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ABSTRACT

During last two decades various speech coding algorithms have been developed.
The range of toll speech frequency is from 300 Hz- 3400 Hz. Generally, human speech
signal could be classified as non-stationary signal because of its fluctuation randomly over
the time axis. One important assumption made to make the analysis of such signal even
easier by assuming the speech signal is quasi-stationary over short range (frame). The
frames of speech signal can be classified further into Voiced or Unvoiced, where the

voiced part is quasi-stationary while the unvoiced part as an AWGN.

The quality of the synthesized signal is degraded significantly due to the excitation
of voiced part not equally spaced within the frame and the excitation of the unvoiced part
is not exact AWGN. This assumption produced a non-natural speech signal but with high
intelligible level. One more reason is that the frame could have voiced plus unvoiced parts
within the same frame, and by classifying this frame as voiced or unvoiced due to rigid

decision would drop the level of quality significantly.

Speech compression commonly referred to as speech coding, where the amount of
redundancies is reduced, and represent the speech signal by set of parameters in order to
have very low bit rates. One of these speech coding algorithms is linear predictive coding

(LPC-10).



This thesis implements LPC-10 analysis and synthesis using Matlab and C coding.
LPC-10 have been compared with some other speech compression algorithms like pulse
code modulation (PCM), differential pulse code modulation (DPCM), and code excited
linear prediction coding (CELP), in term of segmental signal to quantization noise ratio
SEG-SQNR and mean squared error MSE using Matlab simulation. The focus on LPC-10
was implemented on the DSP board TMS320C6713 to test the LPC-10 algorithm in real-
time. Real-time implementation on TMS320C6713 DSP board required to convert the
Matlab script into C code on the DSP Board. Upon successfully completion, comparison of
the results using TMS320C6713 DSP against the simulated results using Matlab in both

graphical and tabular forms were made.



ABSTRAK

Semasa dekad terakhir pelbagai algoritma pengekodan pertuturan telah
dibangunkan. Pelbagai kekerapan pertuturan tol adalah dari 300 Hz - 3400 Hz. Secara
amnya, isyarat pertuturan manusia boleh diklasifikasikan sebagai isyarat bukan pegun
kerana turun naik secara rawak sepanjang paksi masa. Satu andaian penting dibuat untuk
membuat analisis isyarat itu lebih mudah dengan menganggap isyarat pertuturan adalah
seakan-akan bergerak dalam julat pendek (frame). Rangka isyarat ucapan boleh
diklasifikasikan lebih jauh ke dalam Suara atau yg tak disuarakan, di mana sebahagian
bersuara seakan-akan pegun manakala bahagian yg tak disuarakan sebagai AWGN.

Kualiti isyarat yang disintesis dihina dengan ketara disebabkan pengujaan
bahagian bersuara yang tidak sama rata dijarakkan dalam jangka dan pengujaan
bahagian yang tak disuarakan tidak tepat AWGN. Andaian ini menghasilkan isyarat bukan
semula jadi ucapan tetapi dengan tahap difahami tinggi. Salah satu sebab lagi ialah
bahawa bingkai dapat telah menyuarakan ditambah dengan yg tak disuarakan bahagian
dalam bingkai yang sama, dan dengan mengklasifikasikan rangka ini sebagaimana yang
disuarakan atau yg tak disuarakan kerana keputusan tegar akan turun tahap kualiti
ketara.

Mampatan ucapan biasanya dirujuk sebagai pengekodan pertuturan, di mana jumlah
lelebihan dikurangkan, dan mewakili isyarat pertuturan oleh satu set parameter untuk

mempunyai kadar bit yang sangat rendah.



Salah satu-ucapan algoritma pengekodan pengekodan ramalan lelurus (LPC-10).
Tesis ini melaksanakan LPC-10 analisis dan sintesis menggunakan Matlab dan C
pengekodan. LPC-10 telah ada berbanding dengan beberapa algoritma pemampatan lain
ucapan seperti kod pemodulatan denyut (PCM), modulasi kod denyut pembezaan (DPCM),
dan pengekodan ramalan kod teruja linear (CELP), dalam jangka isyarat segmen hingar
pengkuantuman SEG-SQNR, dan min MSE ralat kuasa dua menggunakan simulasi Matlab.
Tumpuan kepada LPC-10 telah dilaksanakan di papan DSP TMS320C6713 ke menguji
algoritma LPC-10 ini dalam masa nyata. Real-time pelaksanaan pada TMS320C6713 DSP
lembaga yang diperlukan untuk menukar skrip Matlab kepada kod C di Papan DSP.
Apabila selesai dengan jayanya, perbandingan keputusan menggunakan TMS320C6713
DSP terhadap keputusan simulasi yang menggunakan Matlab dalam bentuk grafik dan

jadual telah dibuat.
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CHAPTER 1

INTRODUCTION TO WIRELESS COMMUNICATIONS AND SPEECH CODERS

1.0 Introduction

Even though humans are well equipped for analog communication, analog
transmission remains practically inefficient due to the complexity of separating the real
voice signals from noise. Amplifying the analog signal will amplify the noise too, and
eventually it would be very difficult to restore the original analog signal from the noisy
environment. Digital signals has only two states “One-bit” and “Zero-bit”, and it could be
separated from noise easily, and they can be amplified without noise corruption. However,
the fast growth of wireless digital communication systems in the last two decades, the need
for low bitrate speech coders have increased rapidly for both civilian and military
applications. With the rise of optical fiber, bandwidth in wire-based communication has
become low-cost. The growing need for bandwidth saving and improving privacy in
wireless cellular and satellite communications has also increased (Andreas 1994).
However, the field of speech processing is becoming more important, and could be
subdivided into speech analysis, speech coding and speech synthesis. Speech analysis is
defined in which parameters that define the speech signal are extracted. While speech
coding could be defined in which the information bearing the speech signals is coded to

remove redundancy. This helps decrease the transmission bandwidth requirements,



improve storage efficiency while still maintaining acceptable speech quality. Finally
speech synthesis could be defined in which speech parameters (extracted from speech
analysis) are used to re-generate the original speech signal (Ogunfunmi and Narasimha

2010).

Speech coders are typically characterized in three groups: waveform, Hybrid and
Vocoders. Waveform coders quantize the original speech signal directly operating at high
bit rates of between 16-64 kbps. Pulse Code Modulation (PCM) and Differential PCM are
good example of waveform coders. Hybrid coders can be categorized into frequency
domain and time domain, the former divides the speech spectrum frequency into bands
(Sub-Band Coding, Adaptive Transform Coding, and Multi-Band Excitation). While latter
employ the source filter usually with linear prediction as examples are CELP, MELP, and
MP-LPC, Hybrid coders are mixed from waveform-based and model-based, and operates
at 2.4 to 16 kbps. Finally Vocoders are model-based and operates at 1.2 to 4.8 kbps and

LPC-10 is an example (Quatieri 2002).

1.1. Low Bit Rate Communication

Nyquist criterion determines the minimum sampling frequency for speech signals.
Therefore, the quality of the signal required at the receiver is determined by the number of
quantization levels. These two conditions determine the bit rate of PCM system at 8 bit per
sample thus making the bit rate at 64kbits per second. Due to fast emergence of fixed and
mobile telecommunication in the last two decades, the need to reduce PCM bit rate in
speech compression and the digital coding of speech signals becomes an important field of

research.



