ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 1 2015 СЕРЫЯ ХІМІЧНЫХ НАВУК

УДК 547.728:547.594.4

С.Г. МИХАЛЁНОК, Д.А. ЛИТВИНОВ, В.С. БЕЗБОРОДОВ

ЭФФЕКТИВНЫЙ МЕТОД СИНТЕЗА ЗАМЕЩЕННЫХ 2-МЕТИЛБЕНЗОФУРАНОВ

Белорусский государственный технологический университет

(Поступила в редакцию 25.02.2014)

Замещенные метилбензофураны широко распространены в природе и находят применение в фармацевтической промышленности для получения противоопухолевых, противогрибковых, противовирусных препаратов, других биологически активных антагонистов, лигандов, предназначенных для лечения различных видов заболеваний [1–3].

Как правило, методы синтеза этих соединений включают циклизацию *орто*-аллилзамещенных фенолов, используя различные катализаторы [4] или дегидрогалогенирование замещенных 2-иодметил-2,3-дигидробензофуранов, образующихся при обработке замещенных *орто*-аллилфенолов иодом [5]. К сожалению, трудоемкий и многостадийный синтез *орто*-аллилзамещенных фенолов, использование дорогостоящих катализаторов и необходимость проведения дополнительных реакций, небольшой выход целевых продуктов ограничивают применение данных методов для получения замещенных метилбензофуранов.

Известно, что *орто*-алкилфенолы с высоким выходом могут быть получены ароматизацией соответствующих циклогекс-2-енонов [6]. В развитие данных исследований представляло интерес синтезировать замещенные 6-аллилциклогекс-2-еноны и изучить возможность получения на их основе замещенных метилбензофуранов.

6-Аллил-3-арилциклогекс-2-еноны **1а**-в синтезировали взаимодействием арилвинилкетонов **3а**-в, генерируемых *in situ* из соответствующих солей Манниха **2а**-в, с 2-аллилацетоуксусным эфиром **4** в кипящем диоксане в присутствии оснований. Образующиеся в результате присоединения по Михаэлю 1,5-дикетоны **5а**-в претерпевают внутримолекулярную альдольно-кротоновую конденсацию, приводящую к образованию соответствующих циклогексенонов **1а**-в. Следует отметить, что осуществление данного процесса в присутствии такого основания как гидроокись калия в диоксане позволило получить целевые продукты с выходами 71–83 % без выделения промежуточных веществ, а также без применения различных вспомогательных веществ или межфазных катализаторов.

$$R \longrightarrow C(O)CH_2CH_2N(CH_3)_2 \text{ HCI} \longrightarrow \begin{bmatrix} R \longrightarrow C(O)CH=CH_2 \\ 3a-B \end{bmatrix}$$

$$\downarrow C_2H_5O(O)C \longrightarrow CH_2CH=CH_2$$

$$R \longrightarrow CH_2CH=CH_2 \longrightarrow H$$

$$\downarrow C_2H_5O(O)C \longrightarrow CH_2CH=CH_2$$

$$\downarrow C_2H_3CO(O)C \longrightarrow CH_2CH=CH_2$$

$$\downarrow C_3CH=CH_2$$

$$\downarrow C_3C$$

 $R = H(a), CH_3O(6), mpanc-4-C_2H_5C_6H_{10}(B)$

Ароматизацию 6-аллил-3-арилциклогекс-2-енонов **1а**—**в** осуществляли под действием иода в кипящем изопропиловом спирте. При этом процесс ароматизации протекал однозначно с образованием промежуточных замещенных *орто*-аллилфенолов **6а**—**в**, которые *in situ* под действием

иода претерпевали циклизацию, приводящую с выходом более 85 % к замещенным 2-иодметил-2,3-дигидробензофуранам **7а**—**в**.

