
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

5-31-1994 

Extracting parallelism at compile-time through dependence Extracting parallelism at compile-time through dependence 

analysis & cloning techniques in an object-based paradigm analysis & cloning techniques in an object-based paradigm 

Binoy Ravindran 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ravindran, Binoy, "Extracting parallelism at compile-time through dependence analysis & cloning 
techniques in an object-based paradigm" (1994). Theses. 1721. 
https://digitalcommons.njit.edu/theses/1721 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1721?utm_source=digitalcommons.njit.edu%2Ftheses%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

EXTRACTING PARALLELISM AT COMPILE-TIME 
THROUGH DEPENDENCE ANALYSIS & CLONING TECHNIQUES 

IN AN OBJECT-BASED PARADIGM 

by 
Binoy Ravindran 

The construct of Abstract Data Type (ADT) modules and Abstract Data 

Object (ADO) modules supported by most object-based languages are a great source 

for developing reusable code. To improve the run time performance of such object-

based programs, we consider the asynchronous remote procedure call (ARPC) model 

of parallel execution, in which concurrency is achieved by having the caller and the 

callee (which are module instances) running on different processors. Frequently, an 

ADT module is needed simultaneously by other modules, thus causing contention. 

To resolve this, we clone the module instance in demand and distribute the copies 

across different processors, so that multiple clients can access the code concurrently. 

For identifying the facilities causing bottlenecks to the ARPC model, the dependence 

relations of the code is analyzed at compile-time. Instance dependences of the code 

are also analyzed in addition to conventional dependences to reveal the potential 

concurrency, and an upper bound on the number of clones of each facility that could 

be used in an application is determined. This parallelism information could be used 

by the assignment and the scheduling algorithms in the run time environment of the 

application for constructing a. feasible real-time schedule, statically. 
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CHAPTER 1 

INTRODUCTION  

Software reusability has become a major issue primarily clue to the crisis of increasing 

demand for new software systems and the inability of software engineers to keep pace 

with it. As a result of such a rapid demand, software engineers are eager to exploit. 

the results of their previous development efforts leading to the reuse of code modules. 

One could easily argue that the vast majority of the code that exists today is not 

reusable. What gives much credence to this argument is that, ever since the software 

life cycle concept had been formulated, it has been found that most. of the time 

and money is spent in software maintenance and most. of that effort is spent in 

trying to determine what the code does. Reusing software components which have 

already proved their correctness or have already been debugged is obviously one 

way to reduce the development and maintenance cost. Improperly designed cock. 

when attempted to reuse can create severe problems as it. may have a form that 

makes them difficult to integrate into a system. Therefore many programmers and 

language designers recognize the need to develop modules with reuse in mind and 

thereby they frequently use the abstract data type (ADT) construct.. An abstract 

data type component provides a collection of operations that can be invoked by other 

components. Use of ADTs lead to many benefits such as information hiding. encap-

sulation, loose coupling and high cohesion. All these are highly desirable properties 

for software reusability as they help to make software components easily adapt to 

different application environments. Most of the object-based languages support the 

constructs of abstract data types and abstract data objects (ADO). For example, Ada 

provides the generic package which are parametrized by types and operations. Also. 

C++ allows the definition of generic class templates which again when instantiated 
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with type and operation parameters gives rise to abstract. data object s. However 

the cost of the reusability of programs constructed out of ADT and ADO modules 

is its low execution efficiency especially when these modules arc highly generic and 

are parametrized by data types, thereby rendering the run time management highly 

expensive. Also the system performance deteriorates due to the cost of procedure 

calls, the communication overhead, and the encapsulation of the abstraction's data 

structures [10]. 

In this thesis, a parallel execution model (asynchronous remote procedure call, 

or ARPC) is considered to improve the performance of programs developed with 

ADTs and ADOs in a distributed and parallel system. In a. distributed system, an 

abstract data type can be modeled as a server receiving requests for its operations 

from various clients. The server and its clients interact using the interprocess commu-

nication (IPC) primitives provided by the operating system and run on either the 

same or different machines. In such an environment, the server could be running on 

a dedicated processor and the clients would be invoking its operations via remote 

procedure calls. However, if multiple clients want to access their data variables 

managed by one server at the same time and only one client. is granted access to the 

server, there will be contention for the server and all the other clients will have to wait 

until the server becomes available. To resolve this contention, the server code could be 

replicated and copies of the code (or clones) could be placed on different. processors. 

By replicating the ADT facilities and distributing them across the various processing 

elements, multiple method calls could be served concurrently, thereby speeding up 

the execution of programs. Techniques have been developed [1] for identifying units 

of parallelism in programs composed of ADTs and for increasing parallelism by using 

replicated ADT instances. The programming paradigm used in this work consists of 

ADT and ADO templates, which form the basic reusable components. 
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To exploit parallelism from programs constructed out of ADT and ADO 

modules automatically, the dependence relations among method calls are analyzed. 

The classical data dependence graph (DDG) and control dependence graph (CDG) 

are extended to include facility (ADT instances) dependences or code dependences 

for the purpose of clone analysis. Algorithms presented in [1] have been implemented 

for determining the maximum number of clones of each ADT facility that can be 

used in an application. 

In this section, we summarize the previous works on program dependence 

analysis and cloning techniques.  

1.1 Previous Work  

The work in this thesis is mainly on extracting parallelism information from programs 

constructed out of ADT and ADO modules and is based on two aspects: 

• Program dependence analysis and 

• Cloning of ADT modules. 

In this section, previous research works on each of these areas is reviewed. 

1.1.1 Program Dependence Analysis  

The program dependence graph (PDG) is an intermediate representation of the data 

and control dependences between statements in a program. In the PDG. program 

statements are represented as nodes and directed edges denote the data and control 

dependences which the statements have with one another according to their lexical 

ordering in the source code. These dependence relationships determine I he necessary 

sequencing between operations and can be used to expose potent ial parallelism in 

the program. Most of the previous works [2, 6, 8, 9] have used these dependences for 

code optimization and parallelism detection. However, data. and control dependences 
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arc not sufficient enough to represent relationships among statements in object -based 

programs, where the major activity is method calls. Call statements having neither 

data nor control dependences could be assigned to different. processors and run in a 

parallel manner if no other dependence relations between the statements are revealed. 

as is the case here. However, there could be code dependence between statements 

if the statements call the same method, and this apparently could prevent such a 

concurrency. The code dependence relation therefore, can reveal the contention for 

the code of the shared method. None of the previous works has dealt with code 

dependence relations. 

We introduce facility dependences into the program dependence analysis to 

reveal the contention between statements for common facilities. Two statements is 

said to have a facility dependence between them if they use methods provided by the 

same facility. 

1.1.2 Cloning ADT Modules for Concurrency Enhancement 

Previous research work on software component cloning has mainly been on compiler 

optimization and fault tolerance. Keith Cooper [2] uses cloning techniques for 

compiler optimization. His algorithm finds improvements in forward 

interprocedural data-flow solutions and clones those procedures that. could lead to run time 

improvement. 

In [6], replication (node splitting) is applied al the statement level to reduce 

communication and synchronization costs. Cloning ADT modules for exploiting 

parallelism has been addressed by Welch [1]. In his work, the contention for an A DT 

facility is revealed by partitioning the statements of an ADT module into units,. 

A unit is defined as a sequence of one or more statements, which due to the data 

dependences among them, must execute in their lexical order. The statement of a 

unit cannot contend for a facility, but different units may. By further grouping thy 
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units, an upper bound on the number of clones of facilities that could be used in 

an application is determined by a polynomial algorithm. Also, techniques have been 

presented to increase parallelism within loops by iteration unrolling, code motion. 

and removal of antidependences. 

In this work, the PDGs have been extended to represent all kinds of depen-

dences (data, control and facility dependences) and further, such an extended 

dependence graph is used to determine an upper bound on the number of clones of 

facilities that could be used. 

1.2 Overview of the Thesis  

The remainder of the thesis is organized as follows. In Chapter 2, an introduction to 

the language model and the programming paradigm assumed for the cloning analysis 

is described. The execution paradigm is described in Chapter 3 and is illustrated 

with an application program. Techniques for concurrency extraction forms the topic 

of Chapter 4. The ARPC model of parallel execution, theorems related to the facility 

dependence relations, and concurrency propagation techniques are discussed in this 

Chapter. The implementation (system design) of the dependence graph extractions 

and the cloning analysis is described in Chapter 5. Finally, we present the 

contributions of the work in Chapter 6. 



CHAPTER 2 

THE PROGRAMMING LANGUAGE & ASSOCIATED TOOLS 

2.1 The Language Model  

The construct of ADTs and ADOs are supported in most of the object-based 

languages like Ada, Modula-2, Clu and RESOLVE. The language model used in this 

work defines an application program to be composed of three distinct components: 

program definition, process definition and class definition. We explain each of these 

in the following sections. 

2.1.1 Program Definition  

The program definition is the main component in an application. It. defines the 

processes that are to be instantiated and their timing constraints. The timing 

constraints of a process are the time parameters used by the run time system for 

invoking the process periodically in a real-time environment. The component is 

referred to as the control process of the application and has the following syntax: 

control process: 

control process  process_name 

begin 

<process_decl_sec> 

end  process_name 

<process_decl_sec>: 

<process_decl> I <process_decl_sec> <process_decl> 

<process_decl>:  

process_name (deadline, frame); 

Deadline and frame are the timing constraints on the process being defined. In 

a real-time environment, frame is the time period (interval) within which a process 

6  
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control process main  
begin processA(100,200); processB(150,1000); end main 

 

Figure 2.1 An example control process 

activates, and deadline is its time deadline. An example of a control process is shown 

in Figure 2.1. 

2.1.2 Process Definition  

The definition of a process includes a parameter section, variable declaration section, 

facility declaration section and a procedure declaration section. The grammar is 

defined below.  

<process>: 

process process_name 

{ | process_parm } 

{ | var_decl } 

{ | fac_decl } 

process_proc_decl 

end process_name 

The parameters of a process are the time constraints on it.. as outlined in 

the previous section. Instantiation of a module creating instances or facilities  is 

carried out in the facilities section. Variables local to the process if any. are declared 

in the variable declaration section. For any facility to be used in the procedure 

defined inside the process, it has to be instantiated first, in the facilities section. We 

explain the process of instantiation in detail in the next section. A process can have 

only a single procedure defined inside its procedure declaration section. Sequential  
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process  stackdr 
facilities  

i is integer; 
s is stack(i.integer); 

end facilities  
procedure  STACKDR 

begin 
local variables  

st1 : s.STACK; 
st2 : s.STACK; 
one : i.integer; 
five : i.integer; 
ten : i.integer; 

end local variables 
s.set_stack_size(st1, ten); 

s.set_stack_size(st2, ten); 

s.spush(st1,one); 
s.spush(st1,five); 

end STACKDR 
end stackdr 

Figure 2.2  An example process 

execution of the application program actually begins with the first statement inside 

this procedure. The definitions of procedures and other subprograms supported by 

the language are outlined in subsequent sections. An example of a. typical process is 

shown in Figure 2.2. 

2.1.3 Module Class  

The facilities discussed in the previous section, are instances of module templates 

which are ADT or ADO components. A typical ADT or ADO component in our 

language model exports a type that can be used to declare variables and lies an 

interface section which provides a set of operations or methods. These operations can 

be used to manipulate (only) the variables which have been declared of the exported 

type. In other words, variables of the exported type of the ADT component. can be 

accessed only through the provided methods. The ADT components or modules can 
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be defined to be generic i.e., they can be parametrized by types or by operations. 

and this generic nature of the component is what. contributes to their reusability. To 

be used, modules must be instantiated. Instantiation of a module means fixing its 

parameters (actual) and choosing one of many implementations. Such an instance 

of a module is called a facility. 

A module in the language model basically has three sections: the parameter 

section, the auxiliary section and the interface section. In addition to these, the 

number of operations or methods defined in the interface section is also explicitly 

stated at the beginning of the module. The module definition is shown below. 

module: 

module  module_name 

num operations  = 	; 

{ | <mod_parm_sec>}  

{ | <aux_sec>} 

{ | <intf_see>}  

end  module_name 

Example of a module is shown in Figure 2.3. The different sections of the 

module are detailed in the following subsections. 

2.1.3.1 Parameters Section  In the parameters section, parameters of the module 

are described, preceded and ended by the keywords module parameters and end 

module parameters respectively. The parameters of a. module may include types and 

operations. A type parameter, is simply stated preceded by the keyword hype. When 

a module is parametrized by an operation (a. formal subprogram). the name of the 

subprogram, its parameters, parameter passing modes. return variable name and its 

type if any, are stated. Subprograms (operations or methods) in the language are 

either procedures, functions or control functions. We discuss the different methods 
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module  EXAMPLE 
num operations  = 2; 

module parameters 
. . . 

end module parameters  

auxiliary 
. . . 

end auxiliary  

interface 
procedure  A . . . 

end A 

procedure  B 
. . . 

end B 
end interface 

end EXAMPLE 

Figure 2.3  An example module 
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supported by the language in subsequent sections. The parameters section has the 

following definition: 

<mod_parm_sec>: 

module parameters  

<mod_parm_seq> 

end module parameters  

<mod_parm_seq>: 

<mod_parm> ; | 

<mod_parm_seq> <mod_parm > ; 

<mod_parm>: 

type type_name 

<proc_hdr> 

<func_hdr> 

<ctrl_func_hdr> 

The parameter section of a module parametrized by a. type and an operation 

is shown in Figure 2.4. Also, notice that the parameter of the function T_Copy(i.e., 

p)  is declared to be of type T, which in fact is a. parameter type of I the module itself. 

