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Abstract 
In this work, we present Laplace transform with series Adomian decomposition and modify Adomian 

decomposition methods for the first time to solve linear Volterra integro-differential equations of the 

fractional order in Caputo sense with constant multi-time Retarded delay. This method is primarily based on 

the elegant mixture of Laplace transform method, series expansion method and Adomian polynomial with 

modifications. The proposed technique will transform the multi-term delay integro-fractional differential 

equations into some iterative algebraic equations, and it is capable of reducing computational analytical 

works where the kernel of difference and simple degenerate types. Analytical examples are presented to 

illustrate the efficiency and accuracy of the proposed methods. 

 

Keywords: Caputo fractional derivative, Delay differential equations, Integro-differential equation, Laplace 

transform, Adomian decomposition method and Modify Adomian decomposition method. 

 

1. Introduction 
The idea of this work is to solve linear Volterra Integro-Fractional Differential 

Equations (VIFDE’s) in Caputo sense with constant multi-time Retarded Delay (RD) in 

the general form: 

𝐷𝑎
𝐶

𝑡
𝛼𝑛𝑢(𝑡) +∑𝑃𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑛−𝑖𝑢(𝑡) + 𝑃0(𝑡)𝑢(𝑡 − 𝜏)

𝑛−1

𝑖=1

 

= 𝑓(𝑡) + 𝜆 ∑∫𝒦𝑗 (𝑡, 𝑥) 𝑢(𝑥 − 𝜏𝑗)𝑑𝑥

𝑡

0

𝑚

𝑗=1

,     𝑡 ∈ [0, 𝑏]      … (1) 
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For 𝛼𝑛 > 𝛼𝑛−1 > 𝛼𝑛−2 > 𝛼𝑛−3 > ⋯ > 𝛼1 > 𝛼0 = 0 , with initial conditions which are 

given: 𝑢(𝑘)(0) = 𝑢𝑘;  𝑘 = 0,1,2, … , 𝜇 − 1 , (𝜇 = ⌈𝛼𝑛⌉) and 𝜇 − 𝑡ℎ  historical continuity 

differentiable functions 𝑢(𝑡) = 𝜑(𝑡)  for 𝑡 ∈ [�̅�, 0], where �̅� = −max{𝜏, 𝜏𝑗: 𝑗 =

1,2, … ,𝑚}. Connected, where  𝑢(𝑡) is the solution of equation (1) which is the unknown 

function and  𝒦𝑗 ∈ 𝐶(𝑆 × ℝ,ℝ), 𝑆 = {(𝑡, 𝑥): 0 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏} for all  𝑗 =  1 ,2,⋯ ,𝑚 and 

given 𝑓, 𝑃𝑖 ∈ 𝐶( [0, 𝑏], ℝ ), for all  𝑖 = 0,1, … , 𝑛 − 1  where  𝑢(𝑡) ∈ ℝ , 𝐷𝐶 𝑡
𝛼𝑖𝑢(𝑡) is 

the  𝛼𝑖-fractional Caputo-derivative order of 𝑢 on [0, 𝑏] and all 𝛼𝑖  , ∈ ℝ
+  for  (𝑖 ≠ 0) ,

𝑛𝛼𝑖−1 < 𝛼𝑖 ≤ 𝑛𝛼𝑖, 𝑛𝛼𝑖 = ⌈𝛼𝑖⌉, for all 𝑖 = 1,2, … , 𝑛 . Furthermore, the quantities  𝜏𝑗 ∈

ℝ+ for all  𝑗 = 1,2, … ,𝑚  are called the time-lags (delay). 

 Such equation LVIFDE-RD’s it is relatively a new subject in mathematics so there are 

only few of techniques for solving it and the exact analytic solution has not, thus 

approximation technique must be used for treating it.  

 The author Adomian [1], introduced The Adomian decomposition technique (ADM) 

which possess great potential in solving different kinds of the linear/nonlinear functional 

equation. This method assumes that the unknown function  𝑢(𝑡) can be expressed with the 

aid of a sum of a limitless number of components 𝑢𝑖(𝑡) described by the decomposition 

series. Each term of the series is obtained from a polynomial generated by a power series 

expansion of an analytical function. Adomian and Rach [2] additionally Wazwaz [3] have 

investigated the noise terms phenomena of the self-canceling where the sum of all factors 

are vanishing in the limit. In [4], the noise terms are described as the same terms with an 

opposite sign that appear within the elements say 𝑢0(𝑡)  and 𝑢1(𝑡) which that exists only 

in particular types of non-homogenous equations. Further, it used to be formally justified 

that if terms in 𝑢0(𝑡)  are vanishing by terms in 𝑢1(𝑡), even though. 𝑢1(𝑡) includes further 

terms, then the closing non-canceled terms in 𝑢0(𝑡) may additionally represent the exact 

solution of the problem.  

 The main objective of this work is to use the combined Laplace transform-Adomian 

decomposition method with noise term phenomenon in solving the higher fractional order 

of linear VIDE’s with constant multi-time Retarded delay problem where the kernel of 

difference and simple degenerate types. 

 This paper is prepared as follows: Section 2 presents the definition and some important 

property; section 3 solve linear Volterra integro-differential equation of fractional order 

with constant multi-time Retarded delay using Laplace-Adomian decomposition method; 

our results illustrated throughout examples in section 4. Finally, section 5 includes a 

discussion for this method. 

2. Basic definitions and some property 
 In this section, some preliminaries and notations related to fractional calculus and 

Laplace operation are given. For more details, see [ 5,6,7,8,9]: 

Definition 2.1: A real valued function 𝑢 defined on [𝑎, 𝑏] be in the space 𝐶𝛿[𝑎, 𝑏] , 𝛿-any 

real number, if there exists a real number ℓ > 𝛿, such that 𝑢(𝑡) = (𝑡 − 𝑎)ℓ𝑢𝑐(𝑡), where 

𝑢𝑐 ∈ 𝐶[𝑎, 𝑏], and it is said to be in the space 𝐶𝛿
𝑛[𝑎, 𝑏] if and only if 𝑢(𝑛) ∈ 𝐶𝛿[𝑎, 𝑏], 𝑛-

positive integer number with zero.  
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Definition 2.2: Let 𝑢 ∈ 𝐶𝛿[𝑎, 𝑏], 𝛿 ≥ −1 with any positive arbitrary real number 𝛼. Then 

the Riemann-Liouville (R-L) fractional integral operator 𝐽𝑎
 
𝑡
𝛼of order 𝛼 of a function 𝑢, is 

defined as: 

𝐽𝑎
 
𝑡
𝛼𝑢(𝑡) = {

∫
(𝑡 − 𝜉)𝛼−1

Γ(α)
𝑢(𝜉)𝑑𝜉

𝑡

𝑎

, 𝛼 > 0

  𝑢(𝑡)        whenever              𝛼 = 0

 

Definition 2.3: Let 𝛼 ≥ 0, and 𝑚 = ⌈𝛼⌉. the Riemann-Liouville fractional derivative 

operator 𝐷𝑎
𝑅

𝑡
𝛼 , of order 𝛼 and 𝑢 ∈ 𝐶−1

𝑚 [𝑎, 𝑏]  and defined as: 

𝐷𝑎
𝑅

𝑡
𝛼𝑢(𝑡) = {

𝐷𝑡
𝑚[ 𝐽𝑎

 
𝑡
𝑚−𝛼𝑢(𝑡)], 𝛼 > 0                               

 𝑢(𝑡)     whenever   𝛼 = 0                                    

𝑢(𝑚)(𝑡), If 𝛼 = 𝑚(∈ ℕ)  and  𝑢 ∈  𝐶𝑚[𝑎, 𝑏]  

    

Definition 2.4: The Caputo fractional derivative operator 𝐷𝑎
𝐶

𝑡
𝛼 of order 𝛼 ∈ ℝ+ of a 

function 𝑢 ∈ 𝐶−1
𝑚 [𝑎, 𝑏] and 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ ℕ is defined as: 

                                    𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) = {

𝐽𝑎
 
𝑡
𝑚−𝛼[𝐷𝑡

𝑚𝑢(𝑡)],       𝛼 > 0                              

𝑢(𝑡)     whenever    𝛼 = 0                             

𝑢(𝑚)(𝑡), If 𝛼 = 𝑚(∈ ℕ)  and  𝑢 ∈  𝐶𝑚[𝑎, 𝑏]

 

Hence, we have the following properties:  

 For 𝛼 ≥ 0 and 𝛽 > 0, then 𝐽𝑎
 
𝑡
𝛼(𝑡 − 𝑎)𝛽−1 =

Г(𝛽)

Г(𝛽+𝛼)
(𝑡 − 𝑎)𝛽+𝛼−1. 

