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Abstract 

 

Diversity has been considered as a prerequisite for turning prevailing technological trajectories into new and unexpected 

directions. However, little evidence exists on the exact nature of the more direct relationship between diversity and the 

impact of technologies. One main contribution of this paper is therefore to investigate the relationship between 

technological diversity and the impact of inventions across EU regions. Using EPO patent data, a set of measures is 

created considering different notions of diversity and different levels of technological aggregation, as allowed by the 

hierarchical structure of the International Patent Classification (IPC). The technological impact of inventions is captured by 

two citation-based indicators measuring an average and a high impact. For both measures we find that diversity is 

typically detrimental, or at best neutral, for the impact of new technologies, except when a very fine-grained technological 

detail is taken into account. However, in the latter case, nearly opposite results are found, namely, positive effects from 

related variety and, particularly for high technological impact, from combination of relatively distant technologies. 

Therefore, an important contribution of this paper is to show that these effects are very sensitive to the aggregation level 

used, and hence that policymakers should gain a very detailed understanding about the relations among technologies 

before implementing either specialization or diversification strategies. 
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Diversity has been considered as a prerequisite for turning prevailing technological 

trajectories into new and unexpected directions. However, little evidence exists on the exact 

nature of the more direct relationship between diversity and the impact of technologies. One 

main contribution of this paper is therefore to investigate the relationship between 

technological diversity and the impact of inventions across EU regions. Using EPO patent 

data, a set of measures is created considering different notions of diversity and different 

levels of technological aggregation, as allowed by the hierarchical structure of the 

International Patent Classification (IPC). The technological impact of inventions is captured 

by two citation-based indicators measuring an average and a high impact. For both 

measures we find that diversity is typically detrimental, or at best neutral, for the impact of 

new technologies, except when a very fine-grained technological detail is taken into account. 

However, in the latter case, nearly opposite results are found, namely, positive effects from 

related variety and, particularly for high technological impact, from combination of relatively 

distant technologies. Therefore, an important contribution of this paper is to show that these 

effects are very sensitive to the aggregation level used, and hence that policymakers should 

gain a very detailed understanding about the relations among technologies before 

implementing either specialization or diversification strategies. 
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1. Introduction 

Technological Diversity potentially offers the seeds for turning existing technologies 

into new and unexpected directions and therewith renders major opportunities to 

un-lock prevailing technological trajectories (Dosi, 1982). It has been widely argued 

that diversity is key to research, innovation and economic performance (cf. 

Weitzman, 1998; Olsson, 2000). Acknowledging the potential of diversity, 

policymakers have called for “smart” policies intended to foster cross-fertilization 

among existing technologies (cf. European Commission, 2010; OECD, 2013).  

However, and notwithstanding the emphasis often being put on the role of diversity 

in research and innovation, the exact meaning of the notion of diversity itself as well 

as its use within policy is often left in the midst (Stirling, 2007). First, from a 

theoretical point of view, different theories stress different aspects of the role played 

by diversity in steering research, innovation, and economic performance. Second, and 

with an eye on empirical studies in this field, although various measures of diversity 

exist, these are hardly ever compared simultaneously within the same analysis. The 

heterogeneity of diversity measures is further augmented by the use of different 

levels of technological aggregation in many empirical studies, rendering a 

comparison of the results of these studies virtually impossible (Beaudry & 

Schiffauerova, 2009). Therefore, a first objective of this paper is to introduce and 

compare different theoretical and measurement approaches to assessing the role of 

diversity in regional research and innovation.  

What is more, whilst the relation between diversity and economic growth by now has 

been extensively addressed (cf. Glaeser et al., 1992; Frenken et al., 2007; Neffke et al., 

2011; Van Oort et al., 2014), the more direct relationship between diversity and 

research and innovation has been somewhat neglected (Boschma, 2013). One issue 

here concerns the measurement of research and innovation itself and the 

interpretations attributed to such measurements. That is, whenever patent data are 

used in empirical studies, it is more appropriate to speak of inventive activity rather 

than research and innovation at large (Griliches, 1990). However, even when 

considering inventive activity only by focusing on patent data, still few studies take 

into account their technological impact and instead most often focus on their 

quantity only (for an exception see Castaldi et al., 2014). Therefore, a second 

objective of this paper is to investigate the effects of diversity on invention and in 

particular on its technological impact, as captured by patent citations.  

We focus on the NUTS2 level of EU regions, as this is an important level of 

aggregation where smart research and innovation policies are implemented. Also, we 

use patent data to assess the relationship between diversity and technological 

impact, not only because these are commonly used in the literature, but also because 

these data allow assessing the relationship at different levels of technological 

aggregation. In fact, the hierarchical structure of the International Patent 

Classification (IPC) scheme allows constructing each of our measures for different 
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technological levels of aggregation. Moreover, technological impact is captured by 

two citation-based indicators. The count of (field-normalized) citations is used to 

proxy the average technological impact, while the number of highly cited patents is 

used as a proxy for high technological impact.  

The rest of this paper proceeds as follows. The next section offers an overview of the 

theoretical stances within the literature on the relationship between diversity and 

technological impact of regional invention. In section 3 we describe the data and 

methods that we use to address this relationship empirically, focusing in particular on 

the different ways of measuring diversity. Section 4 presents the results from our 

analysis, section 5 discusses our main findings and section 6 concludes. 

 

2. Theoretical background 

Viewing research and innovation in terms of a process of recombination (cf. 

Weitzman, 1998; Olsson, 2000) places the notion of technological diversity at the 

heart of the debate on regional invention (cf. Ejermo, 2005). However, different and 

to some extent even competing theories exist on the exact specification of the 

relationship between technological diversity and the technological impact of 

inventive activity across regions.  

On the one hand there are those emphasizing the benefits that might accrue by 

putting together diverse activities from a limited set of technological backgrounds. 

Herein, two distinct arguments are important (Frenken et al., 2007); one focusing on 

specialization, the other on localization. Specialization is about the extent to which an 

actor, in our case a region, focusses on a few activities within a limited range of 

technologies only. The argument holds that specialization is beneficial when 

increases in the division of labor among distinct technologies allows for perfecting 

the activities being performed on these technologies. The concept of specialization 

focuses primarily on the activities themselves and, therewith, has no particular spatial 

connotation, meaning that it says nothing about the spatial distribution of those 

activities across regions. In contrast, the notion of localization focuses specifically on 

the spatial distribution of activities across regions and emphasizes the point that, 

when knowledge flows are geographically localized (Jaffe et al., 1993), benefits 

accrue due to the concentration of diverse activities that are concerned with the 

same technologies. In other words, it is not just the specialization of a region in a 

limited set of technologies that matters for the technological impact of regional 

invention but also whether those technologies are concentrated in a restricted 

number of regions only. Though distinct in form, specialization and localization are 

most often not taken into account separately but instead used interchangeably 

throughout the literature (cf. Van der Panne, 2004).  
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On the other hand there are those emphasizing the benefits that might accrue by 

putting together diverse activities covering a wide set of technologies; that is, 

diversification. In line with the literature on Jacobs externalities (cf. Glaeser et al., 

1992), the emphasis here is on cross-fertilization among different technologies as a 

source of regional invention. Note then that the emphasis on cross-fertilization here 

mirrors Page’s (2007) argument on “diversity triumphing ability” in that it is not so 

much about the narrow set of technologies that brings about invention rather than 

the combination of different technologies. Sometimes Jacobs externalities are 

equated with urbanization economies (cf. Van der Panne, 2004). However, whilst 

Jacobs externalities are about benefits that accrue due to the availability of a set of 

different technologies, urbanization economies are about the benefits that arise due 

to the sheer size of and population density in a region (Frenken et al., 2007). Again, 

as with the distinction between specialization and localization, the notion of 

diversification has no particular spatial connotation whilst the notion of urbanization 

clearly has.  

Clearly, the literature stressing the positive effects of specialization and localization 

seems to be at odds with the literature stressing the positive effects of urbanization 

and especially diversification. Hence, it should come as no surprise that the effect of 

specialization and localization on the one hand and diversification and urbanization 

on the other have often been tested within a single empirical framework as to 

identify whether the one or the other theory is backed up by empirical evidence (cf. 

Van der Panne, 2004; Beaudry & Schiffauerova, 2009). Unfortunately, however, the 

evidence offered from such studies is mixed and, therewith, rather inconclusive (De 

Groot et al., 2009).  

Three reasons can be identified for the evidence being mixed. First, different studies 

use different conceptualizations to capture specialization, localization, diversification, 

and urbanization (De Groot et al., 2009). A first way to resolve this issue is to 

disentangle concepts that have a spatial connotation from those that do not have a 

spatial connotation. Here, the notions of specialization and diversification with no 

spatial connotation clearly stand out from the notions of localization and 

urbanization which have a spatial connotation.  

Second, focusing in turn only on specialization and diversification, both concepts 

have been conceptualized differently within the broader debate on diversity (cf. 