Preserves is a parameter passing mode; the different parameter passing mechanisms 

of the language is covered in a separate section. Note that, the parameters section 

is optional, i.e., a module which is not parametrized, obviously need not. require a 

parameters section. 

2.1.3.2 Auxiliary Section  The definition of the auxiliary reaction is : 

<aux_sec>: 

auxiliary 

{ J <fac_dec_sec> } 

{ I <prvd_types> } 

{ I <var_dec_sec> }  
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module parameters 
type  T; 
function  T_Copy returns  x : 

parameters 
preserves  p : T; 

end parameters 
end  T_Copy; 

module parameters 

Figure 2.4  The parameters section of a module 

{ | <aux_oper_dec_sec> } 

{ | <real_aux_sec> } 

end auxiliary 

We now discuss each of these sections separately. An example of an auxiliary 

section is shown in Figure 2.5. 

2.1.3.3 Facilities Section  Instantiation of modules creating facilities, is done 

inside the facilities section. This section is delimited with the keywords facilities 

and end facilities. The process of instantiating a module involves creating specialized 

copies of the module by fixing its formal parameters. The actual parameters being 

supplied to a module for instantiating it, could be even operations or types exported 

from other modules. Parameters exported by a module (operations. types) can be 

used only after instantiating the module (which exports them) and thereby creating 

a facility of it. In other words, to utilize any of the services provided by a module, an 

instance of it has to be created first. Once modules are instantiated (in them auxiliary 

section), the resulting facilities could be used in the operations defined inside the 

module. The syntax of the facilities section is shown below. 

<fac_dec_sec>: 

<fac_dec> | <fac_dec_sec> <fac_dec> 

<fac_dec>:  
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auxiliary 
facilities 

. . . 
end facilities  

provided types 
. . . 

end 

variables 
. . . 

end variables  

operations 
. . . 

end operations  

initialization 
. . . 

end initialization 
end auxiliary  

Figure 2.5 The auxiliary section of a module 
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facilities 
i is integer; 

i1 is integer; 
a is array(T); 
r is record3(a.array, i.integer, il.integer); 

end facilities 

Figure 2.6  An example facilities section 

facility_name is module_name ( <arg_list> ) ; 

<arg_list>: 

arg_name  , <arg_list> 

2.1.3.4 Provided Types Section Types  exported by a module if any, are stated 

in the provided types section. The keywords bounding the section are provided types 

and end. The definition is shown below: 

<prvd_types>: 

| <prvd_types_sec> 

<prvd_types_sec>: 

provided types 

<prvd_types_seq> 

end 

<prvd_types_seq>: 

<prvd_type> | <prvd_types_seq> <prvd_type> 

<prvd_type>:  

type_name is represented by long_type_name 

Apart from stating the name of the exported type, its representation (which 

could be exported from another facility) is also stated, using the keywords is repre- 

sented by. Note the distinction between types exported by a module and the type 
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provided types  
STACK  is represented by  r.record2; 

end  

Figure 2.7  An example provided types section (Auxiliary section) 

with which it is parametrized. An exported type (from a module) can be used to 

declare variables (outside the module), and these variables can be manipulated only 

with the operations provided by the module. Direct Access to the data definition of 

the variable is not allowed and therefore any operation, if required to be performed 

on the variable has to be through the methods defined in the module exporting the 

variable's type. A parameter type on the other hand is a type imported by the 

module which is used to fix the formal type wherever it has been used inside the 

module. The provided types section of a module in which types exported by the 

module are stated, is shown in Figure 2.7. The illustrated auxiliary section also has 

a type which the particular module is exporting and note that the representation of 

this type is being exported from another instantiated module (a facility). 

2.1.3.5 Variable Declaration Section  This section contains the declaration of 

static facility variables of the module. These variables are quite similar to the global 

variables in other languages as it can be referenced in any operation declared inside 

the module. That is, variables declared in this section has a global effect within and 

inside the module (only). Initialization of the variables declared in this section takes 

place automatically when instances of the module (having this section) is created in 

other modules. The variable declaration section has the definition: 

<var_dec_sec>: 

variables 

<var_dec_seq>  
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variables  
front: i.integer; 
rear: i.integer; 

end variables  

Figure 2.8  An example variables section 

end variables 

<var_dec_seq>: 

<var_decl> <var_dec_seq> <var_decl> 

<var_decl>:  

var_name : type_name ; 

2.1.3.6 Auxiliary Operation Declaration Section  This section contains the 

declarations of operations, which have a local effect to the module. In other words, 

operations declared in the auxiliary section of a module can be called only by the 

operations declared in the interface section of the same module and not by any other 

module (operations) which declares a facility of it. The auxiliary methods therefore, 

are á la private methods. The syntax of the auxiliary operation declaration section 

is as follows. 

<aux_oper_dec_sec>: 

| <aux_oper_dec_seq> 

<aux_oper_dec_seq>: 

operations 

<oper_decl_seq> 

	

end operations 

<oper_decl_seq>: 

<proc_decl> | 

<func_decl> |  
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<ctrl_decl> | 

<oper_decl_seq> 

<proc_decl> | 

<oper_decl_seq> 

<func_decl> | 

<oper_decl_seq> 

<ctrl_decl> 

<proc_decl>: 

procedure  proc_name  

<proc_parm_sec> 

begin 

<loc_var_dec_sec> 

<code> 

end proc_name  

<func_decl>: 

function func_name  returns var_name : type_name  

<func_ctrl_parm_sec> 

begin 

<loc_var_dec_sec> 

code 

end func_name  

<ctrl_decl>: 

control func_name  

<func_ctrl_parm_sec> 

begin 

<loc_var_dec_sec> 

code 

end  func_name  
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operations 
procedure set_stack_size 

parameters 
alters s: STACK; 
alters size: i.integer; 

end parameters 
begin 

local variables 
contents: a.array; 

end local variables  
r.recl_access(s, contents); 
a.set_array_size(contents, size); 
r.recl_access(s, contents); 

end set_stack_size 

control  is_empty 
parameters 

preserves s  : STACK; 
end parameters 
begin 

local variables 
top : i.integer; 
zero: i.integer; 

end local variables  
r.rec2_access(s, top);  
if i.equal(top,zero) then 

r.rec2_access(s,top); 
return true; 

else 
r.rec2_access(s, top); 
return false; 

end if; 
end is_empty 

end operations  

Figure 2.9 An example auxiliary operations section 
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The methods or operations (abstract data types) discussed above can be 

procedures, functions, or control functions. A procedure may modify its parameters 

whose modes are not preserves. We discuss the different parameter passing 

mechanisms of the language in a separate section. Functions and control functions 

may not modify their parameters. A function returns a value that. must be assigned 

to a variable. A control function returns either true or false, which is used as the 

condition in an if statement or a while statement. 

2.1.3.7 Real Auxiliary Initialization Section This section of the auxiliary 

section of a module contains the code which has to be executed first. when a facility 

of the module is created. The syntax of the real auxiliary initialization section is as 

follows. 

<real_aux_sec>: 

| <real_aux_init> 

<real_aux_init>: 

initialization 

begin 

{ | <var_dec_sec> } 

<code> 

end initialization  

By default every module contains an implicit initialize operation which contains 

code to initialize the facilities and static variables declared in the module. This code 

for initialization is inserted by the compiler. However if the user desires any variables 

to be initialized, then that could be stated explicitly in the real auxiliary initialization 

section. The compiler would include the user specified initialization operations with 

the default ones. 
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initialization 
begin 

local variables  
front : i.integer; 

end local variables  
i.increment(front); 

end initialization  

Figure 2.10  An example auxiliary initialization section 

interface 
type type_name 	 
end type_name 

procedure A 

. . . 

end A 

function B 
. . . 

end B  
end interface 

Figure 2.11  The interface section of a module 

2.1.3.8 Interface Section  The methods in a module are defined in the interface 

section. The interface section has a type declaration section and an operation decla-

ration section. The section has the form: 

<intf_sec>: 

interface 

{ | <type_decl_seq> } 

{ | <opr_decl_seq> } 

end interface 

The interface section of a module is shown in Figure 2.11. We now explain each of these sections separately. 
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type STACK  is represented by r.record2 exemplar ex  
end STACK 

Figure 2.12  An example provided types section (Interface section) 

2.1.3.9 Provided Types  The provided types are declared in the type declaration 

section and has the syntax: 

<type_decl_seq>: 

<type_decl> | <type_decl_seq> <type_decl> 

<type_decl>:  

type  type_name is represented by  long_type_name 

exemplar  var_name  

{ | <type_init> } 

{ | <type_fin> }  

end  type_name 

<type_init>: 

initialization 

begin 

{ | <var_dec_sec> } 

<code> 

end initialization 

<type_fin>: 

finalization 

begin 

{ | <var_dec_sec> } 

<code> 

end finalization  
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As indicated in the type declaration section, each type in a synthesised module 

is represented by another type which is a parameter to the module or a type provided 

by some other facility instantiated in the module. A synthesized module therefore, is 

a module built with types exported from other modules (while being instantiated), 

as opposed to primitive ones which are totally built-in i.e., provided at the language 

level. The type_init section contains the code to be executed when a variable of 

the declared type is initialized. The exemplar is initialized at the beginning of the 

execution of the operation by calling the initialization operation of the representation 

type. Local variables may be declared and the statements (code) may modify the 

initial value given to the exemplar. The type_init section is optional and if it is not 

specified by the user, the compiler still would generate code for the operation, which 

contains calls to the initialization operation of the representative type. 

The type_fin section contains the code to be executed when a variable of the 

declared type is finalized. The exemplar is finalized at the beginning of the execution 

of the operation by calling the finalizing operation of the representative type. Like 

the type_init section, this section is also optional and if not specified by the user, 

the compiler as before, generates code which incorporates calls to the finalization 

operation  of the representative type. 

2.1.3.10 Interface Operation Declaration Section This section  is quite 

similar to the auxiliary operation declaration section. However, unlike in the auxiliary 

section, the operations defined in the interface operation declaration section can be 

called by any external module which has an instance of the module  with called 

operation in it (

á la 

 public methods). Also, note that the interface operations 

are the operations which a module exports to other modules. The syntax of the 

operation definition in this section is the same as that of its counterpart section 
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in the auxiliary. We now discuss the executable statements or instructions of the 

language. 

2.1.3.11 Code The definition of a method (as discussed) includes declaring its 

parameters and local variables, followed by the actual code wherein the major activity 

is instance calls, as in most other object-based languages. The code (executable 

statements) of the language has a syntax: 

<code>: 

<stmt> | <code> <stmt> 

<stmt>: 

<swap> | 

<assign> | 

<if> | 

<while> | 

<return> | 

<do> | 

<proc_call>  

As indicated, the different type of statements supported in the language are 

swap, assign, if, while, return, do and procedure calls. Except for the swap statement, 

the other operations are common features in all programming languages. We now 

discuss each of these statements separately, in the following sections. 

2.1.3.12 Swap Statement  The only built-in primitive for manipulating the values 

of variables is the swap statement, which simply exchanges the values of the two 

variables (i.e., the operands involved). The swap operator is denoted by :=:. For 

example, to swap the values of a  and b, one would write a  :=: b. The statement has 

the form: 
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<swap>:  

var_name :=: var_name 

2.1.3.13 Assignment Statement The statement has the syntax: 

<assign>: 

var_name := func_call 

The assignment statement in our language model, unlike in other languages 

does not support copying of one variable to another. Thus, one cannot write a:=b. 

To achieve a copy, one must explicitly call the copy function: a:=integer_copy(b). 

In fact, assignment statement in the language, assigns the return value of a function 

call to a variable. For copying the value of one variable to another, a call to the copy 

function of the module providing the variable's type must be made. 

2.1.3.14 If Statement  The statement has the syntax: 

<if>: 

if { | not } <ctrl_call> then 

<code> 

{ | else 

<code> } 

end if 

If statements always contain a control call which returns a boolean value. The 

problem of "dangling else" cannot occur because of the explicit end if. 

2.1.3.15 While Statement The statement has the form:  

<while>: 

while { I not } <ctrl_call> do 
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<code> 	end while 

	

Like the if statements, the while statements of the language also, always 

contains a control call. 

2.1.3.16 Do Statement  The statement has the syntax: 

<do>: 

do count times 

begin 

<code> 

end do  
 

count is an integer constant and as implied, the loop is executed count number 

of times. 