 For all 𝛼 ≥ 0, 𝛽 ≥ 0 and 𝑢(𝑡) ∈ 𝐶𝛿[𝑎, 𝑏], 𝛿 ≥ −1, then:  

𝐽𝑎
  
𝑡
𝛼 𝐽𝑎
 
𝑡
𝛽
𝑢(𝑡) = 𝐽𝑎

 
𝑡
𝛽
𝐽𝑎
 
𝑡
𝛼𝑢(𝑡) = 𝐽𝑎

 
𝑡
𝛼+𝛽

𝑢(𝑡) 

 𝐷𝑎
𝑅

𝑡
𝛼𝒜 = 𝒜

(𝑡−𝑎)−𝛼

Γ(1−𝛼)
 and 𝐷𝑎

𝐶
𝑡
𝛼𝒜 = 0 ; 𝒜 is any constant; (𝛼 ≥ 0, 𝛼 ∉ ℕ) 

 𝐷𝑎
𝑅

𝑡
𝛼𝑢(𝑡) = 𝐷𝑡

𝑚 𝐽𝑎
 
𝑡
𝑚−𝛼𝑢(𝑡) ≠ 𝐽𝑎

 
𝑡
𝑚−𝛼𝐷𝑡

𝑚𝑢(𝑡) = 𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) ;𝑚 = ⌈𝛼⌉. 

 Assume that 𝑢 ∈ 𝐶−1
𝑚 [𝑎, 𝑏] ;  𝛼 ≥ 0, 𝛼 ∉ ℕ and 𝑚 = ⌈𝛼⌉ then 𝐷𝑎

𝐶
𝑡
𝛼𝑢(𝑡) is continuous on 

[𝑎, 𝑏], and [ 𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) ]𝑡=𝑎 = 0. 

 Let 𝛼 ≥ 0 , 𝑚 = ⌈𝛼⌉ and  𝑢 ∈ 𝐶𝑚[𝑎, 𝑏], then, the relation between the Caputo derivative 

and Riemann-Liouville (R-L) integral are formed: 

𝐷𝑎
𝐶

𝑡
𝛼[ 𝐽𝑎

 
𝑡
𝛼𝑢(𝑡)] = 𝑢(𝑡)  ;     𝑎 ≤ 𝑡 ≤ 𝑏   ;    𝐽𝑎

 
𝑡
𝛼 [ 𝐷𝑎

𝐶
𝑡
𝛼𝑢(𝑡)] = 𝑢(𝑡) − ∑

𝑢(𝑘)(𝑎)

𝑘!
(𝑡 −𝑚−1

𝑘=0

𝑎)𝑘   
  𝐷𝑎

𝐶
𝑡
𝛼𝑢(𝑡) = 𝐷𝑎

𝑅
𝑡
𝛼[𝑢(𝑡) − 𝑇𝑚−1[𝑢; 𝑎]], (𝑚 − 1 < 𝛼 ≤ 𝑚) and 𝑇𝑚−1[𝑢; 𝑎] denotes the 

Taylor polynomial of degree 𝑚 − 1 for the function 𝑢, centered at 𝑎. 
  Let 𝛼 ≥ 0 ;𝑚 = ⌈𝛼⌉ and for 𝑢(𝑡) = (𝑡 − 𝑎)𝛽 for some  𝛽 ≥ 0. Then: 

𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) = {

0                     𝑖𝑓 𝛽 ∈ {0,1,2,⋯ ,𝑚 − 1}

Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
 (𝑡 − 𝑎)𝛽−𝛼

𝑖𝑓 𝛽 ∈ ℕ 𝑎𝑛𝑑 𝛽 ≥ 𝑚        
𝑜𝑟 𝛽 ∉ ℕ 𝑎𝑛𝑑 𝛽 > 𝑚 − 1

 

Form the thought of the fractional derivative: The Caputo's definition is a modification 

of the Riemann-Liouville (R-L) definition and has the benefit of dealing properly with the 

initial value problem so we undertake Caputo’s definition in this papers. 

Definition (2.5): [10, 11] The Laplace transforms of a function 𝑢(𝑡) of real variable  𝑡 ∈
ℝ+, denoted by 𝑈(𝑠), is defined by the equation 
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𝑈(𝑠) = ℒ{𝑢(𝑡); 𝑠} = ∫ 𝑒−𝑠𝑡𝑢(𝑡)

∞

0

 𝑑𝑡                                          … (2) 

and its inverse is given for  𝑡 ∈ ℝ+ by the formula, symbolically written as:  

ℒ−1 {𝑈(𝑠); 𝑡} = 𝑢(𝑡). 
In references [9,10,12,13,14] and [6,8] respectively can be founding the proves of all 

lemmas (1-4) and lemma (5-i, 5-ii), about the Laplace transform with several properties 

such that important for our work. 

Lemma (1): The Laplace transform is related to the transform of the  𝑛 − 𝑡ℎ derivative of 

a function, where 𝑈(𝑠) is a Laplace of  𝑢(𝑡): 

ℒ {
𝑑𝑛𝑢(𝑡)

𝑑𝑡𝑛
} = 𝑠 𝑛𝑈(𝑠) −∑𝑠𝑛−𝑘−1

𝑛−1

𝑘=0

 𝑢(𝑘)(0)

= 𝑠 𝑛𝑈(𝑠) −∑𝑠𝑛
𝑛−1

𝑘=0

 𝑢(𝑛−𝑘−1)(0)        … (3) 

Lemma (2): The Laplace transform of the convolution of two functions is the product of 

their Laplace transforms. Thus 𝑈(𝑠) and 𝑉(𝑠) are the Laplace transforms of 𝑢(𝑡) and 

𝑣(𝑡) respectively, then: 

ℒ{(𝑢 ∗ 𝑣)(𝑡)} = ℒ {∫ 𝑢(𝑡 − 𝑥)𝑣(𝑥)𝑑𝑥
𝑡

0

} = 𝑈(𝑠)𝑉(𝑠)                        … (4) 

especially: 

ℒ {∫ 𝑢(𝑥)𝑑𝑥
𝑡

0

} =
1

𝑠
 𝑈(𝑠)                                        … (5) 

Lemma (3): If 𝑈(𝑠) is the Laplace of 𝑢(𝑡)  and 𝑡𝑛  is a power function of order  𝑛 ∈ ℤ+, 

then:  

ℒ{𝑡𝑛𝑢(𝑡)} = (−1)𝑛  
𝑑𝑛

𝑑𝑠𝑛
 ℒ{𝑢(𝑡)} = (−1)𝑛  

𝑑𝑛

𝑑𝑠𝑛
 𝑈(𝑠)                 … (6) 

Lemma (4): let 𝑈(𝑠) be the Laplace of 𝑢(𝑡) then: 

ℒ {∫ 𝑡 𝑢(𝑥)𝑑𝑥
𝑡

0

 } = −
𝑑

𝑑𝑠
 (
1

𝑠
 𝑈(𝑠) )

ℒ {∫ 𝑥 𝑢(𝑥)𝑑𝑥
𝑡

0

} = −
1

𝑠

𝑑

𝑑𝑠
 𝑈(𝑠) 

}
 
 

 
 

                                            … (7) 

Lemma (5):  

(i) The Laplace transform of the R-L Fractional integral for order  𝛼 ∈

ℝ+ , 𝐽𝑡
𝛼  𝑢(𝑡) = 𝐽𝑡

𝛼
0  𝑢(𝑡), using the convolution property, gives: 

ℒ{𝐽𝑡
𝛼  𝑢(𝑡)} = ℒ {

𝑡𝛼−1

Γ(𝛼)
∗ 𝑢(𝑡)} = ℒ {

𝑡𝛼−1

Γ(𝛼)
}  ℒ{𝑢(𝑡)} = 𝑠−𝛼 𝑈(𝑠)         … (8) 

(ii) The Laplace transform of Caputo Fractional of order 𝛼  (𝑚 − 1 < 𝛼 ≤ 𝑚) and 

𝑚 = ⌈𝛼⌉ , 𝐷0
𝑐

𝑡
𝛼  𝑢(𝑡) = 𝐷𝑐 𝑡

𝛼 𝑢(𝑡), can be obtained as follows: 
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ℒ{ 𝐷𝑐 𝑡
𝛼 𝑢(𝑡)} = ℒ{𝐽𝑡