Palan, 2010; Wagner et al., 2011). A first conceptualization is proposed by Stirling 

(2007), who points out that diversity concepts employed across different disciplines 

exhibit some combination of the following three basic attributes of diversity: variety 

(versus uniformity), evenness (versus imbalance), and disparity (versus similarity). 

Variety is about the number of categories (i.e. disciplines, sectors, industries, or 

technologies) that characterize the basic unit of analysis (i.e. individuals, firms, 

regions, or countries). Within the context of regional invention, variety can thus be 

thought of in terms of the amount of different technologies available in a region. 
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Evenness is about the distribution of categories characterizing the basic unit of 

analysis. Again applied to the context of regional invention the notion of evenness 

translates into the extent to which a number of technologies are equally available in 

the technological composition of a region. Disparity refers to the heterogeneity of 

the categories that characterize the basic unit of analysis. Note that in contrast to the 

notion of imbalance, the notion of disparity is relational and takes into account the 

distance among categories. Hence, regions characterized by technological disparity – 

or what can be called unrelated diversification (as opposed to related specialization) 

– combine distant technologies, for a given number and distribution of themselves. 

All else being equal, higher variety, higher evenness and higher disparity imply 

higher diversity, which in turn is expected to have a positive effect on the 

technological impact of inventive activity (Page, 2007, Stirling, 2007 and Yegros et al., 

2013). All these different aspects of diversity need to be incorporated in a 

comprehensive assessment of the role of diversity in steering the impact of new 

technologies. 

Another conceptualization refers to what Frenken et al. (2007) call related and 

unrelated variety. Both referring to the basic notion of entropy, related variety is 

about entropy in the technological composition of regions at a very fine grained level 

of technological detail whilst unrelated variety is about entropy in the technological 

composition of regions at a relatively rough level of technological detail.1 Note then 

that, like the notion of disparity, in using different levels of technological detail, the 

distinction between related and unrelated variety imposes some, albeit crude, notion 

of distance among technologies That is, based on the specific technological 

classification system used, unrelated variety refers to entropy among technologies 

that are more distant from each other whilst related variety refers to entropy among 

technologies that are closer to each other.  

Recently, Castaldi et al. (2014) theorized that whilst related variety is likely to have a 

positive impact on the quantity of invention in general, unrelated variety raises the 

likelihood of breakthrough inventions. Using the number of patents as a measure of 

regional invention quantity and the share of highly cited patents as a measure of 

breakthrough invention, Castaldi et al. (2014) indeed find empirical evidence 

supporting their thesis for regional invention at the US state level. It has to be noted 

though, that the results from their analysis might be specific to the US context only. 

The main assumption underlying their analysis holds that highly cited patents can be 

equated with breakthrough inventions. However, whilst citation is generally 

considered to be an indicator of impact and highly-citedness as a measure of high-

impact therewith, these measures in themselves say little to nothing about the nature 

of inventions being characterized as breakthrough (i.e. radical invention) or not. That 

is to say, although breakthrough patents are likely to be highly cited, the reverse 

                                                 

1
 Building upon the framework of Stirling (2007), the notion of entropy used by Frenken et al. (2007) 

combines the two attributes of variety and evenness (see Section 3.2). 
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need not be true: highly cited patents can well be about technologies reflecting 

incremental inventions. This remark is particularly important within the European 

context whereas it has been argued from the literature on Varieties of Capitalism 

(Hall & Soskice, 2001) that whilst liberal market economies like the US have a 

comparative advantage in radical invention, coordinated market economies like 

those of most EU member states have a comparative advantage in incremental 

invention (Boschma & Capone, 2014). In other words, whilst the positive effect of 

unrelated variety and lack of effect of related variety on the impact of regional 

invention might hold true for the US context, this might not necessarily be so for the 

EU context. 

Finally, a third reason for why evidence on the relationship between diversity and 

technological impact is mixed is that different studies use different levels of 

technological aggregation to test this relationship (De Groot et al., 2009). Building on 

technological classification systems, it follows that diversity, either in the 

conceptualization proposed by Stirling (2007), or in the conceptualization proposed 

by Frenken et al. (2007), can be measured by grouping technologies in a more or less 

fine grained way. Using different levels of technological detail might be important, 

whereas at higher levels of technological aggregation it can be expected that regions 

are more alike, rendering various notions of diversity to have little predictive power 

for explaining the impact of new technologies.  

In sum, we derive three main conclusions from the theoretical literature on the 

relation between diversity and regional invention. First, arguments can be made 

supporting opposite theses on the relation between diversity and regional invention. 

Going from the distinction between specialization and localization on the one hand 

and diversification and urbanization on the other, a plausible case can be made for 

both sets of theories. 

Second, diversity can be conceptualized in different ways. Following Stirling (2007), it 

can be decomposed in terms of variety, evenness, and disparity. Herein, the 

distinction between related and unrelated variety takes an intermediate stance 

residing in between variety and evenness together on the one hand, and disparity on 

the other hand. In fact it is based on a decomposition of the notion of entropy whilst 

taking on board an artificial notion of distance among technologies; that is, one that 

has been imposed by the structure of technological classification systems. Of the two 

main conceptualizations, the one proposed by Stirling (2007) offers the most 

complete perspective on diversity as it takes explicitely into account the distance 

among technologies (disparity) alongside attributes of quantity (variety) and 

distributions (evenness). 

Third, as technologies can be classified into different levels of technological detail, 

the exact specification of the relationship between diversity and technological impact 

might crucially depend on the specific level of technological detail considered. This 

issue applies to both conceptualization of diversity.  
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Overall, going primarily from theory and especially for the EU context, the exact 

nature of the relationship between diversity and regional invention is largely unclear 

thus far. In what follows, therefore, we will address this relationship empirically. 

 

3. Data, variables, and methods 

3.1. Data 

The main source of data that we use is REGPAT (Maraut et al., 2008), a database 

maintained by the OECD collecting information on all patent applications filed with 

the European Patent Office (EPO). In particular, the data contain information on 

patent inventors, classes and citations. We construct regional indicators at NUTS2 

level exploiting information on regions attached to the patent inventor list.2 Regional 

indicators are based on the patent’s priority year. The priority year is the year of first 

filing for a patent and hence it is the closest to the actual date of invention. 

We focus on a balanced panel of EU27 regions over 1995-2009. In case of 

unbalanced panels, some regions may appear or disappear over the sample period 

causing attrition bias. Perfect balance of the panel is achieved by setting a cutoff c 

and selecting regions with at least c patents in every year of the selected period. We 

choose c = 2 trading-off between loss of regions (when c is high) and the risk of 

zeros or missing values for citation or technological indicators (when c is low).3 This 

amounts to a balanced panel of 195 EU27 regions over 1995-2009, representing 22 

countries. Regional patent indicators are merged to economic indicators drawn from 

the Cambridge Econometrics European Regional Database. 

 

3.2. Dependent variables: measuring technological impact 

Citation data are used to create measures of the technological impact of inventive 

activity. First, we use the total count of forward citations of EPO patents (received 

directly as EPO publications, as PCT publications or as national offices publications4) 

as a measure of average impact of regional invention. An EPO publication can 

correspond to publications from different patenting authorities, covering the same 

                                                 

2 The region is based on the inventor’s address, which indicates where the invention was made, such 

as typically the laboratory or research establishment, or the place of residence. In case of multiple 

inventors from the same NUTS2 region, the patent is counted only once. 
3 In case of very small number of patents, citations counts could be zero. In the estimation sample, 32 

cases with zero citations are replaced with the minimum over across the entire sample. 
4 

Patent applications under the Patent Co-operation Treaty (PCT) are international applications giving 

options for future applications to other patent offices in the world, such as the EPO or national offices 

(see Webb et al., 2005). 
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invention; therefore, any version of it can be cited (see Webb et al., 2005). The total 

count of citations received by each patent is normalized by the average count of 

citations received by patents in the same field and year (see Appendix A for details). This 

normalization allows for different citation scales across technological fields (see 

Squicciarini et al., 2013). To avoid right truncation in forward citations, we consider 

only citations received by T years, where T is defined as the difference between 

publication dates of the citing and cited patent. We select T = 3 to minimize the loss 

of yearly observations. This choice necessarily leads to underestimate the impact of 

patents taking more time to receive citations. However, we checked that the 

correlation among regional citation counts considering different citation lags is very 

high. Moreover, remark that the field-normalization removes potential field bias in 

citation lags.5 

As a second measure of the technological impact of regional invention, we use the 

count of highly cited patents. This measure represents the number of top 1% highly 

cited patents according to field normalized citations. In all, this measure captures a 

region’s high-impact technological inventions. Overall, and in line with Tijssen (2002), 

whilst average technological impact as measured by field-normalized citation rates 

can be thought of as research quality, high technological impact as measured by the 

count of top 1% highly cited patents can be thought of as research excellence. 

