantum optics. 
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Figure 5.1  Concept of space-time wave packets in the context of TPF. (a) A TPF pulse 

produced by a dispersive device such as a grating. The  field diffracts and disperses with 

propagation through spectral walk-off and space-time coupling. (b) A TPF-ST wave packet 
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CHAPTER 1: INTRODUCTION 

Synthesizing ultrathin photonic structures in order to effectively redirect and mould 

optical wavefronts into arbitrary shapes, is of crucial importance in modern beam steering, 

imaging, and sensing technologies. To this end, planar subwavelength systems such as 

optical metasurfaces, have been intensely investigated in recent years. Such arrangements 

rely on abrupt, yet gradient, phase shifts imparted on the incident beam, by means of 

judiciously designed anisotropic nanoantennas. Here, we propose and demonstrate an 

altogether different methodology in order to manipulate the flow of light, by adopting a 

diatomic parity-time (PT)-symmetric Bravais lattice topology, whose unit cell involves only 

a transparent and a lossy optical component. In this respect, a honeycomb-like configuration 

is employed, whose principal symmetries are progressively broken through specific 

geometric transformations. The complex near-field coupling interactions between 

neighboring diffractive elements give rise to a discerning enhancement/attenuation along 

specific directions in the far-field, over a broad range of wavelengths in the visible domain. 

In this work, we report the realization of an all-passive PT-symmetric optical metasurface 

on a flexible polyimide substrate, capable of demonstrating selective directional scattering. 

Our study draws a clear connection between surface topology and radiation directivity, 

which can be systematically utilized towards observing unconventional transport effects in 

flat and curved space PT lattices. 

In Chapter 3, we emphasize on the theory of supersymmetry (SUSY), along with its 

practical implications in optics. Supersymmetry emerged within particle physics as a means 
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to relate two fundamentally different classes of elementary particles: bosons (integer spin, 

Bose-Einstein statistics) and fermions (half integer spin, Fermi-Dirac statistics). Extensions 

to the Standard Model have also been proposed based on SUSY theory in order to resolve 

long-standing issues in quantum field theory, including the nature of vacuum energy, origin 

of mass scales and dark matter. Even though the experimental validation of SUSY is still an 

ongoing issue, supersymmetric/isospectral techniques have already found applications in 

low-energy physics, nonrelativistic quantum mechanics, and nonlinear dynamics, to name a 

few. On the other hand, waveguide laser arrays have been a subject of intense investigations 

for the purpose of building high-power phase-locked lasers, which are immune to the 

detrimental effects of nonlinearities or filamentation. Nevertheless, such systems suffer from 

multimode operation, which in turn leads to a chaotic emission. In this work, we proposed 

and demonstrated a scheme for filtering the undesired transverse supermodes of laser 

arrays by using the SUSY concept. 

In Chapter 4 of this dissertation, we shed light on dynamically reconfigurable optical 

platforms, which take into advantage the effect of dielectrophoresis. Typically, top-down 

fabrication is used to provide positioning control of optical structures; yet, it places stringent 

limitations on component materials and oftentimes, dynamic reconfigurability is challenging 

to realize. Here, we present a nanoparticle platform that can integrate heterogeneous 

particle assembly of different shapes, sizes, and material compositions. We demonstrate 

dynamic manipulation of disorder in this platform and use it to controllably enhance or 

frustrate random laser emission for a suspension of titanium dioxide nanowires in a dye 

solution. Using an alternating current electric field, we control the nanowire orientation to 
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dynamically control the collective scattering of the sample and thus light confinement. Our 

theoretical model indicates that an increase of 22% in scattering coefficient can be achieved 

for the experimentally determined nanowire length distribution upon alignment. As a result, 

a nearly 20-fold enhancement in lasing intensity was achieved. We illustrate the generality 

of the approach by demonstrating enhanced lasing for aligned nanowires of other materials 

including gold, mixed gold/dielectric and vanadium oxide (VxOy). 

Finally, in Chapter 5 we study the properties of tilted-pulse-front pulses, produced by 

dispersive devices that introduce angular dispersion. Such pulses typically have large 

transverse cross sections and propagate for limited distances to offset the impact of 

diffractive space-time coupling that leads to spectral walk-off. Here we show that sculpting 

the spatio-temporal spectral profile of a pulsed plane wave enables the synthesis of 

propagation-invariant wave packets endowed with a tilted intensity pulse front with respect 

to the propagation axis. These wave packets are based on new elementary propagation-

invariant wave-packet solutions to the wave equation obtained by a complexification of the 

spatial and temporal degrees of freedom. The dissertation finishes with concluding remarks in 

Chapter 6. 

 

 

 

 



 

4 

 

CHAPTER 2: PT-SYMMETRIC OPTICAL METASURFACES 

2.1  Introduction 

The advent of metasurfaces has incited an intense research activity in the field of 

planar photonics. In such systems, a gradual phase shift can be imposed on the incident 

optical wavefront, thus leading to a generalized version of  Snell’s law [1]. Their inherent 

ability to control the phase, polarization, and angular momentum of the incident light via 

surface-confined subwavelength nanofeatures, has made such artificial structures of great 

interest for a number of applications [4-8], aimed towards scalable refractive or diffractive 

optical components. In recent years, parity-time synthetic photonic arrangements have also 

been the subject of extensive investigation [9-11]. Such PT-symmetric concepts - originally 

conceived within the context of quantum field theories – provide a means to construct new 

classes of non-Hermitian Hamiltonians, capable of exhibiting entirely real eigenvalue 

spectra. Given that in optics, the complex refractive index 𝑛(𝒓) plays the role of a quantum 

mechanical potential 𝑉(𝒓), one may then c-onclude that in a photonic setting, PT symmetry 

requires that the following condition is fulfilled 𝑛(𝒓) = 𝑛∗(−𝒓). In other words, the real part 

of the refractive index must be an even function of position, while the imaginary component, 

denoting gain or loss, must be antisymmetric. In more general arrangements, where the 

problem must be treated electrodynamically [12], this same symmetry implies that the 

complex permittivity satisfies 𝜀(𝒓) = 𝜀∗(−𝒓).   

The nontrivial interplay between gain and loss domains in non-Hermitian platforms 

has led to a number of exciting possibilities, that have no counterpart in Hermitian 
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environments. These include for example, power oscillations, scattering elimination, non-

reciprocal light propagation, and exceptional-point dynamics, to name a few [13-18]. The 

anomalous scattering properties of such systems – resulting from an underlying 

spontaneous symmetry breaking mechanism - have been considered within the context of 

PT-symmetric metasurfaces. So far, the potential of these arrangements has been the subject 

of mostly theoretical studies, and applications have been proposed for electromagnetic 

cloaking, subwavelength sensing, and planar focusing [19-23]. While asymmetric light 

transport and violation of Friedel’s law have been reported in one-dimensional diffraction 

settings [24-27], the more complex analogs of these effects in higher-dimensional free-space 

optical platforms, still remain experimentally elusive.  

In this chapter [33], we show that one-dimensional (1D) and two-dimensional (2D) 

optical metasurfaces endowed with PT-symmetry can display several intriguing 

characteristics. As we will see, PT-symmetry can be readily introduced in these systems 

through an appropriate amplitude and phase modulation when imposed on the surface. Such 

non-Hermitian structures are capable of eliminating diffraction orders in specific directions, 

while maintaining or even enhancing the remaining orders. Moreover, we have realized a 

rather unexplored family of "deformed" honeycomb arrangements, whose two-dimensional 

geometric distortions dictate the scattered far-field directivities. The observed asymmetric 

light transport is a direct byproduct of spontaneous PT symmetry breaking and signifies a 

clear violation of Friedel’s law of diffraction. The proposed PT-symmetric dimer model relies 

on deeply subwavelength near-field interactions between a lossy diffractive element and its 

transparent counterpart. In this manner, we demonstrate robust control over the 
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propagating free-space modes and a pronounced unidirectionality. As with passive non-

Hermitian waveguide arrangements, where loss-induced transparency is possible [14], in 

the present work we report loss-induced enhancement/suppression of radiation towards 

specific directions of interest in the visible part of the spectrum. 

 

2.2  One-dimensional PT-symmetric metasurfaces 

To analyze the optical properties of a PT-symmetric metasurface, we assume that the 

complex refractive index 𝑛(𝑥) = 𝑓(𝑥) + 𝑖𝑔(𝑥) is periodically modulated on the surface. Here  

𝑓(𝑥) and 𝑔(𝑥) are periodic real functions having a spatial period⁡𝐿, representing the length 

of each unit cell on this metasurface. In this regard, 𝑛(𝑥) can be expressed through a Fourier 

series as follows 

𝑛(𝑥) = (𝑎0 + 𝑖𝑎0
′ ) +

1

2
∑ [(𝑎𝑚 + 𝑏𝑚

′ ) + 𝑖(𝑎𝑚
′ − 𝑏𝑚)]𝑒𝑖𝑚𝜃∞

𝑚=1   

             +
1

2
∑ [(𝑎𝑚 − 𝑏𝑚

′ ) + 𝑖(𝑎𝑚
′ + 𝑏𝑚)]𝑒−𝑖𝑚𝜃∞

𝑚=1           (2.1) 

where⁡𝜃 = 2𝜋𝑥/𝐿. In Eq. (2.1), {𝑎𝑚, 𝑏𝑚} and {𝑎𝑚
′ , 𝑏𝑚

′ } represent the Fourier coefficients 

associated with the real 𝑓(𝑥) and imaginary 𝑔(𝑥) components of the complex refractive 

index distribution, respectively. The envisioned PT-symmetric metasurface is expected to be 

implemented solely using passive components, i.e. the imaginary component 𝑔(𝑥) will 

introduce only loss.  
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Of interest would be to identify methods through which the negative (or positive) 

diffraction orders emanating from this PT-symmetric metasurface can be entirely 

suppressed while the remaining orders (positive or negative) can be enhanced. For this to 

occur one has to eliminate, for example, the negative orders exp⁡(−𝑖𝑚𝜃) appearing in the 

Fourier series of Eq. (2.1). This directly implies that⁡𝑏𝑚
′ = 𝑎𝑚⁡and⁡𝑎𝑚

′ = −𝑏𝑚. From here, one 

obtains the following representations for 𝑓(𝑥), 𝑔(𝑥) that are necessary to suppress the 

negative orders 

 

 

Figure 2.1 1D metasurface design for 1550 nm. The respective unit cell dimensions are L = 1520 nm, 

h1 = 230 nm, h2= 310 nm, w1 = 280 nm, w2= 80 nm, d1 = 50 nm, d2= 60 nm. The transparent material 

is silicon with a refractive index nSi = 3.4757 [32], while the lossy medium used is nickel with a 

refractive index nNi =3.4378 - 6.7359i [28]. (a, c) Hermitian case (when no loss is incorporated) and 

corresponding near-field and Poynting vector (arrow plots), (b,d) PT-symmetric case  (when loss is 

introduced) and corresponding near-field and Poynting vector distributions, (e) transmission order 

efficiencies for the Hermitian case (green) and PT-symmetric case (yellow) and extinction ratios 

between the positive and corresponding negative orders (blue). 
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      ⁡⁡𝑓(𝑥) = 𝑎0 + ∑ {𝑎𝑚 cos (𝑚
2𝜋𝑥

𝐿
) + 𝑏𝑚 sin (𝑚

2𝜋𝑥

𝐿
)}∞

𝑚=1               

𝑔(𝑥) = 𝑎0
′ + ∑ {𝑎𝑚 sin (𝑚

2𝜋𝑥

𝐿
) − 𝑏𝑚 cos (𝑚

2𝜋𝑥

𝐿
)}∞

𝑚=1     (2. 2) 

Equations (2.2) show that this is only possible as long as the real and imaginary parts of the 

refractive index are intertwined through common coefficients⁡𝑎𝑚, 𝑏𝑚. This index 

distribution is PT-symmetric, when the terms in Eq. (2.2) associated with the 𝑎𝑚, 𝑏𝑚 

coefficients are considered separately. Similarly, one can eliminate the positive orders 𝑒𝑖𝑚𝜃 

provided that 𝑏𝑚
′ = −𝑎𝑚⁡and⁡𝑎𝑚

′ = 𝑏𝑚, in which case  the following relations hold true 

    ⁡𝑓(𝑥) = 𝑎0 + ∑ {𝑎𝑚 cos (𝑚
2𝜋𝑥

𝐿
) + 𝑏𝑚 sin (𝑚

2𝜋𝑥

𝐿
)}∞

𝑚=1 ⁡⁡           

𝑔(𝑥) = 𝑎0
′ + ∑ {−𝑎𝑚 sin (𝑚

2𝜋𝑥

𝐿
) + 𝑏𝑚 cos (𝑚

2𝜋𝑥

𝐿
)}∞

𝑚=1                   (2.3) 

Equations (2.2) and (2.3) indicate that, in order to eliminate either the negative or the 

positive orders, 𝑓(𝑥)⁡and 𝑔(𝑥) must be PT-symmetric partners. The diffractive configuration 

considered here, essentially acts like a phase screen with a phase transmission function of 

the form⁡exp⁡(𝑖𝑘0𝑛(𝑥)𝑑), where d represents an effective depth. Equations (2.1-3) provide a 

methodology for designing such unidirectional metasurfaces. Once the subwavelength 

surface elements are positioned on the surface in a PT-symmetric fashion, finite element 

simulations (FEM) are then used to further optimize the performance of such arrangements. 

Based on the aforementioned analysis we investigate the optical properties of the 

structures shown in Figs. 2.1 and 2.2, for the wavelengths of 1550 and 532 nm, respectively. 

These configurations were conceived by matching the Fourier coefficients in a discrete 

fashion. These systems were subsequently optimized using finite element methods. For the 
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1550 nm design (Fig. 2.1) we employ silicon as the transparent material and nickel for loss. 

On the other hand, the 532 nm design (Fig. 2.2) is based on sapphire (as the transparent 

medium) and again utilizes nickel for loss. In general, the real part of the refractive indices 

of the transparent and lossy materials are here approximately equal in order to satisfy the 

PT-symmetry condition. We would like to note that, while the imaginary component in our 

designs is not exactly antisymmetric, their response is still dictated to a great extent by PT 

symmetry. This is due to the fact, that PT symmetric related processes can be quite robust 

and hence can tolerate environments, where this symmetry is not exactly satisfied. For both 

wavelengths, we assume normal incidence and a TE-polarization, i.e. the electric field is 

parallel to the 1D stripes of this metasurface. Under these conditions, the designs shown in 

Figs. 2.1 and 2.2 support up to six transmission orders. 

In order to evaluate the performance of these configurations, we consider an 

extinction ratio, defined as the ratio between the diffraction efficiencies associated with the 

positive orders to that of the negative orders and vice versa. The FEM results corresponding 

to the aforementioned structures are shown in Figs. 2.1 & 2.2. As expected, if no loss is 

incorporated in the system (Hermitian case), light propagates symmetrically after this 

metasurface, as shown in Figs. 2.1(c) and 2.2(c). In this case the positive and negative orders 

are exactly the same. This scenario changes once loss from nickel is introduced. The resulting 

field distributions and Poynting vector plots are shown in Figs. 2.1(d), 2.2(d). Under these 

conditions, the light is skewed in one direction, towards the lossy side.  The physical reason 

behind this symmetry-breaking behavior has to do with the redistribution of energy flow 

within the system. In other words, the Poynting vector now develops an additional 
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transverse component that is needed to supply energy to the lossy domains. For the 1550 

nm design, the FEM simulations show that the extinction ratio between the ±1 orders is 

approximately 65 (18 dB), for the ±2 is 20 (13 dB) and for the ±3⁡ the extinction ratio is 

approximately 6 (Fig. 2.1(e)). On the other hand, the design intended for 532 nm exhibits 

optimum performance for the ±2 orders where the extinction ratio is 1800 or 33 dB. 

Meanwhile for the remaining two orders it ranges between 62 to 16 (Fig. 2.2(e)). In essence, 

these metasurface designs can effectively suppress the positive (negative) orders by 

exploiting the symmetry-breaking induced by parity-time symmetry. 

 

2.3 Diatomic Oblique Bravais Lattices 

In the present section, we study the scattering properties of a rather unexplored family of 

"deformed" honeycomb arrangements, stemming from a generalized class of diatomic 

oblique Bravais lattices. The two-dimensional geometric distortions present in such 

arrangements lead to highly anisotropic radiation diagrams.  The strong interplay between 

the surface geometry and radiation directivity has been rigorously analyzed and systematic 

methodologies have been developed in order to tailor the near- and far-field scattering 

characteristics, based on PT-symmetric dimer model. 
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2.3.1 Scattering Analysis  

The unit cell vectors, describing an oblique Bravais lattice topology with dimensions 𝐿𝑎 × 𝐿𝑏 

and lattice angle φ𝐿  (see Fig. 2.3), are given by 𝒂1 = 𝐿𝑎𝒙, 𝒂2 = 𝐿𝑏{cos(𝜑𝐿) 𝒙 + sin(𝜑𝐿) 𝒚}. 

Following the analysis for a three-dimensional periodic arrangement, the reciprocal lattice 

vectors will be given by 𝑮𝟏 = 2𝜋(𝒂2 × 𝒂3) {𝒂1 ∙ (𝒂2 × 𝒂3)}⁄ = 2𝜋{𝒙 − 𝑐𝑜𝑡(𝜑𝐿) 𝒚}/𝐿𝑎, 𝑮2 =

2𝜋 (𝒂3 × 𝒂1) {𝒂2 ∙ (𝒂3 × 𝒂1)}⁄ = 2𝜋 𝑐𝑠𝑐(𝜑𝐿) 𝒚/𝐿𝑏 , where 𝒂3 = 𝒛⁡ As a result, we obtain 

relations 𝑮1 = 2𝜋{𝒙 − 𝑐𝑜𝑡(𝜑𝐿) 𝒚}/𝐿𝑎, 𝑮2 = 2𝜋 𝑐𝑠𝑐(𝜑𝐿) 𝒚/𝐿𝑏 . The incident wavevector can 

 

Figure 2.2 1D metasurface design for 532 nm. The corresponding unit cell dimensions are L = 1050 

nm, h1 = 470 nm, h2= 380 nm, w1 = 200 nm, w2= 90 nm, d1 = 150 nm, d2= 90 nm. The transparent 

material is sapphire with refractive index nAl2O3=1.7718 [29], while the lossy material is nickel with 

refractive index nNi =1.7764 – 3.776i [28]. (a, c) Hermitian case (when no loss is incorporated) and 

corresponding near-field distribution and Poynting vector (arrow plots), (b, d) PT-symmetric case 

(when loss is introduced) and corresponding near-field distribution and Poynting vector plot, (e) 

transmission order efficiencies for the Hermitian case (green) and PT-symmetric case (yellow) and 

extinction ratios between the positive and corresponding negative orders (blue).  
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be expressed as 𝒌𝑖 = 𝑘0𝑛1{sin(𝜃𝑖) cos(𝜑𝑖) 𝒙 + sin(𝜃𝑖) sin(𝜑𝑖) 𝒚 + cos(𝜃𝑖) 𝒛}, where⁡𝑘0 is the 

free space wavenumber, 𝑛1 represents the refractive index of the incident medium, and 𝜃𝑖 , 

φ𝑖  denote the elevation and azimuth angles of the electromagnetic wave, respectively. The 

phase matching condition dictates that 𝒌𝑡,|| = 𝒌𝑖,|| + 𝑛𝑮1 + 𝑚𝑮2, where (𝑛,𝑚) indicates the 

propagating order, while  𝒌𝑖,|| and 𝒌𝑡,||⁡represent the tangential components of the incident 

and diffracted wavevectors, correspondingly. Consequently, we attain  

𝒌𝑡,|| = {𝑘0𝑛1sin(𝜃𝑖) cos(𝜑𝑖) + 𝑛
2𝜋

𝐿𝑎
} 𝒙 

+{𝑘0𝑛1 sin(𝜃𝑖) sin(𝜑𝑖) − 𝑛
2𝜋

𝐿𝑎
𝑐𝑜𝑡(𝜑𝐿) + 𝑚

2𝜋

𝐿𝑏
𝑐𝑠𝑐(𝜑𝐿)} 𝒚              (2.4) 

 

 

Figure 2.3  Diatomic oblique Bravais lattice. Incident and diffracted wavevectors are denoted by 𝒌𝒊 

and 𝒌𝒕, respectively. The inset shows the unit cell of a generalized oblique Bravais lattice topology. 
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On the other hand, the normal component of 𝒌𝑡 will be provided by 𝒌𝑡,⊥ =

√(𝑘0𝑛2)2 − |𝒌𝑡,|||
2
𝒛⁡ (𝑛2 - refractive index of the transmission medium, |𝒌𝑡,||| - magnitude of 

vector 𝒌𝑡,||). In order to obtain propagating waves, 𝒌𝑡,⊥ should be a real number. This implies 

that (𝑘0𝑛2)
2 ≥ |𝒌𝑡,|||

2
, which leads to inequality 𝑎𝑚𝑛2 + 𝑏𝑚𝑛 + 𝑐𝑚 ≤ 0, with coefficients 𝑎𝑚, 

𝑏𝑚, 𝑐𝑚 and discriminant Δ, described by the following relations 

𝑎𝑚 = {
2𝜋

𝐿𝑎
csc(𝜑⁡𝐿)}

2

               (2.5) 

𝑏𝑚 =
4𝜋

𝐿𝑎
{𝑘0𝑛1 sin(𝜃𝑖) 𝑐𝑜𝑠(𝜑𝑖) − 𝑘0𝑛1 sin(𝜃𝑖) 𝑠𝑖𝑛(𝜑𝑖) cot(𝜑𝐿) 

−𝑚
2𝜋

𝐿𝑏
cot(𝜑𝐿) csc⁡(𝜑𝐿)}           (2.6) 

𝑐𝑚 = −𝑘0
2𝑛2

2 + 𝑘0
2𝑛1

2𝑠𝑖𝑛2(𝜃𝑖) + 𝑚
4𝜋

𝐿𝑏
𝑘0𝑛1 sin(𝜃𝑖) 𝑠𝑖𝑛(𝜑𝑖) csc(𝜑𝐿) 

+(𝑚
2𝜋

𝐿𝑏
)
2

csc2(𝜑𝐿)       (2.7) 

𝛥 = −4csc2(𝜑𝐿) (
2𝜋

𝐿𝑏
)
2

(
2𝜋

𝐿𝑎
)
2

{𝑚 −
𝐿𝑏

𝜆
{−𝑛1 sin(𝜃𝑖) 𝑐𝑜𝑠(𝜑𝐿 − 𝜑𝑖) + 𝑛2}} 

{𝑚 −
𝐿𝑏

𝜆
{−𝑛1sin(𝜃𝑖) 𝑐𝑜𝑠(𝜑𝐿 − 𝜑𝑖) − 𝑛2}}                                   (2.8) 

Since 𝑎𝑚 ≥ 0, it should also be true that 𝛥 ≥ 0, which yields the following constraints for 

parameters 𝑛, 𝑚 
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[
𝐿𝑏

𝜆
{−𝑛1sin(𝜃𝑖) 𝑐𝑜𝑠(𝜑𝐿 − 𝜑𝑖) − 𝑛2}] ≤ 𝑚 ≤ [

𝐿𝑏

𝜆
{−𝑛1 sin(𝜃𝑖) 𝑐𝑜𝑠(𝜑𝐿 − 𝜑𝑖) + 𝑛2}]        (2.9)                

[
−𝑏𝑚−√𝛥

2𝛼𝑚
] ≤ 𝑛 ≤ [

−𝑏𝑚+√𝛥

2𝛼𝑚
]               (2.10) 

where [𝑥] represents the integer part of real number 𝑥. Finally, the elevation and azimuth 

angles of propagation, corresponding to the free-space mode (𝑛,𝑚), can be computed from 

𝜃𝑑 = acos⁡(𝑘𝑡,𝑧/(𝑘𝑜𝑛2)) and 𝜑𝑑 = 𝑎𝑡𝑎𝑛(𝑘𝑡,𝑦/𝑘𝑡,𝑥), respectively, with 𝑘𝑡,𝑥, 𝑘𝑡,𝑦, and 𝑘𝑡,𝑧 

denoting the  x-, y-, z-components of 𝒌𝑡. 