𝑚−𝛼𝐷𝑡
𝑚𝑢(𝑡)} = 𝑠−(𝑚−𝛼) ℒ{𝑢(𝑚)(𝑡)}  

=  𝑠−(𝑚−𝛼)  [𝑠𝑚 𝑈(𝑠) − ∑ 𝑠𝑚−𝑘−1 𝑢(𝑘)(0)

𝑚−1

𝑘=0

]

= 𝑠𝛼 𝑈(𝑠)

− ∑ 𝑠𝛼−𝑘−1 𝑢(𝑘)(0) 

𝑚−1

𝑘=0

                                                                          … (9) 

Laplace transform of a constant delay function is explained in the following important 

new-lemma: 

Lemma (6): Let 𝑢(𝑡) be a continuous differentiable function on a closed bounded 

interval [0, 𝑏], 𝑏 ∈ ℝ+ and let  τ be a constant delay such that: 

𝑢(𝑡) = 𝜑(𝑡), 𝑓𝑜𝑟  − 𝜏 ≤ 𝑡 < 0                                         … (10) 
Then the Laplace transform of a  𝜏 − delay  function is given by: 

ℒ{𝑢(𝑡 − 𝜏) } = 𝑒−𝑠𝜏 [𝑈(𝑠) + 𝑄(𝑠, 𝜏)]                                        … (11) 
where  

𝑄(𝑠, 𝜏) = ∫ 𝑒−𝑠𝑥𝜑(𝑡)𝑑𝑡
0

−𝜏
          

and    

ℒ{𝑢(𝑡) } = 𝑈(𝑠). 
 

If the historical function 𝜑(𝑡) is defined by power function  𝑡𝑛, (𝑛 ∈ ℤ+) we have: 

ℒ{𝑢(𝑡 − 𝜏)} = 𝑒−𝑠𝜏 𝑈(𝑠) +∑(−1)𝑛−𝑝 𝑝!  (
𝑛

𝑝
) 
𝜏𝑛−𝑝

𝑠𝑝+1

𝑛

𝑝=0

− 
𝑛!

𝑠𝑛+1
 𝑒−𝑠𝜏         … (12) 

Proof:  

 By taking Laplace transform of   𝜏-delay function   𝑢(𝑡 − 𝜏) ,  as in definition (1), and 

applying the change of variable by  𝑡 − 𝜏 = 𝑥 we obtain: 

ℒ{𝑢(𝑡 − 𝜏)} = ∫ 𝑒−𝑠𝑡𝑢(𝑡 − 𝜏)𝑑𝑡
∞

0

 = 𝑒−𝑠𝜏∫ 𝑒−𝑠𝑥𝑢(𝑥)𝑑𝑥
∞

−𝜏

 

= 𝑒−𝑠𝜏 [  ∫
0

−𝜏

+∫
∞

0

] 𝑒−𝑠𝑥 𝑢(𝑥)𝑑𝑥                                                               … (13) 

Use by part integral method for solving first integral in (13) after instead 𝑢(𝑥) by historical 

function (H.F.) 𝜑(𝑥), which is defined  𝑥𝑛, 𝑛 ∈ ℤ+ ,we get: 

𝑄(𝑠, 𝜏) = ∫ 𝑒−𝑠𝑥𝜑(𝑥)𝑑𝑥
0

−𝜏

= ∫ 𝑒−𝑠𝑥 𝑥𝑛 𝑑𝑥
0

−𝜏

= 𝑒𝑠𝜏∑(−1)𝑛−𝑝 𝑝!  (
𝑛

𝑝
)
𝜏𝑛−𝑝

𝑠𝑝+1

𝑛

𝑝=0

− 
𝑛!

𝑠𝑛+1
                                                               … (14) 

And the second integral part in (13) is the Laplace transform of  𝑢(𝑥) , thus 
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∫ 𝑒−𝑠𝑥𝑢(𝑥)𝑑𝑥
∞

0

=  𝑈(𝑠)                                                      … (15) 

Substitution equations (14) and (15) into equation (13) we obtain: 

ℒ{𝑢(𝑡 − 𝜏)} = 𝑒−𝑠𝜏 𝑈(𝑠) +∑(−1)𝑛−𝑝 𝑝! (
𝑛

𝑝
) 
𝜏𝑛−𝑝

𝑠𝑝+1

𝑛

𝑝=0

− 
𝑛!

𝑠𝑛+1
 𝑒−𝑠𝜏 

which completes the proof. Note that, in general, for historical function (H.F.) which is 

defined: 

 𝜑(𝑥) =∑𝑎𝑟𝑥
𝑛𝑟

𝑅

𝑟=1

  ;   {𝑅 ∈ ℤ+  , 𝑛𝑟 ∈ ℤ
+  , 𝑎𝑟 ∈ ℤ

+}                             … (16) 

Then the formula (12) becomes: 

ℒ{𝑢(𝑡 − 𝜏)} = 𝑒−𝑠𝜏 𝑈(𝑠) +∑𝑎𝑟

𝑅

𝑟=1

[∑(−1)𝑛𝑟−𝑝𝑝! (
𝑛𝑟
𝑝
)
𝜏𝑛𝑟−𝑝

𝑠𝑝+1

𝑛𝑟

𝑝=0

−
𝑛𝑟!

𝑠𝑛𝑟+1
𝑒−𝑠𝜏 ] 

 

3. Analysis Technique of Method 
In this section we try to find general solution form of linear VIFDE’s with multi-time 

RD by applying the Laplace transform with aid of the Adomain decomposition techniques 

for two different types of kernel: difference and simple degenerate kernel. 

 

3.1 Apply the LADM for Solving Linear VIFDE-RD’s of Difference Kernel  

Firstly, consider the VIFDE-RD’s of difference kernel type 𝒦𝑗 (𝑡, 𝑥) = 𝒦𝑗 (𝑡 − 𝑥) for 

all 𝑗 = 1,2, … ,𝑚. Moreover, take  𝑃𝑖(𝑡) as a power function, say  𝐶𝑖𝑡
ℓ𝑖   , 𝐶𝑖 ∈ ℝ  and ℓ𝑖 be 

any nonnegative integer numbers for all  𝑖. Apply Laplace transform on both sides of 

equation (1):  

ℒ{ 𝐷𝑎
𝐶

𝑡
𝛼𝑛𝑢(𝑡)} +∑ℒ{𝑃𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑛−𝑖𝑢(𝑡)}

𝑛−1

𝑖=1

+ ℒ{𝑃0(𝑡) 𝑢(𝑡 − 𝜏)}

= ℒ{𝑓(𝑡)}

+∑𝜆ℒ { ∫ 𝒦𝑗 (𝑡 − 𝑥)  𝑢(𝑥 − 𝜏𝑗)𝑑𝑥
𝑡

0

}

𝑚

𝑗=1

                                          … (17) 

First, using Caputo fractional differentiation property of Laplace transform (9) with initial 

conditions 𝑢𝑘 = 𝑢
(𝑘)(0), where  𝑚𝛼𝑛 − 1 < 𝛼𝑛 ≤ 𝑚𝛼𝑛, we obtain 

ℒ{ 𝐷𝐶 𝑡
𝛼𝑛𝑢(𝑡)} = 𝑠𝛼𝑛  𝑈(𝑠) − ∑ 𝑠𝛼𝑛−𝑘−1  𝑢𝑘  

𝑚𝛼𝑛−1

𝑘=0

                        … (18) 

Second, for all  𝑖 = 1,2, … . 𝑛 − 1, using equation (6) and then applying equation (9), where 

ℓ𝑖 is the order of  𝑃𝑖(𝑡) for each 𝑖, and  𝑚𝛼𝑛−𝑖
− 1 < 𝛼𝑛−𝑖 ≤ 𝑚𝛼𝑛−𝑖

.  We get: 
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ℒ{𝑃𝑖(𝑡) 𝐷𝐶 𝑡
𝛼𝑛−𝑖𝑢(𝑡)}

= 𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖
(𝑠𝛼𝑛−𝑖  𝑈(𝑠))

− 𝐶𝑖  (−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖
∑ [𝑠𝛼𝑛−𝑖−𝑘−1  𝑢𝑘]

𝑚𝛼𝑛−𝑖
−1

𝑘=0

   … (19) 

Third, using equation (6) and then applying the Lemma (6), using 11 and 12 respectively, 

we obtain: 