 

3.3. Independent variables: measuring technological diversity 

We use the list of patent classes to create measures of technological diversity. The 

hierarchical structure of the International Patent Classification (IPC) is exploited to 

identify different levels of technological detail. Specifically, the IPC scheme separates 

the whole body of technological knowledge into the following five levels, in 

hierarchical descending order: the section (1st digit of the code), the class (first 3 

digits), the subclass (first 4 digits), the group (first 10 digits) and the subgroup (the 

whole code). The first four levels are used in our analysis giving rise to the following 

self-explanatory labels: ipc1, ipc3, ipc4, ipc10. In the dataset we find respectively 8, 

123, 633, and 7209 unique codes. The ipc1 level is very broad and captures very 

different technologies. The further we move towards ipc10, the more detailed 

technologies become. We also convert the IPC scheme into technological fields 

(tec1) and sub-fields (tec2) according to the Schmoch concordance table (Schmoch, 

2008). tec1 and tec2 contain respectively 5 and 35 unique codes. Estimates based on 

these two levels are reported in Appendix B. 

                                                 

5
 By way of example, after removing the within region average, the correlation between regional 

citation counts with 3-year lag and with no lag restrictions is 61%. Considering field-normalized 

citations, this correlation reaches 95%. 
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As argued before, the literature offers different conceptualizations to capture 

diversity, in all its attributes, in the organization of regional invention. In order to 

capture different conceptualizations and attributes of diversity simultaneously, we 

first employ the distinction between related and unrelated variety made by Frenken 

et al. (2007), and we add, on the one hand, the framework proposed by Stirling 

(2007), and, on the other hand, two indices considering the spatial dimension of 

diversity.  

First, the distinction between related and unrelated variety is operationalized by 

exploiting the decomposable nature of the Shannon entropy index (see Frenken et al. 

(2007)). Specifically, defining A and B as two levels of aggregation, where A is more 

aggregated than B, the B entropy is equal to the sum of the A entropy and the 

weighted sum of B entropies within each category of A. Unrelated variety is indicated 

by A entropy and related variety is indicated by the weighted sum of B entropies. 

Formally, defining Pk as the share of patents in a category k (k = 1… K) of A, and 

defining pl as the share of patents in a category l (l = 1… L) of B (remark that Pk = ∑l∈ 

k pl), we can define 

𝑢𝑣𝑎𝑟𝑖𝑒𝑡𝑦 = ∑𝑃𝑘 log2(1 𝑃𝑘⁄ )

𝐾

𝑘=1

, 

𝑟𝑣𝑎𝑟𝑖𝑒𝑡𝑦 = ∑𝑃𝑘𝐻𝑘

𝐾

𝑘=1

, 

where 

𝐻𝑘 =∑
𝑝𝑙
𝑃𝑘

𝑙∈𝑘

log2 (
1

𝑝𝑙 𝑃𝑘⁄
) . 

 

 

Second, we define the indicators evenness and disparity as consistent with Stirling’s 

(2007) conceptualization of diversity. Unlike the decomposition between related and 

unrelated variety, which imposes an artificial notion of distance among technologies, 

Striling’s conceptualization offers the most complete perspective on diversity as it 

takes explicitly into account the distance among technologies (disparity), for given 

distribution (evenness) and number of technologies (variety). Note however that 

ultimately we do not include Stirling’s (2007) attribute of variety as it turns out to be 

highly collinear, especially  with the number of patents. In other words, though not 

necessarily so in theory, empirically the number of technologies is highly correlated 

with the total number of inventions made in a region. 
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As a measure of evenness, we use Shannon’s entropy index of evenness or 

equitability (Stirling, 2007): 

𝑒𝑣𝑒𝑛𝑛𝑒𝑠𝑠 = (−∑𝑝𝑘 ln 𝑝𝑘

𝐾

𝑘=1

) ln𝐾⁄ , 

where K indicates the range of different technologies and pk indicates the share of 

patents in technology k. Region and year subscripts are omitted to simplify notation. 

The standard Shannon entropy index does not contain the division by ln(K). However, 

we include this division as it removes the likely positive correlation between the 

Shannon entropy index and the size of a region in terms of the total number of 

patents. Note then that, in line with the theoretical premise that having different 

technologies equally available in a region is beneficial for a region’s technological 

impact, this index measures the extent to which different technologies are evenly 

distributed in a region. 

Disparity is defined as a weighted average of the distance among sectors according 

to the Greenberg-Rao diversity index (see Desmet et al. (2009)). Following Yegros et 

al. (2013) the distance is defined as 1 minus the similarity cosine index skl, 

constructed for any pair of technologies k and l within the region as: 

𝑠𝑘𝑙 =
𝑐𝑘𝑙

√𝑐𝑘𝑐𝑙
, 

where ckl is the count of patents with co-occurrences of k and l, and ck and cl are the 

sum of co-occurrences involving l (l ≠ k) and k (k ≠ l), respectively. Remark that ckl, ck 

and cl are defined within the region for every year. Then (1 – skl)-s are computed and 

the resulting distance indicators are aggregated giving rise to 

    

 

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ 𝑤𝑘𝑤𝑙(1 − 𝑠𝑘𝑙)
𝐾

𝑙=1𝑘<𝑙
, 

 

where  

 

𝑤𝑘 =
𝑐𝑘

∑ 𝑐𝑘
𝐾
𝑘=1

, 

and K is the number of technologies in the region.6  

                                                 

6 Note that while Yegros et al. (2013) use an unweighted disparity index, following Desmet et al. (2009) we 
use the weighted form. 
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Third, following Frenken et al. (2007) we use the Los-index as a localization index and 

the log of a region’s population to account for urbanization economies. The Los-

index is a weighted average of similarity indices for all technology pairs with weights 

equal to the product of patent counts for the two technologies. Defining Ck and Cl as 

patent counts for technologies k and l we have 

𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝐶𝑘𝐶𝑙𝑠𝑘𝑙

𝐾
𝑙=1𝑘<𝑙

∑ ∑ 𝐶𝑘𝐶𝑙
𝐾
𝑙=1𝑘<𝑙

, 

where skl is computed here for every year pooling all regions available in the data set 

and hence is constant over regions.7 

Finally, in addition to the afore proposed indicators, the following control variables 

are included in the specifications: nocollab, collabwr, collaborwc, collabocweu27, 

collaboeu27, log(gdppc), log(pop), log(npatgdp). A set of collaboration share variables 

is included as collaboration in general (Jones et al., 2008) and international 

collaboration in particular is considered to render higher impact (Frenken et al., 

2010). Specifically, we consider the share of patents with at least one collaboration 

intra-region (collabwr), outside-region but within-country (collaborwc), outside-

country but within-EU27 (collabocweu27) or outside-EU27 (collabocweu27). Each 

patent is assigned to one specific collaboration type giving precedence to higher 

level collaborations.8 Considering also the share of patents with only one inventor 

(nocollab), the sum of these shares is therefore equal to 1. One variable is omitted in 

regressions to avoid perfect multicollinearity. gdppc is Gross Domestic Product in per 

capita terms (millions of euro in 2005 prices per inhabitant) and controls economic 

cycle effects. pop stands for population (in thousands) and captures urbanization 

effect. As a proxy for propensity to invest in R&D we use the number of patents per 

unit of GDP, npatgdp. Data on regional R&D expenditure from Eurostat are not 

available before 2000 and have several missing cases afterwards. However, we find 

that npat is highly collinear to R&D expenditure for available data points. The 

summary statistics for all variables included in the analysis are presented in Table 1. 

In addition, Table 2 presents the ranking of regions according to the impact of their 

inventions. 

 

3.4. Model specification 

Model parameters are estimated by panel Fixed Effects (FE). The FE method removes 

the impact of constant variables such geography. In this context, another advantage 

of panel FE estimation is that multicollinearity in regressors can be importantly 

                                                 

7 
Remark that skl = slk and that skk is not considered in the index. 

8
 For example, in case inventors from different EU countries(\regions) collaborate with one inventor 

from another non-EU(\EU) country, the patent counts as an outside-EU27(\outside-country within-

EU27) collaboration. 
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reduced by applying the within transformation (Hsiao, 2014). Potential threat of serial 

correlation in the error is handled by estimating a FE model with an AR(1) 

disturbance (see Baltagi and Li, 1991; for unbalanced panel see Baltagi and Wu, 

1999). This method is a feasible Generalized Least Squares (GLS) estimator in which 

the error variance-covariance matrix is modeled according to the Prais-Winsten 

transformation.9 The FE-AR(1) model is estimated here whenever AR(1) errors in the 

linear FE are found. The Wooldridge test is used to detect AR(1) in the errors 

(Wooldridge, 2010; Drukker, 2003). 

When highcit3 is used as outcome variable, a Fixed Effects Negative Binomial (FE-NB) 

model is estimated to take into account that highcit3 is a count variable. In fact, 

linear models assuming normality in the errors can perform poorly for count 

variables (Cameron and Trivedi, 2013). A NB model is preferred here over a standard 

Poisson distribution to take into account over-dispersion. The Poisson distribution 

assumes equal mean and variance, while often count variables are over-dispersed, i.e. 

exhibit variance larger than the mean. The fixed-effects component applies here to 

the distribution of the over-dispersion parameter (see Cameron and Trivedi, 2013). 

