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ABSTRACT 
Chlorophyllide a: Fact or Artifact -

Resolution of the Chlorophyllide a Problem in the Routine Measurement of 
planktonic Chlorophyll a 

Chlorophyll a serves as the routine proxy for most estimates of phytoplankton 
biomass in limnology and oceanography. It is well known that enzymatic chlorophyllase 
activity breaks chlorophyll a into the degradation product chlorophyllide a ( chlide a). 
This degradation could result in potentially large underestimates of the true chlorophyll 
a concentration when the analysis is made by modern chromatographic methods. The 
goal of this project was to determine proper protocol in the methodological elimination 
of artifactual chlorophyllide a formed during extraction of chlorophyll pigments 
through the application of a microwave-assisted solvent extraction technique. This 
study aimed to answer the question: Is chlorophyllide a a fact or artifact? Previous 
literature has suggested that chromatographically analyzed chlorophyllide a might be 
either an artifact of the extraction process or an in situ indicator of senescent, 
physiologically compromised phytoplankton due to environmental stressors. This study 
addresses this decades-old problem for chlorophyll analysis. The microwave technique 
described inhibits chlorophyllase enzymatic activity, preventing the artifactual 
production of chlorophyllide a. The heat of the microwave technique not only denatures 
the chlorophllyase enzyme activity, but also evaporates filter-retained water (known to 
promote enzyme activity in solvents such as acetone and methanol). This technique 
results in a sizeable increase in the yield of extracted chlorophyll a that was up to four 
times greater than the routine protocol of cold temperature solvent-soak technique 
using 90% acetone. Microwave-assisted extraction methodology consistently yielded 
higher concentrations of total chlorophyll a-like pigments than commonly employed 
solvent-soak technique used in long term sampling programs such as JGOFS, HOTS and 
BATS. The result of this study provides a method that 1) eliminates artifactual 
chlorophyllide a production and 2) increases the extraction yield of photosynthetic 
pigments in phytoplankton, including both chlorophylls and carotenoids. This new 
technique may have significant implications for estimates of oceanic primary 
production. 
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Introduction 

Chlorophyll a molecules are fundamental to the biological process of 

photosynthesis, both as the primary reaction center pigments (P680 and P700) and 

as accessory light absorbers (antenna pigments) (Allen and Williams 1998). As a 

result, chlorophyll a is one of the most often measured analytical parameters in 

biological oceanography research programs (Wernand et al. 2013). Chlorophylls are 

tetrapyrroles, cyclic compounds made up of 4 fused pyrrole rings. Pyrroles are 5 

member rings with four carbons and one nitrogen atom. In chlorophyll a, a Mg ion is 

in the center of the four pyrrole rings. The most abundant tetrapyrroles are 

chlorophylls a, b and c. Chlorophylls a and b are both magnesium-containing 

chlorins and have long hydrophobic phytol chains that make up their structure; 

chlorophyll c (c1, c2 and c3), is actually a magnesium-containing porphyrin with the 

phytol chain absent. The structure of chlorophyll a can be modified by the removal 

of the phytol chain catalyzed by the enzyme chlorophyllase, which generates 

chlorophyllide a. Chlorophyllide a is also an intermediate in chlorophyll 

biosynthesis (Fig. 1). 

There are several different forms of chlorophyll that function as antenna 

absorbance pigments for a variety of organisms. The five major types of chlorophylls 

are chlorophylls a, b, c, d and bacteriochlorophyll; more recent studies have 

identified chlorophylls e and/, but not in widespread distribution (Airs et al. 2014). 

Chlorophyll a plays an essential role in oxygenic photosynthesis because it serves as 

the primary reaction center (P700 or P680) leading to electron transport. All of the 

other chlorophylls ( and most carotenoids) are considered accessory pigments 

(Table 1). 
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Table 1: Accessory pigments, their maximal absorbance wavelengths, and associated 
organisms. (adapted from Roy et al. 2011). 

Types of Chlorophylls Wavelengths Comments 
Absorbed 

Chlorophyll a allomer 

Chlorophyll a epimer Same as Occurs in all photosynthetic algae and plants 
Chlorophyll a 
432,616, 664 nm 

Chlorophyll b epimer, Same as Occurs in slightly acidic or basic extracts using 
Chlorophyll a polar solvents 
432,616, 664 nm 

Chlorophyll cl In acetone: Minor pigment of some red algae; major 
446,578,629 nm pigment in planktonic Chromophytes. 

Chlorophyll c2 In acetone: Minor pigment of some red algae; major 
450, 581, 629 nm pigment in planktonic Chromophytes. 

Chlorophyll c2- In acetone; Found as the dominant pigment in some 
monogalactosyldiacyl 453, 582, 631 nm Haptophytes 

glyceride ester 

Chlorophyll c3 In acetone: Bolidophytes, many diatoms,haptophytes and 
452, 586, 626 nm some dinoflagellates. Sometimes found in 

dictychophytes and pelagophytes 

Chlorophyllide a In acetone: An alteration product of chlorophyll a, 
412,431,580, occurs in senescent algae, damaged 
617,664nm diatoms and zooplankton fecal pellets. 

Extraction artefact for algae with highly 
active chlorophyllase enzyme 

Chlorophyllide b In acetone: Occurs in senescent algae, zooplankton fecal 
458,596,646 nm pellets 

Divinyl chlorophyll a In acetone: Found in Prochlorococcus sp. 
436,~615,661 nm 

Divinyl chlorophyll b In acetone: Found in Prochlorococcus sp. 
460,595,644 nm 

Magnesium 2,4- In acetone: Found in prasinoxanthin-containing algae, 
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divinylpheophorphyr 438,575,625 nm trace amounts in Euglena, unidentified 
in aS monomethyl chlorarachniophyte, Dunaliela tertiolecta 

ester 

Monovinyl In acetone: Minor pigment in haptophytes 
chlorophyll c3 446,580,624 nm 

Pheophorbide a In acetone: Occurs in senescent algae and in zooplankton 
410,505,535,559, fecal pellets and in sediments 
608,666 nm 

Pheophytin a, In acetone: Found in zooplankton fecal pellets, senescent 
410,505,535,560, algae, sediments 
610,666 nm 

Pheophytin b, In acetone: Acid-catalysed demetallation in slightly acidic 
433,527,597,653 extracts. Found in Protozoans and plant 
nm detritus 

Pyropheophorbide a Occurs in senescent algae and zooplankton 
fecal pellets 

Pyropheophytin a In acetone: Occurs in senescent algae and zooplankton 
410,507,536,609, fecal pellets 
667nm 

Each of the pigments described in Table 1 have a slightly different chemical 

structures and, in many cases, will also display unique retention times when 

analyzed by high performance liquid chromatography (HPLC). These different types 

of chlorophylls can also be diagnostic for specific algal taxonomic groups, e.g., 

divinyl chlorophyll a is unique to numerically dominant prochlorophytes in the 

open ocean and chlorophyll c3 can serve as a tag for haptophytes such as 

coccolithophorids (Roy et al. 2011). 

In addition to chlorophylls, carotenoids are also naturally occurring lipid

soluble pigments found in phytoplankton. These light-harvesting pigments are 

considered accessory as they help extend the range of wavelengths for 

photosynthesis and protect phytoplankton from UV radiation and destructive light 

in the presence of oxygen. Carotenoids provide insight into taxonomic diversity of 
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phytoplankton communities and serve as diagnostic markers for globally

distributed natural phytoplankton communities. 