Проведенные далее исследования показали, что 2-иодметил-2,3-дигидробензофураны **7а–в** при нагревании со щелочью в изопропиловом спирте легко дегидроиодируются и превращаются с выходом 88–95 % в соответствующие замещенные 2-метилбензофураны **8а–в**.

$$R \xrightarrow{2 \text{ } 1 \text{ } 0} \text{CH}_{2}\text{CH}=\text{CH}_{2} \xrightarrow{\text{I}_{2}} \text{ROH} \qquad \qquad CH_{2}\text{CH}=\text{CH}_{2}$$

$$R \xrightarrow{3 \text{ } 6 \text{ } 6 \text{ } -\text{B}} \text{CH}_{2}\text{CH}=\text{CH}_{2}$$

$$R \xrightarrow{4 \text{ } 5 \text{ } 6 \text{ } -\text{B}} \text{CH}_{2}\text{CH}=\text{CH}_{2}$$

$$R \xrightarrow{4 \text{ } 5 \text{ } 6 \text{ } -\text{B}} \text{CH}_{2}\text{CH}=\text{CH}_{2}$$

$$R \xrightarrow{4 \text{ } 5 \text{ } 6 \text{ } -\text{B}} \text{CH}_{2}\text{CH}=\text{CH}_{2}$$

$$R \xrightarrow{4 \text{ } 5 \text{ } 6 \text{ } -\text{B}} \text{CH}_{2}\text{CH}=\text{CH}_{2}$$

 $R = H(a), CH_3O(\delta), mpanc-4-C_2H_5C_6H_{10}(B)$

Строение всех синтезированных соединений **1a**—**в**, **7a**—**в**, **8a**—**в** подтверждено данными ¹H ЯМР спектров. Так, в ¹H ЯМР спектрах 6-аллил-3-арилциклогекс-2-енонов **1a**—**в** в области 6.42 м. д. наблюдается синглетный сигнал протона (H-2) в α-положении к карбонильной группе. В областях 2.90–2.68 и 1.94–1.84 м.д. и при 2.40 м. д. проявляются сигналы протонов циклогекс-2-енонового фрагмента в виде группы мультиплетов. В ¹H ЯМР спектрах 2-иодметил-2,3-дигидробензофуранов **7a**—**в** отличительные сигналы проявляются в областях 7.18–7.00 и 3.50–3.06 м.д. и при 4.62 м.д. Сигналы протонов замещенных 2-метилбензофуранов **8a**—**в** в ¹H ЯМР спектрах проявляются при 7.61, 7.47, 7.40 и 6.38 м. д.

Таким образом, как следует из результатов проведенных исследований, использование замещенных 6-аллилциклогекс-2-енонов **1а**—**в** и аналогичных им соединений позволяет значительно упростить синтетическую схему получения замещенных метилбензофуранов и получать их с высоким выходом из доступного сырья.

Несомненно, что данный эффективный метод получения замещенных метилбензофуранов может быть использован для получения разнообразных фармакологических, биологически активных препаратов, предназначенных для лечения различных видов заболеваний.

Экспериментальная часть. Чистоту и структуру синтезированных соединений подтверждали данными элементного анализа. Спектры ¹Н ЯМР растворов веществ в CDCl₃ записывали на спектрометре Bruker AVANCE (400 МГц), внутренний стандарт – гексаметилдисилоксан.

6-Аллил-3-[4-(*транс***-4-этилциклогексил)фенил]циклогекс-2-енон 1в.** Смесь 0,1 моль гидро-хлорида 3-(*N*,*N*-диметиламино)-1-[4-(*транс***-4-этилциклогексил**)фенил]пропан-1-она **3**, 0,11 моль 2-аллилацетоуксусного эфира **4** и 0,25 моль едкого кали нагревали в 100 мл диоксана в колбе с обратным холодильником в течение 2,5 ч при температуре 94 °C. Реакционную смесь охлаждали, подкисляли 5%-ным раствором серной кислоты до рН 5–6. Выпавший осадок отфильтровывали, промывали водой, кристаллизовали из этилацетата. Выход 80 %. Т.пл. 76,4–77,9 °C.

¹Н ЯМР спектр (δ, CDCl₃): 7.47 (2H, д, *J*=7.9 Гц, $H_{\phi \text{енил}}$ -орто к енону); 7.25 (2H, д, *J*=7.9 Гц, $H_{\phi \text{енил}}$ -орто к циклогексилу); 6.42 (1H, с, $H_{\text{енон}}$ -2); 5.82 (1H, м, C**H**=CH₂); 5.13–5.05 (2H, м, C**H**₂=CH); 2.90–2.68 (2H, м, $H_{\text{енон}}$ -4); 2.50 (1H, т, *J*=12.3 Гц, $H_{\text{Су}}$ -1); 2.40 (1H, м, $H_{\text{енон}}$ -6); 2.28–2.12 (2H, м, CH_{2аллил}); 1.94–1.82 (6H, м, $H_{\text{енон}}$ -5, $H_{\text{Су}}$ -2,6); 1.52–1.06 (7H, м, CH₃C**H**₂, $H_{\text{Су}}$ -3,4,5); 0.91 (3H, т, *J*=7.2 Гц, C**H**₃CH₂).

