

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF LEVEL MONITORING FOR MILK PUMPING MACHINE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Computer Engineering Technology (Computer System) with Honours.

by

NUR AINA AYUNI BINTI JAMARUDIN B071510540 961130035248

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF LEVEL MONITORING FOR MILK PUMPING

MACHINE

Sesi Pengajian: 2018

Saya **NUR AINA AYUNI BINTI JAMARUDIN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

	SULIT*	Mengandungi kepentingan M			_		
		RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh					
		organisasi/badan di mana penyelidikan dijalankan.					
\boxtimes	TIDAK						
	TERHAD						
Yang l	benar,		Disa	ıhkan o	leh penyelia	1:	
NUR A	AINA AYUNI	BINTI	PN.	NURL	IYANA BII	NTI ABD.	
JAMARUDIN		MU	MUTALIB				
Alama	t Tetap:		Cop	Cop Rasmi Penyelia			
Lot 93	7,						
Taman Ayer Hijau,							
18500 Machang,							
Kelant	tan.						
Tarikh	1:		Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF LEVEL MONITORING FOR MILK PUMPING MACHINE is the results of my own research except as cited in references.

Signature:	
Author:	NUR AINA AYUNI BINTI
	JAMARUDIN
Date:	

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer System) with Honours. The member of the supervisory is as follow:

Signature:	

Supervisor: PN. NURLIYANA BINTI ABD. MUTALIB

ABSTRAK

Satu sistem mesin mengepam susu diciptakan untuk kegunaan ibu yang mempunyai bayi. Mesin mengepam susu ini mempunyai perisai yang akan diletakkan pada payudara. Perisai ini akan disambungkan pada botol yang sesuai. Vakum yang dihasilkan oleh pam apabila pam dihidupkan membolehkan susu mengalir dari payudara masuk ke dalam botol. Mesin mengepam susu ini adalah salah satu keperluan ibu yang akan dibawa ke mana-mana untuk mengeluarkan susu. Malah, ibu juga akan menggunakan mesin mengepam susu ini sewaktu berada di dalam kereta jika perlu sama ada sebagai penumpang atau pemandu. Ibu akan mengalami kesukaran apabila sentiasa perlu memantau paras ketinggian susu di dalam botol supaya tidak berlaku pembaziran apabila susu telah penuh. Oleh sebab itu, maka terhasil idea untuk projek ini bagi memudahkan para ibu. Di samping itu, projek ini adalah projek mesra pengguna di mana ia juga dapat menyelesaikan masalah para ibu. Projek ini direka supaya dapat memberi isyarat kepada pengguna apabila susu di dalam botol telah sampai pada paras ketinggian yang ditetapkan. Sensor cecair tidak bersentuhan ditambah pada sistem mesin mengepam susu yang sedia ada dan disambungkan kepada Arduino Mega sebagai alat untuk mengukur paras ketinggian susu. Apabila sensor cecair tidak bersentuhan telah memberi isyarat maka pam secara automatiknya akan berhenti berfungsi.

ABSTRACT

A milk pumping machine system is created for the use of a mothers that have a baby. This milk pumping machine has a shield that will be placed on the breast. This shield will be connected to the appropriate bottle. Vacuum generated by the pump when the pump is switched on allows the milk to flow from the breast into the bottle. This milk pumping machine is one of the mother's needs to be taken everywhere to produce milk. In fact, the mother will also use this milk pumping machine while in the car if necessary as a passenger or driver. The mother will have difficulties when it is always necessary to monitor the level of milk in the bottle to avoid wastage of milk when the bottle full of milk. Therefore, the idea for this project is to facilitate mothers. In addition, this project is a user-friendly project where it can also solve mothers problems. This project is designed to be able to notice to users when the milk in the bottle has reached the predetermined level. Non-contact liquid sensors are added to the existing pumping machine system and are connected to Arduino Mega as a tool for measuring the level of milk. When the non-contact liquid sensor give signal then the pump will automatically stop working.