Measuring Chlorophyll in Water Samples 

Although chlorophyll analysis is one of the most commonly applied assays in 

biological oceanography, there are still confounding factors in current methods that 

lead to uncertainty in the absolute concentration of chlorophyll a in natural 

planktonic environments. The potential formation of chlorophyllide a during 

extraction is one potential source of error. Chlorophyllide a is spectrally identical to 

chlorophyll a on a mole-specific basis, and is therefore not discriminated in the most 

commonly used bulk fluorescence methods of detection applied to crude extracts of 

algal pigments (Lorenzen 1967; Welschmeyer 1994). However, HPLC easily 

discriminates chlorophyllide a from chlorophyll a on the basis of their widely 

different polarities. Chlorophyllide a is a polar molecule that elutes quickly off a 

reverse phase HPLC column; under conditions applied in this study it has a shorter 

elution time of ca. 10-11 min., whereas the non-polar chlorophyll a molecule has a 

longer elution time of ca. 35 min. HPLC's ability to separate other chemical 

compounds such as carotenoids based on elution times allows us to further examine 

the chemical makeup of the phytoplankton communities. 

Chlorophyllide a is often detected in samples, however it is not always clear 

if the pigment was naturally present in the algal cells prior to extraction or formed 

as an artifact of the extraction process. Substantial evidence suggests that 

chlorophyllide a is often an artifact of chlorophyll a degradation during extraction in 

organic solvents, especially when the water content of aqueous solvent mixtures is 

high (Barrett and Jeffrey 1964; Hu et al. 2013, Jeffrey and Hallegraeff 1987). 

However, it has also been suggested that chlorophyllide a may be an indicator 

pigment attributed to specific physiological stress in marine algae. For instance, 

some diatoms have been shown to have increased levels of enzymatic 

chlorophyllase activity resulting in higher cellular concentrations of chlorophyllide 

a (Barrett and Jeffrey 1964). This was also supported by the study of natural spring 

bloom succession of diatoms off the coast of Sydney, Australia (Hallegraeff 1981). 
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The detection of chlorophyllide a by chromatographic separation can be the 

result of either 1) extraction artifact, 2) physiological degradation or 3) taxon

specific tendencies to show high chlorophyllide a levels (Jeffrey and Hallegraeff 

1987). lfwe are able to eliminate the potential for artifactual production of 

chlorophyllide a, then we can focus our attention on its possible role in the 

physiology of the cell. An extraction artifact is created in the presence of water, 

which is a hospitable environment for the chlorophyllase enzyme. If chlorophyllide 

a is a product of physiological stress, it may be inaccurate to include it in 

productivity metrics such as chlorophyll-specific photosynthetic performance, 

relative algal biomass levels prediction of photosynthetic rates using chlorophyll

light models (Wernand et al. 2013) and remote satellite sensing of primary 

production. Specifically, it is presumed that chlorophyllide a is not an active 

participant in organized light absorption energy transfer and therefore should not 

be included in bulk measures of chlorophyll a used in calculating potential 

photosynthetic rates. While methods such as spectrofluorometry and 

spectrophotometry can define the dominant pigments in pure form, the 

discrimination is largely lost in crude extracts. It is essential to determine an 

optimized method that accurately differentiates pigments and their degradation 

products and eliminates the artifactual formation of chlorophyllide a. In order to 

accurately measure pigments and degradation products there is a need for a method 

that physically separates compounds (already available using HPLC) and also 

minimizes artifactual formation of chlorophyllide a. 

Metabolically, chlorophyllide a is both a degradation product of chlorophyll a 

and is also an intermediate in the biosynthesis of chlorophyll a. Chlorophyllide a is 

the last intermediate before chlorophyll a in chlorophyll synthesis (Fig. 1a). 

Chlorophyll-synthase (chl-synthase) catalyses ester bond formation between the 

precursor chlorophyllide a and the phytol chain. As discussed above, chlorophyllide 

a can also be a product of the breakdown of chlorophyll a when the enzyme 

chlorophyllase hydrolyses the ester bond (Hu et al. 2013). Chlorophyllase is found 

in the inner envelope of the chloroplast (Ma tile et al. 1996). Chlorophyllase has been 

extensively studied in higher land plants in relation to ripening or plant senescence 

5 



(Daood 2003). There tends to be elevated levels of chlorophyllide a and 

chlorophyllide b in the initial growth stages of plants. One of the primary methods 

for collecting analytical quantities of chlorophyllide a is from germination of 

pumpkin seeds, harvested at the earliest stages of light exposure just before 

greening of the seedlings (Sundqvist et al. 1979). The chlorophyllase enzyme is also 

known to be elevated in senescent leaves (Daood 2003). Photosynthetic organisms 

in the ocean possess similar pigment complexes to higher land plants and there is 

reason to suspect a similar breakdown pathway of chlorophyll occurs in 

phytoplankton by the enzyme chlorophyllase (Jeffrey and Hallegraeff 1985). 

In addition to its normal occurrence in cells as a precursor or a breakdown 

product of chlorophyll a, chlorophyllide a may also form as an artifact during 

pigment extraction due to the presence of the chlorophyllase enzyme contained 

within the aqueous organic solvent extracts. Chlorophyllase activity requires water 

to hydrolyse the ester bond (Fig. lb). The enzyme chlorophyllase could possibly be 

activated with cell harvesting techniques with a non-optimal extraction solvent. 

From previously published work we know that chlorophyllide a can be created 

during extraction with solvents containing high water content such as 50% aqueous 

acetone (Barrett and Jeffrey 1964; Jeffrey and Hallegraeff, 1987; Hu et al. 2013). In 

50% acetone, chlorophyllase is stable, active and creates very high yields of 

chlorophyllide a (Barrett 1964 ); this characteristic has been exploited as a simple 

assay for chlorophyllase a activity (Jeffrey and Hallegraeff, 1987). Therefore, activity 

can be increased in aqueous solvents with high water content and can be decreased 

by extracting pigments in non-aqueous solvents. Barrett and Jeffrey (1964) 

employed 50% acetone (water:acetone; vol:vol) as a routine extraction process to 

promote high levels of chlorophyllide a in phytoplankton extracts. The common 

chlorophyll extraction solvent (90% acetone) yields significantly greater total 

chlorophyll extraction than 50% acetone and is thus the preferred solvent. 100% 

acetone yields salt precipitation in small volume acetone extracts ( <1.5 mL) and is 

thus problematic in HPLC analysis. Small sample extraction volumes promote 

increased analytical sensitivity (Welschmeyer, personal communication). Suzuki et 

al. (2005) applied the protein reductant reagent dithiothreitol (DTT) as an enzyme 
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inhibitor which, in some cases, yielded lower levels of chlorophyllide a formation 

than in 90% acetone. The effect of changing water content in the extraction solvent 

mixture on chlorophyllide a formation was therefore a carefully monitored 

parameter in this study. 

A. 

17 

0 

/ 
B. 

chlorophyll a phytol chlorophyllide a 

Fig, 1: Chlorophyllide a in chlorophyll synthesis and degradation. A) The 
enzyme chlorophyll synthase transforms the chlorophyllide a intermediate into a 
chlorophyll a (adapted from Hu et al. 2013). B) The enzyme chlorophyllase (CLH) 
breaks chlorophyll a into chlorophyllide a by hydrolyzing ester bond cleaving off the 
phytol chain (adapted from Hu et al. 2013). 

Microwave-assisted Extraction 

An alternative method to denature enzymes is through heating which can be 

done rapidly through the application of a microwave technique. Chemical assays 
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now routinely use microwaves as an alternative energy source to enhance reaction 

rates (Kumari 2017). The primary objective of this study was the optimization of a 

microwave technique for the purpose of minimizing artifactual chlorophyllide a 

production and maximizing the final yield of pigments ( chlorophylls and 

carotenoids) in a simplified, routine extraction technique (Eskilsson and Bjorklund 

2000). 