Найдено, %: С 85.37; Н 9.21. С₂₃Н₃₀О. Вычислено, %: С 85.66; Н 9.38.

Аналогично получали следующие вещества.

6-Аллил-3-фенилциклогекс-2-енон 1а. Выход 73 %. Т.пл. 66,3-67,9 °C.

¹Н ЯМР спектр (δ, CDCl₃): 7.53 (2H, д, *J*=7.9 Гц, $H_{\phi e \mu u \pi}$ -*opmo* κ *eнону*); 7.38 (3H, м, $H_{\phi e \mu u \pi}$ -*мета, пара* κ *eнону*); 6.42 (1H, с, $H_{e h o h}$ -2); 5.82 (1H, м, C**H**= CH_2); 5.13–5.05 (2H, м, C**H**₂=CH); 2.90–2.68 (2H, м, $H_{e h o h}$ -4); 2.40 (1H, м, $H_{e h o h}$ -6); 2.28–2.12 (2H, м, $CH_{2 a \pi \pi u \pi}$); 1.94–1.84 (2H, м, $H_{e h o h}$ -5). Найдено, %: C 84.68; H 7.53. $C_{15}H_{16}O$. Вычислено, %: C 84.87; H 7.60.

6-Аллил-3-(4-метоксифенил)циклогекс-2-енон 16. Выход 71 %. Т.пл. 72,5–73,7 °C.

 1 Н ЯМР спектр (б, CDCl $_{3}$): 7.43 (2H, д, \emph{J} =7.9 Гц, Н $_{\rm фенил}$ -орто к енону); 6.93 (2H, д, \emph{J} =7.9 Гц, $H_{\text{фенил}}$ -орто к CH_3O); 6.42 (1H, c, $H_{\text{енон}}$ -2); 5.82 (1H, м, CH=CH₂); 5.13–5.05 (2H, м, CH_2 =CH); 3.84 $(3H, c, CH_3O); 2.90-2.68 (2H, м, H_{ehoh}-4); 2.40 (1H, м, H_{ehoh}-6); 2.28-2.12 (2H, м, CH_{2аллил}); 1.94 1.84 (2H, M, H_{ehoh}-5).$

Найдено, %: С 79.02; Н 7.36. С₁₆Н₁₈О₂. Вычислено, %: С 79.31; Н 7.49.

2-(Иодметил)-6-[4-(транс-4-этилциклогексил)фенил]-2,3-дигидробензофуран 7в. 2 г 6-Аллилциклогекс-2-енона 1в, 1,7 г иода в 10 мл изопропилового спирта кипятили с обратным холодильником 2 ч, охлаждали, разбавляли 100 мл воды. Продукт отфильтровывали, промывали холодной водой и перекристаллизовывали из изопропилового спирта. Выход 90 %. Разлагается

 1 Н ЯМР спектр (δ , CDCl $_{3}$): 7.47 (2H, д, \emph{J} =7.7 Гц, $\emph{H}_{\rm фенил}$ -орто к 2,3-дигидробензофурану); 7.25 $(2H, д, J=7.9 \ \Gamma ц, H_{\phi e H u \pi}$ -орто к циклогексилу); 7.18 $(1H, д, J=7.4 \ \Gamma ц, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H}$ -5); 7.09 $(1H, g, J=7.4 \ \Gamma u, H_{2,3-\partial u r u \partial p o \delta e H 30 \phi y p a H})$ д, J=7.4 Гц, $H_{2,3$ -дигидробензофуран</sub>-4); 7.00 (1H, c, $H_{2,3$ -дигидробензофуран}-7); 4.92 (1H, квинт., J=5.1 Гц, $H_{2,3$ -дигидробензофуран}-2); 3.30–3.50 (3H, м, $H_{2,3}$ -дигидробензофуран}-3, CH_2I); 3.06 (1H, дд, J=9.7 Гц, J=6.1 Гц, $H_{2,3\text{-}\partial u z u \partial p o \delta e H 3 o \phi y p a H}$ -3); 2.50 (1H, т, J=12.3 Гц, $H_{\text{C}_{\text{V}}}$ -1); 1.94–1.82 (4H, м, $H_{\text{C}_{\text{V}}}$ -2,6);1.52–1.06 (7H, м, CH_3CH_2 , H_{C_v} -3,4,5); 0.91 (3H, т, J=7,2 Гц, CH_3CH_2).