2.1.3.17 Return Statement The statement has the syntax: 

<return>: 

return | 

return true | 

return false | 

return true and return false can be used only in control functions to return a 

boolean value. However return can be used in any operation for an unconditional 

return from it. 

2.1.3.18 Procedure Call  The statement has the following definition: 

<proc_call>:  

long_proc_name { | ( arg_list) }  
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long_proc_name is similar to long_name  i.e. it signifies that the called procedure 

can be 

• Provided by the module itself, 

• Provided by an instantiated facility or 

• Parameter to a module. 

The arg_list specifies the parameters to the procedure. func_call and ctrl_call are quite 

similar to the proc_call except for the difference in the parameter passing modes as 

discussed previously. An example of the interface section is given in Figure 2.13. 

2.1.4 Mechanisms for Parameter Passing  

Conceptually, parameters are passed by swapping i.e., at operation invocation. the 

values of the formal parameters are swapped with the values of actual parameters; 

and on operation return, they are swapped again. Any implementation of parameter 

passing that achieves this abstract effect is, of course, acceptable. As discussed 

in [4], component efficiency increases when the values of composite data structures 

are swapped instead of copying them. The arguments to a call must be unique. i.e. 

the same variable may not appear twice in a particular argument list. 

The different parameter passing modes are defined below: 

1. Alters: The value of the actual parameter is modified. Information flows from 

the caller to the callee at invocation and flows in the reverse direct ion upon 

return. 

2. Preserves: The value of the actual parameter may be modified. but is restored 

to its original value before the operation returns. Information flows from the 

caller to the callee at invocation and the same information flows in the reverse 

direction upon return. 



interface 
type QUEUE is represented by  r.record3 exemplar  ex 
end  QUEUE 

procedure  setsize 
parameters  

alters  Q; QUEUE; 
alters  size: i.integer; 

end parameters 
begin 

local variables  
contents: a.array; 

end local variables  
r.rec1_access(Q, contents); 

a.set_array.size(contents, size); 
r.rec1_access(Q, contents); 

end  setsize 

control  IsEmpty 
parameters 

preserves Q:  QUEUE; 
end parameters  

begin 
local variables  

front: i.integer; 
rear: i.integer; 

end local variables  
r.rec3_access(Q, rear); 
if i.equal(rear,front) then 

return true; 
else 

return false; 
end if; 

end  IsEmpty 
end interface  

Figure 2.13  An example interface section 
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3. Consumes: The value of the parameter passed to the operation is "consumed." 

by the procedure. Information flows only from the caller to the callee. An 

initial value is assigned to the actual parameter upon return. 

4. Produces: Is used to provide the caller with a. value created by the operation. 

Information flows only from the operation to the caller. The actual parameter 

is finalized before the new value is assigned. 

Local variables are automatically initialized (by allocating storage and giving a 

value to the contents of the storage) upon entry to an operation that 'declares them, 

and finalized (by reclaiming storage) upon exit from an operation that declares it.  A 

call to initialize (or finalize) a variable is inserted by the compiler at the beginning 

(or end) of the code of the operation that declares it. The language provides the 

types integer and array of integer. Variables are automatically assigned initial values. 

Integer variables are assigned the initial value of zero (0). Integer arrays are initialized 

to have sizes of zero. 

Additional features of the language include the complete absence of global 

variables. Instead, operations can access three kinds of data: operation parameters. 

local variables and module variables (static variables associated with a module 

instance that are shared among operations exported by that. instance). Aliases 

cannot occur, i.e., the data structure representing a variable's value can only he 

known by one name at any time. No types are built into the language. therefore 

almost all statements are procedure calls, since manipulating a variable's value can 

take place only by a call to the facility operation exporting the variable's type. 

Modules cannot be instantiated dynamically, i.e., instantiations of modules are 

declarations (the analogy could be that of the variable-type relation i.e.. an instance 

is to a module what a variable is to its type) that occur outside the code of the module 

operations and all instantiations are performed when a program begins execution. 
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The operations for manipulating integer and array variables are automat ically 

defined and should not be redefined in a user's program. The complete grammar of 

the language is given in Appendix A and the different integer and array operations 

provided at the language level are defined in Appendix B. 

2.1.5 Compiling, Assembling & Linking  

An application is developed in the proposed language model through separately 

written and compiled modules. Separate compilation of modules is a feature of our 

language model and this enables to develop programs in a highly modular fashion. 

contributing much to an off the shelf style of programming. The compiled modules 

are then assembled (also done separately), before being linked together by the linker 

and loaded. 

The compiler expects the module files to be named with the name of the module 

itself. That is, a file containing a module say, queue has to be named queue itself 

and this naming convention has been standardized with the language associated tools 

also, which we discuss in the next section. Also, note that the source code of a module 

has to be contained in a single file. The compiler doesn't support the spreading of a 

module code across multiple files. The compiler is invoked by the name CR. and to 

compile a source module: 

$CR module_file 

The compiler generates a set of four files: 

• 
module_file.asm 

• module_file.fac 

• module_file.gpd 

• module_file.xtrn 
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These are needed by the assembler and the linker. Once compiled, the same source 

module files are then assembled as: 

$assem module_file 

The assembler generates the machine code in a file, module_file.mac. The linker 

is then invoked to link all the assembled files. The argument to the linker is just the 

file name of the control process module say, ctl_file which is the root module in the 

application. Note that this file ctl_file also must be compiled and assembled as any 

other module in the application. The linker is invoked as: 

$linker ctl_file 

The linker produces the files: 

• ctl_file. code 

• 
ctl_file.proc 

• ctl_file.exe 

• ctl_file.disp 

Once these files are produced, the application is ready to be loaded onto the run-time 

system. The run-time system is then invoked as: 

$rtss ctl_file 

2.2 Associated Tools  

The language associated tools developed as part of this work and otherwise, includes 

a DAG Generator and a Graph & Clones Extractor. The DAG Generator generates 

the Call DAG and the Graph & Clones Extractor extracts the program dependence 

graphs of an application. We explain the Call DAG and the dependence graphs in 

Chapter 4. The DAG Generator takes the file name of the control process module as 

the argument and generates the Call DAG of the application. It is invoked as: 
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$daggen ctl_file 

The daggen produces the following files describing the Call DAG.  

• dict.dag 

• edges.dag 

• obj.dag 

• proc.dag 

The Graph & Clones Extractor generates the dependence graphs and the cloning 

needs of facilities for each operation of a module in the application. It is therefore 

invoked with module file as the argument, as: 

$graphgen module_file 

The graphgen generates the files: 

• module_file.cdg 

• module_file.ddg 

• module_file.cddg 

• module_file.fdg 

• module_file.pdg 

• module_file.clone 

The "._dg" files describes the different dependence graphs and the module _file.clone 

details the facility-clone needs of the module. 
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2.3 An Application Program  

In this section, a real-time application called vehicle developed in our language model 

is selected and explained, as an example to illustrate the programming paradigm. 

The application program basically uses six modules, each declared before its 

use. These are the main module, process vehicledr, integer, vehicle, coordinate and 

record2. All the modules (except for the primitive ones, integer and record2) are 

illustrated in Appendix C. The main module is the control process main and it calls 

a single process, the vehicledr. 

The process vehicledr uses the facilities i, an instance of the module integer 

and v, which is an instance of the module vehicle. The process also incorporates 

the procedure definition vehicledr in it, which has its own set of local variables and 

most of them have been declared to he of the types exported from other modules. 

The facility i, an instance of the integer module exports the type integer and  r. 

an instance of the vehicle module exports a user - defined type: vehicletype. As 

illustrated, the code in the vehicledr procedure is mostly call statements, invoking 

operations defined in facilities i and v. The integer module is a primitive module 

provided at the language level for integer operations and is used for manipulating 

integer variables. 

The vehicle module is defined and compiled separately. It illustrates a typical 

module of the language which is parametrized by a type, vehicleType. Note that the 

vehicleType defined in the auxiliary section is itself an instance of a type exported 

from another facility, re. The facility re is an instance of the module record2 and is 

instantiated with the parameters in.integer and co.coordtype which again are exported 

from the respective modules. The operations defined in the interface section of the 

vehicle module further illustrates the parameter passing modes, the facility instant

iations, the mechanism of type exporting etc., in our object-based paradigm. We use 
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the vehicle application program throughout this thesis for illustrating the execution 

paradigm, ARPC model and the concurrency propagation techniques. 



CHAPTER 3 

THE EXECUTION PARADIGM 

3.1 Introduction  

The execution paradigm is explained in this Chapter, based on the vehicle application 

program which was illustrated in Chapter 2. The main module, control process main 

acts as an informer to the compiler and the linker, informing the system about the 

process vehicledr that has to be instantiated with the actual parameters. which are its 

timing constraints. An instance of the process vehicledr is then created by the linker 

and the execution of the program begins with a call to the operation gen_one,  which is 

the first executable statement in it. Within the process vehicledr, the instantiation of 

the modules integer and vehicle takes place to create the facilities it and v  respectively. 

Facility variables are declared in the procedure vehicledr using the types provided by 

i and v. Operations of the facilities i  and v  are called in the procedure vehicledr of 

the process vehicledr, using the notation: facility.operation(parameters). 

In the vehicle module, instantiation of integer, coordinate and record2 modules 

takes place, creating the facilities in, co and re respectively. The type integer 

provided by the facility in and coordtype provided by the facility coordinate are  used 

to instantiate the record2 module, creating the instance re. Further, the type record2 

provided by the facility re is exported as the type vehicleType of the module vehicle  

itself. 

3.2 The Execution Model  

Sequential execution of the application program proceeds as follows. The initial-

ization operation of a facility invokes the facility initialization operations of all 

facilities it instantiates; initializes its facility variables: and executes the user-

defined facility initialization code. Execution begins when the facility initialization 

34  
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operation of the main facility i.e., process vehicledr is invoked by the run-time system. 

We denote the facility initialization operation of this process as vehicledr.minit 

and a similar convention is adopted with all the other facilities. The operation 

vehicledr.minit invokes i.minit and v.minit. Since v  creates facilities in, co and re,  

its facility initialization operation, v.minit invokes in.minit, co.minit and re.minit. 

Further, co invokes i.minit, in.minit and re.minit. Notice that we have different 

instantiations of the modules integer, record2 in different as well as same modules. 

Thus the minit operation of each facility initializes the module instances created by 

that facility. 

After vehicledr.minit initializes the facilities declared in vehicledr, it initializes 

the facility variables of vehicledr (veh1, veh2, id1 etc.) by calling the type initial-

ization operations of facilities i and v. We denote the type initialization operation for 

typei provided by facility p as  p.typeitinit. Similarly, p.typeitfin will denote the type 

finalization operation for typei provided by facility p. The initialization of variables 

veh1, veh2, id1 etc., is therefore accomplished by invoking v.type1tinit. v.type1tinit 

i.type1init respectively and so on. 

The language is implemented by having each type initialization operation 

return a pointer to the representation of a variable, storing the pointer in the 

activation record of the operation that declared the variable. When the variable 

is passed as a parameter, only the pointer is passed. Since information hiding is 

enforced by the language, such a pointer will only be dereferenced by an operation 

of the facility providing the variable's type; operations of facilities other than the 

one providing the variable's type can only pass the pointer to other operations. 

Once the facility variables of vehicledr have been initialized. the user-defined 

code of the facility initialization operation is executed. Thus, procedure vehicledr 

being the facility initialization operation of vehicledr, i.gen_one is called, then 

i.increment is called and so on. 



CHAPTER 4 

TECHNIQUES FOR CONCURRENCY EXTRACTION 

4.1 Asynchronous Remote Procedure Call  

In this section, the parallel execution model proposed for the execution of programs 

constructed out of ADTs is discussed. Architecture for Reusable software Components 

(ARC) [5] is an environment which has been developed for the execution of ADT 

modules supporting reusability, taking into account the potential run time ineffi-

ciencies of such software. In the distributed memory, parallel computing environment 

assumed for our execution paradigm, ARC is used as the basic processing element.. 

In the proposed model, programs are executed in parallel as follows. (Refer 

to the Vehicle Application discussed in Chapter 2). The code of the facilities is 

statically assigned to the PEs (Processing Elements) and multiple facilities may 

reside on the same PE. Execution of the program begins when the facility 

initialization operation of the main facility vehicledr is invoked by the run time system. 

The operation vehicledr.minit, then invokes the initialization operations of all other 

facilities instantiated in it; i.minit and v.minit. The execution of these operations 

which had been called by vehicledr.minit proceeds in a parallel fashion, if the facilities 

i and v are residing on different PEs. Also, since the facility v creates or instantiates 

the facilities in, co and re, its initialization operation v.minit invokes  in.minit co.minit 

and re.minit. Similarly, the minit operations of each facility initializes the module 

instances created by that facility. 