 

2.3.2  Unidirectional light transport in PT-symmetric oblique Bravais lattices 

In this section, we provide both numerical and experimental results, which confirm the 

angularly unbalanced radiation pattern (see Fig. 2.4), stemming from a PT-symmetric 

oblique Bravais lattice.  The respective irregular honeycomb structure, is depicted in Fig. 

2.4c. The unit cell dimensions are described by  𝐿𝑎, 𝐿𝑏 , while 𝑑, 𝜑𝐿 represent the scatterer 

center-to-center distance and the lattice angle, respectively. We note that this diffractive 

arrangement respects both local, as well as global PT symmetry. ‘ 

Figure 2.5a depicts a regular honeycomb array of scatterers with 𝐿𝑎 = 3𝑑, 𝐿𝑏 =

𝑑√3, 𝜑𝐿 = 300. Such a configuration is characterized by a perfect hexagonal tiling, which, in 

turn, dictates an angularly balanced and non-directional far-field radiation pattern (Section 

2.3.3). In order to attain directional scattering, certain lattice symmetries need to be 

progressively broken, as illustrated in Fig. 2.5c. More specifically, we modify the topology of 

the 𝐴𝐵𝐶 triangle, formed by the neighboring nanopillars of the two-dimensional (2D) 

periodic structure. If the network is of the honeycomb type, 𝐴𝐵𝐶 happens to be equilateral, 
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with its circumcenter (𝐺) occupied by another diffractive element. As a first step in altering 

the topology of the system, we shift the central cylinder 𝐺  along the perpendicular bisector 

of 𝐵𝐶. Subsequently, 𝐴𝐵𝐶 is rescaled and 𝐴 is relocated, such that 𝐴𝐵 = 𝐴𝐶 ≠ 𝐵𝐶. As a result, 

we obtain an irregular "deformed" honeycomb lattice (Fig. 2.5b), for which 𝐿𝑎 =⁡𝐿𝑏 =

𝐿, ⁡𝜑𝐿 = 600. In this case, the amount of lattice deformation in the final arrangement is 

determined by both displacements 𝛥𝐺 and 𝛥𝐴, and as such dictates the imbalance between 

the propagating modes. In Section 2.3.3, we provide an alternative view of the 

aforementioned geometric transformations, by starting from a generalized diatomic oblique 

Bravais unit cell. In doing so, it is shown that in order to achieve radiation directionality, both 

relations 𝐿𝑎 = 2𝐿𝑏cos⁡(𝜑𝐿) and 𝐿𝑏/{2𝑑𝑐𝑜𝑠(𝜑𝐿)} ≠ 1 must be satisfied. The former equality is 

required for the alignment of the lossy pillars in the y-direction (y-polarized incident electric 

field), while the latter condition leads to the desired lattice distortion.  

Without any loss of generality, the proposed configuration is designed so as to support 

six distinct diffraction orders at a wavelength of λ𝜊 = 530 nm. For this configuration, the unit 

cell has dimensions 𝐿𝑎 = 𝐿𝑏 = 690 nm, 𝜑𝐿 = 600. The diameter of the nanoscatterers is 𝐷 = 

160 nm, while their center-to-center distance is  𝑑 = 210 nm. Due to the deeply 

subwavelength gap (~𝜆𝜊/10) between the lossy and transparent pillars, their respective 

coupling strength becomes enhanced, thus leading to a highly asymmetric radiation profile. 

In order to further increase such near-field interactions, the nanopillars (overall height ℎ = 

370 nm) were partially buried at a height of ℎ𝑠 = 90 nm in the polyimide substrate. In all 

cases, nickel (Ni) [28] was used for realizing the lossy elements, alumina/sapphire (Al2O3) 

[29] for the transparent scatterers, and high-index polyimide [30] for the substrate. 
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Moreover, it is assumed that the optical field is y-polarized at normal incidence. The 

propagation direction of the transmitted modes is determined by the elevation and azimuth 

angles 𝜃𝑑  and 𝜑𝑑, respectively, which can be analytically computed (see Section 2.3.1). 

 

Figure 2.5d depicts near-field distribution results along the azimuthal cross-sectional 

plane at 𝜑 = 00, associated with the Hermitian and its corresponding PT-symmetric 

arrangement, for a wavelength of  λ𝜊 = 530 nm. Numerical simulations were carried out using 

the COMSOL Multiphysics software, which is based on the finite element method analysis. A 

single unit cell (see Fig. 2.4c) was analyzed, after applying periodic boundary conditions. 

 

Figure 2.4  Passive PT-symmetric metasurface. a, Symmetric far-field emission in various diffraction 

modes under Hermitian conditions (alumina nanopillars). b, Lopsided diffraction and loss-induced 

redistribution of power in favor of desired free-space modes for the PT-symmetric metasurface 

(involving alumina and nickel nanopillars). c, Schematic illustration of an irregular PT-symmetric 

photonic honeycomb network. The inset shows the unit cell of a generalized oblique Bravais lattice 

topology. 

 



 

17 

 

Perfect matching layers (PML) were employed to eliminate any back reflections from the 

model’s boundaries. Periodic ports were used, in order to calculate the efficiencies of the 

propagating diffraction orders. As excitation field, we assumed a plane wave of the form 𝐸 =

𝐸𝑜𝑒
−𝑗𝑘𝑥𝑥−𝑗𝑘𝑦𝑦−𝑗𝑘𝑧𝑧.  Moreover, triangular and tetrahedral mesh schemes were utilized for 

the boundaries and bulk domains, respectively, with mesh element size not exceeding 𝜆/6. 

 

 

 

Figure 2.5  Operation principle of PT-symmetric metasurfaces. a, b, Standard (a) and "deformed“ (b) 

honeycomb networks. The respective unit cells (white) and triangles (red) formed by neighboring 

diffractive elements are also shown. c, Sequential geometric transformations relating the lattices in a 

and b. Elements 𝑨, 𝑩, 𝑪, indicate the position of lossless sapphire nanopillars, while 𝑮 denotes lossy 

nickel elements. d, Near-field results for the Hermitian (left panel) and PT-symmetric (right panel) 

cases. Arrows indicate the Poynting power density vector flow, while the near-field distributions are 

depicted along the azimuthal planes 𝝋 = 00. 
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The Poynting vector graphs clearly indicate a reorientation of the average power flow 

towards the lossy diffractive nanopillars in the PT-symmetric configuration (right panel - 

Fig. 2.5d), as opposed to the Hermitian case (left panel - Fig. 2.5d). This lopsided emission is 

attributed to the presence of an additional transverse component in the Poynting vector 

field, needed to promote energy transfer to the lossy subdomains. In Section 2.3.3, the 2D 

field distributions along the plane 𝜑 = 900 are also provided. In this case, no asymmetry is 

observed owing to the alignment of the lossy pillars along the y-axis. .  

For our study, we fabricated an irregular photonic honeycomb lattice via a double 

patterning process using standard electron beam (e-beam) lithography techniques (see 

Section 2.3.5). As a first step, a silica layer was deposited on top of a silicon wafer through 

plasma-enhanced chemical vapor deposition. Subsequently, the nickel elements (PT-

symmetric structure) were patterned, followed by e-beam evaporation and lift-off. The same 

process was repeated for the alumina nanopillars. The distance between the lossy and 

transparent surface scatterers was kept at 50 nm through accurate alignment by e-beam 

lithography. Ultimately, spin-coating of the polyimide was performed, along with dry and 

wet etching of the silicon substrate and the sacrificial silica layer, respectively. The end result 

is a flexible Hermitian/PT-symmetric metasurface, as shown in Figs. 2.6a,b. Scanning 

electron microscope (SEM) images of this irregular hexagonal pattern formation are shown 

in Figs. 2.6c,d. A summary of the fabrications steps, along with a more detailed analysis of 

the experimental methods, are provided in Section 2.3.5. 
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In order to probe the far-field scattering behavior of these PT-symmetric 

metasurfaces, we illuminated the samples with a laser beam at 530 nm, after passing through 

a vertical polarizer, followed by a biconvex lens (Section 2.3.5). The experiment was 

performed under normal incidence, while the power of the diffracted orders was measured 

by a power meter. The field directivity of the fabricated samples was quantified by means of 

an extinction ratio, defined as the ratio between the power efficiencies of the enhanced and 

attenuated propagating modes. As previously mentioned, the structure supports six higher-

order transmission modes with respective azimuth angles φ𝑑 = ±300, ±900, ±1500 . In all 

cases, the elevation angle of propagation is θ𝑑 = 620. The obtained results (Figs. 2.6e-h) 

 

Figure 2.6  Experimental results. a,b, A flexible PT-symmetric metasurface on Si substrate (a) and 

final sample with Si etched away (b). c,d, Scanning electron microscope images of the irregular 

hexagonal pattern on the flexible substrate. e,f, Far-field emission under Hermitian (e) and parity-

time (f) conditions. g,h, Experimentally measured power diffraction efficiencies for the Hermitian (g) 

and PT-symmetric (h) configurations. 
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demonstrate a pronounced asymmetric diffraction, as predicted theoretically. The 

numerically computed (see Section 2.3.3) and experimentally obtained far-field efficiencies 

(Figs. 2.6g,h) were found to be in good agreement. More specifically, mode orders (0,1), (0,-

1), (-1,0), (-1,-1) are reduced below 1%, while the propagating modes (1,1), (1,0), become 

significantly enhanced by a factor of  × 2.3, leading to an extinction ratio of 8 dB.  Such 

unidirectional emission indicates a broken PT phase and signifies a clear violation of 

Friedel’s law of diffraction.  

 

2.3.3 Effect of surface topology on near- and far-field transmission 

As demonstrated in Section 2.3.2, directive scattering can be attained, after breaking 

certain symmetries present in a standard honeycomb array. In the present section, we 

provide an alternative view of such geometric transformations, by considering a generalized 

oblique Bravais lattice arrangement (see Fig. 2.7a). 

As a first step in altering the topology of the system, the lossy nanopillars become 

aligned along the y direction (Fig. 2.7b). This implies that relation 𝐿𝑎 = 2𝐿𝑏cos(𝜑𝐿)⁡should 

hold true. As a result, we obtain significantly reduced diffraction efficiencies for the 

transmission modes propagating along the azimuthal planes φ = ±900, since the incident 

field is also y-polarized. In order to attain a standard honeycomb array, the hexagons formed 

by the neighboring scattering elements should have all their sides and angles equal. The 

former requirement is met, if relation 𝐿𝑏 = 2𝑑cos(𝜑𝐿) is satisfied (see Fig. 2.7c). Finally, by 

also setting 𝜑𝐿 = 300, we obtain a perfect hexagonal tiling with 𝐿𝑎 = 3𝑑, 𝐿𝑏 = √3𝑑 (Fig. 

2.7d). 
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For our study, we have utilized the "deformed" honeycomb network of Fig. 2.7b, with 

𝜑𝐿 = 600. In this case, condition 𝐿𝑎 = 2𝐿𝑏𝑐𝑜𝑠(𝜑𝐿) implies that the unit cell should have equal 

sides (𝐿𝑎 = 𝐿𝑏 = 𝐿). Moreover, it will be true that 𝐿𝑏/(2𝑑𝑐𝑜𝑠𝜑𝐿) = 𝐿𝑎/𝑑 > 1, which leads to 

an irregular hexagonal pattern formation and, consequently, to directional far-field 

emission. Figure 2.8 provides near-field distributions, along the azimuthal plane φ = 900, 

and respective numerically computed far-field power efficiencies, associated with the 

Hermitian and PT-symmetric metasurfaces studied in the main text (𝐿𝑎 = 𝐿𝑏 = 690 nm, 

𝜑𝐿 = 600, 𝑑 = 210 nm, 𝐷 = 160 nm). The wavelength of operation was assumed to be 𝜆𝜊 = 

530 nm (𝑛𝐴𝑙2𝑂3
=⁡1.77, 𝑛𝑁𝑖 = 1.77-3.18i,⁡𝑛𝑝𝑜𝑙𝑦𝑖𝑚𝑖𝑑𝑒 = 2).  

 

For comparison purposes, we provide near-field scattering results, along with 

numerically computed diffraction efficiencies, for a honeycomb lattice with unit cell 

 

Figure 2.7  Oblique Bravais lattice - geometric transformations. a, Generalized diatomic oblique 

Bravais lattice. b, Alignment of lossy scatterers, imposed by relation 𝑳𝒂 = 𝟐𝑳𝒃𝐜𝐨𝐬⁡(𝝋𝑳). c,d, 

Arrangement of nanopillars, such that hexagon cells formed by neighboring diffractive elements have 

equal sides (c - 𝑳𝒃 = 𝟐𝒅𝐜𝐨𝐬(𝝋𝑳)) and, subsequently, equal angles (d - 𝛗𝑳 = 300, 𝑳𝒂 = 𝟑𝒅, 𝑳𝒃 = √𝟑𝒅). 

The lattice shown in d, corresponds to a standard honeycomb network. In all cases, the respective 

unit (white) and hexagon (blue) cells, are shown. 
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parameters 𝐿𝑎 = 1200 nm, 𝐿𝑏 = 700 nm, 𝜑𝐿 = 300, and 𝑑 = 400 nm (Fig. 2.9). The scatterer 

diameter is 𝐷 = 200 nm, while the nanopillars (overall height ℎ = 370 nm) were once again 

partially buried at a height of ℎ𝑠 = 90 nm in the polyimide substrate. The diffraction 

arrangement supports six distinct transmission orders at the wavelength of 530 nm, with 

respective azimuth angles 𝜑𝑑 = 00, ±600, ±1200, 1800. The free-space modes propagate at an 

elevation angle of 𝜃𝑑  = 620. As shown in Fig. 2.9, a loss-induced redistribution of energy in 

favor of the orders (1,1), (-2,-1), (1,0) is observed. Nevertheless, power flows in an angularly 

balanced manner, leading to a non-directional far-field emission. 

 

 

 

Figure 2.8  "Deformed" honeycomb arrangement - numerical scattering results. a,b, Near-field 

distributions under Hermitian (a) and parity-time (b) conditions, along the azimuthal planes 𝝋 = 

900. c,d, Diffraction efficiencies corresponding to the Hermitian (c) and PT-symmetric (d) 

metasurfaces. 
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2.3.4 Broadband asymmetric light transport 

In order to confirm numerically the broadband operation of PT-symmetric 

metasurfaces, the respective far-field efficiencies were evaluated over the wavelength range 

410-590 nm, via finite element simulations. Material dispersion corresponding to the nickel 

/alumina nanopillars [28,29] and polyimide substrate [30], was also taken into account. The 

corresponding results (see Fig. 2.10a) indicate a symmetric power distribution between 

modes (1,1) and (-1,0) for the Hermitian arrangement.  On the other hand, under parity-time 

conditions, diffraction order (1,1) demonstrates higher efficiency than the remaining free-

space modes, throughout the spectral range 410-590 nm. This leads to a broadband loss-

induced redistribution of energy towards the propagation directions (𝜃𝑑 , 𝜑𝑑) = (620, ±300). 

Moreover, the extinction ratio is monotonically increasing with wavelength, reaching up to 

15 dB close to 590 nm. Propagating modes (1,0), (0,-1), (-1,-1) are not depicted in Fig. 2.10a, 

 

Figure 2.9  Honeycomb lattice - diffraction results. a,b, Numerically computed power diffraction 

efficiencies for the Hermitian (a) and PT-symmetric metasurfaces (b). The wavelength of operation 

is assumed to be 532 nm. 
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since they exhibit identical efficiencies with modes (1,1), (0,1), (-1,0), respectively. This is 

attributed to the underlying symmetry present in an oblique Bravais lattice configuration. In 

all cases, the structure dimensions and materials were kept the same as in the main text.  

 

 

Finally, far-field diffraction efficiencies 𝐷𝐸̅̅ ̅̅
(𝑛,𝑚), associated with the white light source 

used in the experiments (see Fig. 2.10b for spectral response), can be attained via the 

following weighted average expression  

𝐷𝐸̅̅ ̅̅
(𝑛,𝑚) =

∫ 𝐷𝐸(𝑛,𝑚)(𝜆)
𝜆 ⋅𝑆(𝜆)𝑑𝜆

∫ 𝑆(𝜆)𝑑𝜆
𝜆

              (2.11) 

 

Figure 2.10  Broadband finite element computations. a, Diffraction efficiencies for mode orders (0,1), 

(1,1), (-1,0) over the wavelength range 410-590 nm, corresponding to both Hermitian (solid lines) 

and PT-symmetric cases (dashed and dashed-dot lines). b-d, Spectrum efficiency of the broadband 

white light source used in the experiments (b), along with the respective numerically evaluated 

power diffraction efficiencies, under Hermitian (c) and parity-time (d) conditions. 
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where 𝐷𝐸(𝑛,𝑚)(𝜆)  denotes the diffraction efficiency corresponding to mode order (𝑛,𝑚) at 

wavelength 𝜆, while 𝑆(𝜆) represents the spectrum intensity of the incoherent light source. 

The corresponding results are shown in Figs. 2.10c,d, for both the Hermitian and PT-

symmetric metasurfaces. 

 

 

In order to experimentally demonstrate the unidirectional transmission over a broad 

range of wavelengths, we illuminated the sample with an incoherent white light source, 

whose spectral response is shown in Fig. 2.10b. The respective diffraction efficiency results 

are shown in Fig. 2.11 and indicate a close match between experiments and simulations. 

More specifically, a suppression of all the free-space modes is evident, besides the desired 

 

Figure 2.11  Broadband scattering experimental results. a,b, Far-field diffraction patterns under 

Hermitian (a) and PT conditions (b). c,d, Power diffraction efficiencies, as measured experimentally, 

for the Hermitian (c) and PT-symmetric (d) metasurfaces. 
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orders (1,1) and (1,0), with an extinction ratio of 6 dB. We should note that in all cases, the 

two diffraction orders propagating in the 𝜑 = 900 plane, i.e. (0,1), (0,-1), are equally 

attenuated, owing to the imposed alignment of the lossy nanopillars along the y-direction. 

 

2.3.5 Experimental methods 

The fabrication methodology follows the "top-down" approach, while the recipe steps 

are summarized in Fig. 2.12. As aMore specifically, a layer of silica (SiO2) with a thickness of 

300 nm was deposited on a silicon wafer (2 x 3 cm2) via plasma-enhanced chemical vapor 

deposition (PECVD). Consequently, the sample was spin-coated with a polymethyl 

methacrylate (PMMA) 950 A6 film for an additional thickness of 600 – 630 nm, through the 

following gradual process: 

 1 –  First spin-coating was executed at 500 rounds per minute (rpm) speed with 352 

rpm acceleration, for 5 seconds. 