Microwaving excites the water molecules and this heats the sample, possibly 

inhibiting chlorophyllase enzyme activity if applied at appropriate levels. In 

addition, the water quickly turns into a gas phase, resulting in substantial loss of wet 

weight to the standard GF /F filter harvesting method, thus reducing the water 

content of the final extract. This can also be helpful in reducing unwanted 

chlorophyllase activity since Barrett and Jeffrey (1964) showed a clear relation 

between chlorophyllide a levels and water content of various aqueous acetone 

mixtures. A microwave-based technique thus has the potential to prevent 

chlorophyllide a formation. However, the effect of microwave treatment on pigment 

integrity is unknown, and this study employed simple control preparations to test 

whether pigments might be destroyed or, conversely, might be extracted from algal 

tissue more efficiently. The latter could drive an overall increase in the extraction 

yield of total chlorophyll (chlorophyll a +chlorophyll a'+ chlorophyllide a), which 

implies a potential underestimate of true oceanic chlorophyll a concentrations using 

conventional non-microwave extraction techniques. 

The primary objective of this study was the optimization of a microwave 

technique for the purpose of minimizing artifactual chlorophyllide a production and 

maximizing the final yield of pigments ( chlorophylls and carotenoids) in a 

simplified, routine extraction technique. An ideal goal would be to have a single 

optimized protocol that would allow for taxonomic insights by maximizing 

extraction yield for all pigments. 
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Materials and Methods 

Collection of Water Samples 

In Fall and Spring 2017 and Fall 2018 water samples were collected in 

freshwater, brackish and ocean environments in coastal Central California. Water 

samples were collected in Elkhorn Slough, Moss Landing Harbor, Moss Landing 

Jetty, and Moss Landing Beach in Moss Landing, CA (Fig. 2). Water samples were 

also collected in Lake El Estero and Monterey Bay Del Monte Beach in Monterey, CA 

and Lake Pinto in Watsonville, CA. Open water samples from Monterey Bay were 

collected on the RV John H. Martin along a routine sampling transect for the 

Watsonville Water Department. 

e Moss Landing Jetty 

• Elkhom Slough 

• Moss Landing Boat Dock 

MoroCOJo 

Fig. 2: Water sample locations in Moss Landing, CA. 

Extraction of Pigments from Water Samples 

Water samples were collected from several marine and freshwater 

environments and were processed as described below. In order to extract pigments 

from biological water samples, cells were harvested onto glass fiber filters 

(Whatman GF/F; nominal 0.7 µm pore size, 25 mm diameter) by vacuum filtration 

and extracted in 2 mL screw cap microcentrifuge tubes containing 1 - 1.5 mL 90% 

acetone (pipetted quantitatively). The tubes were then stored in a -20°C freezer for 

at least 24 hrs. and then the pigments extracts were prepared for analysis with 
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HPLC (Zapata et al. 1987). The preparation consisted of vortexing on a 12 position 

tube carrier (2 min.; highest speed) followed by filter packing with a stainless steel 

spatula to wring sample filters of pigment extract trapped within the fibers of the 

filters. The extracts were inverted twice gently to mix the extract volume without 

dislodging the filter from the bottom of the microcentrifuge tubes. All tubes were 

then centrifuged at 10,000 rpm (microcentrifuge) to clear suspended filter pulp and 

desired volumes of each sample were pipetted into clean, screw-cap polypropylene 

HPLC autosampler vials with air-tight, pierceable septa (Teflon). Solvent soak of 

filters in 90% acetone is a common pigment extraction method used in biological 

oceanography. This pigment extraction method is used by long scale oceanographic 

programs such as JGOFS, HOTS and BATS (Mantoura and Llewellyn 1983 

Welschmeyer 1994). For each control filter described above a replicate microwaved 

filter was placed on an open plate in a conventional Magic Chef microwave oven 

(1.SKW) and microwaved for 20 seconds at full power immediately after filtration, 

and then extracted and prepared exactly as above. 

Optimizing Microwave Assisted Extraction: Effect of Time and Solvent 

Lake El Estero and Moss Landing Harbor water was tested to determine 

appropriate microwave time. Filters were microwaved for various times in order to 

determine the optimal conditions for maximizing extraction yield while minimizing 

additional artifacts from excessive heat. Filters were placed on an open plate in the 

microwave. Microwave time was evaluated over a range of total microwave 

exposure times, in increasing 5 second increments. All samples were extracted in 

90% acetone, unless otherwise noted. The effect of the microwave was a noticeable 

expansion of the thickness of each filter as the water evaporated. Gravimetric 

analysis relative to initial filter dry weight showed that the filters were fully dry 

after a 20-30 seconds of microwave exposure. A separate experiment compared 

microwave drying to simple pat-drying with paper towels. Filters were patted dry, 

with a paper towel and then extracted in 90% acetone as above. Patting the filters 

dry with a paper towel represents a technique that removes considerable retained 
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water but would not be expected to denature the chlorophyllase enzyme. The water 

holding capacity of the GF /F filter is substantial. Gravimetrically, a mean of 0.21 mL 

water was retained on 6 replicate filters processed with seawater samples under 

vacuum conditions of 1/3 atm. Thus, the net final acetone concentration of an 

extract prepared by adding a wetted 25 mm diameter GF /F filter to 1 mL 90% 

acetone would be approximately 7 4%. In all cases in this study, the extraction 

volumes were corrected for the additional water present in the control filters; no 

correction was needed for the microwaved samples. We performed an acetone 

dilution experiment as a simple assay for chlorophyllase activity and for 

determination of the water concentration resulting in maximum chlorophyllide a 

production during extraction. This simple experiment was accomplished by diluting 

100% acetone with various pipetted volumes of water, with correction for filter

retained water as appropriate. 

HPLC Analysis 

Samples were analyzed by HPLC (High Performance Liquid Chromatography, 

Thermo Fischer Separation Products) using small modifications of the general 

method by Zapata et al. (2000). A Walters Ca Symmetry 15 cm column, with 3.5um 

particles was used as the separation column; the flow rate of the HPLC was 1.0 

ml/min. Samples were injected by autosampler maintained at 10°C at all times; the 

autosampler was programmed to make 1.5x dilutions of extracts with water (1:2, 

water:extract, vol:vol) just before each injection to prevent band-spreading of the 

early eluting polar compounds, e.g., chlorophyllide a. HPLC sample injections were 

200 microliters unless otherwise noted. Chlorophyll a and chlorophyllide a were 

quantified by peak area at 665 nm detected on a Thermo UV6000 photodiode array 

absorbance detector. Chlorophyll a had an elution time of ca 35 min; chlorophyllide 

a was found to elute at ca. 10-11 mins. The effect of microwave and non

microwaved ( control) treatment filters on chlorophyllide a levels and on total 

chlorophyll was determined by analyzing the peak areas directly with no correction 

for response factors. Chlorophyllide a and chlorophyll a standards were quantified 

assuming equal mole-specific absorptivity and produced response factors (raw area 
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units/µmole loaded) that were within 10% of each other. All chlorophyllide a that 

was below the detection level of instrument is stated as 0; typical peak areas for 

detectable peaks ranged from 100,000 to 1,000,000,000 relative area units, 

undetected peaks were <1,000 area units. Total chlorophyll a-like pigments are 

equal to the sum of chlorophyll a, chlorophyll a', and chlorophyllide a. Final 

chlorophyllide a percent for each sample was calculated relative to the 'total' sum of 

chlorophyll a peak areas, as defined above. Microwaved and non-microwaved 

( control) samples were normalized for volume changes that resulted from 

evaporation of water from microwave treated filters (nominally 0.2 mL of water was 

lost upon microwave treatment; thus, the final extraction volume was 1.5 ml vs. 1.7 

ml for microwaved vs. control samples, respectively). 