  

                                                 

9
 The error variance-covariance matrix is derived assuming AR(1) in the errors. A feasible version of the 

GLS estimator requires a preliminary estimation of the AR(1) coefficient. See Wooldridge (2010, sec. 

10.5.5) for a textbook exposition of FE-GLS models. 
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Table 1 Summary statistics: Statistics are based on 195 EU27 NUTS2 regions over 1995-2009. 

    1995-1999 2000-2004 2005-2009 

Variable 

region

s 

mea

n min max 

mea

n min max 

mea

n min max 

log(ncit3) 195 4.358 

-

0.280 

7.95

1 4.861 

-

0.280 

8.12

3 5.033 

-

0.280 

8.02

3 

highcit3 195 2.038 0 32 3.186 0.000 43 3.614 0 49 

log(gdppc) 195 3.020 0.838 

4.27

8 3.132 1.057 

4.43

6 3.211 1.499 

4.58

5 

log(npatgdp) 195 1.084 

-

2.666 

3.37

3 1.334 

-

2.678 

3.40

3 1.391 

-

1.440 

3.51

3 

log(pop) 195 7.341 5.484 

9.30

4 7.356 5.512 

9.34

0 7.378 5.550 

9.37

2 

nocollab 195 0.287 0 1 0.253 0 1 0.239 0 

0.75

0 

collabwr 195 0.210 0 1 0.216 0 

0.64

3 0.228 0 

0.70

6 

collaborwc 195 0.307 0 1 0.306 0 

0.76

3 0.313 0 

0.76

3 

collabocweu27 195 0.110 0 1 0.124 0 1 0.122 0 

0.83

3 

collaboeu27 195 0.085 0 1 0.102 0 

0.71

4 0.098 0 

0.52

9 

evenness_ipc1 195 0.826 0 1 0.841 0.494 

0.99

9 0.860 0.618 

0.97

7 

evenness_ipc3 195 0.804 0 1 0.797 0.490 

0.97

8 0.821 0.544 

0.98

2 

evenness_ipc4 195 0.871 0 1 0.864 0.590 

0.98

8 0.884 0.629 

0.99

5 

evenness_ipc10 195 0.950 0 1 0.945 0.839 1 0.947 0.848 1 

evenness_tec1 195 0.773 0 1 0.795 0 

0.99

1 0.831 0 

0.99

2 

evenness_tec2 195 0.858 0 1 0.860 0.507 

0.97

3 0.875 0.578 

0.98

2 

diversity_ipc1 195 0.219 0 

0.44

0 0.243 0 

0.44

1 0.231 0 

0.43

9 

diversity_ipc3 195 0.038 0 

0.37

9 0.035 0 

0.26

4 0.028 0 

0.24

3 

diversity_ipc4 195 0.028 0 

0.33

3 0.020 0 

0.28

2 0.014 0 

0.20

8 

diversity_ipc10 195 0.027 0 

0.37

5 0.018 0 

0.25

0 0.010 0.001 

0.18

9 

diversity_tec1 195 0.258 0 

0.39

5 0.282 0 

0.38

9 0.270 0 

0.38

9 

diversity_tec2 195 0.080 0 

0.40

2 0.083 0 

0.28

1 0.066 0 

0.26

0 

localization_ipc1 195 0.189 0.026 

0.48

1 0.188 0.034 

0.46

9 0.185 0.105 

0.49

0 

localization_ipc3 195 0.019 0.007 

0.12

0 0.016 0.007 

0.09

0 0.024 0.012 

0.13

1 

localization_ipc4 195 0.039 0.001 0.36 0.040 0.001 0.28 0.040 0.016 0.37
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0 3 0 

localization_ipc10 195 0.026 0.002 

0.15

9 0.025 0.002 

0.22

1 0.031 0.010 

0.26

7 

localization_tec1 195 0.280 0.096 

0.43

6 0.276 0.096 

0.39

9 0.277 0.096 

0.41

6 

localization_tec2 195 0.044 0.009 

0.32

9 0.043 0.015 

0.27

9 0.044 0.019 

0.38

6 

rvariety_ipc10_ipc4 195 1.525 0 

3.31

4 1.632 0 

3.21

5 1.359 0.087 

2.74

1 

rvariety_ipc10_ipc3 195 2.760 0 

4.99

6 2.932 0.333 

4.85

9 2.641 0.475 

4.60

4 

rvariety_ipc10_ipc1 195 4.602 0 

7.35

8 4.846 0.667 

7.27

3 4.659 0.675 

7.15

5 

rvariety_ipc4_ipc3 195 1.235 0 

2.18

8 1.300 0 

2.15

2 1.282 0.000 

2.12

4 

rvariety_ipc4_ipc1 195 3.077 0 

4.99

9 3.213 0 

4.85

8 3.300 0.200 

4.91

1 

rvariety_ipc3_ipc1 195 1.842 0 

3.02

7 1.914 0 

3.02

9 2.018 0.133 

3.04

2 

rvariety_tec2_tec1 195 2.144 0 

2.83

9 2.235 0 

2.84

1 2.271 0.685 

2.84

8 

uvariety_ipc10_ipc

4 195 5.406 0 

7.49

8 5.643 0.918 

7.57

5 5.813 1.950 

7.60

5 

uvariety_ipc10_ipc

3 195 4.171 0 

5.76

4 4.343 0.918 

5.75

5 4.531 1.422 

5.79

2 

uvariety_ipc10_ipc

1 195 2.328 0 

2.90

6 2.429 0.503 

2.89

2 2.513 0.863 

2.93

2 

uvariety_ipc4_ipc3 195 4.171 0 

5.76

4 4.343 0.918 

5.75

5 4.531 1.422 

5.79

2 

uvariety_ipc4_ipc1 195 2.328 0 

2.90

6 2.429 0.503 

2.89

2 2.513 0.863 

2.93

2 

uvariety_ipc3_ipc1 195 2.328 0 

2.90

6 2.429 0.503 

2.89

2 2.513 0.863 

2.93

2 

uvariety_tec2_tec1 195 1.724 0 

2.30

4 1.819 0 

2.28

5 1.914 0.000 

2.30

4 
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Table 2 Ranking of NUTS2 Regions in Research Outcomes: Reported statistics are yearly averages over 1995-2009. 

Rank Region ncit3norm Region ncit3normpc Region highcit3 Region highcit3pc 

1 ÎLE DE FRANCE (FR) 2363.7 NOORD-BRABANT (NL) 0.813 NOORD-BRABANT (NL) 26.07 NOORD-BRABANT (NL) 0.0109 

2 STUTTGART (DE) 2268.7 RHEINHESSEN-PFALZ (DE) 0.644 OBERBAYERN (DE) 21.87 STOCKHOLM (SE) 0.0078 

3 OBERBAYERN (DE) 2183.2 KARLSRUHE (DE) 0.610 DARMSTADT (DE) 21.33 RHEINHESSEN-PFALZ (DE) 0.0062 

4 NOORD-BRABANT (NL) 1943.6 STOCKHOLM (SE) 0.590 STUTTGART (DE) 21.13 KARLSRUHE (DE) 0.0058 

5 DARMSTADT (DE) 1921.9 STUTTGART (DE) 0.572 ÎLE DE FRANCE (FR) 20.73 DARMSTADT (DE) 0.0057 

6 KARLSRUHE (DE) 1652.2 OBERBAYERN (DE) 0.525 KARLSRUHE (DE) 15.67 SYDSVERIGE (SE) 0.0055 

7 KÖLN (DE) 1536.2 DARMSTADT (DE) 0.513 KÖLN (DE) 14.73 STUTTGART (DE) 0.0053 

8 DÜSSELDORF (DE) 1508.2 TÜBINGEN (DE) 0.482 STOCKHOLM (SE) 14.67 OBERBAYERN (DE) 0.0052 

9 LOMBARDIA (IT) 1327.0 FREIBURG (DE) 0.481 DÜSSELDORF (DE) 13.00 HOVEDSTADEN (DK) 0.0052 

10 RHEINHESSEN-PFALZ (DE) 1295.4 HOVEDSTADEN (DK) 0.470 LOMBARDIA (IT) 12.73 TÜBINGEN (DE) 0.0050 

11 STOCKHOLM (SE) 1099.8 BRABANT WALLON (BE) 0.463 RHEINHESSEN-PFALZ (DE) 12.47 OXFORDSHIRE* (UK) 0.0049 

12 RHÔNE-ALPES (FR) 1045.4 SYDSVERIGE (SE) 0.451 OXFORDSHIRE* (UK) 10.47 LÄNSI-SUOMI (FI) 0.0049 

13 FREIBURG (DE) 1040.3 MITTELFRANKEN (DE) 0.444 TÜBINGEN (DE) 9.00 MITTELFRANKEN (DE) 0.0045 

14 TÜBINGEN (DE) 860.3 VORARLBERG (AT) 0.404 FREIBURG (DE) 8.93 OBERPFALZ (DE) 0.0043 

15 OXFORDSHIRE* (UK) 842.8 OXFORDSHIRE* (UK) 0.397 EAST ANGLIA (UK) 8.93 FREIBURG (DE) 0.0041 

16 HOVEDSTADEN (DK) 759.2 UNTERFRANKEN (DE) 0.379 RHÔNE-ALPES (FR) 8.67 EAST ANGLIA (UK) 0.0040 

17 MITTELFRANKEN (DE) 755.1 VLAAMS-BRABANT (BE) 0.373 HOVEDSTADEN (DK) 8.40 VORARLBERG (AT) 0.0039 

18 ARNSBERG (DE) 744.3 OBERPFALZ (DE) 0.370 ZUID-HOLLAND (NL) 7.87 VLAAMS-BRABANT (BE) 0.0038 

19 EAST ANGLIA (UK) 725.6 KÖLN (DE) 0.356 ARNSBERG (DE) 7.80 VÄSTSVERIGE (SE) 0.0036 

20 EMILIA-ROMAGNA (IT) 697.9 ÖSTRA MELLANSVERIGE (SE) 0.345 MITTELFRANKEN (DE) 7.67 UNTERFRANKEN (DE) 0.0036 

*Includes BERKSHIRE, BUCKINGHAMSHIRE AND OXFORDSHIRE (UK). 
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4. Results 