2 – Second spin-coating was performed at 4000 rpm speed at 352 rpm acceleration, 

for 45 seconds. As a result, a uniform PMMA film of 600 – 630 nm thickness (measured using 

filmometrics) was obtained.   

3 – The substrate was baked in the oven at 1800C for 15 hours.  
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Figure 2.12  Fabrication methodology 

 

 

Figure 2.13  PT-symmetric sample. a-d, Images taken under the optical microscope at different stages 

during the fabrication process: before nickel deposition (a), after Ni lift-off (b), before alumina 

deposition (c), and final pattern on flexible polymer (d). e-g, Top (e), side (f) profile of the flexible PT-

symmetric metasurface on a silicon substrate, and final sample with Si etched away. 
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The first electron beam (e-beam) lithography step follows. Subsequently, alumina 

(passive arrangement) or nickel (non-Hermitian configuration) was deposited with a 

thickness of 370 nm at a rate of 1 Å/sec. Lift-off with acetone was performed, while 

isopropanol (IPA) was used to remove any residual material. Images taken under the optical 

microscope are shown in Fig. 2.13, after drying the sample with N2 gas. 

For the PT-symmetric metasurface, an additional e-beam lithography step is required 

for the patterning of the Al2O3 pillars. This involves again spin-coating of a thin PMMA film, 

followed by e-beam writing at a dosage of 760 μC/cm2, using a separation of 80 nm and a 

size of 110 nm. Alumina was then deposited with a thickness of 370 nm (at 1 Å/sec). During 

the Al2O3 deposition process, the temperature of the chamber increases, thus causing the 

PMMA to be hardened. Therefore, the polymer is exposed to ultraviolet radiation for 6 min 

to soften it. After the lift-off process is completed, polyimide is spin-coated on both the 

passive and PT-symmetric arrangements (1000 rpm speed at 100 rpm acceleration, for 60 

seconds), in order to attain a uniform polyimide film of 10 μm thickness. Finally, dry and wet 

etching (buffer oxide) were both performed, in order to remove the silicon substrate and the 

silica sacrificial layer, respectively. Figure 2.14 shows scanning electron microscope (SEM) 

images, which reveal an average nanopillar diameter, scatterer separation, and lattice 

constant, of 158 nm, 54 nm, and 696 nm, respectively. Finally, the experimental setup is 

demonstrated in Fig. 1.15. Samples were illuminated independently, by both a laser beam at 

532 nm and an incoherent white light source (broadband measurements). Both optical 

beams pass through a vertical polarizer, followed by a biconvex lens. The power of the 

diffracted orders was measured by a power meter.  
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2.4 Conclusions 

In conclusion, in this work we have shown that flexible PT-symmetric metasurfaces 

can be employed to significantly enhance or suppress their respective far-field diffraction 

efficiencies. Passive PT-symmetry was introduced in 1D and 2D oblique diatomic Bravais 

lattices, through loss elements. The presented methodology can be readily extended to other 

 

Figure 2.14  Irregular hexagonal pattern formation - SEM images. 

 

 

Figure 2.15  Measurement of far-field emission – experimental setup. 

 



 

30 

 

wavelength regions (e.g., terahertz, infrared) and physical settings, such as acoustics and 

microwaves. Moreover, our approach can open up new possibilities in the field of 

reconfigurable optics, based on materials with controllable properties via external stimuli, 

such as voltage, temperature, and magnetic fields. Owing to the flexibility of the proposed 

non-Hermitian structure, additional studies can be made on the propagation dynamics on 

curved lattice geometries, where relativistic-like effects are expected to take place [31]. 

Finally, of great interest, would be to investigate the behavior of the proposed non-Hermitian 

arrangements close to the exceptional point of operation. In this case, not only the 

eigenvalues, but also the eigenvectors coalesce, leading to extraordinary transmission 

properties [10]. This will constitute the objective of our future work. 
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CHAPTER 3: SUPERSYMMETRIC LASER ARRAYS 

3.1 Introduction 

Symmetries play a fundamental role in physical sciences. Symmetry principles ensure 

energy and momentum conservation and dictate the allowable dynamical laws governing 

our world. The Lorentz invariance embodied in Maxwell’s equations was crucial in 

developing the theory of relativity, while the exchange symmetry allows one to classify 

fundamental particles as either bosons or fermions. In high-energy physics, other 

overarching symmetries like that of charge-parity-time (CPT) and supersymmetry (SUSY) 

have also emerged as a means to unveil the laws of nature [1,2]. SUSY, first proposed within 

the context of particle physics as an extension of the Poincare space-time symmetry, makes 

an ambitious attempt to provide a unified description of all fundamental interactions. In 

general, SUSY relates bosonic and fermionic degrees of freedom in a cohesive fashion. This 

directly implies that each type of boson has a supersymmetric counterpart, a superpartner 

fermion, and vice versa [3]. Even though the full ramification of SUSY in high energy physics 

is still a matter of debate that awaits experimental validation, supersymmetric techniques 

have already found their way into low energy physics, condensed matter, statistical 

mechanics, nonlinear dynamics and soliton theory as well as in stochastic processes and 

BCS-type theories, to mention a few [4-9]. 

Shortly after the discovery of semiconductor lasers, it was recognized that integrated 

arrays of such emitters may provide a viable avenue in scaling up the radiance (power per 

unit area per unit solid angle), without running into complications arising from 
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nonlinearities and filamentation in broad area devices [10]. Unfortunately, however, such 

arrays tend to support multiple spatial modes (supermodes), an undesirable behavior that 

in turn degrades the quality of the emitted beam. This has since fueled a flurry of activities 

in search of strategies that enable the generation of high power and diffraction-limited 

coherent beams by enforcing the coupled laser array to operate in the fundamental (in-

phase) mode. In this regard, several schemes have been developed using for example 

resonant leaky-wave coupling in antiguided arrangements [11], spatial filtering [12], Talbot 

effects[13], to name a few [14-16]. Of interest will be to devise fully integrated global 

approaches that apply to any type of active arrays in order to enforce single-mode lasing in 

the fundamental transverse supermode. To address this issue, here we report the first 

realization of a supersymmetric laser array [30]. This lattice emits in its fundamental mode 

in a stable fashion, as evidenced from far-field and spectral measurements. In this SUSY 

arrangement, the main array is paired with a lossy superpartner, whose role is to suppress 

all undesired higher-order modes while at the same time enhancing the gain seen by the 

fundamental supermode of the primary lattice. In implementing such lasers, we made use of 

the SUSY formalism first proposed by Witten [17]. 

 

3.2 Theoretical Analysis of Supersymmetric Optical Structures 

Within the context of non-relativistic quantum mechanics, supersymmetric 

isospectrality can be established provided that the Hamiltonian of the system, 𝐻(1), is 

factorized in terms of two operators 𝐴 and ⁡𝐴†, i.e. 𝐻(1) = ⁡𝐴†𝐴 [5]. Similarly, a superpartner 
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Hamiltonian 𝐻(2) can be constructed via 𝐻(2) = 𝐴⁡𝐴† by exchanging the action of these two 

operators. If one now assumes that |𝜑⟩
(1)

 represents an eigenstate of 𝐻(1) with an eigenvalue 

𝜆(1), i.e.  𝐻(1)|𝜑⟩
(1)

= ⁡𝐴†𝐴|𝜑⟩
(1)

=⁡𝜆(1)⁡|𝜑⟩
(1)

⁡, then it follows that 𝐴𝐻(1)|𝜑⟩⁡
(1)

=

(𝐴⁡𝐴†)𝐴|𝜑⟩
(1)

= 𝐻(2)𝐴|𝜑⟩
(1)

= 𝜆(1)⁡𝐴⁡|𝜑⟩
(1)

. Hence, 𝐴|𝜑⟩
(1)

 is an eigenvector of 𝐻(2) with an 

eigenvalue 𝜆(1). This immediately indicates that the two Hamiltonians are isospectral since 

they exhibit identical eigenenergies, i.e. 𝜆(2) = 𝜆(1), while their eigenstates can be pairwise 

converted into one another through the action of the 𝐴, ⁡𝐴†⁡operators:⁡|𝜑⟩
(2)

=

A⁡|𝜑⟩
(1)

⁡and⁡⁡|𝜑⟩
(1)

= ⁡𝐴†|𝜑⟩
(2)

. If the ground state of 𝐻(1) is annihilated by the action of the 

operator 𝐴, then the eigenenergy associated with the ground state of 𝐻(1) is zero, and 

therefore it will not have a corresponding state in 𝐻(2). In other words, all the eigenvalues 

associated with the states of 𝐻(1) and 𝐻(2) are exactly matched except for the lowest energy 

state of 𝐻(1). When this is the case, then the SUSY is called unbroken. Otherwise, if the ground 

state of 𝐻(1) has a counterpart in its superpartner 𝐻(2) with the same eigenvalue, the 

supersymmetry is broken. Using this approach in 1D Schrödinger problems, one can always 

identify two SUSY potential functions, 𝑉(1)(𝑥) and the superpartner 𝑉(2)(𝑥), that are entirely 

isospectral except for the lowest energy state of 𝑉(1) (Fig. 3.1A) [5]. In optics, SUSY can be 

introduced by exploiting the mathematical isomorphism between the Schrödinger and the 

optical wave equation [18]. In this setting, the optical refractive index profile plays the role 

of the potential 𝑉(𝑥),⁡which in the context of supersymmetry can be used for mode 

conversion [19,20] and transformation optics [21], design of Bragg gratings [22], and Bloch-

like waves in random-walk potentials [23], to mention a few [24- 26]. However, the 
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implications of SUSY isospectrality in active platforms, as well as its interplay with 

nonlinearity and non-Hermiticity has so far remained unexplored. Here we lay the 

groundwork for such studies by demonstrating a SUSY-based laser.  

Figure 3.1B depicts a schematic of the proposed supersymmetric laser. The primary 

array in this SUSY arrangement is synthesized by coupling five identical ridge-waveguide 

cavities of length 𝐿. The individual waveguide elements are designed to support only the 

lowest order transverse mode (𝑇𝐸0). Consequently, each element on its own, is expected to 

support resonances at angular frequencies 𝜔𝑚 = 𝑚𝜋𝑐 (𝐿𝑛𝑔)⁄ , where 𝑛𝑔 represents the 

effective group index associated with the 𝑇𝐸0⁡mode. The evanescent coupling between the 

five cavities, causes every such resonance frequency 𝜔𝑚 to split into a cluster of five 

frequencies, corresponding to the five supermodes of the active array. Optical 

supersymmetric strategies are then employed to build a superpartner index profile that has 

propagation eigenvalues that match those of the four higher-order supermodes associated 

with the main (primary) array [27].  

In the present analysis, we assume a primary array consisting of five single element 

ridge waveguide cavities with widths of 1000⁡𝑛𝑚 and a gap of 400⁡𝑛𝑚 in between (Fig. 3.2A). 

To design the SUSY partner, the Hamiltonian of the primary lattice is discretized into a 𝑁 ×

𝑁 tridiagonal matrix. The elements of this matrix are given by 𝐻𝑛,𝑛
(1)

= 𝜆𝑠 and  𝐻𝑛,𝑛+1
(1)

=

𝐻𝑛+1,𝑛
(1)

= 𝑘, where 𝜆𝑠 is the eigenvalue (effective index) of the single element laser 

constructing the main array and 𝑘 is the coupling constant of the two adjacent single cavities. 

The Hamiltonian of the superpartner array is then obtained by 𝐻(2) = (𝑅𝑄 + 𝜆0I⁡)(𝑁−1) =
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(𝑄𝑇𝐻(1𝑄)(𝑁−1) in which 𝜆0 is the eigenenergy of the fundamental mode of the main array, 𝐼 

is the identity matrix of dimensions 𝑁 × 𝑁, and 𝑄 and 𝑅 are the 𝑄𝑅 factorization matrices 

of⁡𝐻(1) − 𝜆1I [18,19,29] Here, the subscript (𝑁 − 1) means that 𝐻(2) is built by only choosing 

the upper-left block diagonal matrix having the dimensions (𝑁 − 1) × (𝑁 − 1). Finally, the 

SUSY laser configuration is realized by evanescently coupling the main and the auxiliary 

arrays. A schematic of the SUSY laser array and the dimensions of its various parts is depicted 

in Fig. 3.2A. 

 

 

 

 

Figure 3.1 Operation principle of SUSY laser array. (A) An infinite potential well and its superpartner 

in the unbroken SUSY regime. Apart from the ground state, all the eigenvalues of the primary 

potential are exactly matched to those of the superpartner. The eigenfunctions of the primary 

potential and its supersymmetric counterpart are transformed into one another through the action 

of the operators 𝑨 and ⁡𝑨†.  (B) A schematic representation of a SUSY laser array involving a primary 

active lattice (red) coupled to its lossy superpartner (blue). The SUSY laser emits exclusively in the 

fundamental in-phase mode. 
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The simulated eigenmodes of the main array and the superpartner, before coupling 

to each other are depicted in Figs. 3.2B & C. In these simulations, two-dimensional finite 

element numerical method is employed to acquire the eigenstates supported by each array. 

The refractive index of InP and InGaAsP in the simulations are considered to be 3.4 and 3.14, 

respectively. The simulations are performed by eigenfrequency analysis module in COMSOL 

Multiphysics package. 

 

 

 

Figure 3.2  Design of the SUSY laser. (A) Schematic representation of the designed SUSY laser. The 

main array consists of identical waveguides with a 400 nm gap between them. (B) The intensity of 

the modes of the primary array, obtained by FEM simulations. (C) The intensity of the modes of the 

superpartner structure, obtained from FEM simulation. The four higher order eigenvalues, 𝝀𝟏 to 𝝀𝟒, 

of the main array are pairwise matched to the eigenvalues of superpartner array. 

 



 

41 

 

3.3 Single-mode lasing via SUSY laser arrays 

The SUSY laser arrays were realized on an InP wafer with InGaAsP quantum wells as the gain 

material. In doing so, we used electron beam lithography and plasma etching techniques to 

define the structures (see Section 3.4). Figure 3.3A displays a scanning electron microscopy 

(SEM) image of the fabricated SUSY structures. Finite element method (FEM) simulations 

were performed to determine the modal content of these structures and to determine the 

level of gain-loss contrast required to suppress the higher order modes, as described in 

Section 3.2 Figure 3.3B depicts the intensity profiles of all the modes supported by this SUSY 

configuration. The performance of the SUSY laser was then assessed by means of a custom-

made optical setup (see Section 3.4). The arrays are optically pumped at a wavelength of 

1064 nm, emitted from a fiber laser. Spatial masks are deployed to selectively pump different 

regions. The coherent radiation (centered around 1450 nm) emerging from the cleaved 

facets of the lasers is monitored by both a spectrometer and an infrared camera, after 

blocking remnants of the pump emission by means of a notch filter. The diffraction angles 

associated with the far-field emissions along the laser’s slow axis, were determined by raster 

scanning a rectangular aperture placed in front of the array. In every step, the total emitted 

power from the laser was also measured by a photodiode. 
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The spectral response, far-field emission, and light-light characteristics are compared 

for three different configurations: (i) a single ridge waveguide lasing element, (ii) a laser 

array involving five evanescently coupled ridge cavities, and (iii) a SUSY laser array 

comprised of a primary active five-element lattice and its corresponding four-element lossy 

superpartner. In the latter configuration, the two lattices are fabricated in a close proximity 

to each other and are therefore coupled. The system is judiciously designed so as SUSY is 

unbroken. This was achieved by appropriately varying the widths (or effective refractive 

indices) of the ridge elements in the superpartner array. The schematic representations of 

 

Figure 3.3  A scanning electron microscope image (SEM) and modal field profiles of the SUSY laser 

array. (A) SEM image of a fabricated SUSY lattice comprised of a five-element primary array, 

positioned in close proximity (~𝟒𝟎𝟎⁡𝒏𝒎 ) to a four-element superpartner. The inset shows a stand-

alone five-element laser array. (B) Intensity distributions associated with the eigenmodes supported 

by the SUSY arrangement, as obtained from numerical simulations. The fundamental mode of the 

five-element laser is only confined in the main array, while all the higher-order modes are coupled to 

the superpartner. The dashed line illustrates the boundary between the main and the superpartner 

array. 
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these three lasers are provided in the insets of Figs. 3.4A, C, and E, respectively. The lasers 

are uniformly pumped at an average power density level that is approximately 4 times the 

threshold. Loss is introduced in the superpartner array by blocking the pump beam using a 

knife-edge. Under these pumping conditions, the single element cavity lases in a few 

longitudinal modes (in the 𝑇𝐸0 mode), at wavelengths around 1443 nm (Fig. 3.4A). When the 

five-element laser array is exposed to the same pump power density, we found that each 

longitudinal mode now splits into five lines corresponding to the resonances of the five 

supermodes involved (Fig. 3.4C). This multimode operation leads to a significant 

deterioration in the beam quality emitted by such a lattice. In contrast, when the SUSY laser 

array is illuminated at the same pump intensity level (-while the superpartner is blocked), 

the device emits in a single transverse supermode (Fig. 3.4E). Moreover, the peak intensity 

produced by this SUSY laser is now 4.2 times higher than that from the standard laser array 

(i.e. without superpartner), and 8.5 times larger than that from the single element laser. 

These results clearly indicate that in a SUSY laser arrangement, all higher-order transverse 

modes are indeed suppressed in favor of the fundamental mode. 

To further verify the anticipated SUSY response, the far-field radiation from these 

three laser systems was collected along with the diffraction profiles in the direction of the 

slow axis (parallel to the wafer). These measurements are correspondingly displayed in Figs. 

3.4B, D, and F. A comparison between these three radiation patterns reveals a striking 

difference in the way a SUSY laser operates. As opposed to the standard laser array, whose 

far-field exhibits a multi-lobe profile with a diffraction angle of 19° (Fig. 3.4D), the far-field 

of the SUSY array presents a single bright spot having instead a much smaller divergence 
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angle of ~5.8° (Fig. 3.4F). This small-diverging radiance is a characteristic attribute of a laser 

array operating only in its in-phase lowest-order mode [28]. In addition, in the standard 

array system, we observe a multi-lobe far-field pattern that changes with pump intensity 

(see Section 3.4). On the other hand, the beam spot size associated with the SUSY laser is 

narrower than that of a single laser eleme-nt (12°) as shown in Fig. 3.4B - indicating a higher 

brightness associated with the SUSY arrangement. The experimentally obtained diffraction 

patterns are in good agreement with numerical, as demonstrated in Section 3.4. 

The light-light curves corresponding to these three lasers and the evolution of their 

spectra are also depicted in Figs. 3.5A and B, respectively. As expected, both SUSY and 

standard laser arrays outperform the single element laser in terms of output power (Figure 

3.5A). When the overall output power is compared, the two arrays (standard and SUSY) were 

found to exhibit similar thresholds and slope efficiencies. On the other hand, Fig. 3.5B 

provides valuable information as to the lasing onset for higher-order supermodes. More 

specifically, as the pump power is gradually increased above the threshold, the higher-order 

modes of the standard laser array start to successively emerge in the spectrum (blue lines in 

Fig. 3.5B), while the SUSY array still lases in its fundamental transverse mode with larger 

spectral peaks (red lines in Fig. 3.5B). These observations further confirm that indeed in 

SUSY laser, all undesired higher-order modes are effectively eliminated via coupling to the 

lossy superpartner- giving the opportunity to the fundamental mode to prevail.  
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The single transverse mode operation of the SUSY arrangement shows some level of 

resilience to first-order perturbations and fabrication errors. In order to assess the tolerance 

of the designed SUSY arrangement to fabrication imperfections, a sensitivity analysis was 

performed on the superpartner array. Assuming a perturbing Hamiltonian 𝑉, the final 

system can  be described by 𝐻𝑝
(2)

= 𝐻(2) + 𝜀𝑉, where ε represents the strength of 

perturbation. To first order, the original eigenvalues λ(2) are perturbed according to 𝛥𝜆(2) =

 

Figure 3.4  Spectral and far-field characteristics of the SUSY laser array. Emission spectrum of  a (A) 

single laser cavity, (C) standard five-element laser array, and (E) corresponding SUSY laser 

arrangement. The vertical axes are normalized to the spectrum of the SUSY laser. Each longitudinal 

resonant frequency, in the spectrum of the standard array splits into fine lines- corresponding to the 

five transverse supermodes. In contrast, the spectrum of the SUSY array is free from such undesired 

resonances, indicating that all higher order modes are suppressed. (B, D, F) Far-field diffraction 

patterns from the corresponding lasers. The measured diffraction angle associated with the SUSY 

laser (~𝟓.𝟖°) is smaller than that of the standard laser array (~𝟏𝟗°) and single cavity laser (~𝟏𝟐°). 
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𝜆𝑝
(2)

− 𝜆(2) = 𝜀 < 𝜑(2)|𝑉|𝜑(2) >. In the absence of degeneracies, the higher-order terms in the 

power expansion of 𝜆𝑝
(2)

 can be neglected. Based on the numerically computed eigenmodes 

|𝜑(2)⟩  (Fig. 3.3B), we have directly calculated parameter 𝛥𝜆(2) for an ensemble of different 

Hamiltonian implementations 𝑉. These include both random diagonal and off diagonal 

perturbations, due to either fabrication errors or nonlinearly induced detunings.  