Extraction Temperatures and Liquid Nitrogen Freeze/Thawing Treatments 

Liquid nitrogen freeze/thaw procedures represent mechanical disruption 

methods that have been used to improve extracted pigment yields (Lepesteur et al. 

1993) by disruption of cell walls and membranes. Water samples (64 mL) from Lake 

El Estero were filtered and were processed as described below. Phytoplankton 

communities from Lake El Estero were chosen for this test based on preliminary 

results showing higher pigment yields from microwave treatment versus 

conventional 90% acetone soak in most Lake Estero samples. Harvested cells on 25 

mm GF /F filters were analyzed in triplicate using the following procedures: 1) filters 

were put directly in quantitative volumes of 90% acetone (wet soak) and stored in a 

-20 degree Celsius freezer for 24 hours prior to HPLC analysis, 2) filters were 

treated as above but stored in the dark at room temperature (20°C) for 24 hours 

prior to HPLC analysis, 3) filters were microwaved for 30 seconds and then 

extracted in 90% acetone directly and then stored at freezer temperature (-20°C), 4) 

filters were microwaved for 30 seconds and then extracted in 90% acetone directly 

and then stored in the dark at room temperature for 24 hours prior to analysis, SJ 
filters were put in clean, dry screw-cap microcentrifuge tubes with caps loosely 

tightened and immersed directly in a Dewar container of liquid nitrogen for 20 

seconds, thawed at room temperature for 1 min and extracted in 90% acetone and 

12 



stored at freezer temperature -20°C until analysis, 6) filters were put in clean, dry 

screw-cap microcentrifuge tubes with caps loosely tightened and immersed directly 

in a Dewar container ofliquid nitrogen for 20 seconds, thawed at room temperature 

for 1 min and put in 90 % acetone and stored in the dark at room temperature until 

analysis 7) filters were put in clean, dry screw-cap microcentrifuge tubes with caps 

loosely tightened and immersed directly in a Dewar container of liquid nitrogen for 

20 seconds, thawed at room temperature for 1 min and then microwaved for 30 

seconds put in 90 % acetone and stored in the freezer (-20°C) until analysis 8) filters 

were put in clean, dry screw-cap microcentrifuge tubes with caps loosely tightened 

and immersed directly in a Dewar container of liquid nitrogen for 20 seconds, 

thawed at room temperature for 1 min and then microwaved for 30 seconds put in 

90 % acetone and stored in the dark in room temperature(20°C) until HPLC 

analysis. 

Cultured Phytoplankton 

A time series growth experiment was performed to determine if 

chlorophyllide a was produced naturally at all times in phytoplankton or specifically 

as a result of senescence in late phase culture growth. The phytoplankter 

Phaeodact:ylum tricornutum ( obtained from CCMP Bigelow Laboratories, Bar 

Harbor, Maine) was cultured for the purpose of this study. Sterile nutrient-enriched 

seawater growth media was prepared in order to support the culture. Seawater 

from Monterey Bay from the running seawater system of Moss Landing Marine Labs 

was filtered through 0.2 µm filters, autoclaved and augmented with nutrients as per 

Guillard's F /2 formulation (882 µM nitrate, 106 µM silicic acid, 36 µM phosphate, 

vitamins, trace metal). Five ml of F /2 media was inoculated with Phaeodact:ylum 

tricornutum culture in glass 5 mL sterile test tubes. After inoculation, cultures were 

grown in a 24 hour continuous-light 15°C incubator. Growth was monitored as 

relative chlorophyll fluorescence units (RFU) using the culture tubes as cuvettes in a 

10 AU fluorometer (Turner Services) outfitted with optical filters and excitation 

lamp described by Lorenzen (1967). Exponential growth phase was identified from 

linear increases in the log of chlorophyll fluorescence. Growth rates(µ) were 
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calculated from the exponential growth model, Nt =Noe µt_ All the cultures were 

monitored over time to identify mid-exponential phase and then sub-cultured by 

inoculation into new tubes of fresh media. By repeated sub-cultures in mid

exponential phase we were able to obtain a consistent growth rate ensuring full 

acclimation to nutrient saturated conditions. Once acclimated growth was 

established, Phaeodactylum was transferred into 12 tubes of fresh media for a final 

time to follow pigmentation changes over time as the cultures entered the 

stationary phase of batch culture growth. All tubes were grown under identical 

conditions. Six of the tubes were harvested at mid-exponential phase (day 4) to 

represent nutrient saturated growth and 6 were harvested at stationary phase ( day 

11) to represent stressed conditions. For each set of six tubes (5 mL culture volume 

in each) the cultures were volumetrically filtered onto 25 mm diameter GF /F filters. 

Three filters were controls (non-microwaved) and 3 were treated (microwaved for 

20 seconds) prior to extraction with 1.5 ml of 90% acetone. These extracts were 

stored in a freezer for one week followed by High Performance Liquid 

Chromatography (HPLC) analysis. Sample volumes of 200 µL were injected for all 

phases of the culture. 

Time Series Analysis of Algal Cultures 

Four species of phytoplankton were cultured over time with natural sunlight 

at room temperature on a north-facing laboratory window sill at Moss Landing 

Marine Laboratories (MLML). The genera included Thalassiosira Weissjlogii (a 

diatom), Tetraselmis (a green alga), Unknown Diatom, and Scenedesmus (a green 

alga). Thalassiosira weissjlogii was obtained from the Kudela Lab at University of 

California Santa Cruz (UCSC). Scenedesmus and Tetraselmis was obtained from 

Carolina Biological Supply. The unknown diatom isolate was isolated from Monterey 

Bay water at Moss Landing Marine Labs. Cultures were 9, 22, 34, 51, 64 and 79 days 

old at the time of harvest. Cultures (5 mL) were all filtered onto glass fiber filters 

(Whatman GF /F; nominal 0.7 µm pore size). For each time series sample, filters 

were placed on an open plate in the microwave for 20 seconds and corresponding 
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replicates were not microwaved to serve as controls. Samples were analyzed using 

HPLC as described above. 

Results 

Reported below are studies to optimize the microwave-assisted extraction 

technique. The parameters investigated included 1) total chlorophyll extracted 

( extraction yield) and 2) proportions of chlorophyllide a relative to all chlorophyll 

a-like pigments (total chlorophyll a; defined as chlorophyllide a + chlorophyll a + 

chlorophyll a'). The optimization experiments included samples from (a) various 

marine and lake environments, and (b) single species grown in pure culture. 

Finally, the optimized extraction method was applied to a survey of samples, both 

natural and cultured, to compare standard to microwave-assisted chlorophyll 

extractions. 

(1) Optimization of Microwave-Assisted Extraction: Effect of Microwave Time 

Figure 3 shows the reduction in chlorophyllide a content (relative to total 

chlorophyll a) as a function of microwave time in samples from four locations in the 

coastal Monterey area. We found that 20-30 seconds was an optimal time of 

microwaving for reduction of chlorophyllide a (Fig. 3). In the Lake El Estero 

samples, 72% of the total chlorophyll was detected as chlorophyllide a in the 

untreated control, and that was reduced to <0.01 % after microwaving for 20 

seconds (Fig. 3). Similar results ( <0.01 % chlorophyllide a) were seen in samples 

from other locations including Moss Landing harbor at high tide and low tide and 

Moro Cojo slough. 