DEDICATION

This dissertation work I dedicate especially to my beloved parents Jamarudin bin Ali and Nik Abdah binti Omar, who always give me encouragements and supports. Not forgotten my beloved family that always give positive vibes whenever I needs and share their success. I also dedicate this report to my supervisor that help and guide me until the completion of the project. Finally, big thanks to all my beloved friends that always give support and surround me with love that can avoid me from sadness and give up.

ACKNOWLEDGEMENTS

Bismillahirahmanirahim

Grateful to the Divine will with the abundance of His grace and affection for the blessings of life, lives and energy that is bestowed on me and I can prepare this final year project (FYP) right on time successfully.

First of all, I would like to dedicate this award to my parents who gave me a great deal of help to complete this project. They have given me moral support and all the facilities throughout the process of completing this task such as phones, laptops, and so on.

I would like to extend my sincere thanks to my respected supervisor, Pn. NurLiyana binti Abd Mutalib, co-supervisor, Pn. Norfadzlia binti Mohd Yusof and Dr. Mohd Badril bin Nor Shah because with their guidance throughout the completion of this project. Too much knowledge has been revealed to me about this project. I also like to thank my friends for giving me support.

Finally, I thank those involved directly and indirectly in the making of this final year project. I will not forget every service and knowledge devoted and shared by supervisor and friends during the completion of this project.

Thank you.

TABLE OF CONTENTS

TAB	LE OF CONTENTS	PAGE x
LIST	OF TABLES	xiv
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	XX
СНА	APTER 1 INTRODUCTION	1
1.0	Introduction	1
1.1	Background	1
1.2	Problem Statement	4
1.3	Project Scope	5
1.4	Project Limitation	5
1.5	Project Objectives	6
1.6	Summary	6
CHA	APTER 2 LITERATURE REVIEW	7
2.0	Introduction	7
2.1	Similar Project	7

2.1.1	Design and Development of Non-Contact Liquid Monitoring System Based	on
IOT		7
2.1.2	Low-Power Wireless Liquid Monitoring System using Ultrasonic Sensor	9
2.1.3	Smart Wireless Water Level Monitoring & Pump Controlling System	12
2.1.4	Automatic Water Level Control System	14
2.1.5	Design and Construction of Liquid Level Measurement System	15
2.2	Liquid Level Detector Project By Using Sensor	17
2.2.1	Non-Contact Sensor Project	17
2.2.1.	1 Development of Portable Water Level Sensor Flood Management System	17
2.2.1.2	2 SMS Based Flood Monitoring and Early Warning System	19
2.2.2	Contact Sensor Project	20
2.2.2.	1 Wireless Flood Detection System	20
2.3	Automatic Switch Project	23
2.3.1	Automatic Control of a Pump System for Water Level using Microcontroller	and
LabV	IEW^{TM}	23
2.3.2	An IOT based Water Supply Monitoring and Controlling System with Theft	
Identi	fication	24
2.4	Summary	31
CHA	PTER 3 METHODOLOGY	32
3.0	Introduction	32

3.1	Hardware Uses	32
3.1.1	Non-Contact Liquid Level Sensor	32
3.1.2	Air Pump DC Motor	33
3.1.3	Solenoid Valve	35
3.1.4	Microcontroller	36
3.1.5	Light Emitting Diode (LED)	37
3.1.6	Buzzer	38
3.1.7	Liquid Crystal Display (LCD)	39
3.2	Software Implementation	40
3.2.1	Arduino IDE	41
3.3	Block Diagram	41
3.4	Flow Chart	43
3.5	Summary	44
CHA	PTER 4 RESULT AND DISCUSSION	45
4.0	Introduction	45
4.1	Analysis Data	45
4.1.1	Testing the Level of Liquid for Bottle with Capacity 150ml	45
4.1.2	Differentiate the Level of Suction	47
4.1.3	Thickness of Bottle	53
4.2	Result	55

4.3	Summary	58
СНА	PTER 5 CONCLUSION	59
5.0	Introduction	59
5.1	Conclusion	59
5.2	Recommendation for Future Works Development	60
5.3	Summary	61
REFI	ERENCES	62
APPI	ENDIX 1	65
A PPI	ENDIX 2	66