 

 

 

 

 

 

Figure 3.5  Emission characteristics. (A) The light-light curves corresponding to a single laser element 

(green line), a five-element laser array (blue line), and the SUSY laser arrangement (red line). The 

output power and slope efficiency of the standard array and the SUSY laser are comparable, and 

exceed that from a single cavity laser. (B) The spectral evolution behaviors of the standard and SUSY 

lasers are compared. The standard laser array (blue line) is highly multimoded even slightly above 

threshold, while the SUSY laser array remains transversely single-moded at much higher pump 

levels. 
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The resulting angular histogram (see Fig. 3.6) clearly indicates that the slopes 

⟨𝜑(2)|𝑉|𝜑(2)⟩ do not exceed 450 and are mostly concentrated in a region of ±150 (tan(150) =

0.27) around the ε-axis. The higher-order modes exhibit even less sensitivity to dimension 

variations, owing to their weaker confinement in the original array. This implies that the 

applied supersymmetric transformation method can be considered robust against first-

order perturbation defects. 

 

 
 

 

Figure 3.6  First-order perturbation analysis results. Angular histograms of the variations in the 

normalized propagation constants 𝚫𝛌𝜾
(𝟐)

 are shown, for perturbations of order 𝜀 in both onsite and 

off-diagonal elements in the superpartner array for (A) mode #1, 𝜟𝝀𝟏
(𝟐)

, (B) mode #2, 𝜟𝝀𝟐
(𝟐)

 ,(C) mode 

#3 𝜟𝝀𝟑
(𝟐)

, and (D) mode #4 𝜟𝝀𝟒
(𝟐)

. The colorbar inset in (A) describes the relative strength  

⟨𝝋(𝟐)|𝑽|𝝋(𝟐)⟩ of these perturbations (0-100%). The dotted lines indicate the 𝜑= ±450 azimuthal lines, 

and signify a sensitivity threshold. 
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3.4 Experimental methods and diffraction angle measurements 

The steps involved in the fabrication of the SUSY laser arrays are schematically 

depicted in Fig. 3.7. The wafer under process is composed of a multiple quantum well gain 

layer grown on an intrinsic InP substrate and covered by a 500 nm thick undoped InP film 

(Fig. 3.7A). The gain layer consists of 10 quantum wells of Inx=0.737Ga1-xAsy=0.569P1-y 

(20 nm)/Inx=0.564Ga1-xAsy=0.933P1-y (10 nm). After cleaning, hydrogen silsesquioxane 

(HSQ) solution was spun over the wafer to obtain a 100 nm thick layer of the negative tone 

inorganic electron beam resist (Fig. 3.7B). Laser arrays with different widths and gaps in 

between were patterned after exposing to the electron beam and developing by 

tetramethylammonium hydroxide (TMAH) solution (Fig. 3.7C). These patterns then 

transferred to the wafer through dry etching which is performed by a combination of 

reactive ion etching and inductively coupled plasma (RIE-ICP) processes (H2:CH4:AR, 

40:10:20 SCCM, RIE power: 150 W, ICP power: 150 W, Pressure:35 mT). Overall, 500 nm of 

InP is removed in selected areas, leaving behind the ridge waveguides of the laser cavities 

(Fig. 2.7D). The wafer is cleaned in oxygen plasma in order to remove the remnant of organic 

contaminations and polymers created during the dry etching process. Next, the rear facet of 

the laser cavities was defined. This was accomplished by using a four-step procedure. First, 

a 500 nm thick SiO2 mask was deposited by means of plasma-enhanced chemical vapor 

deposition (PECVD). The ridge waveguides were partially covered by a negative tone 

photoresist (NR7-3000) through spinning and UV-lithography, allowing the uncovered SiO2 

layer to be dry etched. The rear facets of the lasers were formed by further RIE-ICP dry 

etching of the gain layer in places where SiO2 mask was absent (Fig. 3.7E). The exposed HSQ 
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and the remaining SiO2 was removed by dissolving in the buffer oxide etchant (BOE) 

solution. Finally, the front facets of the lasers were defined by cleaving the wafer (Fig. 3.7F). 

The experimental setup is schematically illustrated in Fig. 3.8. The pump beam 

(wavelength: 1064 nm, pulse duration: 9 s, repetition rate: 290 kHz) was provided by a fiber 

laser. The appropriately shaped pump beam illuminates the sample after passing through a 

20X objective. The image of a knife edge is used in order to block the pump beam from the 

superpartner arrays. Without the knife edge, the diameter of the beam on the sample is 

approximately 120⁡𝜇𝑚. The same 20X objective lens also serves to image the top of the 

sample, illuminated by an ASE light passed through a rotating diffuser, onto an infrared CCD  

camera. This imaging system allows one to precisely adjust the location of the pump beam 

with respect to the array. The laser output is collected form the cleaved facet at the edge of 

the sample by means of a 50X objective lens. The collected emission is then directed into a 

spectrometer as well as a CCD infrared camera.  

To measure the diffraction angle associated with the emission of laser array, a 

rectangular slit is placed between 50X objective lens and the sample (Fig. 3.9). The 

rectangular slit is raster-scanned by using a stepper motor parallel to the surface of the 

sample, i.e. in the direction of lasers’ slow axis. To construct the transverse profile of the 

beam, at each step, the output power passing through the slit is measured by a photodiode 

operating in the lock-in detection scheme. The slit is then shifted by means of a stepper 

motor to a new position along the optical axis, where the diffraction angle measurement is 

repeated. Since the exact distance between these two points along the lens’ optical axis is 
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known, the divergence angle of the emerging beam can be determined from these two 

measurements. 

To obtain the simulated far-field patterns emitted from the laser cavities, first the 

near-field modes supported by the corresponding ridge waveguides are numerically 

calculated using finite element method (FEM). Then, the far-field profiles and diffraction 

angles are calculated using Fourier transform techniques. Figure 3.10A shows the result of 

the far-field simulation for a SUSY laser (when only the main array is pumped). The 

simulation result is in good agreement with the experimental measurement (Fig. 3.10B). A 

similar numerical analysis, performed on the single element laser, also matches well with 

the experimental observation (Figs. 3.10C, D). It should be noted that, even though both SUSY 

and single element lasers generate diffraction limited far-field patterns, the beam from the 

 

Figure 3.7  Fabrication process. (A) wafer structure, (B) spinning HSQ resist, (C) electron beam 

lithography and developing, (D) dry etching got transferring the patterns into the wafer, (E) defining 

the back facet of the lasers through a four step process, (F) cleaving the wafer and removing SiO2 and 

HSQ by BOE wet-etching.   

. 
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SUSY arrangement has a considerably smaller spot size. This feature in combination with the 

higher power extracted from such SUSY lasers are direct outcome of radiance (brightness) 

scaling that is unique to phase-locked arrays.  

 

 

 

 

Figure 3.8  Optical measurement setup. A 1064 nm laser is used as the pump source. After shaping 

into a proper beam size, it illuminates the sample from the top. A knife edge in the path blocks the 

pump beam form illuminating the superpartner. Additionally, the 20X objective lens along with an 

ASE source serve to image the sample from a top view onto an IR camera. The emission from the 

cleaved facets of the lasers are collected via a 50X objective lens and is directed to a spectrometer 

and the IR camera to capture the far-field patterns of the samples. 

 

. 
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Figure 3.9  Optical setup for diffraction angle measurement. A rectangular slit is raster scanned along 

the lasers’ slow axis by a stepper motor. In each step, a photodiode in a lock-in detection scheme is 

used to measure the emitted power passing through the slit. 

 

 

. 

 

Figure 3.10  Simulated vs. experimental far-field emissions. Numerically obtained far-field diffraction 

pattern of (A) the SUSY laser array, (C) a single element laser, (E) the standard laser array at 5 times 

above threshold, and (G) 4 times above threshold. (B), (D), (F), and (H) are the corresponding 

experimental far-field patterns that match to the simulated profiles. The limitation imposed by the 

numerical aperture of the 50X objective lens in measuring the diffraction angles is highlighted by 

dashed lines.   

 

. 
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Figures 3.10E, G display the calculated far-field emissions of the five-element 

standard laser array when several supermodes are simultaneously excited. For example, in 

these figures, the percentage of power distribution among five supermodes involved (from 

in-phase to out-of-phase modes) are (30, 22, 8, 8, 32), and (30, 13, 19, 19, 19), respectively. 

These far-field patterns closely resemble the experimental far-field profiles of a standard 

five-element laser, acquired under two different pumping levels: 5 and 4 times above the 

threshold (Figs. 3.10F, H). It is worth mentioning that the numerical aperture (NA=0.42) of 

the 50X objective lens imposes some limitations in capturing the larger diffraction angles in 

such arrangements. 

 

3.5 Conclusions 

To summarize, by harnessing notions from supersymmetry, we present the first realization 

of an integrated supersymmetric laser array. Our results indicate that the existence of an 

unbroken SUSY phase in conjunction with a judicial pumping of the laser array, can promote 

the in-phase supermode thus resulting to a high radiance emission. This new mechanism of 

phase-locking is resilient to first order deviations in fabrication, and provides a global 

approach that can be systematically applied to a wide range of coupled active lattices. Our 

results may have practical implications in designing high brightness single mode laser 

arrays, while introducing a unique platform to study the interplay between non-Hermiticity 

and supersymmetry.   
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CHAPTER 4: RECONFIGURABLE NANOWIRE-BASED RANDOM LASING 

4.1 Introduction 

Control of the organization of micro- or nano-structures plays an essential role in 

manipulating light propagation, which is the basis of a wide variety of photonic 

metamaterials [1-3]. For instance, a periodic arrangement can result in a photonic bandgap 

within which no propagating mode exists [4], while in structures of increasing disorder light 

propagation can transition from the diffusion regime to the Anderson localization regime 

[5]. Fabrication of nanostructure components and accurate control of their relative positions 

are commonly achieved by top-down approaches. Unfortunately, optical materials created 

by such top-down methods typically suffer by being expensive to fabricate, and exhibiting 

non-tunable properties due to their constituent nanostructures having fixed positions. These 

limitations present a significant barrier for realizing dynamically reconfigurable optical 

materials. Further, top-down approaches have inherent difficulties to incorporate a diverse 

variety of heterogeneous component materials, in particular, anisotropic nanomaterials with 

different sizes, shapes, chemical compositions, and optical functionalities. Nanoparticle 

anisotropy offers a number of appealing optical properties due to their anisotropic linear 

and nonlinear susceptibilities, which, for example, can result in differences in absorbance 

and scattering for light impinging on the particles in longitudinal vs. transverse orientations 

[6-9]. Individual nanowires have also been used to serve as waveguides for subwavelength 

photonics or as tiny light sources [10-12], while nanowire collections can function as 

metamaterials, polarizers or scattering media for random lasing [6,7,9,13,14]. By integrating 
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reconfigurable particle assemblies [15] into photonic platforms, control over the optical 

response of the system can be achieved [16-22]. For example, applied electric fields have 

been used to control orientation of anisotropic nanoparticles or liquid crystals, generating 

reconfigurable polarizers [17,23]. Less explored, the incorporation of particle anisotropy in 

a medium with gain should also enable control over the interplay of light amplification, 

absorption, and scattering, thus providing a means for creating dynamic, active optical 

materials and devices. 

We present a reconfigurable nanoparticle platform [64] that can incorporate 

anisotropic nanomaterials of diverse sizes and shapes to overcome the fundamental 

limitations of the top-down approaches. This is accomplished by manipulating collective 

anisotropy within particle systems through electric field driven assembly. Random lasing 

arrangements present exemplary models in order to demonstrate how complex optical 

phenomena can be dynamically controlled via the general approach of high aspect ratio 

particle assembly; herein we present to the best of our knowledge the first example of a 

reconfigurable active material system based on scatterer orientation, and propose the 

underlying mechanism for the observed response. Specifically, we demonstrate control over 

disorder by electric field directed reconfiguration of TiO2 nanowires suspended in gain 

medium. Alternating current (AC) electric field driven alignment of these anisotropic 

scatterers was used to tune random laser emission in real time. We also show that this 

approach is general by demonstrating it using other anisotropic materials including solid 

metallic and metal oxide nanowires as well as composite metal/dielectric particles. 
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4.2 Theoretical Analysis 
 

4.2.1 Calculation of the scattering cross section of a single nanowire 

The scattering cross section (σ𝑠𝑐) for an individual nanowirecan be defined as: 

𝜎𝑠𝑐 =
1

𝑃𝑖𝑛𝑐
∯(𝒏̂ ⋅ 𝑷𝑠𝑐) 𝑑𝑆              (4.1) 

where 𝒏̂ represents the vector normal to the surface 𝑆 (enclosing the scatterer) and pointing 

outwards from the nanowire, 𝑷𝑠𝑐is the scattering intensity (time-averaged Poynting vector), 

and 𝑃𝑖𝑛𝑐 is the incident intensity. For the evaluation of Eq. (3.1), we have developed 

appropriate finite element (FEM) models for the computation of both the scattering near- 

and far-field distributions based on the Straton-Chu formula. The TiO2 nanowires (𝑛𝑇𝑖𝑂2
 = 

2.6) are immersed in an ethylene glycol (EG) solvent (𝑛𝐸𝐺 = 1.44), while the wire 

dimensions are matched to experiment (nanowire length: 𝐿 = 1.3⁡𝜇𝑚, diameter: 𝐷 =

180⁡𝑛𝑚). The wavelength of operation is assumed to be 𝜆𝑜 = 585⁡𝑛𝑚 based on the measured 

fluorescence peak of rhodamine B (rB) laser dye. 

The nanowires are assumed to be excited by a right-handed circularly polarized 

(RHCP) incident wave. The corresponding field canbe expressed as a linear superposition of 

the transverse electric (TE) and transverse magnetic (TM) modes, which are out of phase by 

𝜋/2. In other words, the total electric field will be given by 𝑬̇𝑅𝐻𝐶𝑃 = 𝑬̇𝑇𝐸 + 𝑗𝑬̇𝑇𝑀, where 

𝑬̇𝑇𝐸 = (𝑠𝑖𝑛𝜑𝜶̂1 − 𝑐𝑜𝑠𝜑𝜶̂2)𝑒
−𝑗𝒌𝒓 and 𝑬́𝑇𝑀 = (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝜶̂1 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝜶̂2 + 𝑠𝑖𝑛𝜃𝜶̂3)𝑒

−𝑗𝒌𝒓. 

Bold letters denote vectors in ℝ3 space, while dotted bold letters correspond to complex 

vectors in ℂ3  space. Vectors 𝒌,𝒓represent the wavevector and the position vector, 

respectively, at a point 𝑄 with spherical coordinates (𝑟, 𝜃, 𝜑). 
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To provide a measure of the relative portion of scattering towards the 

forward/backward direction, the anisotropy factor 𝑔 is defined as the average of the 

scattering angle 𝜃:  

       𝑔 = ∫ 𝑝(𝜃, 𝜑)𝑐𝑜𝑠𝜃𝑑𝛺
4𝜋

=
∫ 𝑃(𝜃,𝜑)𝑐𝑜𝑠𝜃𝑑𝛺4𝜋

∫ 𝑃(𝜃,𝜑)𝑑𝛺4𝜋

=
∫ ∫ 𝑃(𝜃,𝜑)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑

𝜋
0

2𝜋
0

∫ ∫ 𝑃(𝜃,𝜑)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
𝜋
0

2𝜋
0

        (4.2)      

where 𝑝(𝜃, 𝜑) = 𝑃(𝜃, 𝜑) ∫ 𝑃(𝜃, 𝜑)𝑑𝛺
4𝜋

⁄  is the normalized scattering phase function 

(∫ 𝑝(𝜃, 𝜑)𝑑𝛺
4𝜋

= 1), 𝑃(𝜃, 𝜑) is the intensity in the far-field provided by the radiation 

diagrams while 𝑑𝛺 = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 is the differential solid angle, expressed in spherical 

coordinates. While Eq. (4.2) is typically used in the literature for azimuthally symmetric 

scattering [24-26], it can still be employed to quantitatively investigate the radiation 

properties of directive scattering nanoparticles. Analogous studies have been performed in 

the case of anisotropic biological media, where isotropic diffusion models have been utilized 

to examine the underlying multiple scattering dynamics [27-29]. 

 

4.2.2 Scattering properties of a three-dimensional array of nanowires 

In this section, we will perform a probabilistic analysis for a radiating three-

dimensional (3D) array of nanowires in a dye laser environment, as shown in Fig. 4.1a. Such 

investigation is necessary in order to determine, how the randomness in the orientation and 

location of each nanoantenna will affect the scattering properties of the particle assembly. In 

order to simplify our study, we will assume identical length 𝐿 for each nanorod. Each 

nanowire will be considered as an independent radiating dipole, while the collective effect 

of all the radiating scatterers will be investigated in the far-field. 
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In the following analysis, each lattice site will be designated by a triplet 𝑚̃ =

(𝑚1,𝑚2, 𝑚3) with a corresponding position vector 𝒓𝑜
𝑚̃ = 𝑚1𝑙1𝜶̂1 + 𝑚2𝑙2𝜶̂2 + 𝑚3𝑙3𝜶̂3 (Fig. 

4.1). In the latter formulation, parameters 𝑙1, 𝑙2, 𝑙3 represent the periodicity along the x-, y-, 

and z-axis, while 𝑚1, 𝑚2, and 𝑚3 are integers with 𝑚1 ∈ 𝐻1 = [0,𝑀1 − 1],𝑚2 ∈ 𝐻2 = [0,𝑀2 −

1 and𝑚3 ∈ 𝐻3 = [0,𝑀3 − 1]. Moreover,𝑀1,𝑀2, and 𝑀3, represent the number of nanowires 

in the x-, y-, and z-axisrespectively, while 𝜶̂1,𝜶̂2,𝜶̂3, indicate the unit vectors along the same 

directions. In all cases, bold letters denote vectors in ℝ3 space, while dotted bold letters (e.g. 

complex electric field 𝑬̇) correspond to complex vectors in ℂ3 space. 

The position of each nanowire is denoted by𝑹𝑚̃ = 𝒓𝑜
𝑚̃ + 𝛥𝑹𝑚̃, where 𝛥𝑹𝑚̃ =

𝛥𝑅1
𝑚̃𝜶̂1 + 𝛥𝑅2

𝑚̃𝜶̂2 + 𝛥𝑅3
𝑚̃𝜶̂3 represents the random displacement from the corresponding 

lattice site 𝑚̃. Furthermore, each scatterer is characterized by a random orientation, 

designated by the azimuth angle 𝛷𝑐
𝑚̃ and elevation angle 𝛩𝑐

𝑚̃. Moreover, we introduce the 

following random vectors, which belong to theℝ𝑀1⋅𝑀2⋅𝑀3  space: 𝛥𝑹1 =

(𝛥𝑅1
(0,0,0)

, … , 𝛥𝑅1
(𝑀1−1,𝑀2−1,𝑀3−1)

),⁡⁡𝛥𝑹2 = (𝛥𝑅2
(0,0,0)

, … , 𝛥𝑅2
(𝑀1−1,𝑀2−1,𝑀3−1)

), Δ𝑹3 =

(Δ𝑅3
(0,0,0)

, … , Δ𝑅3
(𝑀1−1,𝑀2−1,𝑀3−1)

), 𝜣𝑐 = (𝛩𝑐
(0,0,0)

, … , 𝛩𝑐
(𝑀1−1,𝑀2−1,𝑀3−1)

),𝜱𝑐 =

(𝛷𝑐
(0,0,0)

, … , 𝛷𝑐
(𝑀1−1,𝑀2−1,𝑀3−1)

). The group of random variables {𝛥𝑅1
𝑚̃|𝑚̃ ∈ 𝐻 = 𝐻1 × 𝐻2 ×

𝐻3}7are assumed to be independent and identically distributed (i.i.d). The same also applies 

independently for {𝛥𝑅2
𝑚̃|𝑚̃ ∈ 𝐻}, {𝛥𝑅3

𝑚̃|𝑚̃ ∈ 𝐻}, {𝛩𝑐
𝑚̃|𝑚̃ ∈ 𝐻}, and {𝛷𝑐

𝑚̃|𝑚̃ ∈ 𝐻}. Following 

the terminology used in probability theory, uppercase letters will denote random variables 

(𝑹𝑚̃, 𝛥𝑹𝑚̃, 𝛩𝑐
𝑚̃, Φ𝑐

𝑚̃), while the corresponding lowercase letters will indicate their particular 

realizations (𝒓𝑚̃, 𝛥𝒓𝑚̃, 𝜃𝑐
𝑚̃, φ𝑐

𝑚̃). 
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Having provided certain preliminary definitions, we proceed with the 

electromagnetic field analysis. The spherical wave at a point ⁡𝑄 with spherical 

coordinates(𝑟, 𝜃, 𝜑) radiated from a nanoantenna, located at site𝑚̃, is described by [30]:  

𝑬̇𝑚̃ =
𝑒

−𝑗𝒌(𝒓−𝑹𝑚̃)

𝑟
𝑮̇𝑚̃(𝑬̇𝑖𝑛𝑐, 𝐿, 𝜃, 𝜑, 𝛩𝑐

𝑚̃, 𝛷𝑐
𝑚̃),                                        (4.3) 

 

where 𝒓 = 𝑟(𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝜶̂1 + 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃𝜶̂2 + 𝑐𝑜𝑠𝜃𝜶̂3)is the position vector at point 𝑄,  𝒌 = 𝑘 ⋅

𝒓/𝑟 is the wavevector with 𝑘 = 2𝜋/𝜆(𝜆: wavelength in the dye laser medium),𝑬̇𝑖𝑛𝑐 is the 

incident field and 𝑮̇𝑚̃(𝑬̇𝑖𝑛𝑐, 𝐿, 𝜃, 𝜑, 𝛩𝑐
𝑚̃, 𝛷𝑐

𝑚̃)is a vector function, which describes the radiation 

characteristics of the scatterer at site  𝑚̃. In the special case, when the nanoelement 𝑚̃ is 

aligned to the z-axis (𝜃𝑐
𝑚̃ = 0𝑜) and for sinusoidal current distribution with amplitude 𝐼𝑜 

along the same direction, the vectorial function 𝑮̇𝑚̃ will be analytically given by: 