Estimation results are reported in Table 3, Table 4, Table 5 and Table 6. Firstly, estimates 

of the models for average technological impact (ncit3norm) are reported in Table 3 and 

Table 4. Secondly, estimates of the models for high technological impact (highcit3) are 

reported in Table 5 and Table 6. Different sets of estimates are reported for each 

technological level of aggregation (ipc1, ipc3, ipc4, ipc10), or for each combination of 

two levels (ipc10_4, ipc10_3, ipc10_1, ipc4_3, ipc4_1, ipc3_1). Specifically, models in Table 

3 and Table 5 include evenness, disparity, localization, and urbanization as regressors, 

whose definitions vary according to different levels of technological detail. In Table 4 

and Table 6 evenness and disparity are replaced with rvariety and uvariety, which vary 

over combinations of two technological levels, while localization is defined according to 

the lowest level of the two. Alternative results based on technological fields and sub-

fields according to the Schmoch concordance table (Schmoch, 2008) are reported in 

Table 7 of Appendix B. The main findings are qualitatively similar to the ones in Table 3, 

Table 4, Table 5 and Table 6. 

In Table 3 and Table 4 we report estimates of standard FE models and FE models 

correcting for 1st order autocorrelation in the errors. Under the null of no 

autocorrelation, the residuals from the regression of the first-differenced variables 

should have an autocorrelation of -0.5. These residuals are used to test the null 

hypothesis that the coefficient of the lagged residuals in a regression of the current 

residuals is equal to -0.5 (Wooldridge, 2010; Drukker, 2003). In Table 3 and Table 4 these 

coefficients are typically around -.45, signaling some amount of serial correlation. In all 

these specifications the F test of no AR(1) is significant at 5%; therefore we focus our 

analysis on FE-AR(1) models. Evidence of multicollinearity in the regressors of interest is 

found for none of the models in Table 3 and Table 4. In fact, the Variance Inflation 

Factors (VIFs) are always below reasonable bounds.   

First, looking at the effect of diversity measures in Table 3 we find a negative impact of 

evenness on average technological impact for all cases except ipc1. Despite no 

significant effect is found for the highest level of aggregation, the magnitude of the 

effect has a stable increasing trend as the level gets more disaggregated.  For disparity, 

no significant effect is found, though the coefficient for ipc10 is positive and very close 

to 10% significance. Localization economies are found for ipc10 and, to a lesser extent, 

for ipc1.10 Urbanization has a positive effect on average technological impact across the 

board. 

                                                 

10
 Remark that localization has significant positive impact also for technological fields (tec1), as reported 

in model (5) in Table 7, corresponding to a very high level of aggregation. 
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Second, looking at Table 4 we find that related variety is detrimental to average 

technological impact in three combinations of technological levels, namely ipc3_1, 

ipc4_1 and ipc4_3. A negative effect is not found when the lowest level is used in the 

combination, i.e. ipc10. Moreover, the effect of related variety gets positive and 

significant when ipc10 is combined with ipc4, the second lowest level. Unrelated variety 

is always neutral instead. Similarly to Table 3, localization economies are found when 

highest level of technological detail is used, corresponding to specifications with ipc10 

as the lower level of aggregation. However, a positive effect is found also when ipc4 is 

used as the lower level of aggregation (i.e. localization_ipc4 is used).  Consistently with 

Table 3, at the lowest level of technological detail localization has no significant effect in 

model (7). Also, urbanization again has a positive effect on average technological impact 

of inventive activity across EU regions.  

In Table 5 and Table 6 we report FE-NB estimates for the count of highly cited patents 

(highcit3). The likelihood-ratio statistics support the use of a NB model over a Poisson 

since the null hypothesis of no over-dispersion is always strongly rejected. The test of 

AR(1) refers here to the log-linear panel case where log(1 + highcit3) is used in place of 

highcit3. This test shows clearly that AR(1) is absent in residuals for the transformed 

variable, suggesting that serial dependence is not worrisome in this case.  

Third then, looking at Table 5, we find that evenness has generally a detrimental effect 

also on high technological impact. Unlike for average technological impact in Table 3, 

the effect on research excellence is not significant for the lowest level of aggregation 

(ipc10) but it is significant for ipc1. Except for ipc10, the magnitude of the effect 

increases as the level gets more disaggregated, similarly to Table 3.  Similarly to average 

technological impact, the effect of disparity on research excellence is not significant for 

ipc1, ipc3 and ipc4, but it is positive and becomes strongly significant for the lowest 

level (ipc10). Results for localization are a bit different to Table 3. In fact, while a positive 

effect for the lowest level is as before, localization is found to reduce high technological 

impact for all the other levels.  

Finally, looking at Table 6, estimates of the effect of related variety on high technological 

impact have a remarkably similar pattern to results for average technological impact in 

Table 4; namely same negative impact for ipc3_1 and ipc4_1, same positive impact for 

ipc10_4, but the negative impact for ipc4_3 loses significance in Table 6. Interestingly, 

we notice also that the effect of related variety grows monotonically as one of the two 

levels becomes more detailed. The effect of unrelated variety is generally non-significant 

as in Table 4, with the only exception of a negative effect for ipc4_3. Results for 

localization confirm results of Table 5; namely positive only when the highest level of 

technological detail (ipc10) is used and negative otherwise. Whilst Table 3 and Table 4 

bear witness on the presence of urbanization economies concerning average 
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technological impact, when it comes to high technological impact the coefficient is 

generally non-significant or at best positive and mildly significant (see Table 5 and Table 

6). With regards to the effect of collaboration shares, we do find that higher share of 

collaborations involving non-European inventors improves the performance of EU 

regions for both citation indicators (see Table 3, Table 4, Table 5 and Table 6). The 

impact is significant for any collaboration share used for comparison.11    

 

                                                 

11
 As can be understood from Table 3, Table 4, the coefficient on collabeu27 is significant either 

considering the baseline share (nocollab), or the others. From Table 5 and Table 6 we notice that the 

coefficient on collabeu27 is significant with respect to the baseline, however, by running further models 

using in turn the remaining shares as baseline, the coefficient is still significant in most cases.  
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Table 3 Diversity and Average Technological Impact: *** p<0.01, ** p<0.05, * p<0.1. Clustered standard errors in parenthesis. All 

models are estimated for 195 regions over 1995-2009. FE – AR(1) models correct for 1
st
 order autocorrelation. No autocorrelation corresponds to 

AR(1) = -0.5 in residuals from the regression of the first-differenced variables. VIFs are variance inflation factors for the specified regressors. VIF < 3 

is interpreted here as a sign that the regressor is not collinear. 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 

FE FE FE FE FE - AR(1) FE - AR(1) FE - AR(1) FE - AR(1) 

log(ncit3norm) ipc1 ipc3 ipc4 ipc10 ipc1 ipc3 ipc4 ipc10 

                  

log(gdppc) 1.054*** 1.022*** 1.021*** 1.056*** 0.877*** 0.859*** 0.857*** 0.904*** 

 

(0.261) (0.256) (0.257) (0.256) (0.157) (0.157) (0.158) (0.157) 

log(pop) 0.446 0.403 0.403 0.480 0.650* 0.627* 0.638* 0.683* 

 

(0.321) (0.313) (0.319) (0.322) (0.349) (0.348) (0.349) (0.349) 

log(npatgdp) 1.107*** 1.080*** 1.066*** 1.090*** 1.123*** 1.100*** 1.086*** 1.106*** 

 

(0.034) (0.033) (0.035) (0.036) (0.031) (0.030) (0.030) (0.030) 

collabwr -0.193 -0.245 -0.279 -0.250 -0.284** -0.356*** -0.401*** -0.378*** 

 

(0.213) (0.211) (0.200) (0.204) (0.120) (0.121) (0.120) (0.120) 

collaborwc -0.097 -0.109 -0.108 -0.060 -0.134 -0.145 -0.145 -0.104 

 