ℒ{𝑃0(𝑡)𝑢(𝑡 − 𝜏)} = 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏(𝑈(𝑠) + 𝑄(𝑠, 𝜏))]                 … (20, 𝐴) 

As a special case, where  ℓ0 is the order of  𝑃0(𝑡) and  𝑞  is the order of historical 

polynomial function, 𝜑(𝑡) is   𝑡𝑞 , 𝑞 ∈ ℤ+,we have 

ℒ{𝑃0(𝑡) 𝑢(𝑡 − 𝜏)}

= 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑈(𝑠)] + 𝐶0(−1)

ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[∑(−1)𝑞−𝑝 𝑝! (

𝑞

𝑝
)
𝜏𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

]

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
 [
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏]                                                                                                   … (20, 𝐵) 

Fourth, using the definition of Laplace transformation, we get: 

ℒ{𝑓(𝑡)} = 𝐹(𝑠)                                                                 … (21) 

At last, for all  𝑗 = 1,2, …𝑚   we apply equation (4) with Lemma (6), 11 and 12 respectively 

to obtain:  

ℒ {∫ 𝒦𝑗 (𝑡 − 𝑥)  𝑢(𝑥 − 𝜏𝑗)𝑑𝑥
𝑡

0

} = 𝒦𝑗(𝑠) 𝑒
−𝑠𝜏𝑗 [(𝑈(𝑠) + 𝑄(𝑠, 𝜏𝑗))]      … (22, 𝐴) 

As a special case, where the historical function  𝜑(𝑡) is 𝑡𝑞 , 𝑞 ∈ ℤ+,we have: 

ℒ {∫ 𝒦𝑗 (𝑡 − 𝑥)  𝑢(𝑥 − 𝜏𝑗)𝑑𝑥
𝑡

0

}

= 𝒦𝑗(𝑠) [𝑒
−𝑠𝜏𝑗𝑈(𝑠) +∑(−1)𝑞−𝑝𝑝! (

𝑞

𝑝
)
𝜏𝑗
𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

−
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏𝑗]           … (22, 𝐵) 

Finally, substitution the equations (18,19,20: 𝐴, 21,22: 𝐴) into the equation (17) and after 

some simple manipulations, to get the following formula: 

𝑠𝛼𝑛  𝑈(𝑠) = 𝐹∗(𝑠) + 𝜆∑𝒦𝑗(𝑠) 𝑒
−𝑠𝜏𝑗  

𝑚

𝑗=1

𝑈(𝑠) +𝑊(𝑠, 𝑈(𝑠))                        … (23) 
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Where 

   𝑊(𝑠, 𝑈(𝑠)) = − [∑𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖

𝑛−1

𝑖=1

[𝑠𝛼𝑛−𝑖𝑈(𝑠)]

+ 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑈(𝑠)]]              … (24) 

and 

𝐹∗(𝑠)

= 𝐹(𝑠) + 𝜆∑𝒦𝑗(𝑠) 𝑒
−𝑠𝜏𝑗  𝑄(𝑠, 𝜏𝑗)

𝑚

𝑗=1

+ ∑ 𝑠𝛼𝑛−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−1

𝑘=0

+∑𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖
 [ ∑ 𝑠𝛼𝑛−𝑖−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−𝑖
−1

𝑘=0

]

𝑛−1

𝑖=1

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑄(𝑠, 𝜏)]                                                                             … (25) 

If historical function is power function  𝑡𝑞 , 𝑞 ∈ ℤ+ , putting the equations 

(18,19,20: 𝐵, 21,22: 𝐵) into equation (17), to obtain the following equations (26) instead 

of (25): 

𝐹∗(𝑠) = 𝐹(𝑠) + 𝜆∑𝒦𝑗(𝑠) [∑(−1)𝑞−𝑝 𝑝! (
𝑞

𝑝
)
𝜏𝑗
𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

− 
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏𝑗]

𝑚

𝑗=1

+ ∑ 𝑠𝛼𝑛−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−1

𝑘=0

+∑𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖
 [ ∑ 𝑠𝛼𝑛−𝑖−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−𝑖
−1

𝑘=0

]

𝑛−1

𝑖=1

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[∑(−1)𝑞−𝑝 𝑝!  (

𝑞

𝑝
) 
𝜏𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

− 
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏]                             … (26) 

According to the decomposition method which consists of decomposing the unknown 

function 𝑢(𝑡) into a sum of components defined by the decomposition series 

𝑢(𝑡) = 𝑢0(𝑡) + 𝑢1(𝑡) + ⋯+ 𝑢𝑟(𝑡) + ⋯ =∑𝑢𝑟(𝑡)

∞

𝑟=0

              … (27) 

Taking Laplace transform to each components in equation (27) and letting  𝑈𝑟(𝑠) =
ℒ{𝑢𝑟(𝑡)} , ∀  𝑟 = 0,1, …  . Thus  
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𝑈(𝑠) = 𝑈0(𝑠) + 𝑈1(𝑠) + ⋯+ 𝑈𝑟(𝑠) + ⋯ =∑ 𝑈𝑟(𝑠)

∞

𝑟=0

               … (28) 

After substituting equation (28) with (23) and (24), it leads to the following recursive 

relation: 

 𝑈0(𝑠) =
1

𝜓(𝑠)
𝐹∗(𝑠)                                                                    

 𝑈𝑘+1(𝑠) =
1

𝜓(𝑠)
[𝑊𝑘(𝑠, 𝑈(𝑠)) + 𝜆∑𝒦𝑗 (𝑠) 𝑒

−𝑠𝜏𝑗  𝑈𝑘(𝑠)

𝑚

𝑗=1

]

𝑓𝑜𝑟 𝑘≥0}
 
 

 
 

         … (29) 

𝑊𝑘(𝑠, 𝑈(𝑠)) = − [∑𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖

𝑛−1

𝑖=1

[𝑠𝛼𝑛−𝑖𝑈𝑘(𝑠)]

+ 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑈𝑘(𝑠)]]   … (30) 

If the historical function is any continuous differentiable function  𝜑(𝑡) ,thus 𝐹∗(𝑠) is 

defined in equation (25) and if historical function is power function  𝑡𝑞 , 𝑞 ∈ ℤ+  then 𝐹∗(𝑠) 
is take the formula (26), with  𝜓(𝑠) = 𝑠𝛼𝑛   and applying the inverse Laplace transform to 

equation (29) and putting in the equation (27) gives 𝑢(𝑡) the solution of linear VIFDE-

RD’s of difference kernel. 

 

3.2 Apply the LADM for Solving Linear VIFDE’s of Simple Degenerate Kernel: 

Laplace-Adomian decomposition technique can also be used to solve the VIFDE’s with 

constant multi-time Retarded delays which the kernels are simple degenerate type, formed 

as: 𝒦𝑗(𝑡, 𝑥) = 𝑐𝑗𝑡
𝑘𝑗
1

+ 𝑑𝑗𝑥
𝑘𝑗
2

  for all 𝑘𝑗
1 , 𝑘𝑗

2 ∈ ℤ+ and 𝑐𝑗  ,  𝑑𝑗 ∈  ℝ  for all  𝑗 = 1,2, … ,𝑚. 

Apply Laplace transform on both sides of equation (1):  

ℒ{ 𝐷𝑎
𝐶

𝑡
𝛼𝑛𝑢(𝑡)} +∑ℒ{𝑃𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑛−𝑖𝑢(𝑡)}

𝑛−1

𝑖=1

+ ℒ{𝑃0(𝑡) 𝑢(𝑡 − 𝜏)} 

= ℒ{𝑓(𝑡)} +∑𝜆ℒ { ∫ [𝑐𝑗𝑡
𝑘𝑗
1

+ 𝑑𝑗𝑥
𝑘𝑗
2

]   𝑢(𝑥 − 𝜏𝑗)𝑑𝑥
𝑡

0

}

𝑚

𝑗=1

           … (31) 

Thus, as a same step in section 3.1 we get same equations (17, 18, 19, 20 (A, B) and 21) 

with replacing last equation (22 (A, B)) to the following formulas. Now we apply equation 

(7) with Lemma (5), (equations 11 and 12) respectively, and using Leibniz’s formula for 

higher derivative of multiplication functions [15], then after some manipulating we obtain 

for all  𝑗 = 1,2, … ,𝑚 : 
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ℒ { ∫ [𝑐𝑗𝑡
𝑘𝑗
1

