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Abstract 
In this paper, the dynamics of scavenger species  in a web food model  incorporating time delay and  

prey harvesting  is formulated mathematically. Boundednes of all  solutions of the model carried out. The 

existence as well as stability analysis of all possible positive equilibrium points are discussed. Also, we 

proved that under certain time delay, our model exhibits a subcritical Hopfbifurcation. Furthermore, to 

confirm our analytical finding, we studied numerical simulation for the model.  
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1. Introduction  

      After the pioneering works of Lotka and Voltera[1],[18] for per-predator interactions, 

predator prey models have been important in mathematical ecology and were studied 

extensively [3],[16]. In the last decades the classical model of Lotka and Voltera is 

modified by many researchers [7]. In 1963, M. Rosenzweig and R. MacArthur, considered 

a modification model of lotka voltera model; they replaced the exponential growth by the 

logistic growth because of limit source for prey and they replaced the functional responses 

of Hollying type I by functional responses of Hollying type II which has been presented by 

Hollying [8], [9]. Also, many researchers considered the prey predator model incorporated 

by the effect of spreading disease on species [2],[6],[10-12], and [19], time delay [13], prey 

refuge [14-15], and herding behavior of prey [17]. On the other hand, in many articles, 

there is an extension of simple prey predator model to food chain model [9], and food web 

[6]. However, till now, there is no mathematical model for the receiving benefit from prey 

predator interaction by a scavenger. The scavenger species usually consume animals that 

have either died of natural causes or been killed by another. Therefore, in this paper we 

model the benefit dynamics of a scavenger from natural death of prey and a parts of bodies 

of predated prey that is not eaten by predators. Our model incorporates time delay and 

harvesting factor on prey. Our work is structured as follows: in section two, we have 

discussed the details of the assumption in the model, the significance of parameters used 

in it and proof of its boundedness. In section three, all possible positive equilibrium points 

and criteria for stability are discussed, and Hopf bifurcation is also studied. In section four, 
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we study numerical simulation for our analytical finding using Euler ‘method with help of 

MATLAB. Finally, in section five, we discussed significance of the analytical result and 

the numerical simulation. 

 

2. Model formulation 
Consider an ecological model consisting of a prey, predator and scavenger species, 

with the following assumption. 

 

1. The prey species increases due to birth with birth rate b and the prey species 

decreases due to natural death with death rate  𝑑1, intraspecific competition with 

completion rate 𝑐1, harevesting with harvesting rate  ℎ and predation by predators. 

2. Increasing the predator species density is dependent on predation of the prey 

species according to the Holing type II functional responses, and the predator 

species decreases due to natural death with death rate 𝑑2  and the intraspecific 

competition with competition rate 𝑐2 . 

3. Increasing the Scavenger species density dependent on eating death prey and a part 

of bodies of predated prey that does not eaten by predators and they decreases due 

to natural death with death rate 𝑑3 and intra specific competition with competition 

rate 𝑐3. 

4. At time 𝑡, 𝑥(𝑡) , 𝑦(𝑡) and 𝑧(𝑡) are prey density, predator species and scavenger 

species repectivly 

 

Then the dynamics of such model can be represented in the following set of nonlinear 

differential equations  
𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑐1𝑥

2 − (𝑑1 + ℎ)𝑥 −
𝛼𝑥𝑦

1 + 𝛼𝑇ℎ𝑥
 

                                    
𝑑𝑦

𝑑𝑡
=

𝑒1𝛼𝑥(𝑡−𝜏1)𝑦

1+𝛼𝑇ℎ𝑥(𝑡−𝜏1)
− 𝑐2𝑦

2 − 𝑑2𝑦                             (1) 

                                   
𝑑𝑧

𝑑𝑡
= 𝑒2𝑑1𝑥(𝑡 − 𝜏2)𝑧 +

𝑒3𝛼𝑥(𝑡−𝜏2)𝑦(𝑡−𝜏2)