After vehicledr.minit initializes the facilities declared in vehicledr, it then 

initializes the variables veh1, veh2, id1 etc., declared in vehicledr by calling 

v.type1tinit, v.type1tinit, i.type1init respectively and so on. Initialization of a 

variable involves storage allocation and assigning an initial value to the allocated 

storage. Thus, a variable's representation is stored on the  PE where the code of 

36  
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the type initialization operation that creates it resides. Therefore the only way the 

pointer to the variable can be used (by operations of facilities other than t lie one 

which provides the variable's type) is by passing it as a parameter. Since information 

hiding is enforced by the language, such a pointer will only be dereferenced by an 

operation of the facility providing the variable's type and such operations will reside 

on the same PE as the representation of the variable; operations of facilities other 

than the one providing the variable's type can only pass the pointer as a parameter 

to other operations. 

Once the facility variables of vehicledr have been initialized, the user-defined 

code of the facility initialization operation is executed. Thus operations gen_one, 

increment etc., are called in their lexical order. 

When a variable is passed as an argument in a call, the implementation ensures 

that only a pointer to its representation is passed. Thus there exists little commu-

nication overhead for calls. Also, to maintain consistency, only a single copy of the 

pointer to a data structure is accessible at any instant. To hide the latency of a remote 

call, an operation is permitted to continue execution until it. attempts to, access a 

"locked" variable. This model of parallel execution is termed Asynchronous Remote 

Procedure Call or, ARPC. A variable is automatically locked when it is passed as a 

parameter to a call and is unlocked upon return of the call. Any operation attempting 

to access a locked variable must wait for a remote call to return (and then unlock 

the variable) before retrying to access. 

The ARPC model can achieve parallel execution at multiple levels in the 

abstraction hierarchy. Thus potential parallelism within a program increases with 

the number of levels of abstraction and the model encourages the development of 

highly cohesive, loosely coupled modules. 
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4.1.1 The Program Call DAG  

In this section, the construction of the Directed Acyclic Graph (DAG) is illustrated

, which can be used to model the potential parallelism in a program. The DAG for a 

particular program shows the relationship among its distributable components, and 

the maximum amount of parallelism attainable with ARPC. The graph can be used 

for assigning the facilities on to the PEs. 

A program is modeled by the DAG, G = (V,E), where: 

• v ϵ  V denotes the operations of a facility, f(v); 

• (x,y) ϵ  E indicates that the code of facility f(x) calls some operation(s) provided 

by facility f(y); and 

• There exists exactly one vertex in G with indegree 0, representing the facility 

at the highest level of the abstraction hierarchy. This vertex is referred to as 

G.root. 

The DAG representing a particular program can be constructed as follows. 

1. Place a vertex in the graph for each facility used in the program. 

2. Place an edge in the graph for each call dependency in the program. Only calls 

between operations of different facilities are represented in the graph. 

The DAG for the sample program (shown in Figure 9.1) contains a node for 

each module instance used. The node control process main in the graph indicates the 

root module invoking other modules in the program. Edges between nodes denote 

calls to operations of one facility by another facility. As an example, vehicledr process 

calls operations of facilities i and v  and so on. Also, note the flow of edges in the DAG 

between siblings, indicating call relationship between facilities at the same level. This 

is due to the instantiation of one facility using the types and/or operations provided 

by other facilities at the same level. For example. in the vehicle module, an instance 
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Figure 4.1 Call DAG of the Vehicle Application Program 

of the record2 module (re) is created using types exported from instances of integer 

(in) and coordinate (co) modules. 

4.1.2 Concurrency Propagation Techniques  

In this section, the A RPC model is evaluated and theorems identified in the context 

of concurrency propagation and parallelism extraction are discussed. Before the 

proposed theorems are formally stated, the terminology used is first elaborated. 

The term chain is defined as a sequence of facility names: a  o b  o· · ·o, 	where f 

immediately preceding g in the sequence indicates that an operation of f calls an 

operation of g. A chain basically denotes a calling sequence that occurs in the source 

code of a program. For example, the chain a  o b  o e signifies that an operation 

of facility a  calls an operation of facility b, that an operation of facility b calls an 

operation of facility c. The chain also indicates the execution of an operation of the 

last facility named in the chain. Thus, the chain a o b o e represents the state in 

which an operation of facility e is executing as a result of a call from an operation 
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Figure 4.2  Extended Call DAG of the Vehicle Application Program 

of facility b (which in turn was called by an operation of facility a). Operations of 

facilities a  and b may or may not be executing in parallel with the operation of e, 

depending upon synchronization constraints; the chain does not specify these facts. 

In the remainder of this Chapter, greek letters (α, β, γ, ...) are used to specify 

chains, and lower case English letters (a, b, c, ...)  are used to denote facility names 

and operation names. 

4.1.2.1 The Extended Call DAG  The program Call DAG described previously 

could be extended to demonstrate two kinds of parallelism relationships. 

In the extended Call DAG, all pairs of facilities say (a,b) where a.p calls b.q  and 

where a.p  can continue its execution after calling b.q because there are no 

common parameters between the two (call) statements, are represented in the Call DAG as an 

edge drawn using parallel lines. As as an example, if (a,b) ϵ  E. then a can execute 

in parallel with b if ∃p, q such that  
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1. a.p calls b.q and 

2. the call is immediately followed by at least one statement. that does not access 

any of the parameters passed to q. 

The extended Call DAG for the example application program is shown in 

Figure 4.2. The parallel edge between the nodes vehicledr and integer in the graph 

indicates that the process vehicledr can continue with its execution even after calling 

i, an instance of the integer module, at least in one case, because of the absence of 

common parameters.  

The Call DAG can also be used to indicate which immediate descendants of a 

vertex can execute in parallel with each other by placing labels on the edges. For 

example, suppose that (a,b) ϵ  E, representing a call from operation a.p to operation 

b.q; and (a,c) ϵ  E, representing a call from operation a.p to operation c.r. Assume 

the call to q is immediately followed by a call to r, and that the two calls have no 

parameters in common. Using the ARPC model, the execution of q can proceed in 

parallel with the execution of r. Such parallelism between facilities is denoted as 

labels on the edges ( a,b)  and (a,c). The labels are sets of facilities. Thus t he labels 

on the edge ( a,b)  is c and the label on edge (a,c)  is b. In the Extended Call DAG 

shown in Figure 4.2, the label v on the edge ( vehicledr,i)  indicates that the process 

vehicledr can continue its execution by calling the facility v, even after invoking a 

call to the facility i. 

4.1.2.2 Theorems for Concurrency Propagation  The fact that all chains 

begin with the same facility is true since a single sequential program is being 

paral-lelized, and only a single chain executes initially. Thus for any two chains a, b of 

an application program, it is true that they have a common prefix. This is formally 

stated in Theorem 1. 
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Theorem 1 For any two chains a, /3 of a program, it is true that 3-,./S. c(a = 

-yoSAO.-yoe) 

Assume that an operation p of facility a (denoted as a.p) calls an operation q 

of facility b (denoted as b.q), and that q calls an operation r of facility c (denoted as 

c.r). Let a represent an arbitrary chain. If the following are true, 

1. the chain a o a can execute in parallel with the chain a o a. o b. 

2. the chain a o a o b can execute in parallel with the chain a o a o b o c. 

then it is also true that the chain a o a can execute in parallel with the chain a o a 

o b o c. Intuitively, this means that if a.p can execute in parallel with its call to b.q. 

and if b.q can execute in parallel with its call to c.r, then a.p can execute in parallel 

with the call of b.q to c.r. This fact is formally stated as Theorem 2. The symbol II 

when placed between two chains denotes that the chains can run in parallel. 

Theorem2if a llaoanaoall a oaobthenaIIa o a. o b 

Theorem 2 is used in the assignment algorithms (assigning modules to 

processors) discussed in [3]. The II relation is not transitive. That. means. for 

some arbitrary chains say, a, Q  and if a II Q A#II 7 is true, then a II I need not 

be true. To further illustrate this, consider the case where a.p calls b.q and a.p calls 

c.r . It will be true that a o a 11a o a o b if after the call to q. a.p executes code 

(which may be a call statement like c.r) which does not access parameters passed to 

q. For example, a.p may call r with different parameters than that were used in the 

call to q. However following the call to r, p may access one of the parameters passed 

to r. Such an access can cause p to wait until r returns. Thus a o all caoaobAn 

oaobilaoaoc,but-(aoallaoaoc). 

Theorem 3 deals with the parallel execution of chains. It states that, if two 

chains a and /3 can execute in parallel, then chains a o a and /3 o b can also execute 

in parallel as long as a does not represent the same facility as b, and a is not used in 
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chain /3 and b is not used in chain a. For example, if a o b aoci hen aobod 

aocoe,but-i(aobodllaocod),and-i(aobodilaocob).Thetheoremis 

formally stated as follows. 

Theorem 3 if a II /3 then a o a II fi o b, if all of the following are true: 

1. a 0 b 

2. a is not in the chain 

3. b is not in the chain a 

4.2 Cloning of ADT Instances 

The amount of potential parallelism inherent in the program is fully revealed by 

analyzing the dependence relations of the source code. As discussed in Chapter 

1, we extend the dependence relations of the program to include facility depen-

dences (or instance dependences), since that could identify greater opportunities 

for exploiting parallelism. In this section, the identification of such opportunities 

through dependence analysis and the constraints to the ARPC model are discussed. 

We begin with the program dependence graphs. 

4.2.1 Program Dependence Graphs 

The relation among statements in the program is represented by the program 

dependence graphs. In the program dependence graphs, statements are represented 

as nodes and edges denote the dependences between them as implied by their lexical 

order. The basic dependences among the statements are control and dai a. and 

this results in the Control Dependence Graph (CDC) and the Data Dependence 

Graph (DDG). The dependences among program statements due to facilities are 

represented in the Facility Dependence Graph (FDG) and in the MG. an edge 

indicates that the source and the destination use the same facility. Each of these 
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Figure 4.3  An if-statement (a) and its CDG (b) 

dependences are defined in the following sections and also, it is shown how these 

graphs are generated at compile-time for the cloning analysis to follow. 

4.2.1.1 Control Dependence  For any two statements Si  and Sj, if Sj has 

to be executed after Si  because of the control structures of the language (such 

as if-statements, while-statements), then the statement Sj  is said to be  control 

dependent  upon statement Si . 

For example, in an if-statement structure, all the statements in the two branches 

of the conditional must wait for the completion of the if-statement which is the 

evaluation statement, before the execution could continue any further. Therefore all 

the statements in the two branches of the if-statement are control dependent upon 

the conditional evaluation statement. 

A control dependence graph (CDG)  is a directed acyclic graph (DAG) in 

which nodes represent program statements and edges, control dependencies between 

them. Formally, 
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The CDG could be built in different ways as outlined in [2. 6]. We build 

the CDG from another graph called the Statement Table  which contains all 

pertinent information about each statement in the program. The attributes 

of program statements like statement type, statement dependence nesting level. 

statement address, facility used, parameters etc., are stored in the statement. table 

and such a graph is easily generated from the compiler. A statement called entry is 

added to the CDG for convenience and it just means that all statements in the CDG 

are directly or indirectly control dependent upon entry, and no statements could 

be executed without executing this entry node. Also, for a statement which has 

two or more branches, a Region node is added to the CDG for each branch. Thus 

the start of a branch is indicated by the region node and the region node becomes 

control dependent upon the statement that branches. All the statements in the two 

branches of the conditional now becomes control dependent upon their respective 

region nodes. This is illustrated in Figure 4.3. The attributes of statements stored 

in the statement table are defined below: 

1. Statement Type indicates the type of the statement such as call. if-then-else. 

while, for  etc. 

2. Statement Dependence Nesting Level in the statement. table is defined as the 

number of region nodes on the path from the root to it.. 

3. Statement Address is the line number in the source code. 4. 

Facility Used is the set of facilities used by the statement.. 

5. Statement Parameter List is the set of variables used by the statement. 

6. Childs point to the statement table of the children ( left child or right child).  

statements of the statement. This occurs when the statement happens to be 

an if, while  or a do  for which there are control dependences. For all other 
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S I 	accessX(C 1, X 1 ); 

S2 	i.increment(X 1 ); 

S3 	accessY(C1, Y2); 

S4 	Y2 := in_integer_copy(Y 1 ); 

S5 	if i.equal(X1, X2) then 

S6 	 accessX(C2, X2); 

S7 	 if in.equal(Y1, Y2) then 

S8 	 re.recl_access(C1, X2); 

S9 	 re.rec2_access(C2, Y1); 

else 

S 10 	 re.recl_access(C2, X1); 

Si 1 	 re.rec2_access(C1, Y2); 

end if 

S12 	 Y1 := in.gen_five; 

S13 	 return true; 

else 

S14 	 resecl_access(C1, X1); 

S15 	 return false; 

end if 

Figure 4.4 The coordsEqual operation of coordinate module 

statements, this would be a null pointer. Thus the statement table graph is a 

binary tree with each statement having a left child or a right. child depending 

upon its statement type. 