+ 𝑑𝑗𝑥
𝑘𝑗
2

] 𝑢(𝑥 − 𝜏𝑗)𝑑𝑥
𝑡

0

}

=
𝑒−𝑠𝜏𝑗

𝑠
{[𝑐𝑗 (∑𝑟!(

𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

1

𝑠𝑟
𝜏𝑗
𝑘𝑗
1−𝑟)+ 𝑑𝑗𝜏𝑗

𝑘𝑗
2

] + [𝑑𝑗 ∑(−1)𝑟+𝑘𝑗
2

𝜏𝑗
𝑟 (
𝑘𝑗
2

𝑟
)

𝑘𝑗
2−1

𝑟=0

𝑑𝑘𝑗
2−𝑟

𝑑𝑠𝑘𝑗
2−𝑟
]

+ [𝑐𝑗 ∑(−1)𝑟+𝑘𝑗
1

𝑟! (
𝑘𝑗
1

𝑟
)

𝑘𝑗
1−1

𝑟=0

1

𝑠𝑟
( ∑ (−1)𝑝𝜏𝑗

𝑝 (
𝑘𝑗
1 − 𝑟

𝑝
)

𝑘𝑗
1−𝑟−1

𝑝=0

𝑑𝑘𝑗
1−𝑟−𝑝

𝑑𝑠𝑘𝑗
1−𝑟−𝑝

 )]}𝑈(𝑠)

+
1

𝑠
{𝑐𝑗 [∑(−1)𝑟+𝑘𝑗

1

𝑟! (
𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

1

𝑠𝑟
 
𝑑𝑘𝑗

1−𝑟

𝑑𝑠𝑘𝑗
1−𝑟
]

+ 𝑑𝑗 [(−1)
𝑘𝑗
2 𝑑𝑘𝑗

2

𝑑𝑠𝑘𝑗
2]}𝐻𝑗

𝑞(𝑠)                                                                                 … (32) 

Where  

𝐻𝑗
𝑞(𝑠) =

{
 

 
𝑒−𝑠𝜏𝑗𝑄(𝑠, 𝜏𝑗) ;   𝑖𝑓 the (HF) any continuos differentiable function

∑(−1)𝑞−𝑝 𝑝! (
𝑞

𝑝
) 
𝜏𝑗
𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

− 
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏𝑗      ;                𝑖𝑓   𝜑(𝑡) = 𝑡𝑞

 

and   

   𝑄(𝑠, 𝜏𝑗) = ∫ 𝑒−𝑠𝑥𝜑(𝑥)𝑑𝑥
0

−𝜏𝑗

    

Finally, substitution the equations (18,19,20: 𝐴, 21,32) into the equation (31) and after 

some simple manipulations, we get the following formula: 

𝑠𝛼𝑛  𝑈(𝑠) = 𝐹∗(𝑠) +𝑊(𝑠, 𝑈(𝑠))

+ 𝜆∑
𝑒−𝑠𝜏𝑗

𝑠
[𝑐𝑗 (∑𝑟!(

𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

𝜏𝑗
𝑘𝑗
1−𝑟

𝑠𝑟
)

𝑚

𝑗=1

+ 𝑑𝑗𝜏𝑗
𝑘𝑗
2

] 𝑈(𝑠)                                   … (33) 

Where 
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𝑊(𝑠, 𝑈(𝑠))

= 𝜆∑
𝑒−𝑠𝜏𝑗

𝑠
{[𝑐𝑗 ∑(−1)𝑟+𝑘𝑗

1

𝑟! (
𝑘𝑗
1

𝑟
)

𝑘𝑗
1−1

𝑟=0

1

𝑠𝑟
( ∑ (−1)𝑝𝜏𝑗

𝑝 (
𝑘𝑗
1 − 𝑟

𝑝
)

𝑘𝑗
1−𝑟−1

𝑝=0

𝑑𝑘𝑗
1−𝑟−𝑝

𝑑𝑠𝑘𝑗
1−𝑟−𝑝

 )]

𝑚

𝑗=1

+ [𝑑𝑗 ∑(−1)𝑟+𝑘𝑗
2

𝜏𝑗
𝑟 (
𝑘𝑗
2

𝑟
)

𝑘𝑗
2−1

𝑟=0

𝑑𝑘𝑗
2−𝑟

𝑑𝑠𝑘𝑗
2−𝑟
]}𝑈(𝑠) −∑𝐶𝑖(−1)

ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖

𝑛−1

𝑖=1

[𝑠𝛼𝑛−𝑖𝑈(𝑠)]

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑈(𝑠)]                                                                                                             … (34) 

If the historical function is any continuous differentiable function  𝜑(𝑡) ,thus: 

𝐹∗(𝑠)
= 𝐹(𝑠)

+ 𝜆∑
1

𝑠
{𝑐𝑗 [∑(−1)𝑟+𝑘𝑗

1

𝑟! (
𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

1

𝑠𝑟
 
𝑑𝑘𝑗

1−𝑟

𝑑𝑠𝑘𝑗
1−𝑟
] + 𝑑𝑗 [(−1)

𝑘𝑗
2 𝑑𝑘𝑗

2

𝑑𝑠𝑘𝑗
2]} 𝑒

−𝑠𝜏𝑗𝑄(𝑠, 𝜏𝑗)

𝑚

𝑗=1

+ ∑ 𝑠𝛼𝑛−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−1

𝑘=0

+∑𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖
 [ ∑ 𝑠𝛼𝑛−𝑖−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−𝑖
−1

𝑘=0

]

𝑛−1

𝑖=1

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑄(𝑠, 𝜏)]                                                                              … (35) 

If the historical function is  𝜑(𝑡) = 𝑡𝑞 , 𝑞 ∈ ℤ+ thus: 

𝐹∗(𝑠) = 𝐹(𝑠) + 𝜆∑
1

𝑠
{𝑐𝑗 [∑(−1)𝑟+𝑘𝑗

1

𝑟! (
𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

1

𝑠𝑟
 
𝑑𝑘𝑗

1−𝑟

𝑑𝑠𝑘𝑗
1−𝑟
]

𝑚

𝑗=1

+ 𝑑𝑗 [(−1)
𝑘𝑗
2 𝑑𝑘𝑗

2

𝑑𝑠𝑘𝑗
2]} [∑(

𝑞

𝑝
) (−1)𝑞−𝑝 𝑝!   

𝜏𝑗
𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

−
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏𝑗]

+ ∑ 𝑠𝛼𝑛−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−1

𝑘=0

+∑𝐶𝑖(−1)
ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖
 [ ∑ 𝑠𝛼𝑛−𝑖−𝑘−1  𝑢𝑘

𝑚𝛼𝑛−𝑖
−1

𝑘=0

]

𝑛−1

𝑖=1

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
 [∑ (

𝑞

𝑝
) (−1)𝑞−𝑝 𝑝!   

𝜏𝑞−𝑝

𝑠𝑝+1

𝑞

𝑝=0

−
𝑞!

𝑠𝑞+1
𝑒−𝑠𝜏]                          … (36) 
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After substitution equation where (33) and (34) into (28), then the following recursive 

relation is: 

 

 𝑈0(𝑠) =
1

𝜓(𝑠)
𝐹∗(𝑠) 

                                                                                                                                         

𝑈𝑘+1(𝑠) =
1

𝜓(𝑠)
{𝑊𝑘(𝑠, 𝑈(𝑠)) + 𝜆∑

𝑒−𝑠𝜏𝑗

𝑠
[𝑐𝑗 (∑𝑟!(

𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

𝜏𝑗
𝑘𝑗
1−𝑟

𝑠𝑟
)+ 𝑑𝑗𝜏𝑗

𝑘𝑗
2

]

𝑚

𝑗=1

𝑈𝑘(𝑠)} 

                                                                                                                                           𝑓𝑜𝑟  𝑘 ≥ 0 }
 
 

 
 

 

     … (37) 
where 

𝑊𝑘(𝑠, 𝑈(𝑠))

= 𝜆∑
𝑒−𝑠𝜏𝑗

𝑠
{[𝑐𝑗 ∑(−1)𝑟+𝑘𝑗

1

𝑟! (
𝑘𝑗
1

𝑟
)

𝑘𝑗
1−1

𝑟=0

1

𝑠𝑟
( ∑ (−1)𝑝𝜏𝑗

𝑝 (
𝑘𝑗
1 − 𝑟

𝑝
)

𝑘𝑗
1−𝑟−1

𝑝=0

𝑑𝑘𝑗
1−𝑟−𝑝

𝑑𝑠𝑘𝑗
1−𝑟−𝑝

 )]   