1+𝛼𝑇ℎ𝑥(𝑡−𝜏2)
𝑧 − 𝑐3𝑧

2 − 𝑑3𝑧 

 

Here, all the parameters are assumed to be positive. Moreover,  the parameter 𝛼 

repersented the predation rate; 𝛼 is the search efficiency of the predator to prey 𝑇ℎ is the 

average handling time for each prey; 𝜏1 is the time-lag from predation of prey to convert it 

in to predator biomass; 𝜏2 is the time- lag from eating the dead prey or  predated prey  by 

predator to converted it in to scavenger biomass; 𝑒1 is the biomass conversation rate of 

prey population to predator population; 𝑒2 and 𝑒3 are  biomass conversation rate of natural 

death of prey and predated prey by predator. obviously, the right side of the system (1) are 

continuous and have continuous partial derivatives on the state space 𝑅+
3 , therfor they are 

Lipschizian function on 𝑅+
3and then the solution of the system (1) which initiate in non-

negative octant  are positive and uniformly bounded  as shown in the following theorems. 

 

Theorem 1.  All solution of the system (1) that initiate with positive values are positive 

and uniformly bounded if the following condition holds. 

                 𝑑3 < 2 ∗ 𝑚𝑖𝑛 {(
𝑒2𝑑1(𝑏−𝑑1−ℎ)

𝑐1
) ,
𝑒3(𝑒1−𝑇ℎ𝑑2)

𝑐2𝑇ℎ
2 }                                         (2) 
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Proof.  It is easy to prove that all solution that initiate with positive initial value, remain 

positive, therefore the proof is omitted. From the first equation of the system (1), it is 

obtained that  
𝑑𝑥

𝑑𝑡
≤ (𝑏 − 𝑑1 − ℎ)𝑥 − 𝑐1𝑥

2 

It is clear from the condition given by in (2),    𝑏 − 𝑑1 − ℎ > 0. 

Therefore, we get    lim
𝑡→∞

𝑆𝑢𝑝(𝑥(𝑡)) ≤
𝑏−𝑑1−ℎ

𝑐1
, and from the second equation of the system 

(1), it is obtained that 
𝑑𝑦

𝑑𝑡
≤ (

𝑒1
𝑇ℎ
− 𝑑2) 𝑦 − 𝑐2𝑦

2 

the condition given by in (2), guarantees that   𝑒1 − 𝑇ℎ𝑑2 > 0, 

So, we get     lim
𝑡→∞

𝑆𝑢𝑝(𝑦(𝑡)) ≤
𝑒1−𝑇ℎ𝑑2

𝑐2𝑇ℎ
. Finaly from third equation of the system (1), we 

have 

𝑑𝑧

𝑑𝑡
= (

𝑒2𝑑1(𝑏 − 𝑑1 − ℎ)

𝑐1
+
𝑒3(𝑒1 − 𝑇ℎ𝑑2)

𝑐2𝑇ℎ
2 − 𝑑3) 𝑧 − 𝑐3𝑧

2 

Again from the condition given by in (2), we get 
𝑒2𝑑1(𝑏−𝑑1−ℎ)

𝑐1
+
𝑒3(𝑒1−𝑇ℎ𝑑2)

𝑐2𝑇ℎ
2 > 𝑑3 .  

So,  

lim
𝑡→∞

𝑆𝑢𝑝(𝑧(𝑡)) ≤
𝑒2𝑑1(𝑏 − 𝑑1 − ℎ)

𝑐1𝑐3
+
𝑒3(𝑒1 − 𝑇ℎ𝑑2)

𝑐2𝑐3𝑇ℎ
2 −

𝑑3
𝑐3

 

And hence the theorem. 