𝑮̇𝑚̃ = 𝑗𝜂
𝐼𝑜

2𝜋

cos(
𝑘𝐿

2
𝑐𝑜𝑠𝜃)−𝑐𝑜𝑠(

𝑘𝐿

2
)

𝑠𝑖𝑛𝜃
𝒂̂𝜃     (4.4) 

while for the case of an electrically small dipole, Eq. (4.4) can be simplified as follows: 

𝑮̇𝑚̃ = 𝑗𝜂
𝑘𝐼𝑜𝐿

8𝜋
𝑠𝑖𝑛𝜃𝒂̂𝜃                  (4.5) 

where 𝒂̂𝜃 = 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃𝜶̂1 + 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃𝜶̂2 − 𝑠𝑖𝑛𝜃𝜶̂3, and 𝜂 is the characteristic impedance of 

the dye laser medium. 
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The total radiated electric and magnetic fields at point 𝑄 are given by: 

𝑬̇𝑡𝑜𝑡 = ∑ 𝑬̇𝑚̃
𝑚̃ = ∑

𝑒
−𝑗𝒌(𝒓−𝑹𝑚̃)

𝑟
𝑮̇𝑚̃

𝑚̃                            (4.6) 

𝜢̇𝑡𝑜𝑡 =
𝒓̂×𝑬̇𝑡𝑜𝑡

𝜂
                      (4.7) 

where  𝒓̂ = 𝒓/𝑟. We should note that Eq. (4.7) should hold true in the far-field, since in this 

regime spherical waves behave similarly to plane waves. The time-averaged Poynting vector, 

calculated in terms of the radiation fields, can be computed as: 

 

Figure 4.1  (a) Randomly oriented and displaced nanowires in an orthorhombic lattice, with unit cell 

constants 𝒍𝟏, 𝒍𝟐, 𝒍𝟑.The global and local coordinate systems (at the lattice point 𝒎̃ = (𝒎𝟏,𝒎𝟐,𝒎𝟑)) 

are represented as 𝒙𝒚𝒛 am 𝒙𝒎̃𝒚𝒎̃𝒛𝒎̃correspondingly. The magnified inset depicts the nanowire at 

site 𝒎̃ (with position vector 𝒓𝒐
𝒎̃ = 𝒎𝟏𝒍𝟏𝜶̂𝟏 + 𝒎𝟐𝒍𝟐𝜶̂𝟐 + 𝒎𝟑𝒍𝟑𝜶̂𝟑), along with its relative orientation 

(𝜽𝒄
𝒎̃, 𝝋𝒄

𝒎̃) and dislocation 𝜟𝒓𝒎̃ from the center of the local Cartesian system 𝒙𝒎̃𝒚𝒎̃𝒛𝒎̃. (b) Parallely 

oriented nanowires {∀𝒎̃ ∈ 𝑯:𝜽𝒄
𝒎̃ = 𝟎𝝄} with random displacements from the respective lattice 

points. (c) Nanorods located at the lattice sites of the orthorhombic arrangement, with no relative 

rotation {∀𝒎̃ ∈ 𝑯:𝜽𝒄
𝒎̃ = 𝟎𝝄, 𝜟𝒓𝒎̃ = 𝟎𝜶̂𝟏 + 𝟎𝜶̂𝟐 + 𝟎𝜶̂𝟑}. 
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𝑷𝑡𝑜𝑡 =
1

2
𝑅𝑒(𝜠̇𝑡𝑜𝑡 × 𝜢̇𝑡𝑜𝑡

∗ ) =
1

2𝜂
𝑅𝑒 (𝑬̇𝑡𝑜𝑡 × (𝒓̂ × 𝜠̇𝑡𝑜𝑡

∗ )) 

=
1

2𝜂
𝑅𝑒 (𝒓̂ ⋅ (𝑬̇𝑡𝑜𝑡 ⋅ 𝜠̇𝑡𝑜𝑡

∗ ) − 𝜠̇𝑡𝑜𝑡
∗ ⋅ (𝒓̂ ⋅ 𝑬̇𝑡𝑜𝑡)) = 𝒓̂

|𝑬̇𝑡𝑜𝑡|
2

2𝜂
                                     (4.8) 

where 𝜠̇𝑡𝑜𝑡
∗ , indicates the complex conjugate quantity of 𝑬̇𝑡𝑜𝑡. Given Eq. (4.6), we obtain for 

|𝑬̇𝑡𝑜𝑡|
2
that: 

|𝑬̇𝑡𝑜𝑡|
2
= ∑ ∑

𝑒−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2 𝑮̇𝑚̃(𝑮̇𝑛̃)
∗

𝑛̃𝑚̃                       (4.9) 

where 𝑚̃ and 𝑛̃ represent lattice sites (𝑚1, 𝑚2, 𝑚3) and (𝑛1, 𝑛2, 𝑛3) correspondingly. 

After averaging Eq. (4.9) over the random variables 𝜣𝑐, 𝜱𝑐 , and given that the 

orientation of each nanowire is independent compared to its neighboring elements, we 

obtain: 

< |𝑬̇𝑡𝑜𝑡|
2
>𝜣𝑐,𝜱𝑐

= ∑ ∑
𝑒−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2
𝑛̃𝑚̃

< 𝑮̇𝑚̃(𝑮̇𝑛̃)
∗
>𝛩𝑐

𝑚̃,𝛷𝑐
𝑚̃,𝛩𝑐

𝑛̃,𝛷𝑐
𝑛̃  

    ⁡= ∑ ∑
𝑒−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2𝑛̃𝑚̃ < 𝑮̇𝑚̃ >𝛩𝑐
𝑚̃,𝛷𝑐

𝑚̃ (< 𝑮̇𝑛̃ >𝛩𝑐
𝑛̃,𝛷𝑐

𝑛̃)
∗

           (4.10) 

For two distinct complex vectors 𝒂̇, 𝒃̇, the following is true: 

(𝒂̇)∗𝒃̇ + 𝒂̇(𝒃̇)
∗
= 𝑅𝑒{(𝒂̇)∗𝒃̇ + 𝒂̇(𝒃̇)

∗
} ≤ |(𝒂̇)∗𝒃̇ + 𝒂̇(𝒃̇)

∗
| ≤ 2|𝒂̇||𝒃̇|                           (4.11) 

Given Eq. (4.11), Eq. (4.10) becomes now: 

< |𝑬𝑡𝑜𝑡|
2 >𝜣𝑐,𝜱𝑐

⁡≤ ∑ ∑
𝑒

−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2
|< 𝑮̇𝑚̃ >𝛩𝑐

𝑚̃,𝛷𝑐
𝑚̃|𝑛̃𝑚̃ |< 𝑮̇𝑛̃ >𝛩𝑐

𝑛̃,𝛷𝑐
𝑛̃|                        

  

                 = ∑ ∑
𝑒−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2 |< 𝑮̇𝑚̃ >𝛩𝑐
𝑚̃,𝛷𝑐

𝑚̃|
2

𝑛̃𝑚̃ .                                        (4.12) 
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We should note that relation |< 𝑮̇𝑚̃ >𝛩𝑐
𝑚̃,𝛷𝑐

𝑚̃| = |< 𝑮̇𝑛̃ >𝛩𝑐
𝑛̃,𝛷𝑐

𝑛̃| , which was used for 

the derivation of Eq. (4.12), holds true assuming identical nanowires, as well asidentical 

distributions of the random variable pairs{𝛩𝑐
𝑚̃, 𝛩𝑐

𝑛̃} and {𝛷𝑐
𝑚̃, 𝛷𝑐

𝑛̃}. According to Jensen’s 

inequality in a probabilistic setting [8], the following inequality holds: 

|< 𝑮̇𝑚̃ >𝛩𝑐
𝑚̃,𝛷𝑐

𝑚̃|
2

⁡≤⁡⁡< |𝑮̇𝑚̃|
2
>𝛩𝑐

𝑚̃,𝛷𝑐
𝑚̃ .                           (4.13) 

In order to enhance the performance of random lasing, emphasis should be given on 

increasing the peak field scattering strength from the nanowire ensemble. For that purpose, 

we will emphasize on the supremum of the vector function |< 𝑮̇𝑚̃ >𝛩𝑐
𝑚̃,𝛷𝑐

𝑚̃|for 𝑚̃ ∈ 𝐻, given 

that (𝜃, 𝜑) ∈ 𝑉 = [0⁡⁡𝜋] × [0⁡⁡2𝜋]. The following inequality holds for supremums [31] 

sup
(𝜃,𝜑)∈𝑉

{< |𝑮̇𝑚̃|
2
>𝛩𝑐

𝑚̃,𝛷𝑐
𝑚̃} ⁡⁡≤ < sup

(𝜃,𝜑)∈𝑉
{|𝑮̇𝑚̃|

2
} >𝛩𝑐

𝑚̃,𝛷𝑐
𝑚̃≤ sup

(𝜃,𝜑)∈𝑉
{|𝑮̇𝑚̃|

(𝜃𝑐
𝑚̃,𝜑𝑐

𝑚̃)=(𝜃𝜊,𝜑𝜊)

2
}                 

(4.14)   

where (𝜃𝜊 , 𝜑𝜊) corresponds to the orientation which leads to maximum scattering, For light 

incident along the y-axis, the optimum orientation for electrically short wires (Rayleigh 

scatterers) is (𝜃𝜊 , 𝜑𝜊) = (90𝑜 , 90𝑜), as will be shown numerically in Section 4.5 (Fig. 4.9), 

while for long wires (Mie scatterers) stronger scattering takes place when the nanorods lie 

on the xz plane (see Fig. 4.4 in Section 4.4) . After applying Eq. (4.14) to Eq. (4.13), we obtain 

that 

sup
(𝜃,𝜑)∈𝑉

{< |𝑬̇𝑡𝑜𝑡|
2
>𝜣𝑐,𝜱𝑐

} ≤ ⁡∑ ∑
𝑒

−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2 sup
(𝜃,𝜑)∈𝑉

𝑛̃𝑚̃ {|𝑮̇𝑚̃|
(𝜃𝑐

𝑚̃,𝜑𝑐
𝑚̃)=(𝜃𝜊,𝜑𝜊)

𝟐
}   (4.15)              

The equality in Eq. (r.15) holds when there is no relative rotation between the 

individual nanoscatterers, i.e. (𝜃𝑐
𝑚̃, 𝜑𝑐

𝑚̃) = (𝜃𝜊 , 𝜑𝜊) for every lattice site 𝑚̃ (see Fig. 4.1(b) for 
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𝜃𝜊 = 0𝑜). Consequently, after substituting 𝑮̇ = 𝑮̇𝑚̃(𝑬𝑖𝑛𝑐, 𝐿, 𝜃, 𝜑, 𝜃𝑐
𝑚̃ = 𝜃𝜊 , φ𝑐

𝑚̃ = 𝜑𝜊) and 

based on relations 𝑹𝑚̃ = 𝒓𝑜
𝑚̃ + 𝛥𝑹𝑚̃and 𝑹𝑛̃ = 𝒓𝑜

𝑛̃ + 𝛥𝑹𝑛̃, Eq. (4.9) now becomes  

|𝑬̇𝑡𝑜𝑡|
2
= ∑ ∑

𝑒
−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2
|𝑮̇|

2
𝑛̃𝑚̃ = ∑

1

𝑟2
|𝑮̇|

2
𝑚̃ + ∑ ∑

𝑒
−𝑗𝒌(𝑹𝑛̃−𝑹𝑚̃)

𝑟2
|𝑮̇|

2
𝑛̃𝑚̃≠𝑛̃                    

  

=
|𝑮̇|

2

𝑟2
𝑀 +

|𝑮̇|
2

𝑟2
∑ ∑𝑒−𝑗𝒌(𝒓𝑜

𝑛̃−𝒓𝑜
𝑚̃)𝑒−𝑗𝒌(𝛥𝑹𝑛̃−𝛥𝑹𝑚̃)

𝑛̃𝑚̃≠𝑛̃

 

= |𝑬̇𝑜|
𝟐
𝑀 + |𝑬̇𝑜|

𝟐
∑ ∑ ∏ 𝑒−𝑗𝒌⋅𝒂̂𝑞(𝑛𝑞−𝑚𝑞)𝑙𝑞3

𝑞=1 𝑒−𝑗𝒌⋅𝒂̂𝑞(𝛥𝑅𝑞
𝑛̃−𝛥𝑅𝑞

𝑚̃)
(𝑛1,𝑛2,𝑛3)(𝑚1,𝑚2,𝑚3)

≠(𝑛1,𝑛2,𝑛3)

         (4.16) 

where 𝑀 = 𝑀1𝑀2𝑀3 is the total number of nanowires, and |𝑬̇𝑚̃| = |𝑬̇𝑜| = |𝑮̇| 𝑟⁄ . 

Having shown that optimum scattering results are obtained when the nanowires are 

aligned, in the next step of our analysis we will investigate the effect of the random location 

of each nanoantenna on the far-field radiation. For that purpose, we compute the average of 

|𝑬̇𝑡𝑜𝑡|
2
in Eq. (4.16) with respect to the random displacement variables𝛥𝑹1, 𝛥𝑹2, 𝛥𝑹3. Given 

that the location of each nanowire is independent from its neighbors, we obtain: 

< |𝑬̇𝑡𝑜𝑡|
2
>𝛥𝑹1,𝛥𝑹2,𝛥𝑹3

= |𝑬̇𝑜|
𝟐
𝑀

+ |𝑬̇𝑜|
𝟐

∑ ∑ ∏𝑒−𝑗𝒌⋅𝒂̂𝑞(𝑛𝑞−𝑚𝑞)𝑙𝑞

3

𝑞=1

< 𝑒−𝑗𝒌⋅𝒂̂𝑞𝛥𝑅𝑞
𝑛̃

>𝛥𝑅𝑞
𝑛̃

(𝑛1,𝑛2,𝑛3)(𝑚1,𝑚2,𝑚3)

≠(𝑛1,𝑛2,𝑛3)

< 𝑒𝑗𝒌⋅𝒂̂𝒒𝛥𝑅𝑞
𝑚̃

>𝛥𝑅𝑞
𝑚̃ 
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= |𝑬̇𝑜|
𝟐
𝑀 + |𝑬̇𝑜|

𝟐
∑ ∑ ∏ 𝑒−𝑗𝒌⋅𝒂̂𝒒(𝑛𝑞−𝑚𝑞)𝑙𝑞3

𝑞=1 𝛷𝛥𝑅𝑞
𝑛̃(−𝒌 ⋅ 𝒂̂𝑞)𝛷𝛥𝑅𝑞

𝑚̃(𝒌 ⋅ 𝒂̂𝑞)(𝑛1,𝑛2,𝑛3)(𝑚1,𝑚2,𝑚3)

≠(𝑛1,𝑛2,𝑛3)

, 

(4.17) 

 

where 𝛷𝛥𝑅𝑞
𝑛̃(𝜔) represents the characteristic function of the random variable 𝛥𝑅𝑞

𝑛̃ [32]. Since 

{𝛥𝑅𝑞
𝑚̃|𝑚̃ ∈ 𝐻}are i.i.d random variables independently of  𝑞 (𝑞 = 1, 2, 3), we can safely 

perform the substitutions 𝛷𝑞(𝜔) = 𝛷𝛥𝑅𝑞
𝑛̃(𝜔) = 𝛷𝛥𝑅𝑞

𝑚̃(𝜔). Moreover, since the respective 

probability density functions are even 𝑓𝛥𝑅𝑞
𝑚̃(𝛥𝑟𝑞

𝑚̃) = 𝑓𝛥𝑅𝑞
𝑚̃(−𝛥𝑟𝑞

𝑚̃)   (identical nanowire 

displacements in the positive or negative directions along the x-, y-, or z- axis are 

equiprobable), similarly the corresponding Fourier transforms, i.e. characteristic functions, 

will be even:𝛷𝑞(𝜔) = 𝛷𝑞(−𝜔). Therefore, Eq. (4.17) now becomes: 

< |𝑬̇𝑡𝑜𝑡|
2
>𝛥𝑹1,𝛥𝑹2,𝛥𝑹3

= |𝑬̇𝑜|
𝟐
𝑀 + |𝑬̇𝑜|

𝟐
{∏ 𝛷𝑞

2(𝒌 ⋅ 𝒂̂𝒒)
3
𝑞=1 } {∏ |

𝑠𝑖𝑛(
𝒌⋅𝒂̂𝑞𝑀𝑞𝑙𝑞

2
)

𝑠𝑖𝑛(
𝒌⋅𝒂̂𝑞𝑙𝑞

2
)

|3
𝑞=1

2

− 𝑀}  

(4.18)      

Based on Eq. (4.8), we obtain for the total radiated power 

< 𝑷𝑡𝑜𝑡 >𝛥𝑹1,𝛥𝑹2,𝛥𝑹3
= 𝑷𝑜𝑀 + 𝑷𝑜{∏ 𝛷𝑞

2(𝒌 ⋅ 𝒂̂𝒒)
3
𝑞=1 } {∏ |

𝑠𝑖𝑛(
𝒌⋅𝒂̂𝑞𝑀𝑞𝑙𝑞

2
)

𝑠𝑖𝑛(
𝒌⋅𝒂̂𝑞𝑙𝑞

2
)

|3
𝑞=1

2

− 𝑀}           (4.19)                  

where 𝑷𝑜 = 𝒓̂|𝑬̇𝑜|
𝟐
/2𝜂. 

From Eq. (4.19), we can deduce that the average total radiated power is the 

summation of two terms: i) the power radiated from each individual nanoantenna, and ii) 

the interference arising from the electromagnetic interaction between the distinct 
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nanoscatterers. When the location of each nanowire is fixed at the points of the 3D 

orthorhombic lattice (Fig. 4.1c), i.e. 𝛥𝑟𝑞
𝑚̃ = 0  or equivalently 𝒓𝑚̃ = 𝒓𝑜

𝑚̃ for every lattice site 

𝑚̃ , then 𝛷𝑞(𝒌 ⋅ 𝒂̂𝒒) = 1 . As a result, we obtain from Eq. (4.19) the power radiated from a 3D 

periodic nanoantenna array. On the other hand, in a probabilistic setting, the presence of the 

characteristic functions  𝛷𝑞(𝒌 ⋅ 𝒂̂𝒒), in Eq. (4.19), reduces the effect of the interference term. 

For instance, if for each displacement direction (x- axis: 𝑞 = 1, y- axis: 𝑞 = 2, z- axis: 𝑞1 = 3), 

we assume that {𝛥𝑅𝑞
𝑚̃|𝑚̃ ∈ 𝐻}, are i.i.d Gaussian distributed random variables with mean and 

standard deviation 𝜇𝑞 = 0 and 𝜎𝑞, correspondingly, then 𝛷𝑞(𝒌 ⋅ 𝒂̂𝒒) = 𝛷𝛥𝑅𝑞
𝑚̃(𝒌 ⋅ 𝒂̂𝒒) =

𝑒−𝜎𝑞
2(𝒌⋅𝒂̂𝒒)

2
/2⁡[32]. In the case when 𝜎1 = 𝜎2 = 𝜎3 = 𝜎, in Eq. (4.19) it will be true that 

∏ 𝛷𝑞
2(𝒌 ⋅ 𝒂̂𝒒)

3
𝑞=1 = 𝑒−𝜎2 ∑ (𝒌⋅𝒂̂𝒒)

23
𝑞=1 = 𝑒−𝜎2|𝒌|2 = 𝑒−(2𝜋𝜎 𝜆⁄ )2 .  

 

Figure 4.2  Far-field radiation diagrams for different dispersion values 𝛔. The distribution of the 

normalized electric field √< |𝑬̇𝒕𝒐𝒕|
𝟐

>𝜟𝑹𝟏,𝜟𝑹𝟐,𝜟𝑹𝟑
 according to Eq. (S.16)  for a 3D array of half-wave 

dipoles 𝑳 = 𝟐𝟎𝟑⁡𝒏𝒎  in an ethylene glycol environment at 𝝀𝝄 = 𝟓𝟖𝟓⁡𝒏𝒎 is shown for different 

dispersion values 𝝈 in the location of each nanoscatterer: (a) 𝝈 = 𝟎. 𝟑𝝀 = ⁡𝟏𝟐𝟐⁡𝒏𝒎⁡, (b) 𝝈 = 𝟎. 𝟒𝝀 =

𝟏𝟔𝟒⁡𝒏𝒎, and (c) 𝝈 = 𝟎. 𝟔𝝀 = 𝟐𝟒𝟒⁡𝒏𝒎. The inset in (c) depicts the radiation from a single dipole 

element.  
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In order to demonstrate the effect of the characteristic function, we analyze the case 

of radiation from a 3D nanorod array with 𝑀1 = 𝑀2 = 𝑀3 = 10 elements (𝑀 = 𝑀1 ⋅ 𝑀2 ⋅

, 𝑀3 = 100) immersed in ethylene glycol solvent (𝑛𝐸𝐺 = 1.44). We assume operational 

wavelength of 𝜆𝜊 = 585⁡𝑛𝑚 and that each nanoscatterer is a half-wave dipole(𝐿 = 𝜆 2⁄ =

𝜆𝜊 2𝑛𝐸𝐺 = 203⁡𝑛𝑚⁄ ). Moreover, for typical periodicities 𝑙1 = 𝑙2 = 𝑙3 = 5⁡𝜇𝑚, orientation of 

each element parallel to z-axis, and sinusoidal current distribution, the field from each 

nanoantenna can be retrieved from Eq. (4.3) and Eq. (4.4).  In Fig. 4.2, we show the radiation 

diagrams for the total normalized electric field corresponding to three distinct cases: i) σ =

0.3𝜆 = ⁡122⁡𝑛𝑚, ii) σ = 0.4𝜆 = 164⁡𝑛𝑚, and iii) σ = 0.6𝜆 = 244⁡𝑛𝑚. It is evident that for 

moderate values of dispersion (𝜎 ≥ 250⁡𝑛𝑚), the far-field distribution becomes identical to 

that of a single nanoscatterer, since the inherent randomness diminishes the interference 

effects. Similar conclusions can be drawn for arbitrary scattering functions 𝑮̇ or induced 

current distributions. Therefore, we can infer that in highly dispersive dye laser 

environments, the collective behavior of the nanowire ensemble can be equivalently studied 

via the radiated field of each individual nanoemitter. 