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Comparison between research projects.	26
Table 3.1:	Specification of air pump DC motor. (Industrial et al., 2018)	33
Table 3.2:	Specification of milk pumping machine based on the brands.	34
Table 3.3:	Specification of solenoid valve. (Industrial et al., 2018)	35
Table 3.4:	Specification of Arduino Mega.	36
Table 3.5:	Specification of liquid crystal display (LCD). (Max, 2012)	39
Table 4.1:	Measurement of liquid level for bottle with capacity 150ml.	46
Table 4.2:	Measurement of suction level at 100%.	47
Table 4.3:	Measurement of suction level at 90%.	48
Table 4.4:	Measurement of suction level at 80%.	49
Table 4.5:	Measurement of suction level at 70%.	50
Table 4.6:	Measurement of suction level at 60%.	51
Table 4.7:	Measurement of suction level at 50%.	52
Table 4.8:	Measure the thickness of bottle.	54
Table 4.9:	Specification of the system.	58

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: The fire	rst version of the milk pumping. (Shaw and Francisco, 2014)	2
Figure 1.2: The se	econd version of milk pumping machine. (Shaw and Francisc	o, 2014) 3
Figure 1.3: The th	aird version of milk pumping machine.	4
Figure 2.1: Liquid	I measuring using ultrasonic sensor. (Shetty and Natya.S, 201	17) 8
Figure 2.2: Block Natya.S, 2017)	diagram of Non-Contact Liquid Monitoring System. (Shetty	and 9
Figure 2.3: System	m block diagram. (Parade, Group and Dublin, 2015)	11
Figure 2.4: Block	diagram of the system. (Parade, Group and Dublin, 2015)	12
Figure 2.5: Block	diagram of receiver section. (Santra et al., 2017)	13
Figure 2.6: Block	diagram of transmitter section. (Santra et al., 2017)	13
Figure 2.7: Block	diagram of the system. (Eltaieb and Min, 2015)	15
Figure 2.8: Water	level measurement system block diagram. (Annuar et al., 20	15) 16
Figure 2.9: Protot	ype block diagram. (Odli et al., 2016)	18
Figure 2.10: Syste	em setup. (Jacquier, 2015)	20
Figure 2.11: Trans	smitter system block diagram. (Rao, 2017)	22
Figure 2.12: Rece	iver system block diagram. (Rao, 2017)	22
Figure 2.13: Block	k diagram of the control system. (Pathan et al., 2016)	24

XV

Figure 2.14: Block schematic diagram of a system. (Kulkarni and Joshi, 2016)	26
Figure 3.1: Non-Contact Liquid Sensor. (Grey.cheng, 2016)	33
Figure 3.2: Air pump DC motor. (Pumps and Place, 2018)	34
Figure 3.3: Mini solenoid valve. (Industrial et al., 2018)	35
Figure 3.4: Arduino Mega (ATmega2560). (Mellis, 2011)	37
Figure 3.5: Light emitting diode (LED). (https://www.radioshack.com/products/radioshack-5mm-green-led)	38
Figure 3.6: Piezo buzzer. (Copper, 2011)	38
Figure 3.7: Liquid crystal display (LCD). (Bhatt, 2017)	40
Figure 3.8: Arduino software interface	41
Figure 3.9: Block diagram of level monitoring for milk pumping machine.	42
Figure 3.10: Flowchart of project hardware development.	43
Figure 4.1: Graph of level of suction(%) vs. time taken to measure liquid level(min) 150ml.	at 46
Figure 4.2: Graph of level of liquid (ml) vs. time taken to measure liquid level (min) 100% of suction level.	at 48
Figure 4.3: Graph of level of liquid (ml) vs. time taken to measure liquid level (min) 90% of suction level.	at 49
Figure 4.4: Graph of level of liquid (ml) vs. time taken to measure liquid level (min) 80% of suction level.	at 50
Figure 4.5: Graph of level of liquid (ml) vs. time taken to measure liquid level (min) 70% of suction level.	at 51