 

3. Stability analysis and Hopf bifurcation 
            The system (1) has at most five positive equilibrium points, namely 𝐸1 = (0,0,0) , 
𝐸2 = (�̅�, 0,0), 𝐸3 = (�̅�, 0, 𝑧̅), 𝐸4 = (�̃�, �̃�, 0) and 𝐸5 = (�̃�, �̃�, �̃�). 
Where 

 �̅� =
𝑏−(𝑑1+ℎ)

𝑐1
  , 𝑧̅ =

1

𝑐3
(𝑒1𝑑1

𝑏−(𝑑1+ℎ)

𝑐1
− 𝑑3), �̃� =

1

𝑐2
(
𝑒1𝛼�̃�

1+𝛼𝑇ℎ�̃�
− 𝑑2) ,  

�̃� =
1

𝑐3
(𝑒2𝑑1�̃� +

𝑒3𝛼�̃��̃�

1 + 𝛼𝑇ℎ�̃�
− 𝑑3) 

And  �̃� is the positive solution of the following equation. 

 

𝐴1𝑥
3 + 𝐴2𝑥

2 + 𝐴3𝑥 + 𝐴4 = 0                                                                                     (3) 

With    𝐴1 = 𝑐1𝑐2𝛼
2𝑇ℎ ,  𝐴2 = 2𝑐1𝑐2𝑇ℎ − 𝑐2𝛼

2𝑇ℎ
2(𝑏 − 𝑑1 − ℎ),    

  𝐴3 = 𝑐1𝑐2 + 𝑒1𝛼
2 + 𝛼2𝑑2𝑇ℎ − 2𝑐2𝛼𝑇ℎ(𝑏 − 𝑑1 − ℎ)  and     𝐴4 = 𝑐2(𝑏 − 𝑑1 − ℎ) −

𝛼𝑑2 
Therefore, the trivial equilibrium point is always exist, while the axial equilibrium exists if 

the following condition holds.   

  𝑏 > (𝑑1 + ℎ)                                                                                                               (4) 

The predator free equilibrium point exist if in addition condition given by equation (4), the 

following condition holds. 

𝑒1𝑑1
𝑏−(𝑑1+ℎ)

𝑐1
> 𝑑3                                                                                                          (5) 

The scavenger free equilibrium point exist if the equation  (3) has unique positive root and 

the following condition holds 
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𝑒1𝛼�̃�

1+𝛼𝑇ℎ�̃�
> 𝑑2                                                                                                                 (6) 

Finally, the positive equilibrium exist if in addition to existence condition of free scavenger 

equilibrium point the following condition hold 

𝑒2𝑑1�̃� +
𝑒3𝛼�̃��̃�

1+𝛼𝑇ℎ�̃�
− 𝑑3                                                                                                     (7) 

     Now to study the stability behavior of an equilibrium for the system (1), we linearize 

the system (1) using the transformations   𝑢1(𝑡) = 𝑥(𝑡) − 𝑥0 ,   𝑢2(𝑡) = 𝑦(𝑡) − 𝑦0 and 

𝑢3(𝑡) = 𝑧(𝑡) − 𝑧0 where (𝑥0, 𝑦0, 𝑧0) is an equilibrium point of the system (1).  

Now                                               
𝑑𝑢

𝑑𝑡
= 𝐴𝑢(𝑡) + 𝐵𝑢(𝑡 − 𝜏1) + 𝐶𝑢(𝑡 − 𝜏1) 

Where 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))
𝑇    ,             

𝐴

=

(

 
 
 

𝑏 − 2𝑐1𝑥0 − (𝑑1 + ℎ) −
𝛼𝑦0

(1 + 𝛼𝑇ℎ𝑥0)2
−

𝛼𝑥0
1 + 𝛼𝑇ℎ𝑥0

0

0
𝑒1𝛼𝑥0

1 + 𝛼𝑇ℎ𝑥0
− 2𝑐2𝑦0 − 𝑑2 0

0 0 𝑒2𝑑1𝑥0 +
𝑒3𝛼𝑥0𝑦0
1 + 𝛼𝑇ℎ𝑥0

− 2𝑐3𝑧0 − 𝑑3)

 
 
 

 

 

𝐵 = (

0 0 0
𝑒1𝛼𝑦0

(1+𝛼𝑇ℎ𝑥0)
2 0 0

0 0 0

)    And  𝐶 = (

0 0 0
0 0 0

𝑒2𝑑1𝑧0 −
𝑒3𝛼𝑧0𝑦0

(1+𝛼𝑇ℎ𝑥0)
2 −

𝑒3𝛼𝑥0𝑧0

1+𝛼𝑇ℎ𝑥0
0
)  . 