The algorithm for building the CDG from the statement table is shown in 

Figure 4.7. We select the coordsEqual operation of the coordinate module (the vehicle 

application, explained in Chapter 2), as an example program segment to illustrate 

all the dependence graphs and the cloning analysis thereafter. The coordsEqual 

operation is shown in Figure 4.4. The CDG of the operation is shown in Figure 4.5 

and the statement table of the component is illustrated in Figure 4.6. We now discuss 

the data dependence graph. 
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Figure 4.5 The CDG of coordsEqual operation 

4.2.1.2 Data Dependence Graph For any two statements Si  and Sj,  if Sj is 

lexically after Si  and Sj  needs some parameters which were passed on to 

Si

, then Sj 

is data dependent  upon Si . 

Intuitively, this means that the statement Sj  must wait for the completion of 

statement Si  in order to access the data used by Si. This data. dependence between 

Si  and Sj  is denoted as Si  →d  Sj . Formally, the Data Dependence Graph is defined 

as follows. 

We now present the algorithms for building the DDG. The main algorithm is 

shown in Figure 4.8, and the supplementary ones in Figure 4.9 & Figure 4.10. The 

DDG of the coordsEqual operation (Figure 4.4) obtained by applying the 

is shown in Figure 4.11. 
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Figure 4.6  The Statement Table of coordsEqual operation 



BuildCDG(StaTab : StaTab_TYPE, entry : NODE_TYPE) 
var Q: QUEUE of node; 

x, y, z: NODE_TYPE; 
begin 

ENQUEUE(entry, Q): 
while not EMPTY(Q) do 

begin 
x := FRONT(Q); 
DEQUEUE(Q); 
for each none NULL ChildStaTab C of x in the StaTab do 
/* ChildStaTab is either x.LeftC or x.RightC */ 

begin 
if (x.Type = "if") then 

begin 
y := getRegionNode; /* get a new region node */ 
insert(x,y,CDG); /* insert an edge from x to y in the CDG 

end 
else 

y:=x; 
for each entry N in C do 

begin 
z := getNode(N); /* get a new node with the label. Nlabel */ 
insert(y,z,CDG); 
ENQUEUE(z,Q); 

end for 
end for 

end while 
end BuildCDG 
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Figure 4.7 Algorithm for building CDG 



SearchDD(tt : StatementType) 
PS : stack(StatementType) 
begin 

if (tt.rightc 0 null) or (tt.leftc 0 null) then 
Push tt.rightc & tt.leftc into stack PS; 

else 
begin 

st = successiveStatement(tt); 
if (st ≠  null) then stack.push(st, PS); 

end 
while not stack.empty(PS) do 

begin 
st = stack.pop(PS); 
if (st ≠ null) then 

begin 
if (checkDD(st,tt) = true) then 

begin 
DDG(tt,st) = true; 
Remove (st.Parameters n tt.Parameters) from tt; 
if no more parameters in tt remain to be checked then 

while not stack.empty(PS) do st = stack.pop(PS); 
else 

begin 
st = successiveStatement(tt); 
if (st ≠ null) then stack.push(st, PS); 
else flag = true; 

end 
end 

else 
if (st.rightc ≠ null) or (tt.leftc ≠ null) then 

Push st.rightc & st.leftc into stack PS; 
else 

begin 
st = successiveStatement(tt); 
if (st ≠ null) then stack.push(st, PS); 

end 
end 

if (flag = true) then 
while not stack.empty(PS) do st = stack.pop(PS); 

end while 
end SearchDD 
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Figure 4.8 Algorithm for building DDG (searching for data dependence) 



successiveStatement(st : StatementType) returns StatementType; 
begin 

if (st.rightc ≠ null) or (st.leftc ≠ null) then 
begin 

if (st.leftc ≠ null) then 
return (st.leftc); 

if (st.rightc ≠ null) then 
return (st.rightc); 

end 
else 

if (st.sibling ≠ null) then 
return (st.sibling); 

else 
begin 

while (st.parent ≠ null and st.parent.sibling = null) do 
st := st.parent; 

if (st.parent $ null and st.parent.sibling ≠ null) then 
return (st.parent.sibling); 

else 
return null; 

end 
end successiveStatement 

Figure 4.9 Algorithm for building DDG (finding successive statement) 

checkDD(st, tt : StatementType) : boolean; 
begin 

if (st.Parameters n tt.Parameters = 0) then 
return true; 

else 
return false; 

end checkDD 
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Figure 4.10 Algorithm for building DDG (finding common parameters) 



Figure 4.11  The DDG of coordsEqual operation 
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BuildCDDG(DDG,CDG,CDDG) 
begin 

copy CDG to CDDG; 
for each Si →d 	Sj in DDG do 

begin 
if Si  is not the ancestor of Sj  in CDG then 

begin 
if parent(Sj) is a region node which is the ancestor of Si  in CDG then 

remove the edge from parent(Sj) to Sj  in CDDG; 
add an edge from Si  to Sj  in CDDG; 

end 
end for 

end BuildCDDG 

Figure 4.12 Algorithm for building CDDG 

4.2.1.3 Program Dependence Graph & Facility Dependence Graph The 

data dependences represented in the DDG could be built into the CDG, and a new 

graph called the Control and Data Dependence Graph (CDDG) could be formed. 

This graph represents the combination of control and data dependences between the 

program statements. The algorithm for building the CDDG from the DDG and the 

CDG is shown in Figure 4.12. 

The CDDG also represents parallelism relationship between the statements. 

Any two statement nodes in the CDDG, could run in parallel if they do not have 

any transitive closed dependence relations. That is, statements which are dependent. 

on one another (either through control or through data. and by direct dependence or 

by ancestral dependence) cannot execute concurrently. 

In all the graphs discussed so far, the possible code contention or facility 

dependence between the program statements have not. been considered. Facility 

dependence between statements is defined as: 

For any two statements Si  and Sj  that use the same facility. if Sj  is lexically 

after Si , then Sj  is said to be facility dependent upon Si . 
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Figure 4.13  The CDDG of coordsEqual operation 

Formally the Facility Dependence Graph (FDG) is, 

By adding facility dependence into the CDDG, the graph consists of three 

kinds of dependences - control, data, and facility. We call the new graph as the 

Program Dependence Graph (PDG). The CDDG of the coordsEqual operation 

is illustrated in Figure 4.13 and the PDG, in Figure 4.14. The FDG of the operation, 

indicating only the facility dependences is shown in Figure 4.15. 
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Figure 4.14  The PDG of coordsEqual operation 



Figure 4.15  The FDG of coordsEqual operation 
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Note that while building the PDG, we add only those facility dependences 

into the CDDG (from FDG) that connects a node with one of its siblings. In other 

words, we do not add any facility dependence that connects a node to its descendant 

in the PDG. This is because, the facility dependences represented in the FDG may 

be affected by data and control dependences. Therefore, even if we have nodes 

depending on the same facility in the FDG, the inherent potential parallelism (the 

idea being that every edge in the FDG, represents code contention, and t hat. could 

be removed by cloning the code, thus enhancing concurrence) is made ineffective by 

the presence of a data or control dependence, which cannot be removed at any cost. 

4.2.2 Extracting Parallelism from Graphs  

Identifying program statements that contend for a facility is accomplished by 

considering the DDG, CDG and FDG in conjunction. Extracting the cloning 

requirements of facilities considering all the graphs simultaneously have been 

discussed in [1]. In [1] by Welch, the idea is to cluster program statements in 

an operation (a method in the module) which due to the data dependences among 

them has to execute in order, into what is called units. The statements of a unit 

therefore cannot contend for a facility but different units in an operation may. with 

each other. Also, each unit can utilize only one clone of each of the facilities that 

it uses, since the statements of a unit must execute sequentially. Algorithms have 

been proposed by Welch for identifying the units and thereafter for grouping those 

units which could be run in parallel. A group therefore would then contain a set. of 

units in which, each unit can run in parallel with the every other. Given the groups, 

a Group Facility Matrix is then constructed to determine the number of clones of 

a facility that can be used concurrently. Each row of this matrix corresponds to a 

group, each column a facility, and each entry indicates the number of clones of the 

facility needed by the group. The maximum number in a column of the matrix is an 
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upper bound on the number of clones of a. facility that can he used simultaneously. 

The results include transformation rules for conditionals, so that t he clone analysis 

algorithm avoids considering an exponential number of paths through the program. 

Also, techniques have been proposed by Welch to determine the number of clones 

required each time a loop is unrolled. 

In this work, the dependence graphs extracted from each operation of a module 

is subjected to the cloning analysis algorithms of Welch, for determining an upper 

bound on the facility clone requirements.  

4.2.3 Cloning Analysis of the Application Program  

In this section, we illustrate how the cloning analysis techniques are applied to the 

graphs for revealing concurrency and to further drive home the idea. the algorithms 

developed are applied to the application program and the results are shown. 

The Data Dependence Graph extracted for the coordsEqual operation shown in 

Figure 4.11 illustrates, constraints to the ARPC model due to data at the statement 

level. Dependences due to data, though poses threat to concurrency, have to obeyed 

strictly to maintain program correctness and is  done so in this work. However, 

a set or collection of program statements having heavy data dependences among 

them could he identified from the code and could be executed concurrently with 

other similar sets if any, provided these sets between them do not. have any depen-

dences. Welch [1], proposes theorems in this regard for identifying such collection 

of statements (called units) in the program. The algorithm developed for extracting 

units from the program is shown in Figure 4.16 and Figure 4.17. 

Once clusters of program statements having data dependences have been 

identified, the Units Parallelism Matrix, (UPM) is constructed which shows the 

potential concurrency  in the program at the unit level. This matrix defines paral-

lelism relation between units  or in other words, indicates which units could run in 



GetUnits(DDG, UNITS) 
var Q : QUEUE of DDG node type; 
begin 

insert_node(UNITS); /* inserts a new node in UNITS */ 
for each node in DDG do 

begin 
while not EndNode(node,DDG) do 

begin 
if (node ≠ null) then 

node=next_stmt(node,DDG,Q,UNITS); 
else 

break; 
insert_stmt(UNITS,node); /* inserts the graph stmt into the l NITS */ 

end while 
if (node ≠ null) then 

node=next_stmt(node,DDG,Q,UNITS); 
else 

break; 
insert_node(UNITS); 
insert_stmt(UNITS,node); 

end for 
end GetUnits 
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Figure 4.16 Algorithm for Finding Units (main) 



next_stmt(node DDG_node, graph_node : DDG_node, Q : QUEUE, Units : UNITS) 
returns DDG_nodetype;  

var x : DDG_nodetype; 
begin 

while not graph_node ≠ null do 
/* i.e, for each node in DDG */ 
begin 

if (graph_node.label = node.label) then 
begin 

if (graph_node.next ≠ null) then 
if -(MergeNode(graph_node.next)) or 

V SEimmediate_predecessor s(graph_node .next)( S E Units) then 
ENQUEUE(graph_node.next,Q); 

end 
graph_node = graph_node.next; 

end while 
if (EndNode(node) = true) then 

begin 
x := FRONT(Q); 
DEQUEUE(Q); 
if (x n Units = 0) then 

return x; 
end 

else 
begin 

x := dependent_stmt(node,DDG); /* the statment dependent upon node */ 
remove_stmtQ(x,Q); /* remove the statment x from the QUEUE */ 
return x; 

end 
if (3sEDDG(S n Units = 0)) then 

return S; 
end next_stmt 
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Figure 4.17 Algorithm for Finding Units (finding next statement) 
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parallel with each other. Based on the UPM, we then construct groups of units in 

which every unit can run in parallel with every other. The algorithm for building 

parallel units is shown in Figure 4.18. 

The basic facility requirements of the units is illustrated in the Facility Unit 

Matrix (FUM). This matrix has all the facilities used in the program as its row 

elements and the units identified, along its column. Note that no unit can have 

more than a single requirement of a facility in FUM, even if that unit incorporates 

statements using the same facilities. This is because, the statements have been 

clustered together to form a unit since they have data dependences in the first place 

and therefore such a facility dependence is totally ineffective. Units thus represents 

the basic units of parallelism in this work. An exception to the above stated fact 

(regarding FUM) occurs when conditional statements appear in the program and this 

will be discussed subsequently. We use FUM later on to build the Group Facility 

Matrix (GFM), which finally shows the upper bound on the cloning requirements of 

the facilities used. 

4.2.3.1 Conditional Handling  We continue to use the coordsEqual operation 

of the vehicle module which has been used throughout this work as t he appli-

cation example, for illustrating the cloning analysis also. The coordsEqual operation 

(Figure 4.4) has conditional statements in its code, and this calls for applying the 

transformation algorithms first, before it could be subjected to a complete clone 

analysis. The transformation algorithms causes the DDG of the code to be metamor-

phosed into a graph where all the conditional statement nodes (the statements 

appearing inside the body of the conditional) are replaced with a single node (a 

super node) having specific cloning needs. The idea. of transforming t he conditional 

statements in the graph is to avoid considering an exponential number of paths 

through the program for determining an upper bound on the clone requirements. 