Total chlorophyll a-like pigments increased from 2.3-4.4x in the Lake El 

Estero samples when microwaved for 20 seconds (e.g. Fig. 4, green). A more modest 

increase in total chlorophyll yield of about 1.86x was found in Moss Landing Harbor 

(shown in blue; Fig. 4). 
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(2) Optimization of Microwave-Assisted Extraction: Effect of Extraction 
Solvent 

Here we confirm the undesirable effect of high water content in aqueous 

acetone mixtures with respect to artifactual formation of chlorophyllide a, as shown 

previously by Barrett and Jeffrey (1964), Jeffrey and Hallegraeff (1987) and Hu et al. 

(2013). Standard acetone soak extraction showed marked reductions in 

chlorophyllide a (as% of total chlorophyll a) at approximately 85% acetone; at 70% 

acetone almost 90% of the total chlorophyll a-like pigments were present as 

something other than chlorophyll a, e.g. chlorophyllide a (Fig. Sa, blue bars). In 

contrast, note in Fig. Sa that under microwave-assisted extraction the % chlorophyll 

a remains above 80% even in 65% acetone; microwave-assisted extraction yielded 

<5% chlorophyllide a in all acetone water mixtures in the range 75-100%. Our 

experiments confirm that extractants with high water content (i.e. 50:50 

acetone:water) had increased artifactual formation of chlorophyllide a (Fig. Sb, blue 

bars); at that level, microwave-assisted extraction was unable to inhibit 

chlorophyllide a production (Fig. Sb). We conclude that there is still chlorophyllase 

activity even in 90% acetone. Jeffrey and Hallegraeff (1987) suggested that this 

problem could be solved by employing a chlorophyllase inhibitor. In this study we 

have inhibited the chlorophyllase enzyme through the application of heat using a 

conventional microwave oven. 

In Fig. 6 the results for the same experiments described above are plotted to 

show the pigment extraction yield as 'total chlorophyll a-like pigments'. In all cases 

there was improved extraction yield for all chlorophyll a-like pigments when using 

microwave-assisted extraction (Fig. 6). Total chlorophyll extraction yield was 

increased, relative to control soak extraction by at least 2x in all of the microwaved 

samples using >75% acetone (Fig. 6). 
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Fig. 6: Total Chlorophyll Extraction Yield with Microwaving. Total chlorophyll a
like pigment extraction yield for microwaved samples relative to controls 
(Microwaved/Control) as a function of various aqueous acetone mixtures. 

(3) Optimization of Microwave-Assisted Extraction: Effect of Filter Extraction 
Temperature 

Another aim of this study was to determine the optimal extraction 

temperature for filters in 90% acetone. The common practice is to store extracts in 

the dark at the coldest temperatures available to avoid pigment degradation. An 

experiment was done in order to determine if the microwave technique reduced the 

degradation of chlorophyll a into chlorophyllide a at different extraction 

temperatures. The results (Table 2) revealed that the chlorophyllase enzyme still 

breaks down chlorophyll, even when filters were extracted in a freezer using control 

soaking technique. When the microwave technique is applied, chlorophyllide a is 

reduced from 27% to 0.4% of total chlorophyll a-like pigments (Table 2). The 

experiment also revealed that the microwave technique led to a 2.Sx increase in 

extraction yield under freezer conditions (Table 2). 
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Table 2: Effect of Extracting filters with 90% Acetone at Different 
Temperatures [measured after 4 days of extraction). 

Treatment Total Chi Extraction Yield Chlorophyllide a % 

(chi a+ {Microwave/ 

chlide a+ Control) 

chi a') 

Freezer Control 970,022 2.5 26.98 

Microwaved 2,467,009 0.433 

Fridge Control 1,290,682 1.6 21.12 

Microwaved 2,129,498 1.447 

Room Control 1,747,132 1.4 26.69 

Temperature 

Microwaved 2,533,288 1.23 

Initial sums of all chlorophyll a-like pigment peak areas (in milli-absorbance 

area units) in microwaved and control samples are shown in Table 2. Microwaving 

the filters improved extraction of chlorophyll a (Fig. 7a, blue) and chlorophyll a' 

peak areas (Fig. 7a, red) in both the freezer and the room temperature extractions; 

chlorophyllide a was no longer detectable in microwaved samples (Fig. 7a, green). 

The total chlorophyll a-like pigment yield in the control "soak" samples were 

highly variable depending on the extraction temperature. An AN OVA test indicated 

that there was a significant difference between extraction temperatures. Since the 

ANOVA test indicated there was a significant difference, a Tukey-Kramer test of 

significance was then done, which confirmed that the total chlorophyll a-like 

pigments were significantly different (p<0.05) between extraction temperatures in 

the control samples (Fig. 7b blue). When the microwave technique was applied, it 

improved extraction of total chlorophyll a-like pigments independent of where the 

samples were stored (in all extraction temperatures) (Fig. 7b). An ANOVA test 

revealed that there was not a significant difference (p>0.05) in the total chlorophyll 

extracted from microwaved filters in different extraction temperatures. When the 

microwave samples were compared with the control samples there was a significant 

difference ( p<0.05) in all extraction temperatures. Samples that were stored in the 
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freezer (-20°C) appear to have the most improved extraction yield. When the 

microwave technique was applied, it improved extraction yield up to 4.03x 

compared to the control (Fig. 7c). At room temperature, extraction yield improved 

by almost 2x with the microwave technique. The microwave technique greatly 

reduced the degradation of the chlorophyll a into chlorophyllide a. Chlorophyllide a 

was approximately 30-40% of total chlorophyll in all control samples in the 

different extraction temperatures. After the application of the microwave technique, 

chlorophyllide a was undetectable (Fig. 8). 

Liquid nitrogen freeze-thaw technique has been proposed as an improved 

extraction methodology due to its simplicity relative to mechanical extraction 

techniques (e.g., tissue grinding, sonication). Liquid nitrogen has been used to stop 

enzyme activity with extremely cold temperatures and to break open cells in order 

to better extract pigments. Our results indicate that the liquid nitrogen did not 

significantly (p>.05) increase the extraction yield of total chlorophyll a-like 

pigments. There was not a significant difference (p>0.05) between the freezer 

temperature soaking extraction and freezer extraction preceded by liquid nitrogen 

freeze/thaw treatment for 20 seconds. There was also not a significant difference 

between the room temperature extraction and room temperature with a liquid 

nitrogen treatment for 20 seconds. The microwave treatment increased the 

extraction yield of total chlorophyll for samples stored in the freezer by 4.03x. The 

microwave treatment increased the extraction yield for liquid nitrogen by 4.11x 

(Fig. 7c). We conclude that the liquid nitrogen appeared to have little effect on 

improving the extraction yield of total chlorophyll a like pigments. An interesting 

outcome of the test scenario above was that room temperature soaking extraction 

(without microwave treatment) yielded substantially more total chlorophyll than 

freezer soaking, the commonly recommended protocol in the JGOFS standard 

operating procedures (Knap et al. 1996). 
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Fig. 7: Effect of extraction temperature on chlorophyll measurements using 
the microwave technique. A) Composition of total chlorophyll (chlorophyll a+ 
chlorophyll a'+ chlorophyllide a) in different extraction temperatures. Means of 
each variant of chlorophyll a were calculated from environmental triplicates for 
each treatment. The injection volume was 150 microliters for all samples. B) 
Average total chlorophyll a- like pigments in different temperature conditions. Peak 
areas ( mean ±SD) were calculated by taking the average of total chlorophyll in 
triplicate environmental samples. The injection volume was 150 microliters for all 
samples. C) Ratio of total chlorophyll a-like pigments extraction yields 
microwave/control with different temperature treatments. Total chlorophyll was 
calculated for triplicates for each temperature condition. An average was calculated 
for each of the temperature condition and then the microwaved total was divided by 
the control to determine how much the microwaving improved extraction yield. 
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(4) Application of Microwave- assisted extraction to samples from marine and 
freshwater environments 

To determine the effect of microwaving on pigment yields, the sum of the 

peak areas of the total chlorophyll in each microwaved samples was divided by the 

corresponding sum of peak areas in control samples from each of the two different 

sample locations, freshwater and marine. The extraction yield for total chlorophyll 

was 2.30x better with the microwave technique in Lake El Estero and 1.34x better 

with the microwave technique in Moss Landing Harbor water (Table 3). The 

microwave technique yields the most total chlorophyll (here defined as chlorophyll 

a+ chlorophyll a'+ chlorophyllide a) for both sampling sites (Table 3). Filters 

treated by microwaving yielded more total chlorophyll in both locations even when 

compared to the patted dry technique (Table 3). 