We look for solution of system (1) in the form𝑢(𝑡) = 𝑝𝑒𝜆𝑡 , 0 ≠ 𝑝 ∈ 𝑅3. This gives the 

following characteristic equation: 

          (𝜆 − 𝑎1)(𝜆
2 + 𝑎2𝜆 + 𝑎3) = 0                                                                             (8) 

 

Where  

𝑎1 = 𝑒2𝑑1𝑥0 −
𝑒3𝛼𝑥0𝑦0
1 + 𝛼𝑇ℎ𝑥0

− 2𝑐3𝑧0 − 𝑑3 

𝑎2 = 2𝑐1𝑥0 + (𝑑1 + ℎ) + +2𝑐2𝑦0 + 𝑑2 +
𝛼𝑦0

(1 + 𝛼𝑇ℎ𝑥0)2
−

𝑒1𝛼𝑥0
1 + 𝛼𝑇ℎ𝑥0

− 𝑏 

𝑎3 = (𝑏 − 2𝑐1𝑥0 − (𝑑1 + ℎ) −
𝛼𝑦0

(1 + 𝛼𝑇ℎ𝑥0)2
) (

𝑒1𝛼𝑥0
1 + 𝛼𝑇ℎ𝑥0

− 2𝑐2𝑦0 − 𝑑2)

− (
𝑒1𝛼

2𝑥0𝑦0
(1 + 𝛼𝑇ℎ𝑥0)3

)𝑒−𝜆𝜏1 

 

 

At the trivial equilibrium 𝐸1 = (0,0,0), the characteristic equation (8) has the following 

roots 

𝜆11 = (𝑏 − (𝑑1) + ℎ) , 𝜆12 = −𝑑2  and 𝜆13 = −𝑑3 , so 𝐸1 = (0,0,0)  is asymptotically 

stable if the following condition holds. 

𝑏 < ℎ + 𝑑1                                                                                                                       (9)                      

 

At the axial equilibrium 𝐸2 = (�̅�, 0,0)  the characteristic equation (8).has the following 

roots 
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𝜆21 = −𝑐1�̅�,  𝜆22 =
𝑒1𝛼�̅�

1+𝛼𝑇ℎ�̅�
− 𝑑2, 𝜆23 = 𝑒2𝑑1�̅� − 𝑑3 

So, in addition to existence condition of  𝐸2 = (�̅�, 0,0) , if the following conditions holds 

then it becomes  asyptotically stable 

𝑑2 >
𝑒1𝛼�̅�

1+𝛼𝑇ℎ�̅�
                                                                                                            (10) 

𝑑3 > 𝑒2𝑑1�̅�                                                                                                            (11)  

 

 

The root of characteristic equation at the predator free equilibrium point  𝐸3 = (�̅�, 0, 𝑧̅)  
are 

𝜆31 = −𝑐1�̅�, 𝜆32 =
𝑒1𝛼�̅�

1+𝛼𝑇ℎ�̅�
− 𝑑2, 𝜆33 = −𝑐3𝑧̅   if in addition to its existence condition, 

the following condition holds  

𝑑2 >
𝑒1𝛼�̅�

1+𝛼𝑇ℎ�̅�
                                                                                                     (12) 

Then 𝐸3 = (�̅�, 0, 𝑧̅) is asymptotically stable 

Now we have the following theorem regarding stability switch at   𝐸4 = (�̃�, �̃�, 0) 
and 𝐸5 = (�̃�, �̃�, �̃�). 
Theorem 2. Suppose 𝐸4   exists with the following condition 