BuildGroups(UPM,GROUPS) 
begin 

num_groups := 0; /* total number of groups */ 
/* For each row of P, i.e., for each unit i, */ 
/* Build groups containing i and units parallel to i. */ 
for i := 1 to NUM_UNITS in UPM do 

begin 
/* Create a group containing only i. */ 
num_groups++; 
start := num_groups; 
end := num_groups; 
GROUPS(num_groups) := {i}; 
for j := i+1 to NUM_UNITS do 

begin 
/* For each column of P, i.e., for each unit j. */ 
if (P(i,j) = 1) then 

stop := false; 
for k := start to end do 

begin 
/* does j fit into an existing group? */ 
if Vuegroups(k) (P(j, u) = 1) then 

begin 
GROUPS(k) := groups(k) U {j} 
stop := true; 

end if 
end for 

if (stop = false) then 
begin 

/* Make a new group for i,j */ 
end++; 
num_groups++; 
GROUPS(end) := {i,j}; 

end if 
end if 

end for 
end for 

end BuildGroups 
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Figure 4.18 Algorithm for grouping Parallel Units 
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ConditionalTransform(DDG,StaTab) 
begin 

for each entry N in StaTab do 
begin 

if (N.type = "if") then 
Depth_First_Search(N,DDG); 

end for 
end ConditionalTransform 

Figure 4.19 Algorithm for Transforming Conditionals (main) 

For the transformation, we first identify the boundaries of the conditional in the 

DDG and then replace every edge crossing the boundaries (from the outside of the 

conditional body) with edges to the boundary. For example, a directed edge (P,Q) 

crossing the beginning of the conditional (P preceding the conditional, and Q within 

the conditional), is replaced with edges (P,C) and (C,Q), where C is the start of the 

conditional. Edges crossing the end limits of the conditional body are transformed 

in a similar way. Once transformed, the graph of the conditional body. which is 

now totally independent with respect to the outside program domain is extracted 

out. The extracted DDG is then subjected to the cloning algorithms discussed in 

Figure 4.16, Figure 4.17 and Figure 4.18, considering each branch of the conditional 

in isolation with the rest. Units, Groups, UPM, FUM, and GFM are formed for each 

branch and the maximum of the clone requirements (of facilities per group) of all 

the branches is determined. This maximum value represents an upper limit on the 

cloning needs of the entire conditional. The conditional is then defined in the DDG 

as a single node with these specific cloning needs. The DDG is thus transformed into 

a graph defining a single thread of execution. 

While constructing the Units, Groups etc., for the single scenario DDG, we 

consider the transformed super node like any other program node. However. when 

the Facility Units Matrix (FUM) is constructed, the facility requirements of the 
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Depth_First_Search(N : StaTab, DDG) 
begin 

for each childStaTab C of N in StaTab do 
/* childStaTab is either C.LeftC or C.RightC */ 

begin 
for each entry x in C do 

begin 
if (x.type = "if") then 

Depth_First_Search(x,DDG); 
end for 

end for 
Transform_Edges(DDG,N); 

end Depth_First_Search 

Figure 4.20 Algorithm for Transforming Conditionals (Depth-First-Search) 

super node would be that of the previously determined one. Nested conditionals 

are handled by transforming them inside-out. That is, the conditional nested at 

the deepest level say n, is transformed first. Then, it is treated as an atomic unit 

while the conditional at level n - 1 is transformed. The transformation continues at 

successively shallower levels of nesting, until all conditionals are transformed. We 

perform a Depth-First-Search on the graph for such a transformation. The algorithm 

for transforming the conditionals is shown in Figure 4.19 and Figure 4.20. Note that 

the algorithm needs the statement table also, since all information regarding the 

program structure is stored in it, where as the DDG reveals only the data dependence 

relations. 

Since the DDG of the coordsEqual operation contains conditional statements 

(nesting at 2 levels), it is first filtered through the transformation algorithms. The 

transformation at level 2 is shown in Figure 4.21. The four different graphs in the 

Figure 4.21, illustrate the transformation process of the DDG. The initial DDG 

shown at the left extreme (same as that in Figure 4 .1 1 ) is the untransformed graph 

showing all the data dependences between the program statements ignoring their 
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Figure 4.21  Conditional Transformation of coordsEqual operation at level 2 
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Figure 4.22  Extracting Left Graph of Conditional (level 2) 

control dependences. Note that the statements S8, S9 S10 & S11 belong to the 

innermost conditional (at level 2) and therefore, have a control dependence upon the 

statement S7 with the same precedence. Once these set of statements are identified 

from the graph, the next step is to transform the edges crossing the conditional 

boundaries (S7 - S11) as discussed before. The conditional statement nodes now 

become data independent with the outside program statements and it is extracted 

out. The extracted graph is then split into different graphs simulating all the possible 

execution paths in the program. Thus we have as many graphs as the possible 

run time scenarios. The programming model supports only the if statement as a 

conditional construct and therefore the splitting (of graphs) is always limited to (a. 

maximum of) two - the left graph and the right graph. 

Each of the graphs (left and right graphs) is then subjected to the cloning 

analysis algorithms separately. The extracted left graph (at level 2) is shown in 

Figure 4.22. 

Statements S7, S8 and S9 forms the left graph. Units are then identified and 

the Units Parallelism Matrix (UPM) is constructed. This is followed by the grouping 

of parallel Units and the construction of the matrices, Facility Unit Matrix (FUM) 

& Group Facility Matrix (GFM). We illustrate the Units, Groups and all the other 

matrices in Appendix D. The last row of the matrix GFM, indicates the maximum 

number of clones of the facilities i, in  and re that could be used inside the inner condi- 
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Figure 4.23  Extracting Right Graph of Conditional (level 2) 

Figure 4.24  Cloning Requirements of Conditional (at level 2) 

tional, if the execution of the left graph (at level 2) occurs al run time. Statements 

S7, S10, S11 forms the right branch of the conditional at level 2. The right graph 

is therefore constructed with these statements and is shown in Figure 4.23. Note 

that the conditional evaluation statement S7, forms part of both the right and left 

graphs when considered for the cloning analysis, since we are trying to speculate the 

possible execution scenarios. The construction of Units, Units Parallelism Matrix 

(UPM), Groups, FUM and GFM, then proceeds in the same way as before. All these 

matrices are illustrated in Appendix D. 
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Figure 4.25  Conditional Transformation of coordsEqual operation at level 

It is found that 0 clones of i, 1 clone of in and 2 clones of re  are required for 

both the left and right branches of the conditional. Maximizing the cloning needs 

for the two cases though does not make any difference, is still shown in Figure 4.24 

to illustrate the algorithm. Once the upper bound on the cloning needs of the 

(innermost) conditional have been determined, we now replace the entire conditional 

body (statements S7 - S11) with a single node (i.e., S7) in the DDG. The cloning 

needs of the statement node S7 (i.e., 0 of i, 1 of in and 2 of re) is recorded separately. 

The transformed DDG is shown in Figure 4.25. Now we transform the conditional 

at level 1, considering the conditional at level 2 as a single node, S7. The conditional 

body (at level 1) is then identified (statements S5, S6, S7, S12, S13, S14 & S15) 

and the edges are transformed like before. The process is shown in Figure 4.25. 

The left and right graphs are extracted out from the transformed DDG. The left 

graph (statements S5, S6 , S7, S12 & S13) is shown in Figure 4.26. Note that 

the statement S7 which is a supernode, becomes Unit 3 during the analysis and 

in the Facility Units Matrix (FUM), its cloning needs have been assigned as the 
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Figure 4.26 Extracting Left Graph of Conditional (level 1) 

Figure 4.27  Extracting Right Graph of Conditional (level 1) 

predetermined clone requirements of the entire conditional statements at level 2. 

The Units, Groups and the other matrices constructed are shown in Appendix D. 

The right graph (statements S5, S14 & S15) is shown in Figure 4.27. The different 

matrices generated during these transformations are also shown in Appendix D. 

Maximizing the cloning needs of the left and right graphs gives us an upper 

hound on the cloning requirements of the conditional at level 1. This is illustrated in 

Figure 4.28. Finally, the entire conditional statements (S5 - S15) is replaced in the 

DDG with the supernode S5. We show the final transformed DDG in Figure 4.29. 



Figure 4.28  Cloning Requirements of Conditional (at level 1) 

Figure 4.29  Transformed DDG of coordsEqual operation 
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Table 4.1  Units of coordsEqual operation 

Un1 S1 
Un2 S2 
Un3 S3 
Un4 S4 
Un5 S5 

Table 4.2  Units Parallelism Matrix of coordsEqual operation 
- Un1 Un2 Un3 Un4 Un5 
Un1 - 0 0 1 0 

Un2 - 1 1 0 

Un3 - 1 0 
Un4 - 0 
Un5 - 

4.2.3.2 Clone Analysis of Transformed DDG  Units formed from the trans-

formed DDG in Figure 4.29 by applying the algorithm in Figure 4.16 and Figure 

4.17 is shown in Table 4.1. Note that the statement S5 is a super-super node repre-

senting two nested conditionals. The Units Parallelism Matrix showing the paral-

lelism relation between the units is illustrated in Table 4.2. Groups formed from the 

Units in Table 4.1 by applying the algorithm discussed in Figure 4.18 is shown in 

Table 4.3. 

Table 4.3  Groups of Units of coordsEqual operation 
- - - -  
Gr1 Un1 Un4 
Gr2 Un2 Un3 Un4 
Gr3 Un3 Un4 
Gr4 Un4 
Gr5 Un5 
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Table 4.4  Facility Units Matrix of coordsEqual operation 
- Un1 Un2 Un3 Un4 Un5 
i 1 1 
in 1 2 
re 2 

Table 4.5  Group Facility Matrix of coordsEqual operation 
- i in re 

Gr1 0 1 1 
Gr2 1 1 1 
Gr3 0 1 0 
Gr4 0 1 0 
Gr5 1 2 2 
Max 1 2 2 

The Facility Units Matrix illustrating the facility requirements of the different 

units is shown in Table 4.4. Notice that the facility needs of Unit 5 was predetermined 

and it represents the requirements of the nested conditional statements. 

Finally, the Group Facility Matrix is constructed which illustrates the facility 

requirements per group. The matrix is shown in Table 4.4. The last. row in the matrix 

indicates the maximum number of clones of the facilities in coordsEqual operation 

that could used concurrently per group, and it represents an upper bound on the 

cloning requirements. 

4.2.4 Parallelism inside Loops  

The opportunities for parallelism that exist inside loops (both bounded and 

unbounded) through clones, could be identified by unrolling them. Unrolling a 

loop simply means extending the code of the loop beyond a single iteration. The 

idea of unrolling a loop is to reveal chances of parallelism between loop iterations 

which, due to facility dependences (across iterations) may be getting lost. Removing 
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Figure 4.30 The procedure AccessSeq of module pcomp 

these dependences by providing additional clones of the facilities causing it, we 

enhance concurrency inside loops, further rendering accuracy to the clone analysis. 

We illustrate this process of exploiting parallelism inside loops with an example 

operation (procedure AccessSeq) shown in Figure 4.30. The procedure A AccessSeq is 

actually defined in the interface section of the module pcomp used in time vehicle 

application. The complete module is given in Appendix C. 

The procedure AccessSeq incorporates a. simple loop mechanism. We use this 

unbounded loop (the while) to illustrate the clone analysis of loops. The DDG of 

the procedure AccessSeq is shown in Figure 4.3]. For the purpose of clone analysis. 

while constructing the DDG, we ignore the presence of loops and treat them as mere 

straight line code. The DDG of the loop (extracted out. from the rest. of the graph) 

is shown in Figure 9.32. 



Figure 4.31  DDG of operation AccessSeq (module pcomp) 

Figure 4.32  DDG of the Loop (operation AccessSeq) 

74  



75  

Note that the graph contains backward edges indicating cross iteration depen-

dences i.e., statements from one iteration of the loop depending on statements from 

others. Now if the loop is unrolled once (i.e., considering two iteration executions 

of the loop), the backward dependences would appear as forward dependences. We 

show the DDG of the once unrolled loop in Figure 4.33. The facility dependences 

between statements across iterations are then added into the unrolled loop DDG to 

reveal parallelism between loop iterations. This graph is shown in Figure 4.34. There 

exists a pure facility dependence between statements S3 and S4 due to contention 

for the facility q. An additional clone of q can resolve this contention and thereby 

statements S3 and S4 can be executed concurrently. Such a potential concurrency 

and thereby the additional clone requirement of the facility q is revealed only after 

unrolling the loop and this justifies the overhead of such an analysis at compile-time 

or even at link-time. Thus the total number of clones required for exploit ing paral-

lelism between all possible iterations of the loop is revealed by unrolling the loop as 

many times. But in general, unrolling the loop once is sufficient enough to determine 

the additional amount of clones required. 

Also, there could be antidependences [12] between statements across loop 

iterations. In the loop DDG shown in Figure 4.34, the dependence between 

statements S3 and S5  due to the common parameter temp is an antidependence. 