Найдено, %: С 62.12; H 6.15. С₂₃H₂₇IO. Вычислено, %: С 61.89; H 6.10.

Аналогично получали следующее.

2-(Иодметил)-6-фенил-2,3-дигидробензофуран 7а. Выход 85 %. Разлагается при плавлении.

 1 Н ЯМР спектр (δ , CDCl $_{3}$): 7.53 (2H, д, \emph{J} =7.7 Гц, $\emph{H}_{\rm фенил}$ -орто к 2,3-дигидробензофурану); 7.38 $(3H, \, M, \, H_{\phi e H u \pi}$ -мета, пара к 2,3-дигидробензофурану); 7.18 $(1H, \, д, \, J = 7.4 \, \Gamma ц, \, H_{2,3-дигидробензофуран} - 5);$ 7.09 (1H, д, J=7.4 Гц, $H_{2,3$ - ∂ иги ∂ робензо ϕ уран</sub>-4); 7.00 (1H, c, $H_{2,3$ - ∂ иги ∂ робензо ϕ уран</sub>-7); 4.92 (1H, квинт., J=5.1 Гц, $H_{2,3$ -дигидробензофуран</sub>-2); 3.30–3.50 (3H, м, $H_{2,3}$ -дигидробензофуран-3, CH_2I); 3.06 (1H, дд, J=9.7 Гц, J=6.1 Гц, $\mathbf{H}_{2,3\text{-}\partial\mathit{u}\mathit{c}\mathit{u}\mathit{d}\mathit{p}\mathit{o}\mathit{б}\mathit{e}\mathit{h}\mathit{3}\mathit{o}\mathit{d}\mathit{y}\mathit{p}\mathit{a}\mathit{h}}$ -3).

Найдено, %: С 53.81; Н 3.94. С₁₅H₁₃IO. Вычислено, %: С 53.59; Н 3.90.

2-(Иодметил)-6-(4-метоксифенил)-2,3-дигидробензофуран 76. Выход 85 %. Разлагается при плавлении.

 1 Н ЯМР спектр (δ , CDCl $_{3}$): 7.43 (2H, д, \emph{J} =7.9 Гц, $\emph{H}_{\scriptsize \varphiehun}$ -орто к 2,3-дигидробензофурану); 7.18 (1H, д, J=7.4 Γ ц, H $_{2,3$ - ∂ иги ∂ робензо ϕ уран</sub>-5); 7.09 (1H, д, J=7.4 Γ ц, H $_{2,3$ - ∂ иги ∂ робензо ϕ уран</sub>-4); 7.00 (1H, с, H $_{2,3$ - ∂ иги ∂ робензо ϕ уран</sub>-7); 6,93 (2H, д, J=7.9 Γ ц, H $_{\phi$ енил</sub>- σ рто κ CH_3O); 4.92 (1H, квинт., J=5.1 Γ ц, H $_{2,3}$ - ∂ иги ∂ робензо ∂ уран -7); 6,93 (2H, д, J=7.9 Γ ц, Н $_{\phi}$ енил дигидробензофуран -2); 3.84 (3H, c, С**H**₃O); 3.30–3.50 (3H, м, H_{2,3-дигидробензофуран} -3, СH₂I); 3.06 (1H, дд, J=9,7 Гц, J=6.1 Гц, $H_{2,3-\partial u z u \partial p o \delta e h 3 o \phi y p a h}$ -3).

Найдено, %: С 52.76; Н 4.20. С₁₆H₁₅IO₂. Вычислено, %: С 52.48; Н 4.13.

2-Метил-6-[4-(*транс***-4-этилциклогексил)фенил]бензофуран 8в.** 1,5 г 2-(иодметил)-2,3-дигидробензофурана, 1 г КОН в 10 мл изопропилового спирта кипятили с обратным холодильником в течение часа, охлаждали, разбавляли 50 мл воды. Продукт отфильтровывали, промывали холодной водой и перекристаллизовывали из изопропилового спирта. Выход 95 %. Т.пл. 113,8-