𝑚

𝑗=1

+ [𝑑𝑗 ∑(−1)𝑟+𝑘𝑗
2

𝜏𝑗
𝑟 (
𝑘𝑗
2

𝑟
)

𝑘𝑗
2−1

𝑟=0

𝑑𝑘𝑗
2−𝑟

𝑑𝑠𝑘𝑗
2−𝑟
]}𝑈𝑘(𝑠) −∑𝐶𝑖(−1)

ℓ𝑖
𝑑ℓ𝑖

𝑑𝑠ℓ𝑖

𝑛−1

𝑖=1

[𝑠𝛼𝑛−𝑖𝑈𝑘(𝑠)]

− 𝐶0(−1)
ℓ0
𝑑ℓ0

𝑑𝑠ℓ0
[𝑒−𝑠𝜏𝑈𝑘(𝑠)]                                                                                                             … (38) 

If the historical function is any continuous differentiable function  𝜑(𝑡) ,then 𝐹∗(𝑠) is 

defined in equation (35) and if historical function is power function  𝑡𝑞 , 𝑞 ∈ ℤ+  then 𝐹∗(𝑠) 
is take the formula (36), with  𝜓(𝑠) = 𝑠𝛼𝑛   with applying the inverse Laplace transform to 

equation (37) and substitution in the equation (27) gives 𝑢(𝑡) the solution of linear VIFDE-

RD’s of simple degenerate kernel. 

3.3 Apply the Modify LADM for Solving Linear VIFDE-RD’s: 

Wazwaz [3] has been developed the Adomian decomposition method and this change 

minimizes the step size of calculation with effectiveness if comparing together.  To apply 

this modification, assume that the function  𝑓(𝑡) can be divided into the sum of two parts, 

namely 𝑓1(𝑡) and 𝑓2(𝑡) , therefore, we set 

𝑓(𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡)                                                     … (39) 

In view of (39), we introduce a qualitative change in the formation of the recurrence 

relations: (29) of difference kernel and (37) of simple degenerate kernel. To minimize the 

step-size of calculations, we identify the zeros component  𝑈0(𝑠) by one part of  𝐹(𝑠) , 
namely,  𝐹1(𝑠) or 𝐹2(𝑠) which is the Laplace transform of  𝑓1(𝑡) or 𝑓2(𝑡) , respectively. 

The other part  𝐹(𝑠) can be added to the component 𝑈1(𝑠) among the other terms.  

For Difference kernel the equations (29 and 30) with equations (25 and 26) the modified 

recurrence relations are: 
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 𝑈0(𝑠) =
1

𝜓(𝑠)
𝐹1
∗(𝑠)                                                                                              

 𝑈1(𝑠) =
𝐹2
∗(𝑠)

𝜓(𝑠)
+

1

𝜓(𝑠)
{𝑊0(𝑠, 𝑈(𝑠)) + 𝜆∑𝒦𝑗 (𝑠) 𝑒

−𝑠𝜏𝑗  𝑈0(𝑠)

𝑚

𝑗=1

}            

 𝑈𝑘+1(𝑠) =
1

𝜓(𝑠)
{𝑊𝑘(𝑠, 𝑈(𝑠)) + 𝜆∑𝒦𝑗 (𝑠) 𝑒

−𝑠𝜏𝑗  𝑈𝑘(𝑠)

𝑚

𝑗=1

}𝑓𝑜𝑟 𝑘 ≥ 1   

                 }
 
 
 
 

 
 
 
 

…     (40) 

Where  𝜓(𝑠) = 𝑠𝛼𝑛  ,  𝑊𝑘(𝑠, 𝑈(𝑠))  is defined in equation (30) and 𝐹1
∗(𝑠) is formed as in 

equation (25) or (26) except at the first part  𝐹(𝑠), changing it to 𝐹1
∗(𝑠) = ℒ{𝑓1(𝑡)} while 

 𝐹2
∗(𝑠) = ℒ{𝑓2(𝑡)} . 

For Simple Degenerate kernel the equations (37 and 38) with equations (35 and 36) the 

modified recurrence relations are: 

 𝑈0(𝑠) =
1

𝜓(𝑠)
𝐹1
∗(𝑠)                                                                                                                                        

 𝑈1(𝑠) =
𝐹2
∗(𝑠)

𝜓(𝑠)
+

1

𝜓(𝑠)
{𝑊0(𝑠, 𝑈(𝑠)) + 𝜆∑

𝑒−𝑠𝜏𝑗

𝑠
[𝑐𝑗 (∑𝑟!(

𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

𝜏𝑗
𝑘𝑗
1−𝑟

𝑠𝑟
)+ 𝑑𝑗𝜏𝑗

𝑘𝑗
2

]

𝑚

𝑗=1

𝑈0(𝑠)} 

 𝑈𝑘+1(𝑠) =
1

𝜓(𝑠)
{𝑊𝑘(𝑠, 𝑈(𝑠)) + 𝜆∑

𝑒−𝑠𝜏𝑗

𝑠
[𝑐𝑗 (∑𝑟!(

𝑘𝑗
1

𝑟
)

𝑘𝑗
1

𝑟=0

𝜏𝑗
𝑘𝑗
1−𝑟

𝑠𝑟
)+ 𝑑𝑗𝜏𝑗

𝑘𝑗
2

]

𝑚

𝑗=1

𝑈𝑘(𝑠)}𝑘 ≥ 1

                                                                                                                                                                      … (41)}
 
 
 
 
 

 
 
 
 
 

 

Where  𝜓(𝑠) = 𝑠𝛼𝑛  ,  𝑊𝑘(𝑠, 𝑈(𝑠))  is defined in equation (38) and 𝐹1
∗(𝑠) is formed as in 

equation (35 or 36) except at the first part  𝐹(𝑠) , changing it to 𝐹1
∗(𝑠) = ℒ{𝑓1(𝑡)} ,while 

 𝐹2
∗(𝑠) = ℒ{𝑓2(𝑡)} . 

 

4. Analytic Examples: 
 Here, some example of Linear VIFDE’s with constant multi-time Retarded delay which 

solved by Laplace-Adomian decomposition and Modify Laplace-Adomian decomposition 

methods. 

Example (1): Consider the Linear VIFDE’s with variable coefficients of constant multi-

time R-D with difference kernel type:  

𝐷𝑡
0.3𝑢(𝑡)0

𝐶 − 𝑡𝑢(𝑡 − 0.3) = 𝑓(𝑡) + ∫ [(𝑡 − 𝑥)2𝑢(𝑥 − 0.5) + 2(𝑡 − 𝑥)𝑢(𝑥 − 0.3)]𝑑𝑥
𝑡

0
 

where 



 
Journal of University of Babylon for Pure and Applied Sciences, Vol. (27), No. (5): 2019 

 

48 

 

 𝑓(𝑡) =
6

Γ(3.7)
𝑡2.7 −

1

60
𝑡6 −

1

20
𝑡5 −

73

80
𝑡4 +

511

600
𝑡3 −

243

1000
𝑡2 +

27

1000
𝑡 

with initial condition 𝑢(0) = 0 and historical function 𝜑(𝑡) = 𝑡3 .  

Since here we have: 𝒦1(𝑡, 𝑥) = (𝑡 − 𝑥)
2    ;       𝒦2(𝑡, 𝑥) = 2(𝑡 − 𝑥) with constant time-

delays  𝜏 = 𝜏0 = 0.3  , 𝜏1 = 0.5  , 𝜏2 = 0.3  and  𝑞 = 3 . Also we can putting 𝛼1 =
0.3  ;   𝑚𝛼1 = 1  ;   𝑃0(𝑡) = −𝑡 ;   ℓ0 = 1 ;  𝐶0 = −1. So the Laplace transforms of kernels 

are given 

 ℒ{𝒦1(𝑡)} =
2

𝑠3
     ;     ℒ{𝒦2(𝑡)} =

2

𝑠2
 

Equation (26) yields:  

𝐹∗(𝑠) =
6

𝑠3.7
−
12

𝑠7
𝑒−0.5𝑠 −

12

 𝑠6
𝑒−0.3𝑠 −

24

𝑠5
𝑒−0.3𝑠 −

1.8

𝑠4
𝑒−0.3𝑠 

with 𝜓(𝑠) = 𝑠0.3 , using the first part recursive relation (29) we obtain: 