Such an antidependence can be revealed at link-time by checking the parameter 

passing modes of the operations enqueue of statement S3 and dequeue of statement 

S5 (in module queue, q being an instance of it) and thereafter, could be removed by 

replacing the data (causing the antidependence) with a temporary variable. without 

affecting code correctness. Welch illustrates this aspect in [I]. In the illustrated 

application example, such a removal doesn't make any difference since the statements 

(S3, S5) do not have a facility dependence. We now propose an algorithm for deter-

mining the cloning requirements inside loops by the unrolling technique. The main 
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Figure 4.33  DDG of the Unrolled Loop 
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Figure 4.34  DDG of the Unrolled Loop with Facility & Antidependences 
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Figure 4.35  Algorithm for Handling Loops (main) 

algorithm is given in Figure 4.35 and the supplementary ones are shown in Figure 

4.36, Figure 4.37 and Figure 4.38. 

4.2.5 Interfacility Clone Analysis  

An application is developed in the proposed language model through separately 

written and compiled modules. Independent compilation of modules is a. feature of 

our paradigm as discussed in Chapter 2. Until now, we have presented methods 

to compute cloning requirements of modules in an independent fashion. However, 

this framework needs to be extended when we have to deal with an entire appli-

cation where modules are combined together and between which complicated call 

relationships often exist. In this section we discuss algorithms for computing the 

cloning requirements of the module instances used in an application based on their 

call relationships (Call DAG), as outlined by Welch in [I]. 

Interfacility clone analysis can be achieved by modifying the way in which the 

clone requirements of units were hitherto calculated. The facility cloning needs of 
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Figure 4.36  Algorithm for Handling Loops ( Unrolling Loop) 
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Figure 4.37  Algorithm for Handling Loops (Removing Antidependencies) 
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Figure 4.38 Algorithm for Handling Loops (Adding Cross Iteration Far. Dep's) 

a unit includes, the cloning requirements of the methods (of other facilities) called 

by the statements in the unit, in addition to the single facilities directly called by 

the statements. Welch [1] refers to this additional cloning needs of a statement (i.e., 

a method call in a unit) as its Transitive Cloning Requirements or TCR. For this 

purpose a function clones(u,x) is defined to denote the number of clones of facility x 

required by the unit u. The value of the function denotes the result of combining the 

direct and transitive requirements of u. Direct requirements of the unit is what. the 

Facility Unit Matrix indicates and Transitive Cloning Requirements is determined by 

examining the needs of the methods invoked by the statements of the unit. Formally, 

clones(si,x) = DC R(si , x) TCR(si , x) 

clones(u, x) = maxSiϵu(clones(si

, x)) 

 

The above definition is extended for groups and operations also. The cloning needs 

of a group g for a facility x is defined as: 
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Figure 4.39 Algorithm for finding Direct-Clone-Requirements ( DCR) 

Similarly, the number of clones of facility x required by an operation op of a facility 

f is defined as: 

clones( f.op, x) = maxgϵ f.op(clones(g , x)) 

Computing the cloning requirements of an application begins with determining 

the direct cloning needs of each operation in a facility represented as a node in the Call 

DAG, starting at the root vertex of the DAG. The cloning needs are then re-computed 

using the above functions where we consider the transitive requirements also. We 

now present the algorithms for the interfacility clone analysis. The algorithm for 

computing DCR is shown in Figure 4.39, TCR in Figure 4.40 and finally. the clone 

needs for an entire application (Program-Clone-Needs) in Figure 4.4 I . 



Figure 4.40  Algorithm for finding Transitive-Clone-Requirements ( TCR ) 

Figure 4.41  Algorithm for finding Program-Clone-Needs 



CHAPTER 5 

ILLUSTRATION OF SYSTEM DESIGN  

In this Chapter, we discuss the system design of the implementations of the compiler. 

Note that, all the parallelism information (i.e., graphs and cloning needs) is extracted 

from the source code at compile-time. The system design at the top most level is 

shown in Figure 5.1. 

The compiler, while compiling the application source code extracts the 

different dependence graphs and the facility-cloning needs from it. As discussed 

in Chapter 2, the modules are compiled separately and linked together by the linker, 

before being loaded. The graph extraction is done by the compiler after generating 

the intermediate representation i.e., the Statement Table, which is done while parsing 

the source program. The Statement Table thus becomes the direct output of the 

parser and is then given to the Graph Extractor. The Graph Extractor generates the 

different dependence graphs. The graphs are produced in the form of separate files, 

the naming convention of which was outlined in Chapter 2. The Data Dependence 

Graph (DDG) from the Graph Extractor is then filtered through the Graph Filter. 

This filtering process transforms the conditionals and handles the loops if any, in 

the DDG. The transformed DDG is then sent to the Cloner which  then generates all 

the matrices required for the concurrency analysis. The final matrix (Group Facility 

Matrix) generated by the cloning routines becomes the end output of the compiler 

Figure 5.1  System Design of The Compiler at the top level or level 1 

84  



85  

Figure 5.2  System Design of The Compiler at level 2 

and it contains the cloning requirements of the different facilities in the application. 

The matrix is generated as the module_name.clone file. The complete design of the 

compiler is shown in Figure 5.2. 



CHAPTER 6 

CONTRIBUTIONS TO KNOWLEDGE 

The potential of ADT modules  for reusability is made ineffective to a large extent 

by their inefficiencies at run time. The ARPC model of parallel execution, when 

applied to programs constructed out of ADT modules in conjunction with the cloning 

techniques, can significantly enhance the run time performance of such programs. 

Extending the dependence graphs of programs to include code dependence is found 

to reveal greater opportunities for concurrent execution. Implementations of the 

algorithms for graph extraction at compile-time proved these facts. Further more, 

by subjecting the graphs to cloning analysis at most by link-time. an  upper bound 

on the number of clones that could be used could be determined. Algorithms for 

handling conditional statements (through transformations) and loops (by unrolling) 

were designed and implemented and was found to enhance the accuracy of the clone 

analysis. These are the main contributions of this work. The parallelism information 

so extracted, could be used for constructing a feasible schedule statically, and this 

could be of importance to hard real-time systems where timing constraints are a 

concern. 
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APPENDIX A 

GRAMMAR OF RT-RESOLVE  

Realization Module 

START: 

PROCESS | 

MODULE | 

CONTROL_PROCESS 

PROCESS: 

PROCESS_TOKEN PROCESS_NAME 

OPT_PROCESS_PARM_SEC 

OPT_VAR_DECL_SEC 

OPT_FAC_DECL_SEC 

PROCESS_PROC_DECL 

END_TOKEN PROCESS_NAME 

OPT_PROCESS_PARM_SEC: 

| PARM_TOKEN OPT_DEADLINE OPT_FRAME 

| PARM_TOKEN OPT_FRAME OPT_DEADLINE 

OPT_DEADLINE: 		| 

DEADLINE_TOKEN DEADLINE 

OPT_FRAME: 		| 

FRAME_TOKEN FRAME 

CONTROL_PROCESS: 

CNTRL_TOKEN PROCESS_TOKEN PROCESS_NAME 
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BEGIN_TOKEN 

PROCESS_DECL_SEQ 

END_TOKEN PROCESS_NAME 

PROCESS_DECL_SEQ: 

PROCESS_DECL 

| PROCESS_DECL_SEQ PROCESS_DECL 

PROCESS_DECL: 

PROCESS_NAME OPT_PROCESS_ARGS SEMICOLN_TOKEN EN 

OPT_PROCESS_ARGS: 	| 

LPREN_TOKEN DEADLINE COMA_TOKEN FRAME 

RPREN_TOKEN 

DEADLINE: 

INT_TOKEN 

FRAME: 

INT_TOKEN 

MODULE: 

MOD_TOKEN MOD_NAME 

NUM_OPS 

OPT_MOD_PARM_SEC 

OPT_AUX_SEC 

OPT_INTF_SEC 

END_TOKEN MOD_NAME 

Module Parameter Section 

NUM_OPS: 
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NUM_TOKEN OPR_TOKEN ASS_TOKEN INT_TOKEN 

SEMICOLN_TOKEN 

OPT_MOD_PARM_SEC: 	| 

MOD_PARM_SEC 

MOD_PARM_SEC: 

MOD_TOKEN PARM_TOKEN 

MOD_PARM_SEQ 

END_TOKEN MOD_TOKEN PARM_TOKEN 

MOD_PARM_SEQ: 

MOD_PARM SEMICOLN_TOKEN 

| MOD_PARM_SEQ MOD_PARM SEMICOLN_TOKEN 

MOD_PARM: 

TYPE_TOKEN TYPE_NAME 

| PROC_HDR 

| FUNC_HDR 

| CTRL_HDR 

PROC_HDR: 

PROC_TOKEN PROC_NAME 

OPT_PROC_PARM_SEC 

END_TOKEN PROC_NAME 

FUNC_HDR: 

FUNC_TOKEN FUNC_NAME RETS_TOKEN VAR_NAME 

COLN_TOKEN 

LONG_TYPE_NAME 

OPT_FUNC_CTRL_PARM_SEC 

END_TOKEN FUNC_NAME 
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CTRL_HDR: 

	

CNTRL_TOKEN CTRL_NAME 

	

OPT_FUNC_CTRL_PARM_SEC 

	

END_TOKEN CTRL_NAME 

OPT_PRVD_TYPES: 

	

| 

PRVD_TYPES_SEC 

PRVD_TYPES_SEC: 

PRVD_TOKEN TYPS_TOKEN 

PRVD_TYPES_SEQ 

END_TOKEN 

PRVD_TYPES_SEQ: 

PRVD_TYPE | 

PRVD_TYPES_SEQ PRVD_TYPE 

PRVD_TYPE: 

TYPE_NAME IS_TOKEN REPRESENT_TOKEN BY_TOKEN 

LONG_TYPE_NAME SEMICOLN_TOKEN 

Auxiliary Section 

OPT_AUX_SEC: 	| 

AUX_SEC 

AUX_SEC: 

AUX_TOKEN 

OPT_FAC_DECL_SEC 
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OPT_PRVD_TYPES 

OPT_VAR_DECL_SEC 

OPT_AUX_OPR_DECL_SEC 

OPT_REAL_AUX_INIT 

END_TOKEN AUX_TOKEN 

Facility Declaration Section 

OPT_FAC_DECL_SEC: 	| 

FAC_DECL_SEC 

FAC_DECL_SEC: 

FAC_TOKEN 

FAC_DECL_SEQ 

END_TOKEN FAC_TOKEN 

FAC_DECESEQ: 

FAC_DECL 

| FAC_DECESEQ 

FAC_DECL 

FAC_DECL: 

FAC_NAME IS_TOKEN MOD_NAME OPT_FAC_ARG_LIST 

SEMICOLN_TOKEN 

OPT_FAC_ARG_LIST: 	| 

LPREN_TOKEN FAC_ARG_LIST RPREN_TOKEN 

FAC_ARG_LIST: 

FAC_ARG 
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	| FAC_ARG_LIST COMA_TOKEN FAC_ARG 

FAC_ARG: 

LONG_NAME 

Auxiliary Operation Declaration Section 

OPT_ AUX_OPR_DECL_SEC: 

	| 

	

AUX_OPR_DECL_SEC 

AUX_OPR_DECL_SEC: 

OPR_TOKEN 

OPR_DECL_SEQ 

END_TOKEN OPR_TOKEN 

OPT_REAL_AUX_INIT: 

	| 

	

REAL_AUX_INIT 

REAL_AUX_INIT: 

INIT_TOKEN 

BEGIN_TOKEN 

OPT_LOC_VAR_DECL_SEC 

CODE 

END_TOKEN INIT_TOKEN 

Interface Section 

OPT_INTF_SEC: 
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INTF_SEC 

INTF_SEC: 

INTF_TOKEN 

OPT_TYPE_DECL_SEQ 

OPT_OPR_DECL_SEQ 

END_TOKEN INTF_TOKEN 

Provided Types 

OPT_TYPE_DECL_SEQ: 

		| 

		

TYPE_DECL_SEQ 

TYPE_DECL_SEQ: 

TYPE_DECL 

| TYPE_DECL_SEQ 

TYPE_DECL 

TYPE_DECL: 

TYPE_TOKEN TYPE_NAME IS_TOKEN REPRESEN'Is_TOKEN 

BY_TOKEN 

LONG_TYPE_NAME EXEMPLAR_TOKEN VAR_NAME 

OPT_TYPE_INIT 

OPT_TYPE_FIN 

END_TOKEN TYPE_NAME 

OPT_TYPE_INIT: 

		| 

		| TYPE_INIT 
TYPE_INIT: 



INIT_TOKEN 

BEGIN_TOKEN EN 

OPT_LOC_VAR_DECL_SEC 

CODE 

END_TOKEN INIT_TOKEN 

OPT_TYPE_FIN: 	| 	TYPE_FIN 

TYPE_FIN: 

FIN_TOKEN 

BEGIN_TOKEN 

OPT_LOC_VAR_DECL_SEC 

CODE 

END_TOKEN FIN_TOKEN 

OPT_LOC_VAR_DECL_SEC: 

	| 

	

LOC_VAR_DECL_SEC 

OPT_VAR_DECL_SEC: 

	| 

	

VAR_DECL_SEC 

VA R_DECL_SEC: 

VAR_TOKEN 

		

VAR_DECL_SEQ 

END_TOKEN VAR_TOKEN 

VA R_DECL_SEQ: 