24 



Table 3: Total chlorophyll extraction yield in control soak samples vs. paper 
towel patted dry filters. The increase in extraction yield is expressed as the ratio 
of microwave treated samples to control soak samples. 
Location Microwave/Control Patted Dry /Control 
Lake El Estero 2.30 1.52 
Moss Landing 1.34 1.05 
Harbor 

Previous literature had concluded that some algal taxa were characterized 

by inherently high intracellular chlorophyllide a content, particularly in some 

diatom species (Jeffrey 197 4 ). To determine the differences in chlorophyllide a 

content between marine and lake phytoplankton we applied our optimized 

microwave technique to a survey of environmental samples (freshwater and 

saltwater) and cultured phytoplankton as well. The microwave technique improved 

total chlorophyll extraction yield in the mostly freshwater environment of Lake El 

Estero by 3.2x. (Fig. 9a). Extraction yield was also improved in Monterey Bay and 

Moro Cojo. When comparing marine environmental samples to lake and estuary 

environmental samples the increase in total chlorophyll is more apparent in 

freshwater or brackish environments (Fig. 9a). As an example, on February 27, 2018 

Lake El Estero was 0.76 ppt (mostly freshwater) and Moss Landing Harbor was 

30.76 ppt (mostly saltwater). Overall, the microwave technique improved or was 

equal to the extraction yield of total chlorophyll a like pigments in all environments 

(Fig. 9a). 

The freshwater phytoplankton community of Lake El Estero showed 

particularly high chlorophyllide a % using conventional solvent soak technique, 

with up to 89% of the total chlorophyll a-like pigments detected as chlorophyllide a 

(Fig. 9b, blue bar). When the microwave technique was applied chlorophyllide a was 

reduced to undetectable levels (Fig. 9b, red bar). Pinto Lake, a small freshwater 

body in the city of Watsonville provides an additional example of the ability of the 

microwave treatment to reduce chlorophyllide a formation. In Pinto Lake, 74% of 

total chlorophyll was detected as chlorophyllide a, and when microwaved this was 

reduced to 1.63%. Since the microwave technique can completely eliminate 
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chlorophyllide a in many samples we hypothesize that the 1.63% chlorophyllide a 

seen here was present in these cells prior to extraction. 
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Fig. 9: Chlorophyll extraction yield and Chlorophyllide a % in samples from 4 
local environments. A) Chlorophyll extraction yield expressed as the ratio of 
microwave treated samples to control soak samples from 4 local environments. 
Total chlorophyll was expressed as the sum of chlorophyll a + chlorophyll a'+ 

chlorophyllide a. Totals were calculated as an average of samples measured at each 
site. B)Average Chlorophyllide a% in control and microwaved samples in different 
environments. Chlorophyllide a% (Chlorophyllide a)/ (Chlorophyll a +Chlorophyll 
a'+Chlorophyllide a). Chlorophyllide a% (mean±SD) determined from triplicate 
assays. Note that chlorophyllide a was detectable in microwaved samples only in 
Moss Landing Jetty. 
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The mean chlorophyllide a percentage out of total chlorophyll in surface 
samples along a 12 mile transect in Monterey Bay between Watsonville (the mouth 
of Pajaro River) and the City of Marina is plotted in Fig. 10. When the microwave 
technique was applied to Monterey Bay samples, the chlorophyllide a content in the 
microwaved samples (1-2%) was greatly reduced relative to control samples (35-
75%), but still detectable (Fig. 10). We assume that small levels of chlorophyllide a 
detection after microwave treatment in Monterey Bay may represent extant, in situ 
concentrations of cellular chlorophyllide a (Fig. 10). In other cases, however, 
chlorophyllide a was reduced to undetectable levels after microwave treatment (Fig. 
9b). The microwave technique, by eliminating most of the artifactual chlorophyllide 
a, represents a more accurate measurements of cellular chlorophyllide a in the 
sample. Total chlorophyll extraction yield increased in all environmental samples 
tested. 

■ Control 

■ Microwaved 

Monterey Bay 

Fig.10: Microwave effect on Chlorophyllide a% in Monterey Bay. 
Chlorophyllide a% (Chlorophyllide a/ Chlorophyll a+Chlorophyll a'+ Chlorophyllide 
a) expressed as mean ±SD (N = 12)Data from a 12 mile shoreline transect cruise 
from Watsonville (Pajaro River) to the city of Marina, CA collected on the RV John H. 

Martin, Moss Landing Marine Laboratories research vessel. 
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Chlorophyllide a in Cultured Phytoplankton Samples 

Experimental efforts, using controlled growth of cultured phytoplankton, 

were made to test the hypothesis that detectable levels of chlorophyllide a ( after 

microwave treatment) might be associated with the physiological status of nutrient 

depleted culture conditions. Previous literature suggested that higher 

chlorophyllide a content was found in senescent ( stationary phase) diatoms 

(Hallegraeff 1980). Experiments utilizing the transition of algal cultures from 

exponential to stationary growth phases are presented below. 

In exponential phase, Phaeodactylum growth rates were very consistent 

among all 12 tubes (Fig. 11). An AN OVA test indicated that there was not a 

significant difference (p>.05) between the growth rates of the 12 tubes in 

exponential phase. All the samples (1-12) grew equally well in exponential phase 

with rates of: tubes 1-3 (Growth rate=1.12±0.02), 4-6 (Growth rate=1.15±0.05), 7-9 

(Growth rate=1.19±0.03) and 10-12 (Growth rate=1.12±0.04). Tubes 1-6 were 

harvested in exponential phase (Fig. 11a) and tubes 7-12 were harvested in post

exponential phase after growth had slowed (Fig. 11b). These near stationary phase 

cultures had almost identical cell density. The average rates during post-exponential 

phase were: 7-9 (Growth rate=0.19) and 10-12 (Growth rate=0.21). Our microwave 

technique also increased total chlorophyll a extraction yield in both the mid

exponential (1.3x) and stationary (1.Sx) phase of the culture (Fig. 12). Microwaving 

filters from either exponential or stationary cultures resulted in a statistically 

significant (p<< 0.05) decrease in chlorophyllide a percentage. However, there was 

not a statistically significant difference between the same treatments, but different 

phases (exponential and stationary)(p=0.1) (Table 4). Both exponential and 

stationary cultures of phytoplankton contained about the same percentage of 

chlorophyllide a in control (non-microwaved) samples (Fig.13). With the microwave 

assisted extraction technique low levels of chlorophyllide a were seen in cells in 

both growth phases. The observation that there was very low chlorophyllide a levels 

in stationary phase argues against the suggestion that chlorophyllide a formation 

occurs more in senescent cultures (Hallegraeff 1981). 
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Fig.11: Phaeodactylum culture growth curves. The growth rates for the 
acclimated cultures were: A) Six tubes were harvested in exponential growth at 3.86 
days. B) Six tubes were harvested in the post-exponential phase at 11.86 days. 
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Fig.12: Total Chlorophyll a- like pigments in Phaeodactylum tricornutum in 
mid-exponential and stationary phase. Amount of total chlorophyll (peak areas in 
mAU) that is obtained from the control vs. microwaved filters for the 12 culture 
tubes (6 were harvested in mid exponential and 6 were harvested in stationary 
phase). Ratio of average total chlorophyll a microwaved/ control indicated above 
bars. 
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Fig.13: Chlorophyllide a% in the exponential and stationary phase of the 
Phaeodactylum culture as measured in control vs. microwaved samples. The 
microwaved technique greatly reduced chlorophyllide a in the mid exponential and 
stationary phases of the culture growth. 
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Table 4: Statistical summary of Tukey Test: The effect of microwave on 
chlorophyllide a% in stationary and mid-exponential phase of Phaeodactylum 
culture.* indicates significance p<0.05. 