 1 Н ЯМР спектр (δ , CDCl $_{3}$): 7.61 (1H, c, H $_{\delta e н s o \phi y p a h y}$); 7.54 (2H, д, J=7.9 Гц, H $_{\phi e н u n}$ - $o p m o \kappa \delta e h s o - \phi y p a h y$); 7.47 (1H, д, J=7.9 Гц, Н $_{\delta e h s o \phi y p a h}$ - 4); 7.41 (1H, д, J=7.9 Гц, Н $_{\delta e h s o \phi y p a h}$ - 5); 7.28 (2H, д, J=7.9 Гц, $H_{\phi e \mu u \pi}$ -орто к циклогексилу); 6.38 (1H, c, $H_{\delta e \mu 3 \phi \phi y p a \mu}$ -3); 2.51 (1H, т, J=12.3 Гц, H_{cy} -1); 2.46 (3H, c, CH₃-бензофуран); 1.94–1.82 (4H, м, H_{Cv}-2,6);1.52–1.06 (7H, м, CH₃C**H**₂, H_{Cv}-3,4,5); 0.91 (3H, т, J=7.2 Гц, С H_3 С H_2).

Найдено, %: С 86.52; Н 8.17. С₂₃Н₂₆О. Вычислено, %: С 86.75; Н 8.23.

Аналогично получали:

2-Метил-6-фенилбензофуран 8а. Выход 89 %. Т.пл. 52,1–54,1 °C.

 1 Н ЯМР спектр (δ , CDCl $_{3}$): 7.61 (1H, c, H $_{\delta e н s o \phi y p a h}$ -7); 7.57 (2H, д, J=7.9 Гц, Н $_{\Phi e н u u}$ - $o p m o \kappa \delta e h s o \phi y$ -пара к бензофурану); 6.38 (1H, c, $H_{\delta eнзофуран}$ -3); 2.46 (3H, c, CH_3 - $\delta eнзофуран$). Найдено, %: C 86.75; H 5.73. $C_{15}H_{12}$ O. Вычислено, %: C 86.51; H 5.81.

2-Метил-6-(4-метоксифенил)бензофуран 8б. Выход 88 %. Т.пл. 63,2–65,2 °C.

¹Н ЯМР спектр (δ , CDCl₃): 7.61 (1H, c, H_{бензофуран}-7); 7.43 (2H, д, J=7.9 Гц, H_{фенил}-орто к бензофурану); 7.47 (1H, д, J=7.9 Гц, H_{бензофуран}-4); 7.39 (1H, д, J=7.9 Гц, H_{бензофуран}-5); 6.98 (2H, д, J=7.9 Гц, H_{фенил}-орто к CH_3O); 6.38 (1H, c, H_{бензофуран}-3); 3.84 (3H, c, CH₃O); 2.46 (3H, c, CH₃-бензофуран). Найдено, %: С 80.46; Н 5.85. С₁₆H₁₄O₂. Вычислено, %: С 80.65; Н 5.92.

Литература

- 1. Teo C. C., Kon O. L., Sim K. Y., Ng S. C. // J. Med. Chem. 1992. Vol. 35, N 8. P. 1330–1339.
- 2. Gfesser G. A., Faghih R., Bennani Y. L., Curtis M. P., Esbenshade T. A., Hancock A. A., Cowart M. D. // Bioorg. Med. Chem. Lett. 2005. Vol. 15, N 10. P. 2559–2563.
- 3. Hocke C., Prante O., Lober S., Hubener H., Gmeiner P., Kuwert T. // Bioorg. Med. Chem. Lett. 2004. Vol. 14, N 15. P. 3963–3966.
 - 4. Zhang Y.J., Wang Y.G. // Appl. Organometal. Chem. 2012. Vol. 26, N 5. P. 212-216.
 - 5. Yadav A. K., Singh B. K., Singh N., Tripathi R. P. // Tetrahedron Letters. 2007. Vol. 48, N 38. P. 6628–6632.
 - 6. Downes A. M., Gill N. S., Lions F. // J. Am. Chem. Soc. 1950. Vol. 72, N 8. P. 3464-3467.

S. G. MIKHALYONOK, D. A. LITVINAU, V. S. BEZBORODOV

AN EFFICIENT METHOD OF THE SYNTHESIS OF SUBSTITUTED 2-METHYLBENZOFURANS

Summary

The efficient method for synthesis of substituted 2-methylbenzofurans based on aromatization of 3-substituted-6-allylcyclohex-2-enones in the presence of iodine with subsequent potassium hydroxide treatment of 2-iodomethyl-2,3-di-hydro-benzofuran intermediates, has been described.