Analogous results can be also found for the more general case, when the nanowires 

have unequal lengths. Under the assumption that the nanoscatterers are nearly identically 

oriented - due to the application of an external electric field (for optimum scattering 

efficiency) - we can classify them based on their respective size and current distribution. 

Each class will be characterized by an energy flux vector 𝑷𝑖 (in the far-field), scattering cross 

section 𝜎𝑠𝑐,𝑖, phase function 𝑝𝑖(𝜃, 𝜑), and anisotropy factor 𝑔𝑖. Moreover, for each set of 
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nanowires, we assume concentration 𝜌𝑖 = 𝛮𝑖/𝑉, where 𝑁𝑖 stands for the number of elements 

in each class, while 𝑉 represents the volume occupied by the assembly. The overall 

nanoparticle concentration will then be given by 𝜌 = 𝑀 𝑉⁄ = ∑ 𝛮𝑖 𝑉⁄ = ∑ 𝜌𝑖𝑖𝑖 , where 𝑀 =

∑ 𝑁𝑖𝑖  designates the total number of nanoantennas. The equivalent scattering cross section 

of the nanowire ensemble can then be found as: 

𝜎𝑠𝑐,𝑒𝑞 =
1

𝑃𝑖𝑛𝑐
∯(𝒏̂ ⋅< 𝑷𝑡𝑜𝑡 >𝛥𝑹1,𝛥𝑹2,𝛥𝑹3

)𝑑𝑆 = ∑
𝑁𝑖

𝑀
{

1

𝑃𝑖𝑛𝑐/𝑀
∯(𝒏̂ ⋅ 𝑷𝑖)𝑑𝑆}𝑖 = ∑ (𝜌𝑖 𝜌⁄ )𝜎𝑠𝑐,𝑖𝑖       

(4.20) 

where 𝑃𝑖𝑛𝑐 is the incident intensity, 𝑆 is the surface enclosing the radiating nanoparticle 

assembly, 𝒏̂ is the unit vector normal to the surface 𝑆 and pointing outwards from the 

nanoscatterers,  < 𝑷𝑡𝑜𝑡 >𝛥𝑹1,𝛥𝑹2,𝛥𝑹3
 is the averaged radiated power flux over the random 

displacement vectors 𝛥𝑹1, 𝛥𝑹2, 𝛥𝑹3, and 𝜎𝑠𝑐,𝑖 =
1

𝑃𝑖𝑛𝑐/𝑀
∯(𝒏̂ ⋅ 𝑷𝑖)𝑑𝑆 is the expression for the 

scattering cross section corresponding to class 𝑖. In the derivation of Eq. (4.20), we assumed 

that < 𝑷𝑡𝑜𝑡 >𝛥𝑹1,𝛥𝑹2,𝛥𝑹3
= ∑ 𝑷𝑖𝑖 . This is a straightforward extension of Eq. (4.19) for the case 

of unequal nanowire lengths, if interference effects are neglected. It is also consistent with 

the independent scattering approximation [33]. 

The total scattering coefficient 𝜇𝑠𝑐,𝑒𝑞, based on Eq. (4.20), can now be attained as: 

𝜇𝑠𝑐,𝑒𝑞 = 𝜌𝜎𝑠𝑐,𝑒𝑞 = ∑ 𝜌𝑖𝑖 𝜎𝑠𝑐,𝑖=∑ 𝜇𝑠𝑐,𝑖𝑖                                                   (4.21) 

where 𝜇𝑠𝑐,𝑖 = 𝜌𝑖𝜎𝑠𝑐,𝑖  is the scattering strength corresponding to the nanowires with nearly 

identical radiating power flux vector 𝑷𝑖.  

In a similar manner, the equivalent reduced scattering coefficient 𝜇𝑠𝑐,𝑒𝑞
′  will be 

provided by [56-58] 
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𝜇𝑠𝑐,𝑒𝑞
′ = ∑ 𝜇𝑠𝑐,𝑖

′
𝑖 = ∑ (1 − 𝑔𝑖)𝑖 𝜇𝑠𝑐,𝑖 = 𝜇𝑠𝑐,𝑒𝑞 − ∑ 𝑔𝑖𝜇𝑠𝑐,𝑖𝑖                                 (4.22) 

Based on Eq. (4.21), the probability of scattering at an arbitrary point 𝑄 in the far-

field with coordinates (𝜃, 𝜑), can be described by 𝜇𝑠𝑐,𝑖 𝜇𝑠𝑐,𝑒𝑞⁄  for a nanoparticle belonging in 

class 𝑖. As a result, the equivalent scattering phase function 𝑝𝑒𝑞(𝜃, 𝜑) of the nanowire 

assembly will be given by: 

𝑝𝑒𝑞(𝜃, 𝜑) = ∑ (𝜇𝑠𝑐,𝑖 𝜇𝑠𝑐,𝑒𝑞⁄ )𝑝𝑖(𝜃, 𝜑)𝑖                                (4.23) 

The equivalent anisotropy factor will be provided by: 

𝑔𝑒𝑞 = ∫ 𝑝(𝜃, 𝜑)𝑐𝑜𝑠𝜃𝑑𝛺
4𝜋

= ∑ (𝜇𝑠𝑐,𝑖 𝜇𝑠𝑐,𝑒𝑞⁄ )∫ 𝑝𝑖(𝜃, 𝜑)𝑐𝑜𝑠𝜃𝑑𝛺
4𝜋

= ∑ (𝜇𝑠𝑐,𝑖 𝜇𝑠𝑐,𝑒𝑞⁄ )𝑔𝑖𝑖𝑖    (4.24)   

where 𝑔𝑒𝑞,𝑖 = ∫ 𝑝𝑖(𝜃, 𝜑)𝑐𝑜𝑠𝜃𝑑𝛺
4𝜋

 is the expression for the anisotropy factor corresponding 

to each class of nanowires, while 𝑑𝛺 is the differential solid angle. From Eqs. (4.22) and 

(4.24), alternatively the overall reduced scattering coefficient can be computed as 𝜇𝑠𝑐,𝑒𝑞
′ =

(1 − 𝑔𝑒𝑞)𝜇𝑠𝑐,𝑒𝑞 = (1 − ∑ (𝜇𝑠𝑐,𝑖 𝜇𝑠𝑐,𝑒𝑞⁄ )𝑔𝑖𝑖 )𝜇𝑠𝑐,𝑒𝑞 = 𝜇𝑠𝑐,𝑒𝑞 − ∑ 𝑔𝑖𝜇𝑠𝑐,𝑖𝑖 , which agrees with Eq. 

(4.22). 

In conclusion, we can infer about the properties of random scattering media, by 

equivalently studying the radiation properties of each individual nanoantenna. Moreover, 

based on Eqs. (4.20-24), one can now investigate the complex photon scattering dynamics 

taking place in a probabilistic dye laser medium and evaluate its lasing performance, based 

on equivalent scalar quantities, like the (reduced) scattering coefficient, scattering phase 

function, and anisotropy factor. 
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4.3 Nanowire-based random lasing 

Random lasing arises from the confinement of light within disordered gain media 

leading to mirrorless coherent laser emission [34]. Potential applications of random lasing 

include speckle free imaging, data encryption, military friend-or-foe identification, and 

biosensing [35-38]. A common variety of random laser is comprised of nanoparticles 

suspended in fluorescent dye solution, acting as random scatterers and gain medium 

respectively [39]. Light is confined via multiple scatterings within the particle matrix and is 

amplified by the gain medium (Fig. 4.3b). At sufficiently high scattering strengths and above 

a certain pump pulse threshold energy, random lasing emission occurs atop the fluorescence 

background. A representative random lasing spectrum for a sample of TiO2 nanowires (Fig. 

4.3c) suspended in a rhodamine B solution is shown in Fig. 4.3d. Sharp emission peaks can 

be seen, corresponding to multiple lasing modes. The uneven spacing between these peaks 

is a characteristic of random lasers, and can be further represented by the field 

autocorrelation curve, which is the Fourier transform of the emission spectrum, as a function 

of the effective cavity lengths (Fig. 4.3e). 
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4.4  Orientation-dependent scattering 

Random laser emission characteristics have been shown to vary according to not only 

the number density [40,41] but also the shape of scattering features [42-44]. For anisotropic 

scatterers, the orientation with respect to impinging light can be expected to impact 

scattering strength. For example, light that is incident parallel to a nanowire’s long axis may 

experience a different scattering cross section compared to light incident perpendicularly to 

the long axis. Hence, the rotation angle of an anisotropic particle will influence its scattering 

interactions.  

 

Figure 4.3  Nanowire based random lasing. Illustrations of conventional and nanowire based random 

laser, TEM of particles used in experiments, and representative experimental random lasing 

spectrum and analysis. (a) Depiction of lasing buildup in a conventional Fabry Perot laser cavity. (b) 

Depiction of random lasing in nanowire suspension assembly in dye solution. (c) Representative TEM 

images of individual TiO2 nanowires. (d) Experimental random lasing spectra produced by a TiO2 

nanowire suspension (4.37 × 107 wires/mL) in rB EG dye solution (2 mM).  (e) Field autocorrelation 

curve (Fourier transform of the emission spectrum depicted in (d)) and (inset) effective mode cavity 

lengths indicating random lasing. 
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We performed numerical calculations of the scattering cross section of an individual 

nanowire to validate this hypothesis. The simulation results in Figs. 4.4a,c reveal that for 

light parallel to the long axis of the nanowires, little angular scattering is observed in both 

the near- and far-field diagrams. The resonances observed are attributed to the excitation of 

the fundamental mode along the wire. This arrangement can be considered as a cylindrical 

guiding structure (core: TiO2, cladding: ethylene glycol), with V-number equal to  =

𝜋𝐷√𝑛𝑇𝑖𝑂2

2 − 𝑛𝐸𝐺
2 𝜆𝜊⁄ ≈ 2.1. The latter implies single mode operation, while finite element 

calculations indicate a respective effective index of 𝑛𝑒𝑓𝑓 = 1.8. The nanowire acts like a cavity 

with resonances being 𝛥𝑧 = 𝜆𝜊 2𝑛𝑒𝑓𝑓⁄ = 160 nm apart, which is verified in Fig. 4.4a. On the 

other hand, light incident perpendicular to the wire’s long axis shows a larger deviation from 

its original propagation direction both in the near and far field, including a strong 

backscattering component (Fig. 4.4b,d). In this case, resonances can no longer be sustained, 

while the far-field diagram (Fig. 4.4d) appears to be azimuthally asymmetric, owing to the 

large anisotropy between the longitudinal and transverse dimensions of the wire (𝐿/𝐷 = 

7.2). Smaller contrast ratios will result in more symmetric radiation diagrams with reduced 

scattering and thus inferior lasing performance (see Section 4.2.2). The orientation-

dependent scattering is corroborated experimentally in Fig. 4.4e by the observed increase of 

the backscattered light intensity from a TiO2 wire suspension (illuminated with a xenon arc 

light source) under random and perpendicular aligned orientations. Due to the enhanced 

scattering of individual nanowires as shown in simulation, the overall backscattered 

intensity increased as a result of  wire alignment. 
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Each individual scatterer exhibits a strong angular scattering field component (Fig. 

4.4a-d). Such angular scattering can be significantly enhanced in a nanoparticle ensemble, if 

the nanowires have identical orientation, and can impact the laser emission directionality 

[45]. A nanowire suspension aligned perpendicularly to the propagation direction will more 

strongly confine and amplify light, resulting in improved laser quality at reduced pump pulse 

threshold energy. Furthermore, if average nanowire orientation uniformity can be tailored 

within the assembly, the net scattering strength of the suspension can be tuned in order to 

optimize the lasing performance. In Section 4.2.2, by treating the nanowire ensemble as a 

probalistic setting, we analytically show how the relative orientation (𝜃𝑐, 𝜑𝑐) of the 

scatterers affects the peak scattering strength in the far-field. The optimum case appears 

when all the nanowires are parallely oriented (𝜃𝑐 = 0𝑜), resulting in improved lasing 

performance in active environments. Moreover, the randomness in the location of the 

individual nanoantennas is shown to mitigate the interference effects among the scatterers. 

As a result, the overall far-field diagrams can be readily deduced by studying the radiation 

characteristics from each invidividual nanowire. In the case of nonuniform distribution of 

wire lengths, the total scattering cross section can be retrieved by averaging over the wire 

ensemble (see Section 4.2.2). 

While anisotopic particles have been previously shown to impact lasing properties in 

random but fixed configurations, reconfigurable particle orientation has hitherto not been  

used as a tool to control the lasing emission characteristics. Tuning of random lasers has 

primarily been approached by techniques such as liquid crystal alignment, which generates 

local differences in refractive index to introduce scattering [46-49] and spatial light 
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modulation of pump beams, which used to manipulate the spatial distribution of gain in the 

lasing medium [50,51]. In contrast, our approach is based on controlling the orientation of 

nanowires as anisotropic scatterers using an electric field, and thus provides new 

opportunities to dynamically control a variety of parameters including both the scattering 

and gain landscapes.  

 

 

 

Figure 4.4  Orientation-dependent scattering. Near- and far-field plots representing scattering 

direction and intensity from a single TiO2 nanowire of length 1.3 μm for incident circularly polarized 

585 nm light: (a) near-field pattern with light incidence parallel to wire long axis, (b) near-field 

pattern with light incidence perpendicular to wire long axis, (c) far-field intensity pattern with light 

incidence parallel to wire long axis, (d) far-field intensity pattern with light incidence perpendicular 

to wire long axis. The first row (top) corresponds to near-field cross sections of field E. The second 

row (bottom) depicts a 3D perspective of the far-field intensity (|E|2). (e) Experimental 

backscattered light intensity from a TiO2 nanowire suspension under random and perpendicular 

aligned. orientations. Due to the enhanced scattering of individual nanowires, the overall 

backscattered intensity increased as a result of wire alignment. 
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Figure 4.5  Reconfigurable nanowire random laser system. Schematic, optical images, and alignment 

characteristics of tunable random laser nanowire suspensions. (a) 3D schematic representation of 

wire assembly cell depicting reversible wire alignment. ITO is separated by a 500 µm thick silicone 

spacer (not shown). Samples are pumped and emission is epi-collected via a 100× oil immersion 

objective. When no field is applied across the assembly gap, wires randomly orient via a Brownian 

motion mechanism (left). Application of an electric field (80 V/mm, 400 kHz) across the sample 

orients the wires parallel to the horizontal field lines (right). The transition between random and 

aligned orientation states is reversible. (b, c) Transmission bright field optical microscope images of 

TiO2 wires suspended in rB EG solution confined in an assembly cell under (b) unassembled and (c) 

assembled conditions. (d, e) Autocorrelation results indicating the random and aligned wire 

orientation character depicted in (b) and (c) respectively. 
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Alignment of nanowires in suspension is accomplished through a technique called 

electro-orientation, in which an AC electric field is applied across the sample. The field 

induces the formation of a dipole along the long axis of the wires, which readily rotate in 

order to align their poles parallel to the field lines [52-55]. A custom assembly cell was 

designed in order to facilitate this reversible assembly (Figs. 4.5a, 4.6). Conductive indium 

tin oxide (ITO) cell walls connected to a function generator, generate the AC field across the 

random laser system (TiO2 wires suspended in 2 mM rB EG). The wires transition from 

random orientations (Fig. 4.5b,d) to a uniform aligned state (Figure 4.5c,e) in response to 

the field. Decreasing the applied voltage returns the nanowires to a Brownian motion 

governed randomized orientation.  

 

 

Figure 4.6  Assembly cell & experimental setup . (a) Photographs of a representative assembly cell 

filled with random laser nanowire suspension. (b) Diagram of the random laser experimental setup 

including pulsed optical excitation, imaging, and spectroscopy components. 
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4.5 Reconfigurable random lasing 

To experimentally verify the impact of reconfigurable wire alignment on random 

lasing, we constructed a hybrid experimental setup, which enables simultaneous particle 

assembly, gain excitation, lasing emission analysis, and nanoparticle imaging (Fig. 4.6). A 

pulsed Nd:YAG laser (wavelength: 532 nm, repetition rate:  10 Hz, pulse width: 5 ns) is 

coupled into an inverted Nikon microscope. Samples are excited in a 60 µm diameter spot by 

a 100× oil immersion objective. Sample emission is then epi-collected and analyzed by an 

optical spectrometer. For low nanowire concentration (4.3×107 particles/mL) lasing is not 

observed at any pulse excitation energy due to insufficient scattering (particles in a random 

orientation state (see Fig. 4.7a). However, by applying the electric field the nanowires 

become aligned and lasing is observed at up to a 20-fold intensity increase, even at low 

pumping energies (Fig. 4.7b). Figure 4.7c displays this response directly, presenting 

emission spectra collected from a single location of the device both before and after 

assembly. The fluorescence spectrum (black curve) corresponds to the initial unassembled 

state, while the spectrum in red shows the formation of lasing peaks owing to the wire 

alignment. This behavior is shown to be reversible, and is used to modulate light emission 

between fluorescence and lasing configurations (Figure 4.7d). Moreover, by aligning the 

scatterers such that their long axes are parallel to each other and perpendicular to the 

sample’s excitation/collection angle, we can significantly improve the random lasing 

performance. 

In agreement with simulation, maximizing the particle assembly’s anisotropic 

character can enhance the scattering strength, hence light confinement and lasing 
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performance. This can be seen by the asymmetry in the radiation patterns of Fig. 4.4, and is 

attributed to the light scattering characteristics of TiO2 wires. In order to quantify the 

collective effect of the nanowires from the scattering simulation results of single particles, 

the anisotropy factor 𝑔 is used, which provides a measure of the relative portion of scattering 

towards the forward/backward direction. To interpret the lasing emission characteristics of 

the TiO2 nanowire ensemble, the reduced scattered coefficient 𝜇𝑠𝑐
′  [56-58], defined as 𝜇𝑠𝑐

′ =

(1 − 𝑔)𝜇𝑠𝑐, where 𝜇𝑠𝑐⁡represents the scattering strength (𝜇𝑠𝑐 = 𝑁𝑠𝑐𝜎𝑠𝑐, 𝑁𝑠𝑐: concentration of 

scatterers), is used to describe the diffusion of photons undergoing several scattering events. 

In order to better determine how nanoparticle anisotropy is impacting the switchable 

lasing response observed, we numerically calculate the coefficient 𝜇𝑠𝑐
′  for different wire 

length distributions of experimental samples (Fig. 4.8). In Figure 4.7e, the graphs of the 

effective scattering coefficients under random and aligned configurations are depicted. 

Immediately prominent is that as wire length increases beyond 0.6 µm, 𝜇𝑠
′  values show 

dependency on the assembly condition, while little change is observed for wires with smaller 

aspect ratios. The difference between unassembled and assembled reduced scattering 

coefficients (visualized by the shaded area between the plots), further confirms that wire 

alignment is the key factor influencing lasing configurability, showing a net improvement of 

nearly 20% when wires are aligned vs random for this experimental sample. Even as wire 

percent composition reduces to below 5 % of the total sample composition, for long wires 

the contrast in scattering coefficient remains impressively large.  
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Figure 4.7  Reconfigurable lasing response. Emission spectra and calculated reduced scattering 

coefficients of randomly oriented nanowire/dye suspensions vs. horizontally assembled 

nanowire/dye suspensions. (a) Plot of emission spectra of randomly oriented nanowires as 

excitation energy is increased. (b) Spectra collected from the same sample at the same pumping 

energies while wires are aligned. (c) Spectra depicting assembly facilitated transition from 

florescence (black) to lasing (red). Both spectra were collected from the same location of a sample, 

before and after particle alignment respectively. (d) All spectra shown are collected from a single 

sample of TiO2 wires (2.16 × 108 wires/mL) suspended in rB EG solution (2 mM). Each plot displays 

six spectra (initial conditions correspond to top spectra set) obtained from several sample locations. 