Figure 4.6: Graph of level of liquid (ml) vs. time taken to measure liquid level (min)	at
60% of suction level.	52
Figure 4.7: Graph of level of liquid (ml) vs. time taken to measure liquid level (min)	at
50% of suction level.	53
Figure 4.8: Bottle with label.	54
Figure 4.8: Circuit of buzzer and non-contact liquid level sensor connect with Arduir	10
Mega.	55
Figure 4.9: Circuit of solenoid valve connect with Arduino Mega.	56
Figure 4.10: Circuit of liquid crystal display (LCD) with Arduino Mega.	56
Figure 4.11: Circuit of air pump DC motor and potentiometer connect with Arduino	
Mega.	57

Figure 4.12: Complete circuit of milk pumping machine connect with Arduino Mega. 57

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Gantt Chart PSM 1		65
Appendix 2	Gantt Chart PSM 2		66

LIST OF SYMBOLS

mmHg - Milimeter of Mercury

min - Minute

ml - Milimeter

LIST OF ABBREVIATIONS

IOT Internet of Thing

LED Light Emitting Diode

GSM Global System for Mobile

TIM3 Timer 3

ADC Analog to Digital

USB Universal Serial Bus

UART Universal Asynchronous Receiver-Transmitter

Universal Synchronous and Asynchronous Receiver-

Transmitter

GPRS General Packet Radio Service

RX Receiving Frequency

RF Radio Frequency

SMPS Switch-Mode Power Supply

AC Alternating Current

DC Direct Current

LCD Liquid Crystal Display

IR Infrared

SMS Short Message Service

OS Operating System

IC Integrated Circuit

ICSP In-Circuit Serial Programming

3D Three Dimension

PWM Pulse Width Modulation

GCC GNU Compiler Collection

STM STMicroelectronics

ASK Amplitude-shift Keying

NO Normally open

NC Normally close

CHAPTER 1

INTRODUCTION

1.0 Introduction

The introduction discusses project background, problem statement, project scope, project limitation, and objective. This section explains the overall view to guide and development of level monitoring for milk pumping machine. The non-contact liquid sensor will use to detect the liquid of water level because of the hygiene factor is the most important in the success of this project.

1.1 Background

Mother's milk is healthier than others formula milk. But nowadays, most mothers are a career woman. Sometimes mothers cannot be with a nursing baby at all times. Mothers that work outside the home must provide mother's milk to their child to make sure their child gets enough nutrients. This is because a child under 6 months gets the nutrients only from their mother's milk. Thus, mothers need to bring milk pumping equipment to the works to collect mother's milk to provide the best nourishment for their infants. The mother's milk can be stored in the fridge for later use.

The first version of the milk pumping equipment includes a single funnel or parabolic-shaped cup which is similar to a suction cup. It will place over a nipple and a bit of the breast. The suction cup connected with the bottle to fill the milk and a vacuum pump.

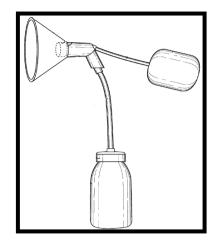


Figure 1.1: The first version of the milk pumping. (Shaw and Francisco, 2014)

While the second version of milk pumping equipment does not use the vacuum that needs the mothers' pumping using their hands. It upgraded by using the machine to allow the mother's hands to be free during the process of milk pumping and also can facilitate mothers to do others work at the same time. Some milk pumping machine is electrically operated and some are battery powered. Different from the first version that needed the mothers used their energy and have been time-consuming. It also more difficult than the second version of milk pumping because the first hand of the mothers need to operate the vacuum while the other hand needs to maintain the connection with the suction cup and the breast.

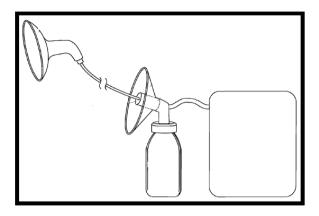


Figure 1.2: The second version of milk pumping machine. (Shaw and Francisco, 2014)

The third version of the milk pumping machine almost same with the second version. The different of this two version is the single suction cup and double suction cup. Usually double suction cup only available at the hospital to facilitate the mothers after giving birth. The double suction cup does not have been time-consuming compared with the single suction cup. The double suction cup is also expensive. This milk pumping machine will evolve through along with the technology even though in this era globalization have provided with many brands of formula milk but the mother's milk is the best to give to the child until their age reaches two years old.