  𝑏 < ℎ + 𝑑1 + 2𝑐1�̃� +
𝛼�̃�

(1+𝛼𝑇ℎ�̃�)
2                                                       (13) 

and  𝑏1
2 < 𝑏3                                                                                 (14) 

Then  

1. 𝐸5 = (�̃�, �̃�, �̃�) is locally asymptotically stable for all 𝜏1 ∈ [0, 𝜏1
∗] and exhibits a 

supercritical Hopf bifuracation near 𝐸5 for 𝜏1 = 𝜏1
∗  

2. 𝐸5 = (�̃�, �̃�, 0) is locally asymptotically stable for all 𝜏1 ∈ [0, 𝜏1
∗] and exhibits a 

supercritical Hopf bifuracation near 𝐸5 for 𝜏1 = 𝜏1
∗  if in addition to given 

conditions (13,14) the following condition holds 

 𝑑3 > 𝑒3𝑑1�̃� +
𝑒3𝛼�̃��̃�

1+𝛼ℎ�̃�
 .                         (15) 

Where 𝜏1
∗ , 𝑏1  𝑎𝑛𝑑 𝑏3 are given in the proof. 

                                         

Proof.  

       1.  At   𝐸5 = (�̃�, �̃�, �̃�)   the characteristic equation become 

              (𝜆 + 𝑐3�̃�)(𝜆
2 + 𝑏1𝜆 + 𝑏2 + 𝑏3𝑒

−𝜆𝜏1) = 0                                                                   

(16) 

𝑏1 = 𝑐2�̃� + ℎ + 𝑑1 + 2𝑐1�̃� +
𝛼�̃�

(1+𝛼𝑇ℎ�̃�)
2 − 𝑏 , 𝑏2 = 𝑐2�̃� (ℎ + 𝑑1 + 2𝑐1�̃� +

𝛼�̃�

(1+𝛼𝑇ℎ�̃�)
2 − 𝑏) 

And   𝑏3 =
𝑒1𝛼

2�̃��̃�

(1+𝛼𝑇ℎ)
3, so the root in the z-direction in negative and other roots in x-, y-

direction satisfies the following equation 

     𝜆2 + 𝑏1𝜆 + 𝑏2 + 𝑏3𝑒
−𝜆𝜏1 = 0                                                             (17)      

     Now if   𝜏1 ∈ [0, 𝜏1
∗[    and the conditions(13,14) holds then the root in the x-, y-

directions are negative and hence  𝐸5 = (�̃�, �̃�, �̃�) is locally asymptotically stable. For  

accurance of  Hopf bifurcation         

Suppose   𝜆 = 𝜔 + 𝑖𝜛 is the root of the equation, we get  

                     𝜔2 −𝜛2 + 𝑏1𝜔 + 𝑏2 + 𝑏3 cos( 𝜏1𝜛)𝑒
−𝜔𝜏1 = 0                                (18) 

                    2𝜔𝜛 + 𝑏1𝜛 − 𝑏3 sin(𝜏1𝜛)𝑒
−𝜔𝜏1 = 0                                      (19) 
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The equation  17, should have imaginary roots for stability change of  𝐸5 = (�̃�, �̃�, �̃�) ,   
hence, to obtain the stability criterion, we set  𝜔 = 0 in equation (17)  and get 

                                     𝜛2 − 𝑏2 = 𝑏3 cos( 𝜏1𝜛)                                           (20) 

                                        𝑏1𝜛 = 𝑏3 sin(𝜏1𝜛)                                                   (21) 

Squaring and adding these two equation, we get the 𝜏1 eliminated equation 

                                𝜛4 + (𝑎1
2 − 2𝑎2)𝜛

2 + 𝑏1
2 − 𝑏3 = 0                      (22) 

It is obvious that the equation always has one and only positive root 𝜛0
2 due to condition 

14. 