𝑈0(𝑠) =
6

𝑠4
−
12

𝑠7.3
𝑒−0.5𝑠 −

12

 𝑠6.3
𝑒−0.3𝑠 −

24

𝑠5.3
𝑒−0.3𝑠 −

1.8

𝑠4.3
𝑒−0.3𝑠              

for 𝑘 = 0 and using equation (30), we have: 

𝑊0(𝑠, 𝑈(𝑠)) = 0.3𝑒
−0.3𝑠𝑈0(𝑠) − 𝑒

−0.3𝑠
𝑑

𝑑𝑠
𝑈0(𝑠) 

Applying the second part recursive relation (29) with 𝑘 = 0, we get: 

 𝑈1(𝑠) =
1

𝜓(𝑠)
[𝑊0(𝑠, 𝑈(𝑠)) +∑𝒦𝑗 (𝑠) 𝑒

−𝑠𝜏𝑗  𝑈0(𝑠)

2

𝑗=1

]  

=
12

𝑠7.3
𝑒−0.5𝑠 +

12

 𝑠6.3
𝑒−0.3𝑠 +

24

𝑠5.3
𝑒−0.3𝑠 +

1.8

𝑠4.3
𝑒−0.3𝑠 −

138

 𝑠6.6
𝑒−0.6𝑠

−
22.14

 𝑠5.6
𝑒−0.6𝑠 −

13.2

 𝑠7.3
𝑒−0.8𝑠 −

1.08

 𝑠4.6
𝑒−0.6𝑠 −

123.6

 𝑠7.6
𝑒−0.6𝑠 −

48

 𝑠9.6
𝑒−0.8𝑠

−
135.6

 𝑠8.6
𝑒−0.8𝑠 −

24

 𝑠10.6
𝑒−𝑠 −

24

 𝑠8.6
𝑒−0.6𝑠 

We see that the phenomena of the self-canceling “noise” term, [3,8], 

±
12

𝑠7.3
𝑒−0.5𝑠;  ±

12

 𝑠6.3
𝑒−0.3𝑠;  ±

24

𝑠5.3
𝑒−0.3𝑠  and ±

1.8

𝑠4.3
𝑒−0.3𝑠  appear in 𝑈0(𝑠) and  𝑈1(𝑠) , 

cancelling this terms from the zeroth Laplace component 𝑈0(𝑡), thus 𝑈0(𝑠) =
6

𝑠4
, and 

taking the inverse of Laplace transform of it gives the exact solution 𝑢(𝑡) = ℒ−1{𝑈(𝑠)} =
𝑡3  that satisfies with the equation. 

Example (2): Consider the Linear VIFDE’s with variable coefficients of constant multi-

time Retarded delays with simple degenerate kernel,  𝒦(𝑡, 𝑥) = (2𝑡 + 𝑥) and constant 

coefficients 

𝐷𝑡
0.8𝑢(𝑡)0

𝐶 + 2𝑢(𝑡 − 1) = 𝑓(𝑡) + ∫ (2𝑡 + 𝑥)𝑢(𝑥 − 0.5) 𝑑𝑥
𝑡

0
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where 

𝑓(𝑡) =
−6

Γ(2.2)
𝑡1.2 +

11

4
𝑡4 − 4𝑡3 −

33

8
𝑡2 + 12 𝑡 − 6  

with initial condition and historical function:  𝑢(0) = 0  and 𝜑(𝑡) = −3𝑡2, respectably. 

Since here we have only one kernel: 𝒦1(𝑡, 𝑥) = 2𝑡 + 𝑥  that is simple degenerate type      

𝑚 = 1 and  𝑘1
1 = 𝑘1

2 = 1; 𝑐1 = 2, 𝑑1 = 1, with constant time-delays 𝜏 = 𝜏0 = 1  , 𝜏1 =
0.5 and  𝑃0(𝑡) = 2 so ℓ0 = 0;  𝐶0 = 2. Also, since 𝛼1 = 0.8; 𝑚𝛼1 = 1 . From equation 

(36) we yield:  

𝐹∗(𝑠) =
−6

𝑠2.2
+
66

𝑠5
𝑒−0.5𝑠 +

9

 𝑠4
𝑒−0.5𝑠 −

12

𝑠3
𝑒−𝑠   

with 𝜓(𝑠) = 𝑠0.3 , using the first part recursive relation (37) we obtain: 

𝑈0(𝑠) =
−6

𝑠3
+
66

𝑠5.8
𝑒−0.5𝑠 +

9

 𝑠4.8
𝑒−0.5𝑠 −

12

𝑠3.8
𝑒−𝑠 

for 𝑘 = 0 and using equation (38), we have: 

𝑊0(𝑠, 𝑈(𝑠)) = −
3

𝑠
𝑒−0.5𝑠

𝑑2

𝑑𝑠2
𝑈0(𝑠) − 2𝑒

−𝑠𝑈0(𝑠)   

By applying the second part recursive relation (29) with 𝑘 = 0, we get: 

𝑈1(𝑠) =
1

𝜓(𝑠)
{𝑊0(𝑠, 𝑈(𝑠)) +

𝑒−𝑠𝜏1

𝑠
[𝑐1(∑𝑟! (

𝑘1
1

𝑟
)

𝑘1
1

𝑟=0

𝜏1
𝑘1
1−𝑟

𝑠𝑟
)+ 𝑑1𝜏1

𝑘1
2
] 𝑈0(𝑠)}

=
−66

𝑠5.8
𝑒−0.5𝑠 −

9

 𝑠4.8
𝑒−0.5𝑠 +

12

𝑠3.8
𝑒−𝑠 −⋯ 

We see that the phenomena of the self-canceling “noise” term, [5,7], 

±
66

𝑠5.8
𝑒−0.5𝑠; ±

9

 𝑠4.8
𝑒−0.5𝑠 and  ±

12

𝑠3.8
𝑒−𝑠  appear in 𝑈0(𝑠) and  𝑈1(𝑠) , Cancelling this 

terms from the zeroth Laplace component 𝑈0(𝑡), and taking the inverse of Laplace 

transform of it, gives the exact solution  𝑢(𝑡) = ℒ−1{𝑈(𝑠)} = −3𝑡2  that satisfies the 

equation. 

Example (3): Consider the Linear VIFDE’s with variable coefficients of constant multi-

time Retarded delays with difference kernel type: 

𝐷𝑡
1.2𝑢(𝑡)0

𝐶 − 3𝑡 𝐷𝑡
0.4𝑢(𝑡)0

𝐶 +
1

2
𝑢(𝑡 − 0.6)

= 𝑓(𝑡) + ∫[𝑒𝑡−𝑥𝑢(𝑥 − 0.1) − (𝑡 − 𝑥)2𝑢(𝑥 − 0.7)] 𝑑𝑥

𝑡

0

  

where: 
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𝑓(𝑡) =
2

3𝛤(1.8)
𝑡0.8 −

2

𝛤(2.6)
𝑡2.6 +

119

300
𝑒𝑡 +

1

90
𝑡5 −

7

180
𝑡4 −

251

900
𝑡3 +

1

2
𝑡2 +

2

5
𝑡

−
251

300
 

With initial condition: 𝑢(0) = −1;  𝑢′(0) = 0  and initial function: 𝜑(𝑡) =
1

3
𝑡2 − 1 .  

Now, from the above problem we have:    𝒦1(𝑡, 𝑥) = 𝑒
𝑡−𝑥    ;      𝒦2(𝑡, 𝑥) =

−(𝑡 − 𝑥)2 

with constant time-lags 𝜏 = 𝜏0 = 0.6 , 𝜏1 = 0.1 , 𝜏2 = 0.7  and  𝑃1(𝑡) = −3𝑡 ; and 

𝑃0(𝑡) = 1/2  that is  ℓ1 = 1, 𝐶1 = −3 ;   ℓ0 = 0 , 𝐶0 = 1/2 . Also, since   𝛼2 = 1.2  ,
𝑚𝛼2 = 2 ;  𝛼1 = 0.4 , 𝑚𝛼1 = 1 . So the Laplace transform of kernels are formed  

  

  ℒ{𝒦1(𝑡)} =
1

𝑠 − 1
     ;    ℒ{𝒦2(𝑡)} = −

2

𝑠3
 

Applying equation (33) to obtain 𝐹∗(𝑠) and after some simple manipulations we can form: 