(0.165) (0.170) (0.164) (0.159) (0.116) (0.116) (0.115) (0.115) 

collabocweu27 -0.062 -0.079 -0.097 -0.046 -0.117 -0.140 -0.169 -0.108 

 

(0.214) (0.214) (0.208) (0.209) (0.120) (0.120) (0.119) (0.118) 

collaboeu27 0.346 0.306 0.283 0.315 0.425*** 0.402*** 0.371*** 0.411*** 

 

(0.233) (0.241) (0.243) (0.232) (0.137) (0.139) (0.136) (0.135) 

evenness 0.048 -0.558*** -0.982*** -1.006*** 0.067 -0.550*** -0.923*** -1.104*** 

 

(0.197) (0.210) (0.222) (0.282) (0.133) (0.165) (0.212) (0.296) 

disparity -0.153 -0.290 0.137 0.443** -0.060 -0.225 0.207 0.262 

 

(0.275) (0.311) (0.300) (0.196) (0.184) (0.203) (0.204) (0.160) 

localization 0.711 0.577 0.468 2.079 0.521* 0.422 0.591 2.493*** 

 

(0.580) (1.062) (0.824) (1.519) (0.301) (0.482) (0.617) (0.939) 

         Observations 2,925 2,925 2,925 2,925 2,730 2,730 2,730 2,730 

Number of idnuts2 195 195 195 195 195 195 195 195 

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes 

R2 within 0.624 0.625 0.628 0.627 0.546 0.548 0.550 0.551 

R2 between 0.906 0.901 0.904 0.917 0.947 0.948 0.953 0.955 

R2 overall 0.868 0.863 0.867 0.878 0.902 0.904 0.907 0.910 

VIF - rvariety 1.11 1.43 1.52 1.25 1.11 1.43 1.52 1.25 

VIF - uvariety 1.24 1.22 1.46 1.43 1.24 1.22 1.46 1.43 

VIF - localization 1.06 1.26 1.38 1.35 1.06 1.26 1.38 1.35 

AR(1) coeff in error -0.447 -0.446 -0.443 -0.442 

    F test no AR(1) 4.616 4.767 5.122 5.644 

    



22 
 

Prob > F 0.033 0.030 0.025 0.018         
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Table 4 Related\Unrelated Variety and Average Technological impact: *** p<0.01, ** p<0.05, * p<0.1. See notes to Table 3. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 

FE FE FE FE FE FE FE - AR(1) FE - AR(1) FE - AR(1) FE - AR(1) FE - AR(1) FE - AR(1) 

log(ncit3norm) ipc3_1 ipc4_1 ipc4_3 ipc10_1 ipc10_3 ipc10_4 ipc3_1 ipc4_1 ipc4_3 ipc10_1 ipc10_3 ipc10_4 

                          

log(gdppc) 1.069*** 1.068*** 1.071*** 1.073*** 1.087*** 1.095*** 0.897*** 0.881*** 0.882*** 0.916*** 0.932*** 0.935*** 

 

(0.268) (0.262) (0.259) (0.252) (0.251) (0.250) (0.160) (0.160) (0.160) (0.159) (0.158) (0.158) 

log(pop) 0.464 0.452 0.421 0.406 0.414 0.417 0.683* 0.665* 0.645* 0.641* 0.643* 0.642* 

 

(0.314) (0.309) (0.309) (0.313) (0.313) (0.306) (0.350) (0.349) (0.348) (0.348) (0.348) (0.347) 

log(npatgdp) 1.122*** 1.154*** 1.160*** 1.123*** 1.114*** 1.113*** 1.136*** 1.160*** 1.168*** 1.134*** 1.126*** 1.124*** 

 

(0.037) (0.042) (0.043) (0.047) (0.047) (0.045) (0.032) (0.034) (0.034) (0.040) (0.040) (0.040) 

collabwr -0.210 -0.215 -0.219 -0.177 -0.196 -0.216 -0.309** -0.313*** -0.320*** -0.277** -0.300** -0.320*** 

 

(0.218) (0.211) (0.207) (0.210) (0.210) (0.210) (0.120) (0.119) (0.119) (0.119) (0.119) (0.119) 

collaborwc -0.104 -0.095 -0.089 -0.043 -0.066 -0.078 -0.144 -0.138 -0.128 -0.085 -0.105 -0.115 

 

(0.168) (0.168) (0.165) (0.165) (0.165) (0.166) (0.116) (0.116) (0.116) (0.116) (0.116) (0.116) 

collabocweu27 -0.073 -0.076 -0.070 -0.005 -0.033 -0.048 -0.135 -0.151 -0.139 -0.069 -0.092 -0.111 

 

(0.214) (0.205) (0.208) (0.210) (0.213) (0.212) (0.120) (0.120) (0.120) (0.118) (0.119) (0.119) 

collaboeu27 0.311 0.329 0.327 0.379 0.345 0.333 0.396*** 0.401*** 0.404*** 0.460*** 0.435*** 0.424*** 

 

(0.243) (0.243) (0.239) (0.234) (0.232) (0.233) (0.139) (0.136) (0.136) (0.135) (0.136) (0.135) 

rvariety -0.090* -0.113*** -0.152** -0.012 0.026 0.082 -0.083** -0.103*** -0.151*** -0.008 0.025 0.076** 

 

(0.046) (0.041) (0.060) (0.044) (0.045) (0.057) (0.034) (0.031) (0.049) (0.030) (0.034) (0.039) 

uvariety 0.006 0.000 -0.053 -0.019 -0.039 -0.042 0.014 0.013 -0.042 0.002 -0.024 -0.030 

 

(0.053) (0.052) (0.032) (0.051) (0.036) (0.035) (0.041) (0.040) (0.027) (0.043) (0.031) (0.030) 

localization 0.715 1.147 1.358 2.379* 2.443* 2.180 0.596 1.348** 1.583** 3.023*** 3.045*** 2.779*** 

 

(1.018) (0.869) (0.909) (1.424) (1.426) (1.452) (0.499) (0.609) (0.628) (1.016) (1.015) (1.017) 

             Observations 2,925 2,925 2,925 2,925 2,925 2,925 2,730 2,730 2,730 2,730 2,730 2,730 

Number of idnuts2 195 195 195 195 195 195 195 195 195 195 195 195 

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R2 within 0.624 0.626 0.626 0.624 0.625 0.626 0.546 0.548 0.550 0.548 0.549 0.551 

R2 between 0.908 0.894 0.882 0.888 0.896 0.898 0.952 0.943 0.937 0.943 0.946 0.947 

R2 overall 0.870 0.857 0.848 0.852 0.859 0.861 0.906 0.899 0.894 0.898 0.902 0.903 

VIF - rvariety 1.38 1.67 1.37 2.54 2.7 2.17 1.38 1.67 1.37 2.54 2.7 2.17 

VIF - uvariety 1.49 1.45 1.97 1.57 2.44 2.82 1.49 1.45 1.97 1.57 2.44 2.82 

VIF - localization 1.31 1.32 1.41 1.53 1.53 1.54 1.31 1.32 1.41 1.53 1.53 1.54 

AR(1) coeff in error -0.447 -0.449 -0.450 -0.446 -0.447 -0.448 

      F test no AR(1) 4.424 4.032 4.202 4.733 4.514 4.341 

      Prob > F 0.037 0.046 0.042 0.031 0.035 0.039             
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Table 5 Diversity and High Technological impact: *** p<0.01, ** p<0.05, * p<0.1. Analytical standard errors based on the observed 

information matrix in parenthesis. All models are estimated for 185 regions over 1995-2009; 10 regions are dropped because of all zero outcomes. 

AR(1) test refers to the log-linear case where log(1 + highcit3) is used in place of highcit3. See also notes to Table 3. The LR tests the null of no 

overdispersion; rejection supports a NB over a Poisson. 

  (1) (2) (3) (4) 

 

FE-NB FE-NB FE-NB FE-NB 

highcit3 ipc1 ipc3 ipc4 ipc10 

          

log(gdppc) 0.394 0.310 0.323 0.583* 

 

(0.317) (0.322) (0.328) (0.336) 

log(pop) 0.439 0.348 0.315 0.450 

 

(0.296) (0.295) (0.300) (0.301) 

log(npatgdp) 1.087*** 1.001*** 0.950*** 1.079*** 

 

(0.088) (0.090) (0.089) (0.099) 

collabwr 0.603 0.576 0.513 0.613 

 

(0.425) (0.426) (0.426) (0.422) 

collaborwc 0.904** 0.852** 0.819** 0.923** 

 

(0.386) (0.386) (0.386) (0.384) 

collabocweu27 0.921* 0.839 0.884* 0.954* 

 

(0.512) (0.514) (0.514) (0.513) 

collaboeu27 1.698*** 1.613*** 1.513*** 1.498*** 

 

(0.531) (0.538) (0.538) (0.537) 

evenness -1.430*** -2.166*** -2.830*** -0.080 

 

(0.463) (0.533) (0.648) (1.356) 

disparity 0.759 0.224 0.134 1.269*** 

 

(0.581) (0.599) (0.646) (0.432) 

localization -3.877*** -7.302*** -5.596** 8.824** 

 

(1.382) (2.441) (2.195) (3.735) 

     Observations 2,775 2,775 2,775 2,775 

Number of idnuts2 185 185 185 185 

Year dummies Yes Yes Yes Yes 

AR(1) coeff in error -0.486 -0.486 -0.486 -0.487 

F test no AR(1) 0.874 0.909 0.958 0.787 
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Prob > F 0.351 0.341 0.329 0.376 

lr overdispersion test (Chi2) 23.340 25.127 23.806 25.127 

Prob > Chi2 0.000 0.000 0.000 0.000 
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Table 6 Related\Unrelated Variety and High Technological impact: *** p<0.01, ** p<0.05, * p<0.1. See notes to Table 5. 