Wire alignment conditions were cycled between unassembled (black) to assembled (red). Ability to 

turn lasing on/off repeatedly shows robustness of the response. (e) Calculated reduced scattering 

coefficient plots (black line: randomly oriented wires, red line: wires aligned via applied field) 

dependent on the heterogeneous wire lengths of sample (a-b) (blue bars). The shaded region 

between lines represents the increase in reduced scattering coefficient due to assembly. 
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The region of Fig. 4.7e corresponding to wires of length shorter than 0.6 µm indicates 

that alignment of nanowires with short aspect ratios should have minimal impact on 

scattering coefficient or lasing quality. In order to verify the prominent role of the particle 

aspect ratio on the random lasing performance, an ensemble of nanowires with shorter 

lengths was investigated experimentally and numerically. Near- and far- field scattering 

simulations show that wires of that dimension lead to scattering largely insensitive to the 

angle of incident radiation (Fig. 4.9). Furthermore, experimentally observed emission 

spectra for the short wire suspension show no discernible change as a function of wire 

-  

Figure 4.8  The commercially available TiO2 wires are rather heterogeneous in length, and tend to 

form large aggregates in solution if they are not sonicated. Insets are TEM images used in size 

measurements (a). Brief bath sonication was used to reduce aggregation and narrow the length 

distribution of reconfigurable random laser samples to 1.23 µm ± 1.1 µm (total wires counted = 532). 

(b) Probe sonication was used to further reduce average wire length by breaking long particles into 

smaller segments, ultimately reaching an average size of roughly 0.6 ± 0.55 µm (total wires counted 

= 722). 
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alignment (Fig. 4.9). The latter is also verified by the observation that respective reduced 

scattering coefficient plots are nearly identical for these shorter particles (Fig. 4.9). 

Overall, we can deduce that nanoscale material-light interactions can be manipulated 

through appropriate nanoparticle assembly schemes. By controlling the orientation of the 

nanorods through an externally applied AC electric field, the scattering cross section of the 

nanoparticles can be changed to optimize an optical response. In principle, this effect should 

be generally applicable to any anisotropic particle that can be oriented in the applied field.  

4.6 Generality of tunable lasing response with other anisotropic scatterers 

We studied several additional anisotropic particles to validate this generality. Figure 4.10 

shows the reconfigurable lasing response for solid silver nanowires (3.35 ± 0.89 µm), 

metal/dielectric segmented particles that consist of 1 μm Au and 1 μm hollow (solvent-filled) 

segments, encased in a thin silica shell [59,60] and multiphase vanadium oxide nanowires 

that are heterogeneous in length (4.11 ± 3.71 µm). All of these particles could be oriented in 

the electric field, and all of them exhibited enhanced lasing when oriented with their long  

axes perpendicular to the light incidence. The metallic nanowires performed especially well, 

exhibiting the lowest pump energy threshold (2 μJ as compared with 6 μJ for similarly sized 

titania and multiphase vanadia wires). The strong improvement of lasing performance 

supplied by metallic wires is likely due to plasmonic effects, which has potential to be useful 

for many optical applications [61].  
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4.7 Experimental Methods 

4.7.1 Random laser suspension preparation and device fabrication 

Random laser samples were prepared in 1.5 µL micro centrifuge tubes. Rhodamine B powder 

was weighed via microbalance and dissolved in EG to produce desired concentration dye 

solutions. TiO2 nanowire powder was weighed in the same fashion and suspended in dye 

solution via vortexing. Suspensions were then bath sonicated in brief pulses to disperse 

particle aggregates, or probe sonicated for 60 minutes as a means to reduce average 

nanowire length [63]. A 600 W Misonix Sonicator S-4000 system with a titanium microtip 

was used to probe sonicate TiO2 wires in set time intervals to control wire length and reduce 

aggregation. The microtip pulsed at a 5 s on/3 s off interval; the amplitude was set to 25% 

power. Samples were placed in an ice bath to avoid heating of the sample. Random laser 

suspension concentrations were determined post sonication via hemocytometer and 

adjusted to desired concentration via dilution with additional dye solution. The 

heterogeneity of particle dimensions was characterized by transmission electron 

microscopy and recorded as histograms (Fig. 4.8).  

Figure 4.6 shows images of sample cells constructed to perform nanowire assembly. 

ITO coated coverslips were separated by 500 µm thick silicone spacer material. Spacers were 

cut to size and shape to form wells for sample confinement during experiments such that 20 

µL of solution fills the cell. Device walls were secured to the coverslip substrate by using a 

90-degree support template and hot glue adhesive. 
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Figure 4.9  Scattering simulations, lasing spectra, and wire length/scattering histogram for shorter 

nanowires, with mean length of 0.6μm. (a, b) Near- and far-field plots representing scattering from a 

single TiO2 nanowire of length 1.3μm for circularly polarized incident 585 nm light. (a) light 

incidence parallel to the long axis of wire and (b) incident light perpendicular to the long axis of wire. 

(c,d) Random laser emission at very high short wire concentration (109 particles/mL). This high 

concentration is necessary in order to observe the transitions between the random and aligned 

assembly conditions. For lower concentrations, similar to the ones of long wire experiments, lasing 

is never observed. This is in agreement with (d), which shows the corresponding reduced scattering 

coefficient plot versus the wire length distribution in the sample. 
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Figure 4.10  Ubiquity across material composition. (top) TEM images of different anisotropic nano-

materials and (bottom) respective assembly enabled random lasing response for particles suspended 

in 2mM rB EG dye solution. (a) Bare silver nanowires synthesized via electrodeposition, (b) glass 

coated hybrid wire made of gold (dark region) and a solvent filled glass silica shell, (c) multiphase 

vanadium oxide nanowires, where different phases can be observed in different density regions. (d) 

Ag nanowire lasing response when (black plot) wires are randomly oriented and (red plot) aligned. 

(e) Lasing response for hybrid gold/silica wires shown in (b) before (black plot) and after (red plot) 

horizontal alignment of the wires via assembly. (f) Random lasing tuning behavior of VxOy wire 

assembly in unaligned (black plot) and aligned (red plot) states. 
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4.7.2 Hybrid optical/assembly setup 

In order to conduct reconfigurable random lasing experiments, a custom optical 

system was designed and built by integrating a 532 nm 5 ns 10 Hz Nd:YAG laser with a Nikon 

TE2000-U inverted microscope and a high-resolution optical spectrometer with a liquid 

nitrogen cooled CCD camera (Princeton Instruments, SpectraPro 2500i). Detailed setup is 

shown in Fig. 4.6. In general, the pump laser beam was coupled into the microscope’s side 

port enabling excitation of the sample assembly region through a 100× oil immersion 

objective. Resultant emission signal was epi-collected via the same objective and coupled out 

of the microscope. A power attenuator (formed by a half waveplate and a polarizing beam 

splitter (PBS) was used to finely adjust the excitation pulse energy. In detail, the half 

waveplate rotates the input polarization of the laser beam, which changes the power ratio 

between the s polarized and the p polarized components. As the polarizing beam splitter 

only allows the p polarization light to pass through and reflects the s polarization light, we 

can control the power entering the system. For excitation spot size control, we utilized a 

convex and concave lens pair with 150 mm and 100 mm focal lengths respectively. In 

conjunction with a 100× objective, this allowed for a beam size reduction from 9 mm to 60 

μm in diameter. Separation of the excitation beam and the emission signal was achieved by 

using a non-polarizing beam splitter followed by a 550 nm long pass filter. Random laser 

signal was finally coupled into a large core multimode fiber via a focusing lens and analyzed 

by the spectrometer.  
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4.7.3 Data acquisition for random lasing experiments 

Random laser samples were placed onto the microscope stage. Gold thread (Ametek 

Electronic Components) and silver adhesive (Electron Microscopy Sciences) were used to 

electrically connect ITO coverslips (8−12 Ω, SPI) to leads of a function generator. To perform 

experiments random laser suspensions were first loaded into custom assembly cells. 

Optimal AC field parameters for TiO2 wire alignment in rB EG solution were determined to 

be 80 V/cm and 0.4 MHz via optical microscopy based calibration experiments. Modulation 

between field “on” and “off” states was then applied in order to assemble and disassemble 

wire suspensions respectively. Single shot excitation and emission spectrum collection was 

performed via a custom shutter controlled serially by a computer as needed for each 

alignment condition throughout experiments. To prevent bleaching of dye in a local area and 

to ensure spectra collected were representative, the observed location was changed 

frequently within a sample. Three distinct locations were studied per set of experimental 

parameters. The respective spectra were collected and subsequently analyzed using 

WaveMetrics IGOR Pro and OriginPro for normalization of fluorescent backgrounds between 

comparable experiments. Experiments were generally performed within 30 min. of sample 

preparation to avoid changes in lasing response due to particle sedimentation. 

 

4.7.4 Fourier transform analysis of lasing emission spectra 

 The inherent randomness of the emission spectra from a random laser arrangement 

can be further demonstrated by applying the Fourier Transform (FT) analysis. Specifically, 

emission spectra are expressed as a function of the wavenumber (1/λ, λ is wavelength of the 
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light); the field autocorrelation can then be obtained after performing the Fourier transform 

as follows. 

𝐺(𝑥) = ∫ |𝐸 (
2𝜋

𝜆
)|

2

𝑒−𝑗
2𝜋

𝜆
𝑥𝑑 (

2𝜋

𝜆
)             (4.25) 

where G(x) is the field autocorrelation function. This means that every peak in G(x) 

corresponds to a length at which signals exhibit a high degree of coherence (in conventional 

Fabry Perot lasers G(x) is peaked at integer multiples of the cavity round trip length). Results 

of random spaced coherence lengths as opposed to evenly spaced ones are shown in Fig. 4.3e 

and confirm that lasing observed is supported by random scattering particle cavities.  

 

4.7.5 Assembly image autocorrelation calculations 

 To quantify and visualize the degree of particle alignment, an image autocorrelation 

technique was applied. Images were run through a threshold and binarization image process 

to remove background pixels and clearly distinguish nanowires. Note that for 

autocorrelation results shown in Figs. 4.5d,e, the x- and y-axes represent spatial distance, 

which allows one to estimate the correlation distance of features in the original image. For 

the unassembled case, since the particles are oriented randomly, the correlation between 

particles is weak and isotropic in shape. On the other hand, the assembled particles exhibit 

uniform orientation along the horizontal direction in the image. Therefore, the 

autocorrelation function extends on the horizontal axis, indicating net wire alignment in this 

direction. 
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4.8 Conclusions 

The presented examples demonstrate the generality of the proposed nanoparticle 

platform to incorporate a diverse variety of anisotropic nano-materials, including segmented 

metal/dielectric particles and metal oxide phase-transition nanowires that are difficult to 

fabricate and assemble using conventional top-down approaches. Segmented 

metal/dielectric particles are highly customizable in design [59], making them candidates 

for complex reconfigurable ordered or disordered optical systems. Insulator-to-metal phase 

transitions in certain vanadium oxides (VO2) have been shown to be a powerful means to 

tune optical properties [62]. Although this work focuses on the case study of controlling 

random lasers, we expect that the proposed nanoparticle optical architecture can 

incorporate heterogeneous materials of a wide range of optical functionalities, including 

gain, scattering, plasmonic resonance, and nonlinearity, and will thus enable similar 

reconfigurable optical responses in applications even beyond random lasing, such as the 

realization of dynamic metamaterials in which the organization of nanostructures plays a 

key role in determining their optical properties. By introducing an “active” nanoparticle 

platform enabled with electric field directed assembly, which can exert control over the 

position and orientation of the constituent heterogeneous nano-materials at the single 

particle level, we provide a new approach to tune light-matter interactions and hence the 

collective function of the nanoparticle ensemble. 
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CHAPTER 5: TILTED-PULSE-FRONT SPACE-TIME WAVE PACKETS 

5.1  Introduction 

When a pulsed beam passes through a dispersive device, such as a prism or a 

diffraction grating, each wavelength emerges propagating at a different angle [1]. As a 

consequence of this angular dispersion, the intensity front of the resulting pulse becomes 

tilted with respect to the phase front [2]. So-called ̀ tilted-pulse-front' (TPF) pulses have been 

critical in the development of many applications in nonlinear and quantum optics [3]. In 

nonlinear optics, TPF pulses have been utilized in single-shot pulse auto-correlators [4], 

arrangements involving traveling-wave excitation [5], frequency doubling [6-8], and sum-

frequency mixing [9], whereupon the use of a TPF pulse increases the phase-matched 

bandwidth [10-12]. Additionally, TPF pulses were instrumental in the observation of 

quadratic spatio-temporal solitons [13-15]. In quantum optics, the concept of TPF pulses has 

enabled increasing the bandwidth of photon pairs produced by the process of spontaneous 

parametric downconversion, and has helped reduce the correlations between the photons - 

such that each photon is in a pure quantum state [16-18]. Furthermore, the utilization of TPF 

pulses in THz applications has led to efficient phase-matching for the generation of intense 

ultrafast THz pulses by the optical rectification of femtosecond pulses in LiNbO4 [19, 20], 

thereby enabling femtosecond THz nonlinear spectroscopy [21, 22]. More recently, TPF 

pulses have been shown to hold promise for synchronizing the interactions between optical 

radiation and electrons, whether for particle acceleration [23, 24], ultrafast electron 

microscopy [25], or X-ray generation [26, 27]. 
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The efficacy of TPF pulses in these applications is typically described via a 

perturbation-based analysis, whereupon the effects of diffraction and space-time coupling 

are minimized [28-34]. As such, experiments have traditionally made use of pulsed beams 

having large transverse dimensions and limited propagation distances to avoid spectral 

walk-off; Fig. 1.1(a). Recently, a theoretical study proposed a closed-form expression for 

non-paraxial ultrashort pulsed electromagnetic fields that possess the central features of 

TPF pulses, such as a tilted intensity front [35]. Furthermore, an extension of these proposed 

pulsed electromagnetic beams were shown to be propagation-invariant [35], therefore 

hinting tantalizingly at a potential connection between the two apparently disparate topics 

of TPF pulses [2, 3] and propagation-invariant pulsed beams [36, 37] that have, to date, been 

synthesized with co-aligned phase and intensity fronts. Underlying all realizations of 

propagation-invariant pulsed beams [38-46] (or wave packets) is a fundamental principle; 

namely, that they possess tight spatio-temporal spectral correlations [47-52]. We refer to 

these pulsed beams as `space-time' (ST) wave packets. We have recently proposed a general 

spatio-temporal synthesis procedure for synthesizing such ST wave packets [52-55]. To 

guarantee diffraction-free and dispersion-free propagation, the spatiotemporal spectral loci 

of ST wave packets must lie at the intersection of the light-cone with tilted spectral 

hyperplanes [47, 52], which enforces the requisite correlations. The group velocity of a ST 

wave packet in free space is determined by the tilt angle of the spectral hyperplane, and can 

be made to take on values above or below the speed of light in vacuum, whether in the 

forward direction propagating away from the source, or even backwards towards it [56], and 

such wave packets can propagate in optical materials at the speed of light in vacuum [57]. 
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Here we demonstrate that sculpting the complex spatio-temporal spectrum of ST 

wave packets enables the synthesis of a TPF pulse with spatial dimensions hitherto 

inaccessible to the traditional approaches utilizing a single dispersive optical element [64]. 

 

Figure 5.1  Concept of space-time wave packets in the context of TPF. (a) A TPF pulse produced by a 

dispersive device such as a grating. The  field diffracts and disperses with propagation through 

spectral walk-off and space-time coupling. (b) A TPF-ST wave packet has the same properties of 

traditional TPF pulses, and is diffraction-free and dispersion-free with propagation even when 

having a small transverse spatial width. The wave packet is synthesized in transmission mode via a 

sequence of a grating, a collimating lens, a SLM, a lens, and a grating. In our experiment, we make use 

of a reflective SLM, and the system thus comprises only three components, a grating, a lens, and the 

SLM. 
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By combining ultrafast pulse shaping with spatial beam modulation in the same 

arrangement, we encode an arbitrary one-to-one relationship between the spatial and 

temporal frequencies. This spatiotemporal Fourier-optics approach makes use of a 

dispersive device (a diffraction grating) to separate the temporal spectrum in space, and 

then reconstitute the pulse after modulating the two-dimensional wave front with a spatial 

light modulator (SLM) [50, 53, 58]. The wave packet spatio-temporal profile is recorded via 

an interferometric setup in which spatially resolved fringes resulting from the superposition 

of the ST wave packet with a short reference pulse reveal the wave packet envelope [56, 57] 

We thus observe a propagation-invariant ST wave packet featuring a tilted intensity front 

produced with any desired beam size; Figure 5.1(b). By modulating the spectral phase, we 

demonstrate control over the shape of the wave packet intensity front; and by modulating 

the spectral amplitude, we confirm control over the tilt of the intensity front.  

Our experiments are based on new propagation-invariant elementary scalar 

solutions for the homogeneous wave equation. These solutions satisfy a Klein-Gordon 

equation, which is converted into a modified Helmholtz equation via a complexification of 

the spatio-temporal degrees of freedom. The solutions are linearly independent, but not 

mutually orthogonal, and are used as a basis for constructing pulsed beams whose intensity 

fronts may be tilted or aligned with respect to the phase front. Unlike the more familiar 

plane-wave basis, the elementary solutions used here have  finite spatial and temporal 

extents, and thus they possess the central features of the more complex propagation-

invariant wave packets they are used to construct. Examined in the spatio-temporal spectral 

domain, these constructed solutions are revealed as having the requisite spatio-temporal 
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spectral correlations for propagation invariance. However, an added feature is revealed, 

namely an asymmetric spatial spectrum that results in a TPF structure. We thus  firmly 

establish the connection between the field of TPF pulses and propagation-invariant wave 

packets. Our results demonstrate that the range of applications of TPF pulses can be 

extended by harnessing the unique features of ST wave packets, such as self healing [59] and 

the potential for extended propagation distances [58]. 

5.2 Theoretical analysis 

We start our analysis by assuming a divergence-free field of the form 𝐸⃗ = 𝑦̂𝐸𝑦(𝑥, 𝑧, 𝑡) 

satisfying the wave equation (𝜕𝑥𝑥 + 𝜕𝑧𝑧 −
1

𝑐2 𝜕𝑡𝑡) 𝐸𝑦 = 0, where 𝑐 is the speed of light in 

vacuum. We introduce normalized coordinates 𝑋 = 𝑥/𝑥𝑛, 𝑍 = 𝑧/𝑥𝑛, and 𝑇 = 𝑐𝑡/𝑥𝑛, where 

𝑥𝑛 is an arbitrary length-scaling parameter, resulting in a wave equation of the form 

(𝜕𝑋𝑋 + 𝜕𝑍𝑍 − 𝜕𝑇𝑇)𝐸𝑦 = 0. The corresponding conjugate variables (𝑘𝑥, 𝑘𝑧 , 𝜔), which are 

Fourier-transform duals to (𝑥, 𝑧, 𝑡), will also be normalized according to 𝑘𝑋 = 𝑘𝑥/𝑘𝑛, 𝑘𝑍 =

𝑘𝑧/𝑘𝑛, and Ω = 𝜔/𝜔𝑛, where 𝑘𝑛 = 2𝜋/𝑥𝑛 and 𝜔𝑛 = 2𝜋𝑐/𝑥𝑛. The normalization parameters 

will be selected for convenience; for example in Fig. 5.2 we set 𝑥𝑛 to be the central 

wavelength 𝜆𝑜, while in Fig. 5.3 we choose 𝑥𝑛 = 𝜔𝑜, where 𝜔𝑜 is the half-width at half-

maximum of the ST wave packet spatial profile.  

We are interested here in propagation-invariant wave packets, specifically those of 

the form 𝐸𝑦(𝑋, 𝑍, 𝑇) = 𝑒𝑖𝜇𝑍𝐺(𝑋, 𝑇) where 𝜇 = 2𝜋𝑤𝑛/𝜆𝑜 is a normalized propagation 

constant and 𝜆𝑜 is a central wavelength, in which case 𝐺 satisfies a Klein-Gordon equation 
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(𝜕𝑋𝑋 − 𝜕𝑇𝑇)𝐺 − 𝜇2𝐺 = 0. The dispersion relationship for this field takes the hyperbolic form 

𝛺2 − 𝑘𝑋
2 = 𝜇2 for a monochromatic plane wave 𝐺~𝑒𝑖𝑘𝑋𝑋𝑒−𝑖𝛺𝑇. To symmetrize this equation 

with respect to space and time, we carry out the substitution 𝑋′ = 𝑋 + 𝑖𝑋𝑜 and 𝛵′ = 𝑖𝑇 + 𝑇𝑜, 

which results in a complexification of the space and time degrees of freedom; here 𝑋𝑜 and 𝑇𝑜 

are free parameters that can be used to control the spatio-temporal spectral content (in 

particular, its tilt in space-time) and the size of the diffraction-free ST wave packets. As a 

result of this transformation, the wave equation regains a Helmholtz-type form (𝜕𝑋′𝑋′ +

𝜕𝑇′𝑇′)𝐺 − 𝜇2𝐺 = 0, which can be solved in a number of different coordinate systems subject 

to the appropriate boundary conditions [60]. We utilize here the cylindrical polar 

coordinates system (𝜌, 𝜑) related to the Cartesian coordinates through the transformation 

𝑋′ + 𝑖𝑇′ = 𝜌𝑒𝑖𝜑  (𝑋′ = 𝜌𝑐𝑜𝑠𝜑, 𝑇′ = 𝜌𝑠𝑖𝑛𝜑), such that  

1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕𝐺

𝜕𝜌
) +

1

𝜌2

𝜕2𝐺

𝜕𝜑2 − 𝜇2𝐺 = 0    (5.1) 

Note that 𝜌 and 𝜑 mix the spatial and temporal coordinates. By separation of 

variables, we obtain solutions of the form 

𝐺(𝜌, 𝜑) = 𝐾𝑚(𝜇𝜌)𝑒𝑖𝑚𝜑     (5.2) 

where m is an integer, 𝐾𝑚(. ) is the modified Bessel function of the second kind, while the 

modified Bessel function of the first kind 𝐼𝑚(. ) is excluded since we demand that 𝐺 remain 

finite when 𝜌 → ∞. Reverting back to our original coordinates, the field takes the form, 

𝐺(𝑋, 𝑇) = 𝛫𝑚(𝜇√(𝑋 + 𝑖𝑋𝑜)2 + (𝑖𝑇 + 𝑇𝑜)2)𝑒
𝑖𝑚𝑡𝑎𝑛−1 𝑖𝑇+𝑇𝑜

𝑋+𝑖𝑋𝑜   (5.3) 

The order 𝑚 of the modified Bessel function determines the spectral extent of the 

diffraction-free ST wave packets, as shown in the examples plotted in Fig. 5.2. These 
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eigenfunctions are linearly independent as can be verified by computing the relevant 

Wronskian [60], but they are not orthogonal. 