Phases P value 

Mid-Ex onential-NM -Mid-Ex onential-M 0.0000063* 
Stationary-M-Mid-Exponential-M 0.9999928 
Stationa.-y-NM-Mid-EXJ]Onential-M 0.0000007* 
Mid-Exponential-NM -Mid-Exponential-NM 0.0428644 
Stationa.-y-M-Mid-EXJ]Onential-NM 0.0000049* 
Stationary-NM-Mid-Exponential-NM 0.5273913 
Stationa.-y-M-Mid-EXJ]Onential-NM 0.0000065* 
Stationary-NM-Mid-Exponential-NM 0.1155381 
Stationary-NM-Stationary-M 0.0000007* 

Time Series Analysis of Algal Cultures 

A survey of 4 algal cultures, held in growth tubes up to 80 days, was made to 

check for potential taxon-specific traits in % chlorophyllide a over prolonged 

periods of batch culture growth (e.g., extreme nutrient stress) (Table 5). 

Chlorophyllide a% (chlorophyllide a/ total chlorophyll) was examined in four 

different types of phytoplankton in culture over a 2 month period. Tetraselmis ( a 

green alga) had very little chlorophyllide a in the control but the microwave 

technique still worked to reduce the chlorophyllide a percentage (Table 5). In 

comparison there was a high percentage of total chlorophyll detected as 

chlorophyllide a when the samples were not microwaved in the other species tested 

(Table 5). In the control the older cultures had more chlorophyllide a (Table 5). 

However, when the microwave technique was applied the chlorophyllide a 

decreased so that it was detected at low amounts in all genera. This indicates that 

the high amount of chlorophyllide a seen in those genera might have been an 

artifact of the extraction (Table 5). The chlorophyllide a percentage seen in the 

microwaved Scenedesmus can be interpreted as biological fact. 

Our results indicated that the microwave technique improved extraction 

yield for all four genera of cultured phytoplankton. The ratio of total chlorophyll 
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(microwaved/control) was always greater than 1. Tetraselmis (a green algae) in 

older cultures extraction yield of total chlorophyll tends to be lower unless the 

microwave technique is used. The chlorophyll from the 2.6 month (79 day) old 

culture at the time of the experiment was extracted almost 3.6x better with the 

microwave technique (Fig. 14). This indicates that the microwave technique is more 

effective and maximizes the amount of chlorophyll that is obtained from the 

Tetraselmis culture. 
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Fig. 14: Chlorophyll extraction yield from 4 different genera of cultured 
phytoplankton. Yield is expressed as the ratio of microwave treated samples to 
control soak samples. 
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Table 5: Chlorophyllide a% in 4 different cultured species. 
C= Control, M= Microwaved. Total Chlorophyll ( Chl a+ Chl a'+ Chlide a). 
UD=undetected 

Tetraselmis Thalassiosira Unknown Diatom Scenedesmus 
Chlide a% Weiss Chlide a% Chlide a% 

Chlide a% 

C M C M C M C M 
1) 9 days old UD UD 2.6 UD UD UD 7.3176 2.0595 

2) 22 days old UD UD 2.9 UD 4.1109 UD 11.9058 7.0473 

3) 34 days old UD UD 5 UD 4.3859 UD 6.2605 1.9142 

4) 51 days old UD UD 6.3 UD 4.8123 UD 11.9058 2.1211 
5) 64 days old UD UD 9.6 UD 13.4809 UD 22.7804 UD 
6) 79 days old UD UD 7.8 UD 10.1477 UD 13.7698 1.3530 

Summary of Effect of Microwaving on Chlorophyllide a measurements in 
Environmental and Culture Samples 

The collective results from all of the assays reported here are summarized 

in Fig. 15a, b and showed that the microwave-assisted extraction technique greatly 

reduced the amount of chlorophyllide a formation compared to a solvent soak 

technique (Fig. 15a). In the control samples, chlorophyllide a% ranged from 0 % to 

89% (Fig. 15a, blue bars), with approximately half of the 121 total control samples 

ranging from 20% to 89%. The mean percentage of chlorophyllide a for the control 

samples was 24.75%. When the microwave technique was applied all of the 

chlorophyllide a% levels were below 10% (Fig. 15b). The mean percentage of 

chlorophyllide a in microwaved samples was 0.48%. This indicates that there was 

only a small amount of chlorophyllide a present in the sample prior to extraction, if 

at all. We conclude that most of the chlorophyllide a detected in the natural 

phytoplankton communities and in cultured phytoplankton is an artifact of the 

extraction with the common solvent soak technique (Fig. 15a, blue bars). The 

microwave assisted extraction protocol inhibits chlorophyllase enzyme activity so 

the artifactual production of chlorophyllide a was greatly reduced; the residual low 

levels of chlorophyllide a after microwave treatment likely represent best 

estimates of the true in situ cellular levels (Fig. 15b). The microwave-assisted 
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extraction also significantly increased pigment extraction yield giving best 

estimates of actual total chlorophyll. A summary plot of the ratio of 

microwave/control extraction methodology from all samples reported here is 

given in Fig. 15c (n=121 paired samples). Ninety eight percent of the samples had a 

better extraction yield when the microwave technique was used, with an average 

increase of 2x (Fig. 15c). Our results indicate that the solvent soak technique as 

currently used could lead to an underestimation of total chlorophyll up to 4x. 
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Fig.15: Chlorophyll a and Chlorophyllide a in 121 samples. A) Chlorophyllide a 

% in 121 samples. Control (blue) samples have matched microwaved (red) samples 
were extracted using optimized conditions (90% acetone, 20 seconds of 
microwaving for microwaved samples). The mean percentage of chlorophyllide a in 
the control was 24.75 and microwaved the mean percentage decreases to 0.48%. B) 
Detail of remaining chlorophyllide a % with microwaving across all samples. C) 

Total Chlorophyll (Microwaved/Control) across all 121 individual samples. Samples 
here were ordered by increasing chlorophyllide a% (same as panel A and B). 
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Application of the Microwave Technique: Effect on Carotenoids 

A partial analysis of the effects of microwave-assisted extraction 

methodology is given here for some of the more common lipid soluble carotenoids. 

The reported data considers the potential increase in extracted carotenoid yield. 