𝐹∗(𝑠) =
2

3𝑠1.8
− 𝑠0.2 +

1.8

𝑠1.6
−
5.2

𝑠3.6
−

2

3𝑠3(𝑠 − 1)
𝑒−0.1𝑠 +

1

𝑠(𝑠 − 1)
𝑒−0.1𝑠 +

4

3𝑠6
𝑒−0.7𝑠

−
2

𝑠4
𝑒−0.7𝑠 +

1

3𝑠3
𝑒−0.6𝑠 −

1

2𝑠
𝑒−0.6𝑠 

To apply modify Laplace-Adomian decomposition method for difference kernel type we 

first split 𝐹∗(𝑠) into two parts, namely: 

𝐹1
∗(𝑠) =

2

3𝑠1.8
− 𝑠0.2                                                                                                                    

𝐹2
∗(𝑠) =

1.8

𝑠1.6
−
5.2

𝑠3.6
−

2  𝑒−0.1𝑠

3𝑠3(𝑠 − 1)
+

 𝑒−0.1𝑠

𝑠(𝑠 − 1)
+
4 𝑒−0.7𝑠

3𝑠6
−
2𝑒−0.7𝑠

𝑠4
+
𝑒−0.6𝑠

3𝑠3
−
𝑒−0.6𝑠

2𝑠                                

 

with 𝜓(𝑠) = 𝑠1.2 using the first part recursive relation (40) we obtain: 

𝑈0(𝑠) =
1

𝜓(𝑠)
𝐹1
∗(𝑠) =

2

3𝑠3
−
1

𝑠
 

and from equation (30) yields: 

𝑊0(𝑠, 𝑈(𝑠)) = −3𝑒
−0.4𝑠

𝑑

𝑑𝑠
𝑈0(𝑠) − 1.2 𝑠

−0.6𝑈0(𝑠) −
1

2
 𝑒−0.6𝑠𝑈0(𝑠) 

Applying the second part recursive relation (40), we get: 𝑈1(𝑠) = 0. Using the third part 

recursive relation (40), we obtain: 

𝑈𝑘+1(𝑠) = 0, for all  𝑘 ≥ 1 

It is obvious that each component of  𝑢𝑟 , 𝑟 ≥ 1 is zero. The solution is: 

𝑢(𝑡) = ℒ−1{𝑈(𝑠)} =
1

3
𝑡2 − 1 
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Example (4): Consider the Linear VIFDE’s with variable coefficients of constant multi-

time Retarded delays with degenerate kernel, 𝒦(𝑡, 𝑥) = −5𝑡2 +
1

5
𝑥 , and variable 

coefficients on [0, 1]: 

𝐷𝑡
0.6𝑢(𝑡)0

𝐶 −
𝑡

2
𝐷𝑡
0.3𝑢(𝑡)0

𝐶 + 𝑢(𝑡 − 0.7) = 𝑓(𝑡) + ∫ (−5𝑡2 +
1

5
𝑥) 𝑢(𝑥 − 3)𝑑𝑥

𝑡

0
 

where  

𝑓(𝑡) =
2

𝛤(2.4)
𝑡1.4 −

1

𝛤(2.7)
𝑡2.7 +

5

3
𝑡5 −

301

20
𝑡4 +

252

5
𝑡3 −

7

5
 𝑡 +

149

100
     

With initial condition and initial function:  𝑢(0) = 1 and  𝜑(𝑡) = 1 + 𝑡2, respectively. 

Since with constant time-lags 𝜏 = 𝜏0 = 0.7 , 𝜏1 = 3  and  𝑃1(𝑡) = −
1

2
 𝑡 ; and 𝑃0(𝑡) = 1  

that is  ℓ1 = 1, 𝐶1 = −
1

2
 ;   ℓ0 = 0 , 𝐶0 = 1. Also, since 𝛼2 = 0.6, 𝑚𝛼2 = 1; 𝛼1 = 0.3,

𝑚𝛼1 = 1. Furthermore, 𝒦(𝑡, 𝑥) = −5𝑡2 +
1

5
𝑥  that is simple degenerate type 𝑚 =

1 and  𝑘1
1 = 2, 𝑘1

2 = 1; 𝑐1 = −5 , 𝑑1 =
1

5
 .  From equation (36) we yield:  

𝐹∗(𝑠) =
2

𝑠2.4
−
2.7

𝑠3.7
+ 𝑠−0.4 − 0.35𝑠0.3 +

44.4

𝑠2
𝑒−3𝑠 +

59.8

𝑠3
𝑒−3𝑠 +

118.8

𝑠4
𝑒−3𝑠

+
238.8

𝑠5
𝑒−3𝑠 +

200

𝑠6
𝑒−3𝑠 +

2

𝑠3
𝑒−0.7𝑠 +

𝑒−0.7𝑠

𝑠
 

To apply MLAD method for simple degenerate kernel type we first split 𝐹∗(𝑠) into two 

parts, namely: 

𝐹1
∗(𝑠) =

2

𝑠2.4
+ 𝑠−0.4                                                                                                         

𝐹2
∗(𝑠) =

−2.7

𝑠3.7
− 0.35𝑠0.3 +

44.4𝑒−3𝑠

𝑠2
+
59.8𝑒−3𝑠

𝑠3
+
118.8𝑒−3𝑠

𝑠4
+
238.8 𝑒−3𝑠

𝑠5
  

                             +
200 𝑒−3𝑠

𝑠6
+
2𝑒−0.7𝑠

𝑠3
+
𝑒−0.7𝑠

𝑠
  

 

with  𝜓(𝑠) = 𝑠0.6 , using the first part recursive relation (41) we obtain: 

𝑈0(𝑠) =
1

𝜓(𝑠)
𝐹1
∗(𝑠) =

1

𝑠
+
2

𝑠3
 

And equation (38) yields: 

𝑊0(𝑠, 𝑈(𝑠)) = [
−0.15

𝑠0.7
− 𝑒−0.7𝑠] 𝑈0(𝑠) + [

10𝑒−3𝑠

𝑠2
−
𝑠0.3

2
+
29.8𝑒−3𝑠

𝑠
]𝑈0

′(𝑠)

− [
5𝑒−3𝑠

𝑠
]𝑈0

′′(𝑠) 

 Applying the second part recursive relation (40), we get: 𝑈1(𝑠) = 0. Using the third part 

recursive relation (41), we obtain: 

𝑈𝑘+1(𝑠) = 0, for all  𝑘 ≥ 1 
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It is obvious that each component of  𝑢𝑟 , 𝑟 ≥ 1 is zero. The solution is: 

𝑢(𝑡) = ℒ−1{𝑈(𝑠)} = 1 + 𝑡2 

4. Discussion 
In this paper, through the Laplace-Adomian decomposition (LAD) and modify Laplace-

Adomian decomposition (MLAD) methods for solving linear Volterra integro-fractional 

differential equations of constant multi-time Retarded-delay type with variable coefficients 

has been successfully applied to finding the approximate solution. The results pointed the 

following:  

1. In general, this technique in finding analytical solutions for this wide classes of 

linear VIFDE’s-RD which was improved provides good results and effectiveness. 

2. The Laplace-Adomian decomposition and modify Laplace-Adomian 

decomposition methods were applied for difference kernel and simple degenerate 

kernel in general cases and MLAD method provides more realistic series solutions 

that converge very rapidly than LAD method. 

3. Sometimes the process of finding Laplace-Adomian decomposition method is not 

easy, so we use the Modifications. 
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 الخلاصة
للمرة الاولى لحل  في هذا العمل نقدم تحويلات لابلاس مع طريقة أدوميان التحليلية المتسلسلة و كما اننا نعدل طريقة أدوميان التحليلية     

د التكاملية الخطيه للرتب الكسرية كما في مفهوم كابوتو مع التأخير الحدي المتضاعف الثابت. هذه الطريقة تعتم-معادلات فولتيرا التفاضلية
على مزيج ممتاز من طريقة تحويلات لابلاس، طريقة تحديد المتسلسلات، طريقة متعددات الحدود لادوميان مع التعديلات. أن التقنية 
 المستخدمة تحول التأخير الحدي للمعادلات التفاضلية ذات التكاملات الكسرية الى معادلات جبرية متكررة عندما تكون نواة الفروق من نوع

 بسيط. و أخيراَ أعطيت أمثلة لتوضيح فعالية و ديقة الطرق المقترحة.المنحل ال
 

التكاملية -مفهوم كابوتو ذات الرتب الكسرية، التأخير الحدي للمعادلات التفاضلية، تحويلات لابلاس، معادلات فولتيرا التفاضلية الدالة: الكلمات
 الخطيه ، طريقة متعددات الحدود لادوميان مع التعديلات