VAR_DECL 

| VAR_DECL_SEQ VAR_DECL 
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VAR_DECL: 

VAR_NAME COLN_TOKEN LONG_TYPE_NAME 

SEMICOLN_TOKEN 

LOC_VAR_DECL_SEC: 

LOCAL_TOKEN VAR_TOKEN 

LOC_VAR_DECL_SEQ 

END_TOKEN LOCAL_TOKEN VAR_TOKEN 

LOC_VAR_DECL_SEQ: 

LOC_VAR_DECL 

| LOC_VAR_DECL_SEQ LOC_VAR_DECL 

LOC_VAR_DECL: 

VAR_NAME COLN_TOKEN LONG_TYPE_NAME 

SEMICOLN_TOKEN 

OPT_OPR_DECL_SEQ: 

	| 

	

OPR_DECL_SEQ 

OPR_DECL_SEQ: 

PROC_DECL | 

FUNC_DECL | 

CTRL_DECL | 

OPR_DECL_SEQ 

PROC_DECL | 

OPR_DECL_SEQ 

FUNC_DECL| 

OPR_DECL_SEQ 

CTRL_DECL 

PROC_DECL: 
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PROC_TOKEN PROC_NAME 

OPT_PROC_PARM_SEC 

BEGIN_TOKEN 

OPT_LOC_VAR_DECL_SEC 

CODE 

END_TOKEN PROC_NAME 

PROCESS_PROC_DECL: 

PROC_TOKEN PROC_NAME 

OPT_PROC_PARM_SEC 

BEGIN_TOKEN 

OPT_LOC_VAR_DECL_SEC 

CODE 

END_TOKEN PROC_NAME 

FUNC_DECL: 

	

FUNC_TOKEN FUNC_NAME RETS_TOKEN VAR_NAME 

COLN_TOKEN LONG_TYPE_NAME 

OPT_FUNC_CTRL_PARM_SEC 

BEGIN_TOKEN 

OPT_LOC_VAR_DECL_SEC 

CODE 

END_TOKEN FUNC_NAME 

CTRL_DECL: 

CNTRL_TOKEN CTRL_NAME 

OPT_FUNC_CTRL_PARM_SEC 

BEGIN_TOKEN 

OPT_LOC_VAR_DECL_SEC 

CODE 
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END_TOKEN CTRL_NAME 

OPT_PROC_PARM_SEC: 

		| 

		

PROC_PARM_SEC 

PROC_PARM_SEC: 

PARM_TOKEN 

PROC_PARM_SEQ 

END_TOKEN PARM_TOKEN 

PROC_PARM_SEQ: 

PROC_PARM 

| PROC_PARM_SEQ PROC_PARM 

PROC_PARM: 

PRESV_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NA ME 

SEMICOLN_TOKEN 

ALT_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NAME 

SEMICOLN_TOKEN 

PROD_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NA ME 

SEMICOLN_TOKEN 

CONSU_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NAME 

SEMICOLN_TOKEN 

OPT_FUNC_CTRL_PARM_SEC: 

		| 

		

FUNC_CTRL_PARM_SEC  

FUNC_CTRL_PA RM _SEC: 
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PARM_TOKEN 

FUNC_CTRL_PARM_SEC 

END_TOKEN PARM_TOKEN 

FUNC_CTRL_PARM_SEQ: 

FUNC_CTRL_PARM 

| FUNC_CTRL_PARM_SEQ FUNC_CTRL_PARM 

FUNC_CTRL_PARM: 

PRESV_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NAME 

SEMICOLN_TOKEN 

CODE: 

STMT SEMICOLN_TOKEN | 

CODE STMT SEMICOLN_TOKEN 

STMT: 

SWAP 

| ASSIGN 

| IF 

| WHILE 

| RETURN 

| DO 

|PROC_CALL 

SWAP: 

VAR_NAME COLN_TOKEN ASS_TOKEN COLN_TOKEN 

VAR_NAME 

ASSIGN: 

VAR_NAME COLN_TOKEN ASS_TOKEN FUNC_CALL 

IF: 

IF_TOKEN OPT_NOT CTRL_CAL THEN_TOKEN 



CODE 

OPT_ELSE 

END_TOKEN IF_TOKEN 

OPT_NOT: 

NOT_TOKEN 

| OPT_ELSE: 

| ELSE_TOKEN 

CODE 

WHILE: 

WHILE_TOKEN NOT_TOKEN CTRL_CALL DO_TOKEN 

CODE 

END_TOKEN WHILE_TOKEN | 

WHILE_TOKEN CTRL_CALL DO_TOKEN 

CODE 

END_TOKEN WHILE_TOKEN 

DO: 

DO_TOKEN INT_TOKEN TIMES_TOKEN 

BEGIN_TOKEN 

CODE 

END_TOKEN DO_TOKEN 

RETURN: 

RET_TOKEN 

| RET_TOKEN TRUE_TOKEN | RET_TOKEN FALSE_TOKEN 
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PROC_CALL: 

LONG_PROC_NAME LPREN_TOKEN OPT_ARG_LIST 

RPREN_TOKEN 

| LONG_PROC_NAME 

FUNC_CALL: 

LONG_FUNC_NAME LPREN_TOKEN OPT_ARG_LIST 

RPREN_TOKEN 

| LONG_FUNC_NAME 

CTRL_CALL: 

LONG_CTRL_NAME LPREN_TOKEN OPT_ARG_LIST 

RPREN_TOKEN 

| LONG_CTRL_NAME 

OPT_ARG_LIST: 

| 

ARG_LIST 

ARG_LIST: 

VAR_NAME 

| ARG_LIST COMA_TOKEN VAR_NAME 

LONG_TYPE_NAME: 

LONG_NAME1 

LONG_PROC_NAME: 

LONG_NAME 

LONG_FUNC_NAME: 

LONG_NAME 

LONG_CTRL_NAME: 

LONG_NAME 

LONG_NAME1: 
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NAME 

LONG_NAME1: 

FAC_NAME DOT_TOKEN NAME 

LONG_NAME: 

NAME 

LONG_NAME: 

FAC_NAME DOT_TOKEN NAME 

NAME: 

ID_TOKEN 

TYPE_NAME: 

ID_TOKEN 

PROC_NAME: 

ID_TOKEN 

FUNC_NAME: 

ID_TOKEN 

CTRL_NAME: 

ID_TOKEN 

VAR_NAME: 

ID_TOKEN 

MOD_NAME: 

ID_TOKEN 

FAC_NAME: 

ID_TOKEN 

PROCESS_NAME: 

ID_TOKEN 
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APPENDIX B 

PRIMITIVE MODULE OPERATIONS  

Integer Operations 

1. procedure increment(alters i:int) 

ENSURES: i = #i + 1 

2. function add(preserves i: int; preserves j: int) returns x: int 

ENSURES: x = i + j 

3. function subtract(preserves i: int; preserves j: int) returns x: int 

ENSURES: x = i - j 

4. function multiply(preserves i:int; preserves j: int) returns x: int 

ENSURES: x = i * j 

5. function divide(preserves i:int; preserves j:int) returns x: int 

ENSURES: x = i / j 

6. control less_than_or_equal(preserves i: int; preserves j: int) 

ENSURES: less_than_or_equal if i ≤  j 

7. control equal(preserves i: int; preserves j: int) 

ENSURES: equal iff i = j 

8. function get_min_int returns x: int 

ENSURES: x = the minimum integer value allowed 

9. function get_max_int returns x: int 

ENSURES: x = the maximum integer value allowed 
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10. function integer_copy (preserves 

ENSURES: j=i 

11. function gen_one returns one: int 

ENSURES: one= 1 

12. function gen_five returns five: int 

ENSURES: five=5 

13. function read returns x: int 

ENSURES: x = next value in input stream 

14. procedure write(preserves x: int) 

ENSURES: x is appended to output stream 

15. function integer_initialize returns i: int 

ENSURES: i=0 

16. procedure integer_finalize(alters i: int) 

ENSURES: storage is reclaimed for i 

Array Operations 

1. procedure access(alters a: array, preserves position: int, alters item: int) 

ENSURES: a(position)=#item and item=#a(position) 

2. procedure set_max_size(alters a:array, preserves size: int) 

ENSURES: a.size=size and a(i)=INIT(int), for 0<i<size+1 

3. function get_max_size(preserves a:array) returns size: int. 

ENSURES: size=a.size 

4. procedure array_initialize returns a: array 

ENSURES: a.size=0 

 

5. 
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5. procedure array_finalize(alters a: array) 

ENSURES: storage is reclaimed for a, and each element of a is finalized 



APPENDIX C 

VEHICLE APPLICATION PROGRAM 
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APPENDIX D 

CONDITIONAL TRANSFORMATIONS  

The data dependence graphs (DDGs) and the different matrices generated i.e.. Units. 

Groups, Units Parallelism Matrix (UPM), Facility Units Matrix (FUM) & Group 

Facility Matrix (GFM) during the transformation of conditionals at two levels of the 

application program (coordsEqual operation, coordinate module) discussed in Chapter 

4, is illustrated in this Appendix. 

We first show the subgraphs which are being subjected to the cloning analysis, 

before illustrating the generated matrices. Extraction of the subgraphs discussed in 

this Appendix have already been detailed in Chapter 4. Note that, the algorithms 

for transformation are applied at the two different levels of the conditional and after 

each transformation, the conditional body is replaced with a single supernode. The 

convention for representing the statements in the graphs i.e., as Sn. where n is the 

statement label number, is also adopted here. Further, a Unit is denoted as Unx 

where x is the unit number, a Group as Grx, where x is the group number. The 

facilities are simply represented by their names. Facilities used by the sta t ements in 

the subgraphs are i, in  and re. 

Figure D.1  Left Graph of Conditional at. level 2 
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Table D.1 Units from Left Graph (Conditional at level 2) 
- - - 

Un1 S7 S9 
Un2 S8 

Table D.2 Units Parallelism Matrix of Left Graph (level 2)  
- Un1 Un2 

Un1   - 

Un2 - 

Table D.3 Groups of Units of Left Graph (level 2)  
- - - 

Gr1 Un1 Un2 
Gr2 Un2 

Table D.4 Facility Units Matrix of Left Graph (level 2)  
Un1 Un2 

i 
in 1 
re 1 1 

Table D.5 Group Facility Matrix of Left Graph (level 2)  
- i in re 
Gr1 0 1 2 

Gr2 0 0 1 
Max 0 1 2 

Table D.6 Units from Right Graph (Conditional at. level 2)  
- - - 

Un1 S7 S11 
Un2 S10 
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Figure D.2  Right Graph of Conditional at level 2 

Table D.7  Units Parallelism Matrix of Right Graph (level 1) 
- Un1 Un2 
Un1 - 1 
Un2 - 

Table D.8  Groups of Units of Right Graph (level 2) 
- - - 

Gr1 Unl Un2 
Gr2 Un2 

Table D.9  Facility Units Matrix of Right Graph (level 2) 
- Un1 Un2 
i 

in 1 
re 1 1 

Table D.10  Group Facility Matrix of Right Graph (level 2) 
i in re 

Gr1 0 1 2 
Gr2 0 0 1 

Max 0 1 2 
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Figure D.3 Left Graph of Conditional at level 1 

Table D.11  Units from Left Graph (Conditional at level 1) 
- - 
Un1 S5 
Un2 S6 
Un3 S7 
Un4 S12 
Un5 S13 

Table D.12  Units Parallelism Matrix of Left Graph (level I ) 
Uni Un2 Un3 Un4 Un5 

Un1 - 0 0 1 1 

Un2 - 1 1 1 
Un3 - 1 1 

Un4 - 1 

Un5 - 
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Table D.13  Groups of Units of Left Graph (level 1) 
- - - - - 

G1 Un1 Un4 Un5 
Gr2 Un2 Un3 Un4 Un5 

Gr3 Un4 Un5 
Gr4 Un5 

Table D.14  Facility Units Matrix of Left Graph (level 1) 
- Un1 Un2 Un3 Un4 Un5 
i 1 0 

in 1 1 
re 2 

Table D.15  Group Facility Matrix of Left Graph (level 1) 
i in  re 

Gil 1 1 0 
Gr2 0 2 2 
Gr2 0 1 0 
Gr2 0 0 0 
Max 1 2 2 

Figure D.4  Right Graph of Conditional at level 
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Table D.16  Units from Right Graph (Conditional at level 1) 
- - - 
Un1 S5 S14 
Un2 S15 

Table D.17  Units Parallelism Matrix of Right Graph (level 1) 
- Un1 Un2 
Un1 - 1 
Un2 - 

Table D.18  Groups of Units of Right Graph (level 1) 
- - - 

Gr1 Un1 Un2 
Gr2 Un2 

Table D.19  Facility Units Matrix of Right Graph (level 1) 
- Un1 Un2 
i 1 
in 
re 1 

Table D.20  Group Facility Matrix of Right Graph (level 1) 
- i in re 

Gr1 1 0 1 

Gr2 0 0 0 

Max 1 0 1 
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