Carotenoids such as myxol showed a similar increase in extraction yield 

(Microwaved/Control) as chlorophyll a-like pigments (Fig.16a,b). Most carotenoids 

showed better extraction when the microwave technique was applied. For all of the 

carotenoids measured in the Lake El Estero water samples there was an improved 

extraction yield with the application of the microwave technique. Different 

carotenoids emerge as more dominant than others in different environments 

depending upon the composition of the phytoplankton community. In particular, in 

the Lake El Estero sample Myxol was one of the most dominant carotenoids. Myxol 

is a carotenoid that is associated with the photosynthetic apparatus of 

cyanobacteria. Extraction yield of myxol increased in all the microwaved samples 

independent of acetone dilution or extraction temperature. In 50% acetone the 

extraction yield was so poor in the non-microwaved control sample that the 

microwave technique improved it by 6x (Fig. 16a). Myxol also showed a notable 

increase in the Freezer sample and Freezer combined with Liquid Nitrogen (20 

secs) treatment (3x better) when the microwave technique was applied (Fig. 16b). 

Myxol extraction yield increased in all extraction temperatures when the microwave 

technique was applied. 

Another pigment that increased with the microwave technique was beta 

carotene, a compound that lies on the biosynthetic pathway for most other 

carotenoids in microalgae and higher land plants (Bogacz-Radomska and Harasym, 

2018). Beta carotene is made up of a long 40 carbon chain with cyclic rings at either 

end (Fig. 17). The microwave technique increased the extraction yield for beta 

carotene in all dilutions of acetone (Fig. 18a). The microwave technique also 

improved beta carotene extraction yield in different extraction temperatures. The 

application of the microwave technique improved beta carotene extraction yield by 

4x for samples stored in the freezer (Fig. 18b). In the freezer with an added liquid 
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nitrogen treatment (20 secs) the extraction yield was Sx better after application of 

the microwave technique. There was also an increase in beta carotene in all four 

different temperature treatments in the microwaved samples (Fig. 18b ). 

The microwave technique improved extraction yield for most carotenoids in 

the cultured samples as well. Beta carotene is better extracted with the microwave 

technique by up to 2x and in some cases even 3x. With the application of the 

microwave technique, beta carotene extraction yield increased in all 4 cultured 

phytoplankton examined. In the green alga Tetraselmis where chlorophyll extraction 

was more difficult in the older cultures beta carotene followed a similar pattern (Fig. 

18c). The increase of extraction yield of the microwave technique was widespread 

amongst all chlorophylls and carotenoids observed. 
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Fig. 16: Effect of microwaving on myxol extraction. A) Percent of acetone effect 
on Myxol extraction yield ratio. Myxol extraction yield (microwaved/control) is 
increased when the microwave technique is applied in all acetone dilutions 
investigated. B) Myxol extraction yield (microwaved/control) ratio in different 
extraction temperatures in Lake El Estero water. 
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Fig. 17: Structure of beta carotene. Adapted from Allen and Williams 1998. 
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Fig. 18: Effect of microwaving on beta carotene extraction. 
A) Percent of acetone effect on beta carotene extraction yield. 
B) Beta carotene Extraction yield (microwave/control) in different extraction 
temperatures. C) Beta carotene extraction yield (microwaved/control) in 4 different 
genera of cultured phytoplankton. 
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Discussion 
Phytoplankton communities serve as large sinks of carbon; most models of 

primary production utilize bulk chlorophyll a as the normalizing autotrophic 

biomass indicator. Therefore, accurate assessment of the true levels of chlorophyll 

in the ocean is important. Numerous methods have been proposed such as 

sonication, mechanical grinding and solvent wet-soak in an effort to obtain the 

highest yield of chlorophyll extraction ( and thus, the most accurate measure of in

situ chlorophyll concentrations). However, these methods are limited in that yield 

can vary between pigments and between samples and that artifactual formation of 

chlorophyllide a can reduce estimations of chlorophyll when pigments are 

separated by analytical chromatographic methods. 

Here, we determined that microwaving of plankton samples harvested on 

filters prior to solvent extraction yields two desirable improvements to the routine 

determination of chlorophyll a: 1) an increase in total chlorophyll extraction yield 

and 2) reduction of the artifactual production of chlorophyllide a. The HPLC 

instrument was used in this study because it can separate chlorophyll a from its 

breakdown product chlorophyllide a. Hu et. al (2013) argued that a drawback of the 

HPLC technique (relative to the bulk fluorometric/absorbance methods) was the 

erroneous production of artifactual chlorophyllide a during the pigment extraction 

process, leading to questionable estimates of true chlorophyll a concentration. Our 

results confirm that chlorophyllide a is an artifact of the routine chlorophyll acetone 

soak extraction method, and is likely a probable error in all extraction technologies 

that do not provide a means of enzyme deactivation. Our results suggest that the 

chlorophyllase enzyme activity is greatly reduced by microwave treatment. An 

initial concern, that microwave treatment ( e.g. heating) may cause bulk destruction 

of many pigments, was found not to be the case. In contrast, microwave assisted 

extraction resulted in higher yields of total chlorophyll a-like pigments in 96% of all 

cases tested, with an average of a 2x increase in total chlorophyll a, relative to the 

common chilled acetone soak extraction. Since chlorophyllide a formation is no 

longer occurring, the microwave technique combined with HPLC has eliminated a 

decades old problem for chlorophyll analysis. The optimized microwave chlorophyll 
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extraction technique described here is simple, cost-effective and will likely lead to 

more accurate assessments of chlorophyll and other pigments in the ocean. This 

technique is also directly applicable to simple bulk chlorophyll measurements using 

absorbance and/or fluorescence. 

A major focus of this study was to optimize this method for pigment analysis. 

The presence of water in the extraction solvent affects the amount of chlorophyllide 

a artifactually produced. However, with microwaving the formation of 

chlorophyllide a is minimized across a wide range of acetone: water ratios and 

therefore this problem is almost completely eliminated. Chlorophyllide a was 

greatly reduced after filters were microwaved in a conventional microwave (1500 

W full power) for 20-30 seconds. This technique was applied to cell cultures to 

evaluate suggestions that chlorophyllide a is formed in cells during stress induced 

nutrient limitation (Hallegraeff 1980). Microwave-assisted extraction did show 

chlorophyllide a concentrations in many natural environmental samples and 

nutrient deprived algal batch cultures, but chlorophyllide a concentrations were 

extremely low (generally undetectable or <2% of total chlorophyll a like pigments. 

Therefore, it is suggested that previous observations of high chlorophyllide a 

content in phytoplankton samples are simply an artifact of the extraction process. 

We compared different extraction temperatures to further challenge the 

microwave technique. In all extraction temperatures, the microwave technique 

increases total chlorophyll extraction yield when compared to the routine 

chlorophyll analysis. An oceanographer or limnologist looking for consistency in 

their samples, independent of how samples are stored, should consider the 

microwave technique as optimal. This study showed that the HPLC analysis 

combined with the microwave technique can be utilized to understand 

chlorophyllide a concentrations in nature without the uncertainty of artifactual 

production of chlorophyllide a due to the extraction process. 

The microwave technique applied to chlorophyll analysis can improve 

extraction of pigments and can provide us with more accurate estimates of primary 

production in our world's oceans. Other pigments such as carotenoids also show 

improved extraction yield with the application of the microwave technique. For 
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example, beta carotene showed higher extraction yield, often in excess of a factor of 

two. We showed that beta carotene, a major carotenoid present in most microalgae, 

is harder to extract than any other dominant pigments observed. Myxol also showed 

increased extraction yield with the application of the microwave technique. 

We expect that this improved pigment analysis method will be important 

beyond the field of biological oceanography, specifically in higher land plant 

physiology and the study of kelp and freshwater algae. Importantly, our results also 

show that there could be an underestimation of global oceanic primary production 

in all chlorophyll-irradiance models of satellite color imagery that have been 

calibrated using common acetone soak extraction procedures. 
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