  (1) (2) (3) (4) (5) (6) 

 

FE-NB FE-NB FE-NB FE-NB FE-NB FE-NB 

highcit3 ipc3_1 ipc4_1 ipc4_3 ipc10_1 ipc10_3 ipc10_4 

              

log(gdppc) 0.469 0.519 0.479 0.464 0.395 0.385 

 

(0.323) (0.328) (0.327) (0.325) (0.327) (0.327) 

log(pop) 0.488 0.521* 0.522* 0.408 0.334 0.314 

 

(0.303) (0.305) (0.299) (0.300) (0.305) (0.311) 

log(npatgdp) 1.148*** 1.174*** 1.141*** 1.076*** 1.022*** 1.026*** 

 

(0.082) (0.083) (0.083) (0.095) (0.095) (0.093) 

collabwr 0.619 0.636 0.620 0.693 0.581 0.557 

 

(0.423) (0.423) (0.424) (0.423) (0.425) (0.425) 

collaborwc 0.909** 0.939** 0.942** 1.009*** 0.921** 0.885** 

 

(0.384) (0.384) (0.384) (0.384) (0.385) (0.386) 

collabocweu27 0.907* 0.975* 1.001* 1.035** 0.954* 0.915* 

 

(0.510) (0.512) (0.511) (0.511) (0.512) (0.512) 

collaboeu27 1.681*** 1.679*** 1.677*** 1.732*** 1.561*** 1.536*** 

 

(0.535) (0.535) (0.535) (0.532) (0.535) (0.535) 

rvariety -0.342*** -0.295*** -0.178 0.023 0.136 0.206* 

 

(0.096) (0.084) (0.131) (0.088) (0.097) (0.110) 

uvariety -0.150 -0.054 -0.240*** -0.003 -0.044 -0.017 

 

(0.147) (0.140) (0.076) (0.135) (0.084) (0.081) 

localization -6.529*** -4.034* -4.376** 9.898*** 10.337*** 9.827*** 

 

(2.455) (2.173) (2.206) (3.548) (3.538) (3.530) 

       Observations 2,775 2,775 2,775 2,775 2,775 2,775 

Number of idnuts2 185 185 185 185 185 185 

Year dummies Yes Yes Yes Yes Yes Yes 

AR(1) coeff in error -0.488 -0.488 -0.488 -0.488 -0.488 -0.488 

F test no AR(1) 0.705 0.673 0.672 0.707 0.678 0.682 

Prob > F 0.402 0.413 0.413 0.401 0.411 0.410 

lr overdispersion test (Chi2) 23.809 24.129 24.422 24.087 23.727 23.553 

Prob > Chi2 0.000 0.000 0.000 0.000 0.000 0.000 
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5. Discussion  

The findings documented in Section 4 overall provide mixed evidence on the effect of 

diversity on the technological impact of inventive activity across EU regions. A general 

result is that these effects are very sensitive to the aggregation level used to separate 

technologies. 

Concerning the average impact of inventive activities, we clearly observe an advantage 

of concentrating invention activities in few and relatively closely related technologies. 

This claim derives from two sets of findings. On the one hand, the less evenly are these 

activities distributed within a region, the higher is the impact of the region relative to 

the impact that technologically similar invention activities can have elsewhere (see Table 

3). For this effect to be significant, it is necessary that technologies in which inventive 

activities are concentrated are not defined too widely, as can be understood by the 

coefficients of evenness in various specifications in Table 3.  

On the other hand, when the notion of distance is incorporated in the measures, we find 

evidence that diversity can be beneficial only when it is constrained to very related and 

detailed technologies. First, related variety results in a positive effect on average 

technological impact only when it is considered within the boundaries of a very detailed 

technology, which in turn belongs to a relatively narrow higher level sector (see ipc10_4 

in Table 4). Otherwise, related variety can be either neutral or even detrimental when 

relatively large technological boundaries are considered (see ipc3_1, ipc4_1 and ipc4_3 

in Table 4). Second, diversity in the form of combination of more distant technologies 

(disparity) is close to having a positive impact for a highly disaggregated level of analysis 

(see ipc10 in Table 3).  

Concerning the effect of concentration of technologies in a region on the average 

impact of inventive activity, as captured by the localization indicator, we find always a 

positive and often significant effect. Remark that this indicator is concerned with the 

spatial concentration of sectors rather than specialization within a given region. 

Therefore, and as argued in section 2, the main theoretical justification for the presence 

of localization economies relates to geographical knowledge spillovers. Our results show 

that localization economies are strongest at the lowest level of aggregation (see ipc10 in 

Table 3 and Table 4).  
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The results for high technological impact are similar to the results for average 

technological impact, with two important qualifications though. A first distinction 

concerns the effect of diversity being more beneficial for high technological impact at 

the lowest level of aggregation (ipc10). In fact, on the one hand, disparity becomes 

strongly significant for ipc10 in Table 5, unlike it is only close to significance in Table 3. 

On the other hand, looking again at Table 5, while the negative effect of evenness on 

high technological impact increases as the level of aggregation becomes lower, similarly 

to Table 3, this effect is no more significant for the lowest level. It has to be remarked 

here that recombinant inventions relating distant domains are more likely to be of a 

radical nature (Fleming, 2001; Saviotti & Frenken, 2008); therefore they are expected to 

have higher volatility in impact, and to pay-off in terms of high technological impact 

rather than in terms of average technological impact. However, evidence that the 

diversity premium on high impact over the average impact is found only for the most 

detailed level, suggests that, in the present context, incremental inventions as 

originating by recombination of very close technologies are more likely to succeed than 

radical inventions in terms of high impact.  

A second distinction concerns the effect of localization. While a positive effect on high 

technological impact is found at ipc10 similarly to average technological impact, a 

negative impact is found for all the other levels too. Geographical concentration of 

technologically similar inventive activities is expected to enhance knowledge spillovers, 

resulting in higher impact. However, it can also induce a lock-in effect in knowledge 

diffusion so long as knowledge elsewhere potentially building up on that stock of 

knowledge is too little and sparse. This latter effect can dominate if the citation impact is 

measured by the capacity of the region to have an outstanding impact. Along the same 

line of reasoning, a persisting positive effect at the lowest level of aggregation can be 

interpreted noting that knowledge elsewhere is less likely to be technologically distant 

when very narrow sectors are considered. 

To conclude, the findings can be summarized as follows. On the one hand, the effect of 

diversity is typically negative, or at best absent, if we do not consider very fine-grained 

disaggregation of technologies. However, it is also true that diversity can be beneficial 

when it is constrained to very related and detailed technologies. On the other hand, 

while localization is always beneficial at the most fine-grained level of aggregation, it 

can be beneficial too for average technological impact, or detrimental for high 

technological impact, when less fine-grained levels are considered.  
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6. Concluding remarks 

This paper addressed the relationship between the technological diversity and the 

technological impact of inventive activity across EU regions. Thus far, this relationship 

had been left largely unaddressed throughout the literature. What is more, whenever 

the relationship between the technological composition of regions and the impact of 

their inventions has been addressed, the evidence offered has been rather inconclusive. 

From a theoretical point of view, plausible arguments are offered supporting opposite 

claims, namely that specialization and localization on the one hand and diversification 

and urbanization on the other have a positive effect on the impact of new technologies. 

Empirically, we identified two main issues concerning the evidence being inconclusive. 

One is that the notion of technological diversity itself can be conceptualized in different 

ways; all leading to different sets of indicators used in the empirical assessment. Another 

issue is that technological diversity, irrespective of the conceptualization and indicators 

employed, can apply to different levels of technological detail.  

The main conclusion of this paper holds that diversity is typically detrimental, or at best 

neutral, for the impact of new technologies in Europe, except when a very fine-grained 

technological detail is taken into account. Specifically, except in the latter case, positive 

effects are driven by concentration in few and related technologies, as captured by 

lower evenness and related variety respectively. Moreover, localization is found to be 

detrimental only for the high impact. 

Conversely, nearly opposite conclusions hold if our focus is on to the lowest level of 

aggregation available. In this case, benefits can arise from (related) variety and, 

particularly in terms of high technological impact, from combination of relatively distant 

technologies (disparity).  Benefits arise also from localization.  