Now the time delay at which the equation has imaginary roots, ±𝜛 is 𝜏1
∗ =

1

𝜛0
arccos (

𝜛0
2−𝑎2

𝑎3
) 

Now  𝜔(𝜏1
∗) = 0  and 𝜛(𝜏1

∗) = 𝜛0, so, if we take differentiation for  both equation with 

respect to 𝜏1, we get     [
𝑑𝜔

𝑑𝜏1
]
𝜏1=𝜏1

∗
=
𝜛0
2(𝑏1

2+2𝜛0
2)

𝑏1
2+4𝜛0

2 > 0 

And hence the proof 1, is complete 

  2. If At   𝐸5 = (�̃�, �̃�, 0)   the charastrictic equation become 

                          (𝜆 − (𝑒2𝑑1𝑥0 +
𝑒3𝛼𝑥0𝑦0

1+𝛼𝑇ℎ𝑥0
− 𝑑3)) (𝜆

2 + 𝑏1𝜆 + 𝑏2 + 𝑏3𝑒
−𝜆𝜏1) = 0     (23) 

𝑏1 = 𝑐2�̃� + ℎ + 𝑑1 + 2𝑐1�̃� +
𝛼�̃�

(1+𝛼𝑇ℎ�̃�)
2 − 𝑏 , 𝑏2 = 𝑐2�̃� (ℎ + 𝑑1 + 2𝑐1�̃� +

𝛼�̃�

(1+𝛼𝑇ℎ�̃�)
2 − 𝑏) 

So, the root in the z-direction is negative if the condition   holds and the other two roots 

in x-,y-direction are the same as in the first proof part, and hence the proof is complete. 

 

 

4. Numerical simulation 
In this section the Hopf bifurcation of the system   is investigated numerically. We 

have performed the simulation using mat lab it is observed that they have good agreement 

with our analytical finding. For the  parameters given by equation (24), we have  r  ≅ 1.71. 

The solution of the system (1) at  𝜏1 = 1.7 < 𝜏1
∗   plotted in Fig.1 and at 𝜏1 = 1.8 >

𝜏1
∗  plotted in figure (2). 

 

 

𝑎 = 1.99, 𝑐1 = 1.3, 𝛼 = 1.2, 𝑇ℎ = 0.41, 𝑑1 = 0.5, ℎ = 0.4 

𝑒1 = 0.825, 𝑑2 = 0.15, 𝑐2 = 0.05                                                                        (24) 

𝑒2 = 0.98, 𝑒3 = 0.16, 𝑐3 = 0.1 𝑎𝑛𝑑 𝑑3 = 0.5 
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Fig.(1) Both the time series and phase portrait of system (1) for the data set   with 𝜏1 = 1.7  

, showing that the scavenger free equilibrium point 𝐸4 = (0.2075,0.7576,0) is locally 

asymptotically stable. 
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Fig.(2) For date set given by equation (24) with  𝜏1 = 1.8  both the time series and phase 

portrait of system (1) showing periodic orbit near 𝐸4 = (0.2075,0.7576,0) 
It is obvious that the parameters used in Fig. (1) and Fig. (2) satisfies the condition confirm 

the second part of the theorem, which confirm our analytical result. 

  

Now for the same date set with 𝑑3 = 0.1, the system (1) for 𝜏1 = 1.7 plotted in fig.(4). And 

for 𝜏1 = 1.8 is plotted in fig.(4) 
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Fig.(3) Both the time series and phase portrait of system (1) for the data set given by 

equation (24)   with  𝑑1 = 0.1 𝑎𝑛𝑑 𝜏1 = 1.7, showing that the positive equilibrium point 

𝐸5 = (0.2075,0.7576,0.3125) is locally asymptotically stable.  
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Fig. (4) For date set by equation (24)  with  𝑑3 = 0.1  𝑎𝑛𝑑  𝜏1 = 1.8  both the time series 

and phase portrait of system (1) showing periodic orbit near 𝐸5 =
(0.2075,0.7576,0.3125). 
It is easy to verify that the parameters used in fig.(3) and fig.(4) satisfies the condition of 

first part of theorem which confirms our analytical result. 