To avoid singularities in the phase, we rewrite 𝐺 as follows, 

𝐺(𝑋, 𝑇) = 𝛫𝑚(𝜇√(𝑋 + 𝑖𝑋𝑜)2 + (𝑖𝑇 + 𝑇𝑜)2) (
𝛸−𝛵+𝑖(𝑋𝑜+𝑇𝑜)

𝛸+𝛵+𝑖(𝑋𝑜−𝑇𝑜)
)
𝑚/2

      (5.4) 

where we have made use of the fact that 𝑒𝑖𝑚𝜃 = (
𝑒𝑖𝜃

𝑒−𝑖𝜃
)
𝑚/2⁡

= {
(1+𝑖 tan𝜃)

(1+𝑖 tan𝜃)
}
𝑚/2

. Finally, in 

evaluating the modified Bessel function of the second kind 𝐾𝑚(𝑧), we have exploited the 

asymptotic series expansion for large arguments |𝑧| [61],  

𝐾𝑚(𝑧) ≈ √
𝜋

2𝑧
𝑒−𝑧 ∑

𝑎𝑗(𝑚)

𝑧𝑗
∞
𝑗=0                                                   (5.5) 

where the first expansion coefficient is 𝑎0(𝑚) = 1, and the subsequent coefficients are given 

by 

         𝑎0(𝑚) = 1,  𝑎𝑗(𝑚) =
(4𝑚2−1)(4𝑚2−32)…(4𝑚2−(2𝑗−1)2)

𝑗!8𝑗    (𝑗 ≥ 1)   (5.6) 

For small mode indices 𝑚, the main contribution to this infinite sum comes from the 

first term. Consequently, we expect from Eqs. (5.3-6) that the low-order modes will be nearly 

degenerate. Note that such ST wave packets formally have in nite energy, which is the case 

for any truly diffraction-free beam. To attain physically realizable waveforms, we apodize 

the intensity distributions by multiplying them with an exponential function of the form 

𝑒−(𝑇/𝑇𝑐)
2

, where 𝑇𝐶  is a cut-off parameter. 

In Fig. 5.2 we plot the spatio-temporal intensity distributions and the corresponding 

Fourier spectra for different elementary modes of Eq. (5.2). For the fundamental mode 𝑚⁡ =

⁡0, we observe a wavepacket that does not exhibit any tilt in the pulse front [Fig. 5.2(a)]. The 
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associated spatio-temporal spectrum has two critical features: (1) the spectrum has tight 

spatio-temporal correlations as a consequence of the propagation invariance of the ST wave 

packet, and (2) the spectrum of plane waves 𝑒𝑖𝜇𝑧𝑒±𝑖𝑘𝑥𝑧 is excited symmetrically with respect 

to the origin 𝑘𝑥 = 0 of the spatial spectrum. The first feature is common to all the elementary 

wave packets of the form of Eq. (5.2), but the second feature is absent in any wave packet 

that displays a tilt in the pulse intensity front. For higher-order modes 𝑚⁡ > ⁡0, the pulse 

front gradually tilts in the spatio-temporal domain, even for small values of 𝑚, which is 

associated with an asymmetric spectral amplitude around 𝑘𝑥 = 0. Moreover, the sign of m 

determines the direction of the pulse-front tilt, as seen in the contrast between the positive 

𝑚⁡ > ⁡0⁡values [Fig. 5.2(c) and Fig. 5.2(e)] and the negative values 𝑚⁡ < ⁡0 [Fig. 5.2(g)]. The 

asymmetry of the spatial spectrum towards positive 𝑘𝑥 ⁡> ⁡0 [2(d, f)] or negative 𝑘𝑥 < 0 [Fig. 

5.2(h)] spatial frequencies follows the direction of the tilt in the pulse front. When 𝑚 = −10, 

the skewness in the space-time domain becomes significantly large and a single-sided 

excitation of the spatial spectrum is observed. We note that in addition to the mode order, 

manipulating the parameter 𝑋𝑜 also enables control over the tilt of the pulse front, as clear 

from comparing Figs. 5.2(c,d) with Figs. 5.2(e,f). In all the cases in Fig. 5.2, the waveforms 

have not been apodized (𝑇𝑐 = 1), and the different parameters are normalized with 

respective to the central wavelength (𝑥𝑛 = 𝜆𝑜 = 803⁡𝑛𝑚). 
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Figure 5.2  Intensity in the spatio-temporal domain (left column) and the corresponding Fourier 

spectrum (right column) based on simulation results for the following modes: (a, b) 𝐾0 with 𝑋𝑜 =

0⁡and 𝑇𝑜 = 4, where no tilted pulse front is observed and the spectrum is symmetric; (c, d) 𝐾0 with 

𝑋𝑜 = 0.3 and 𝑇𝑜 = 4, where a tilted pulse front is realized and the spectrum is asymmetric; (e, f) 𝐾5 

with 𝑋𝑜 = 0 and 𝑇𝑜 = 4, where the tilt of the pulse front has increased compared to (c) and the 

spectral asymmetry is stronger than in (d); and (g, h) 𝐾−10 with 𝑋𝑜 = 0 and 𝑇𝑜 = 4, where the 

direction of the tilted pulse front has been reversed with respect to those in (c) and (e), and the 

direction of the spectral asymmetry has been reversed with respect to (d) and (f). The center 

wavelength of operation is assumed to be 𝜆𝑜 = 803⁡𝑛𝑚. 
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In experimentally relevant scenarios, it is expected that generating a specific 

elementary solution would be prohibitively difficult. Instead, we expect that a superposition 

of such modes will be excited according to the accessible spatio-temporal spectrum. In Fig. 

5.3 we plot simulation results (with 𝜆𝑜 = 803⁡𝑛𝑚) for three distinct cases that correspond 

to the experimental configurations to be described in Figs. 5.4-5.6. We introduce two 

experimentally motivated modifications. First, all the wavepackets are appropriately 

apodized in time, resulting in a finite spectral uncertainty in the correlation between 𝜆 and 

𝑘𝑥 [50]. Second, the superposition of elementary modes leads to a rapidly varying spectral  

phase (as described in Eqs. 5.3, 5.4), which we set to a fixed value. In Fig. 5.3(a), we set the 

spectral phase to 0, resulting in an even-parity symmetric spectrum and thus a spatio-

temporal intensity distribution with a central lobe that is symmetric with respect to the 

space and time coordinates and also lacking in pulse-front tilt. In Fig. 5.3(c) we introduce a 

𝜋-phase step along the 𝑘𝑥 direction, resulting in a spectrum with odd-parity symmetry. This 

leads to the appearance of a nodal line along the spatial coordinate at x = 0 in the wave packet 

and two off-center central lobes [Fig. 5.3(d)]. If instead of the symmetric amplitude of the 

spatio-temporal spectrum we introduce an asymmetry with respect to 𝑘𝑥 = 0 while holding 

the phase fixed [Fig. 5.3(e)], then a tilt in the pulse intensity front emerges [Fig. 5.3(f)]. These 

simulations confirm that the general features observed in the elementary solutions shown 

in Fig. 5.2 are retained when superposing multiple modes, which helps guide the 

experimental synthesis process of ST wave packets that have a TPF structure. 
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5.3 Experimental methods 

Our experimental arrangement is depicted schematically in Fig. 5.4. We start with 

femtosecond pulses from a Ti:Sapphire laser (Tsunami, Spectra Physics; central wavelength 

≈ 800⁡𝑛𝑚) that are spatially expanded. The spectrum is spread in space via a reflective 

 

Figure 5.3  Left column shows simulated spatio-temporal spectra |𝐸̃(𝑘𝑥, 𝜆)|
2

 in the (𝑘𝑥 , 𝜆) - domain, 

and the right column shows the spatio-temporal intensity distribution |𝐸(𝑥, 𝑧, 𝑡)|2⁡in the (𝑥, 𝑡) - 

domain at a fixed 𝑧. The spatio-temporal spectral phase profiles are flat except in (c), where the phase 

distribution is shown as an inset. The depicted mode superpositions are (a) 𝐾0 ⁡+ 𝐾2 with the spectral 

phase set to a constant; (b) 𝐾0 ⁡+ 𝐾2 with a 𝜋-phase step introducing odd parity in the spatio-

temporal spectrum spectral phase set to a constant; and (c) 𝐾41 ⁡+⁡𝐾43 with the spectral phase set to 

a constant. In all cases we use 𝑋𝑜 = 0 and 𝑇𝑜 = 100.  
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diffraction grating G (1200⁡𝑙𝑖𝑛𝑒𝑠/𝑚𝑚, dimensions 25 × 25⁡𝑚𝑚2; Newport 10HG1200-800-

1), collimated with a cylindrical lens 𝐿1−𝑦 (focal length 50⁡𝑚𝑚), and then directed to a spatial 

light modulator (SLM; Hamamatsu X10468-02) that imprints a two-dimensional phase 

distribution Φ(𝑥, 𝑦) on the impinging wave front. In this configuration, each wavelength 

occupies a column on the SLM. The phase distribution Φ is designed such that each column 

assigns a pair of spatial frequencies ±𝑘𝑥 to the associated wavelength. Consequently, by 

changing the arrangement of spatial frequencies along the SLM, any desired correlation 

relationship between 𝑘𝑥 and 𝜆 can be realized. Here, we implement the hyperbolic 

dispersion relationship (𝜔/𝑐)2 − 𝑘𝑥
2 = 𝛽2, where 𝛽 is a fixed wave number associated with 

𝑘𝑥 = 0, whereupon 𝜔 reaches its smallest value (longest wavelength). This configuration 

corresponds to an iso-𝛽 spectral hyperplane intersecting with the light-cone [50-52]. 

 

 

 

Figure 5.4 Measurement setup for synthesizing and characterizing ST wave packets. The inset 

provides a key to the elements in the setup. 
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The wave front incident on the SLM is retro-reflected back through the lens 𝐿1−𝑦 to 

the grating G, whereupon the wavelengths are all superimposed and the pulse reconstituted. 

Because of the correlation between the spatial and temporal frequencies, the ST wave packet 

is formed at this step. The ST wave packet can then be monitored in space via a CCD camera 

(CCD1 in Fig. 5.4) that is scanned along the axial direction 𝑧, which confirms the diffraction-

free propagation of the transverse spatial profile. However, a CCD camera is slow with 

respect to the pulse width, such that the recorded intensity profile is time-averaged 𝐼(𝑥, 𝑧) =

∫𝑑𝑡𝐼(𝑥, 𝑧, 𝑡). To reconstruct the spatio-temporal profile 𝐼(𝑥, 𝑧, 𝑡) we make use of the 

interferometric arrangement shown in Fig. 5.4. We first sample a portion of the initial 

femtosecond pulses via a beam splitter and direct it to the reference arm in a two-path 

interferometer. Additional spatial filtering is implemented in the reference arm where a 

delay line 𝜏 can be swept. The ST wave packet (pulse width ≈ 9⁡𝑝𝑠, bandwidth ≈ 0.2⁡𝑛𝑚) is 

superposed with the much shorter reference pulses (pulse width ≈ ⁡100⁡𝑓𝑠, bandwidth ≈

10⁡𝑛𝑚) at another beam splitter. When the two pulses overlap in space and time, high 

visibility spatially resolved fringes are observed at the CCD camera at a fixed plane. It can be 

shown [56] that the visibility of the fringes as the delay 𝜏 is swept is proportional to the 

spatio-temporal profile |𝐸(𝑥, 𝑧, 𝜏)|2 at fixed 𝑧. 

Additionally, we measure the spatio-temporal spectrum |𝐸̃(𝑘𝑥, 𝜆)|
2

 of the ST wave 

packets. By taking a portion of the field retro-reflected from the SLM and performing a spatial 

Fourier transform to reveal the spatial spectrum while maintaining the temporal spectrum 

spread, we can record the spatio-temporal spectrum using a CCD camera (CCD2 in Fig. 5.4). 
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We first confirm the propagation-invariance of the synthesized ST wave packet. We 

plot in Fig. 5.5 the axial evolution of the time-averaged intensity distribution 𝐼(𝑥, 𝑧), 

revealing a transverse width of the spatial profile is ≈ 14⁡𝜇𝑚 maintained with minimal 

change over a distance of ~10⁡𝑚𝑚. This is to be compared to the traditional Rayleigh range 

of ~0.77⁡𝑚𝑚 for a Gaussian beam of the same transverse width and central wavelength. 

We plot in Fig. 5.6 the measured spatio-temporal spectrum |𝐸̃(𝑘𝑥, 𝜆)|
2

 and the results 

of interferometrically reconstructing the intensity profiles 𝐼(𝑥, 𝑧, 𝜏) of three ST wave packets. 

First, we perform the measurements on a ST wave packet with a symmetric real spectrum 

[Fig. 5.6(a)]. The intensity profile is shown in Fig. 5.6(b) and confirms a spatially and 

temporally symmetric distribution. Next, we introduce a 𝜋-phase step between the two 

halves of the spatial spectrum along 𝑘𝑥 while maintaining the same magnitudes as in the first 

 

Figure 5.5 Confirmation of the propagation invariance of the ST wave packet. We plot the axial 

evolution of the time-averaged intensity distribution 𝐼(𝑥, 𝑧) over a distance of 10⁡𝑚𝑚. The white bar 

represents the Rayleigh range (≈ ⁡0.77⁡𝑚𝑚) of a traditional Gaussian beam having the same 

transverse width as the ST wave packet. 
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ST wave packet [Fig. 5.6(c)]. This 𝜋 -phase-step is introduced by the SLM by adding a relative 

phase 𝜋⁡to all the negative spatial frequencies. Consequently, a null is produced along the x-

direction in the ST wave packet, while remaining symmetric along the temporal axis. 

Finally, we introduce asymmetry in the spatio-temporal spectrum by blocking all the 

negative spatial frequencies [Fig. 5.6(e)]. This does not change the temporal spectrum along 

𝜆 because there is a one-to-one relationship between 𝜆 and |𝑘𝑥|. The reconstructed 

spatiotemporal intensity profile [Fig. 5.6(f)] shows clearly a tilted wave front of the ST wave 

packet. 

The propagation invariance of these ST wave packets is ultimately limited by the 

spectral uncertainty in the spatio-temporal spectrum. This spectral uncertainty is the 

unavoidable ‘fuzziness’ in the association between the spatial and temporal frequencies (or 

wavelengths) that is inherent in any finite system. In our setup, the main limiting factor is 

the spectral resolution of the grating G, which results from its aperture size. We estimate the 

spectral uncertainty in our case to be 𝛿𝜆~25⁡𝑝𝑚 (see the measured spatio-temporal spectra 

in Fig. 5.6). We have recently shown theoretically and experimentally [62, 63] that the 

Rayleigh range of the ST wave packet is inversely proportional to 𝛿𝜆, and that the Rayleigh 

range is enhanced over its Gaussian beam counterpart (of the same transverse width and 

central wavelength) by a factor equal to the ratio between the full bandwidth and  𝛿𝜆. Indeed, 

by careful design of the spatio-temporal correlations introduced into the ST wave packet 

spectrum, the propagation distance can be extended to many meters [58]. The spectral 

uncertainty does not affect the central result reported here: the tilted-pulse-front structure 
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of the synthesized wave packets relies only on the asymmetry in the spatio-temporal 

structure. 

 

 

 

  

 

Figure 5.6 Measurement results. The left column shows spatio-temporal spectral intensities, and the 

right column shows the corresponding intensity profiles in space-time. (a) A symmetric spectrum 

and at spectral phase, leading to (b) a symmetric ST wave packet. (c) A symmetric spectrum and a 

spectral phase with a 𝜋-step along 𝑘𝑥, leading to (d) a symmetric ST wave packet with a central null. 

(e) An asymmetric spectrum and at spectral phase, leading to (f) a ST wave packet with a tilted pulse 

front structure. 
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5.4 Conclusions 

We have demonstrated here that a ST wave packet with amplitude asymmetry 

introduced into its spatial spectrum has a tilted intensity front with respect to its phase front 

and the direction of propagation. The possibility of producing TPF ST wave packets may have 

profound ramifications for applications in nonlinear and quantum optics and light-matter 

interactions. First, unlike traditional TPF pulses, the ST wave packets presented here have 

no restrictions on the beam size or pulse width. Furthermore, in principle the group velocity 

can also be varied arbitrarily and is independent of the spatio-temporal extent of the wave 

packet [56]. Such characteristics can be maintained over large distances58 even extending 

to tens of meters. Moreover, ST wave packets may be produced in the high-pulse-energy 

regime by exploiting transparent refractive phase plates [55], which paves the way to new 

applications of TPF ST wave packets in light-matter interactions. We finally note that the 

fields synthesized here have the form of (2 + 1)D wave packets (with one transverse 

dimension uniform), and future work will focus on extending this framework to (3+1)D wave 

packets localized in all dimensions, as those introduced in Ref.35 where particular ST wave 

packets having a TPF structure were introduced for the first time. The functional basis we 

have provided here can be used to construct further particular solutions along those lines. 

In conclusion, we have synthesized and characterized ST wave packets that 

simultaneously have a tilted-pulse-front structure. These wave packets are based on new 

propagation invariant elementary solutions of the wave equation identified through a 

complexification of the spatial and temporal degrees of freedom. Employing these results, 

we experimentally synthesize ST wave packets that have a pulse intensity front that is tilted 
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with respect to the propagation axis. By establishing the connection between ST 

propagation-invariant pulses and TPF pulses, a path is opened to exploiting the unique 

attributes of ST wave packets in nonlinear and quantum optics, and in novel configurations 

for the interaction of optical pulses with electrons. 
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CHAPTER 6: CONCLUDING REMARKS 

In the first part of this work, the properties of PT-symmetric metasurfaces have been 

investigated for the purposes of free-space modal control. Passive PT-symmetry was 

introduced in "distorted" honeycomb-like lattices, through loss elements. Selective 

directional scattering over a broad range of wavelengths was observed, while the introduced 

two-dimensional geometric distortions determine the far-field directivities. The observed 

asymmetric light transport was attributed to a spontaneous PT symmetry breaking 

mechanism.  Unidirectionality and violation of Friedel’s law of diffraction have also been 

reported, as a result of the complex and deeply subwavelength interactions between gain 

and lossy elements. The presented methodology can be readily extended to other 

wavelength regions and open up new possibilities in the field of reconfigurable optics.  Of 

great interest, would be to investigate the behavior of the proposed non-Hermitian 

arrangements close to the exceptional point of operation. In this case, not only the 

eigenvalues, but also the eigenvectors coalesce, leading to extraordinary transmission 

properties.  

Mode management has been also demonstrated in guided arrangements, by 

exploiting notions from supersymmetry. More specifically, we have presented the first 

realization of an integrated SUSY laser array. By applying appropriate 

isospectral/supersymmetric transformations, we have judiciously designed an active array 

of waveguides, where the superpartner system filters the undesired optical modes. The 

existence of an unbroken SUSY phase in conjunction with a judicial pumping of the laser 
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array, can promote the in-phase supermode thus resulting to a high radiance emission. The 

spectral response, far-field emission, and light-light characteristics revealed a superior 

performance of the proposed structure compared to conventional multi-element waveguide 

configurations.  This new mechanism of phase-locking is general and indicates the potential of 

SUSY for high brightness single mode laser arrays and optical filtering applications. 

In the third part of this dissertation, we have studied the properties of random 

assembly configurations and exhibited the potential of reconfigurable lasing in a disordered 

nanoparticle platform. Using an alternating current electric field, we control the nanowire 

orientation to dynamically control the collective scattering of the sample and thus light 

confinement. Field autocorrelation, spectrum measurements, and reduced scattered 

efficiency numerical calculations, have shown that lasing can be manipulated by exerting 

control over the position and orientation of the nanoparticles. Moreover, the generality of 

the tunable lasing response has been demonstrated with a variety of anisotropic scatterers, 

indicating the applicability of the proposed methodology in dynamic metamaterial 

architectures  

  Lastly, we have synthesized and characterized ST wave packets that have a tilted-

pulse-front structure. Diffraction-free space-time pulses are generated by an appropriate 

entanglement of both the temporal and spatial degree of freedom. In that respect, 

propagation invariant beams can be generated potentially with arbitrary transverse profiles. 

Respective analytical solutions have been derived after complexification of the time and 

spatial coordinates.  Exploiting these findings, we experimentally synthesize ST wave 

packets that have a pulse intensity front that is tilted with respect to the propagation axis. 



 

125 

 

By establishing this link between space-time propagation-invariant beams and TPF pulses, a 

path is opened towards taking into advantage the unique properties of ST wave packets in 

both nonlinear and quantum optics. 
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