It follows that, in terms of policy implications, two policy options could be considered in 

order to boost technological impact of new inventions. One option concerns steering 

specialization in closely neighboring technologies. The other policy option concerns 

steering diversification among closely related technologies and localization at a coarse-

grained technological level. What is crucial here is that policymakers should have a very 

detailed understanding about the relations among technologies if such 

specialization/diversification strategies are to succeed. Whenever such detailed 
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understanding is lacking, specialization (diversification) might easily turn out to become 

counterproductive; that is, decrease instead of increase the technological impact of 

regional invention in Europe. Therefore, our results emphasize the importance of taking 

into account (i) the relations among different technologies and (ii) the appropriate level 

of technological detail along which relations among technologies play out. 

It has to be remarked that these implications for policy may derive from the particular 

reward system for inventions present in the current institutional framework. At the 

outset, the results found in this paper for the European context seem to be at odds with 

those found by Castaldi et al. (2014) for the US context. Castaldi et al. (2014) found that 

in the US diversification across relatively distant technologies rather than specialization 

in closely neighboring ones has a positive effect on high technological impact of 

regional invention. Following the literature on Varieties of Capitalism, part of this 

difference in results might be explained by the US having a comparative advantage in 

radical invention whilst Europe has a comparative advantage in incremental invention 

(Boschma & Capone, 2014). It follows that unrelated diversification (related 

specialization) might be beneficial for the technological impact of regional invention 

only whenever radical invention is rewarded more (less) than incremental invention. In 

other words, if diversification across relatively distant technologies and not 

specialization in relatively close technologies is considered to be a viable policy option 

in Europe, then the reward system for invention should be drastically revised. 

Of course, we would need more research in order to further substantiate some of the 

claims made in this paper. For example, we could look at whether similar patterns exist 

for scientific knowledge production by taking into account publication data instead of 

patent data. Second, and perhaps even more important, it would be interesting to dig 

deeper into the differences in invention patterns between the US and Europe. Not only 

in terms of how these research and innovation systems are organized (cf. Hardeman et 

al., 2014), but also in terms of the characteristics of the inventions that have 

technological impact. Such an analysis would allow for a more detailed understanding 

on why nearly opposite effects are found when comparing regional invention in the US 

with regional invention in Europe.     
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Appendix A. Normalization of the citation measure 

This section describes the main steps used to normalize forward citations. The 

procedure is based on two main steps (Squicciarini et al., 2013). First each patent s = 1 … 

S is associated to one unique technology k, allowing to define ncit3s,k,t which represents 

the number of citations received by a patent s filed in year t with technology k (remark 

that k depends on the level of aggregation used). When several technology fields are 

allocated to a patent, only the one with the majority of sub-fields occurrences is kept. In 

case of fields with same number of sub-fields, the field is selected randomly. Citation 

counts are then aggregated by field and year, giving rise to ncit3k,t = ∑sncit3s,k,t, where s 

= 1 … Sk,t, and Sk,t is the number of patents in sector k and year t.  

Secondly, ncit3s,k,t is divided by a summary statistic of citations received by patents in 

the same field and year. Specifically, we consider the mean ncit3k,t = ∑sncit3s,k,t / Sk,t, 

giving rise to ncit3norms,k,t = ncit3s,k,t / ncit3k,t. Finally, the variable used in the analysis 

(ncit3normi,t) is obtained aggregating ncit3norms,k,t by region and year.  

Two main choices in the normalization procedure can affect the resulting citation 

variable. First, the choice of the technological level. Throughout the analysis, the level 

tec2 is always used for consistency. The correlation among citation variables based on 

different technological levels is extremely high. Second, the choice of the statistics for 

normalization. Different statistics have been considered for the normalization, such as 

the total, the maximum, the mean and some percentiles. The correlation among the 

resulting variables is anyway very high. 

Appendix B. Estimates with an alternative classification scheme 

In this Section we report alternative results using technological fields and sub-fields 

according to the Schmoch concordance table (Schmoch, 2008), in place of ipc levels. 

Specifically, Table 7 combines four sets of results corresponding to the ones reported in 

Table 3, Table 4, Table 5 and Table 6. 
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Table 7 Variety/Diversity and research impact with technological fields and sub-fields: *** p<0.01, ** p<0.05, * p<0.1. See 

notes to Table 3, Table 4, Table 5 and Table 6.  

  log(ncit3norm)   highcit3 

 
(1) (2) (3) (4) (5) (6) 

 
(7) (8) (9) 

 
FE FE - AR(1) FE FE FE - AR(1) FE - AR(1) 

 
FE-NB FE-NB FE-NB 

 
tec2_1 tec2_1 tec1 tec2 tec1 tec2   tec2_1 tec1 tec2 

              

 

      

log(gdppc) 1.101*** 0.916*** 1.065*** 1.036*** 0.882*** 0.872*** 
 

0.555* 0.371 0.429 

 
(0.254) (0.159) (0.257) (0.256) (0.158) (0.157) 

 
(0.329) (0.319) (0.326) 

log(pop) 0.473 0.697** 0.427 0.422 0.641* 0.658* 
 

0.488 0.458 0.419 

 
(0.311) (0.346) (0.316) (0.314) (0.350) (0.348) 

 
(0.318) (0.281) (0.299) 

log(npatgdp) 1.146*** 1.155*** 1.104*** 1.077*** 1.116*** 1.099*** 
 

1.165*** 1.091*** 1.046*** 

 
(0.034) (0.032) (0.038) (0.034) (0.031) (0.030) 

 
(0.083) (0.086) (0.088) 

collabwr -0.198 -0.294** -0.179 -0.240 -0.260** -0.357*** 
 

0.584 0.714* 0.551 

 
(0.208) (0.120) (0.202) (0.196) (0.122) (0.120) 

 
(0.420) (0.426) (0.426) 

collaborwc -0.057 -0.101 -0.078 -0.089 -0.113 -0.133 
 

0.947** 1.007*** 0.866** 

 
(0.168) (0.116) (0.165) (0.161) (0.117) (0.116) 

 
(0.383) (0.388) (0.385) 

collabocweu27 -0.039 -0.100 -0.037 -0.073 -0.095 -0.141 
 

0.941* 1.035** 0.859* 

 
(0.211) (0.119) (0.211) (0.209) (0.119) (0.119) 

 
(0.506) (0.513) (0.514) 

collaboeu27 0.331 0.411*** 0.366 0.313 0.461*** 0.393*** 
 

1.667*** 1.800*** 1.601*** 

 
(0.248) (0.137) (0.241) (0.249) (0.137) (0.137) 

 
(0.528) (0.535) (0.534) 

rvariety -0.136** -0.122*** 
     

-0.553*** 
  

 
(0.054) (0.035) 

     
(0.119) 

  uvariety -0.011 0.010 
     

-0.208 
  

 
(0.062) (0.042) 

     
(0.146) 

  localization 1.148 1.450** 0.390 0.551 0.631** 0.816 
 

-5.950* -2.564 -7.654** 

 
(0.970) (0.639) (0.412) (0.928) (0.302) (0.583) 

 
(3.223) (1.624) (3.001) 

evenness 
  

-0.050 -0.621*** 0.002 -0.526*** 
  

-0.482 -2.140*** 

   
(0.158) (0.209) (0.087) (0.168) 

  
(0.309) (0.530) 

disparity 
  

-0.146 0.058 -0.083 0.128 
  

0.667 0.438 

   
(0.303) (0.263) (0.182) (0.193) 

  
(0.625) (0.524) 

           Observations 2,925 2,730 2,925 2,925 2,730 2,730 
 

2,775 2,775 2,775 
Number of idnuts2 195 195 195 195 195 195 

 
185 185 185 

Year dummies Yes Yes Yes Yes Yes Yes 
 

Yes Yes Yes 
R2 within 0.626 0.551 0.623 0.626 0.545 0.549 

    R2 between 0.903 0.949 0.900 0.902 0.946 0.951 
    R2 overall 0.866 0.904 0.862 0.865 0.901 0.906 
    VIF - rvariety 1.34 1.34 1.21 1.28 1.21 1.28 
    VIF - uvariety 1.77 1.77 1.24 1.21 1.24 1.21 
    VIF - localization 1.45 1.45 1.04 1.20 1.04 1.20 
    AR(1) coeff in error -0.449 

 
-0.444 -0.446 

   
-0.488 -0.486 -0.487 

F test no AR(1) 4.411 
 

5.229 4.666 
   

0.706 0.959 0.803 
Prob > F 0.037 

 
0.023 0.032 

   
0.402 0.329 0.371 

lr overdispersion test (Chi2) 
       

21.612 25.193 24.027 
Prob > Chi2               0.000 0.000 0.000 
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Appendix C. Maps of relevant indicators 

Figure 1 Number of field normalized citations (3-year window) 

 

Figure 2 Number of field normalized citations (3-year window) in per-capita terms 
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Figure 3 Number of highly cited patents 

 

Figure 4 Number of highly cited patents in per-capita terms 
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Figure 5 Evenness of technological sub-fields 

 

Figure 6 Disparity of technological sub-fields 
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Figure 7 Related variety of patent classes 

 

Figure 8 Unelated variety of patent classes 

 

Figure 9 Localization of technological sub-fields 
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