 

Now the system (1) solved numerically using the following date set, see fig.(1), fig.(6) . 

𝑎 = 0.89, 𝑐1 = 1.3, 𝛼 = 1.2, 𝑇ℎ = 4.1, 𝑑1 = 0.5, ℎ = 0.4 

𝑒1 = 0.7, 𝑑2 = 0.7, 𝑐2 = 0.5                                                                                                                     (25) 

𝑒2 = 0.58, 𝑒3 = 0.16, 𝑐3 = 0.5 𝑎𝑛𝑑 𝑑3 = 0.5 
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Fig.(5) The phase portrait showing that the solution for all 𝜏1=1, 2, 20 with parameters 

given by equation (25), approaches the trivial equilibrium point. 
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Fig.(6) The phase portrait showing that the system (1) for all 𝜏1=1, 2, 20 with parameters 

given by equation (25) with 𝑎 = 2, has locally asymptotically stable axial equilibrium 

point 𝐸2 = (0.8462,0,0) . 
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Fig.(6) The phase portrait showing that the system (1) for all 𝜏1=1, 2, 20 with parameters 

given by equation (25) with 𝑎 = 2 𝑎𝑛𝑑  𝑐3 = 𝑑3 = 0.1, has locally asymptotically stable 

predator free equilibrium point 𝐸3 = (0.8462,1.4538) 
It is clear that the parameters used in Fig.(5) Satisfies the stability condition for trivial 

equilibrium point which confirm our result, when we increase the birth rate to 𝑎 = 2, The 

system (1), approaches the axial equilibrium point because the used parameters in Fig.(6) 

satisfies the stability condition of axial equilibrium point. Finally when we decrease the 

value 𝑐3  and  𝑑3  to  𝑐3 = 𝑑3 = 0.1  and fixing 𝑎 = 1  the system (1) approaches the 

predator free equilibrium point this confirm our analytical result for stability condition for 

free predator free equilibrium point. Note that in each Fig.(5),(6),(7)  different time delay 

values 𝜏1 = 1, 2, 20  used.  It is obvious it does not affect the stability as we shown 

analytically.  

 

 

5. Conclusion and discussion 
In this paper, we considered an ecological model for dynamics of three species: 

prey, predator and scavengers, incorporating harvesting factor on prey species and time 

delay. We have seen that time delay for conservation biomass of dead prey naturally and 

predated prey by predators, to a scavenger does not affect the dynamics of the model. 

However, time delay for conservation biomass of prey to predators is effective as shown 

in theorem (2). In our study for system (1), we have given all locally stability conditions 

for each of the equilibrium points. Also, numerically, we supported our result as follows:  

the figures (Fig.(1), Fig.(2), Fig.(3), Fig.(4)) confirm our analytical finding in theorem (2). 

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

x(t)y(t)

z
(t

)



Journal of University of Babylon for Pure and Applied Sciences, Vol. (27), No. (5): 2019 

 

14 
 

Fig.(5), Fig.(6) and Fig.(7) confirm our analytical finding for locally asymptotically 

stability condition for trivial, axial and predator free equilibrium points, respectively. 
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 الخلاصة
الفريسة. ان في هذا البحث قد تم رياضيا صياغة ديناميكية أنواع صائد الفرائس في نموذج شبكة الغذاء بدمج التأخير الزمني و حصاد 

كذلك تحليل الأستقرار لجميع احتمالات نقاط الأتزان الموجبة. كذلك في ظل تم تنفيذها. تمت مناقشة الوجود و قد  حدود جميع حلول النموذج
قد أظهر تشعب هوبف دون الحرج. وعلاوة على ذلك فاننا قد درسنا المحاكاة العددية للنموذج لتأكيد . ي معين أثبتنا أن نموذجناتأخير زمن

 اكتشافنا التحليلي.
 نموذج المفترس ، تحليل الثبات ، تشعب هوبف.صائد الفرائس,  الدالة:الكليمة 

 
 


