
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1994

Extracting parallelism at compile-time through dependence Extracting parallelism at compile-time through dependence

analysis & cloning techniques in an object-based paradigm analysis & cloning techniques in an object-based paradigm

Binoy Ravindran
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ravindran, Binoy, "Extracting parallelism at compile-time through dependence analysis & cloning
techniques in an object-based paradigm" (1994). Theses. 1721.
https://digitalcommons.njit.edu/theses/1721

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1721?utm_source=digitalcommons.njit.edu%2Ftheses%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

EXTRACTING PARALLELISM AT COMPILE-TIME
THROUGH DEPENDENCE ANALYSIS & CLONING TECHNIQUES

IN AN OBJECT-BASED PARADIGM

by
Binoy Ravindran

The construct of Abstract Data Type (ADT) modules and Abstract Data

Object (ADO) modules supported by most object-based languages are a great source

for developing reusable code. To improve the run time performance of such object-

based programs, we consider the asynchronous remote procedure call (ARPC) model

of parallel execution, in which concurrency is achieved by having the caller and the

callee (which are module instances) running on different processors. Frequently, an

ADT module is needed simultaneously by other modules, thus causing contention.

To resolve this, we clone the module instance in demand and distribute the copies

across different processors, so that multiple clients can access the code concurrently.

For identifying the facilities causing bottlenecks to the ARPC model, the dependence

relations of the code is analyzed at compile-time. Instance dependences of the code

are also analyzed in addition to conventional dependences to reveal the potential

concurrency, and an upper bound on the number of clones of each facility that could

be used in an application is determined. This parallelism information could be used

by the assignment and the scheduling algorithms in the run time environment of the

application for constructing a. feasible real-time schedule, statically.

EXTRACTING PARALLELISM AT COMPILE-TIME
THROUGH DEPENDENCE ANALYSIS & CLONING TECHNIQUES

IN AN OBJECT-BASED PARADIGM

by
Binoy Ravindran

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

May 1994

APPROVAL PAGE

EXTRACTING PARALLELISM AT COMPILE-TIME
THROUGH DEPENDENCE ANALYSIS & CLONING TECHNIQUES

IN AN OBJECT-BASED PARADIGM

Binoy Ravindran

Dr. Lonnie R. Welch, Thesis Advisor 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. James A. M. Mchugh, Committee Member 	 Date
Professor of Computer and Information Science
Associate Chairperson of the Department., NJIT

Dr. Andrew Sohn, Committee Member 	 Date
Assistant Professor of Computer and Information Science. NJIT

BIOGRAPHICAL SKETCH

Author: Binoy Ravindran

Degree: Master of Science in Computer Science

Date: May 1994

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Technology in Mechanical Engineering,
University of Kerala, India, 1991

Major: Computer Science

iv

This Thesis is dedicated to
my niece Swetha who, with her birth

fostered a new generation in our family

v

ACKNOWLEDGMENT

I take this opportunity to express my deep gratitude to Professor Lonnie Welch;

for his guidance, friendship and moral support throughout this work. It was an

enlightening experience working under him.

My special thanks to Professors James Mchugh and Andrew Sohn for serving

as members of the committee.

I am grateful to the U.S. Naval Surface Warfare Center for the funding of this

project.

My appreciations are due to Gray, Scott, Jin, Manish and many other members

of the group for their comments on the organization and contents of this manuscript.

Many thanks goes to Pradeep and J. Roy for the timely help and suggestions they

provided.

Finally, I express my sincere gratitude to my parents who. have always

encouraged me to pursue higher avenues of learning.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1.

1.1 Previous Work 	3

1.1.1 Program Dependence Analysis 	3

1.1.2 Cloning ADT Modules for Concurrency Enhancement. 	4

1.2 	Overview of the Thesis 	5

2 THE PROGRAMMING LANGUAGE & ASSOCIATED TOOLS 	 6

2.1 The Language Model 	6

2.1.1 Program Definition 	6

2.1.2 Process Definition 	7

2.1.3 Module Class 	8

2.1.4 Mechanisms for Parameter Passing 	 26

2.1.5 Compiling, Assembling & Linking 	 29

2.2 Associated Tools 	 30

2.3 An Application Program 	 32

3 THE EXECUTION PARADIGM 	 34

3.1 Introduction 	 34

3.2 The Execution Model 	 34

4 TECHNIQUES FOR CONCURRENCY EXTRACTION 	 36

4.1 Asynchronous Remote Procedure Call 	 36

4.1.1 The Program Call DAG 	 38

4.1.2 Concurrency Propagation Techniques 	 39

4.2 Cloning of ADT Instances 	 43

4.2.1 Program Dependence Graphs 	 43

4.2.2 Extracting Parallelism from Graphs 	 57

vii

Chapter 	 Page

4.2.3 Cloning Analysis of the Application Program 	 58

4.2.4 Parallelism inside Loops 	 72

4.2.5 Interfacility Clone Analysis 	 78

5 ILLUSTRATION OF SYSTEM DESIGN 	 84

6 CONTRIBUTIONS TO KNOWLEDGE 	 86

APPENDIX A GRAMMAR OF RT-RESOLVE 	 87

APPENDIX B PRIMITIVE MODULE OPERATIONS 	 102

APPENDIX C VEHICLE APPLICATION PROGRAM 	 105

APPENDIX D CONDITIONAL TRANSFORMATIONS 	 119

REFERENCES 	 125

viii

LIST OF TABLES

Table 	 Page

4.1 Units of coordsEqual operation 	 71

4.2 Units Parallelism Matrix of coordsEqual operation 	 71

4.3 Groups of Units of coordsEqual operation 	 71

4.4 Facility Units Matrix of coordsEqual operation 	 72

4.5 Group Facility Matrix of coordsEqual operation 	 72

D.1 Units from Left Graph (Conditional at level 2) 	 120

D.2 Units Parallelism Matrix of Left Graph (level 2) 	 120

D.3 Groups of Units of Left Graph (level 2) 	 120

D.4 Facility Units Matrix of Left Graph (level 2) 	 120

D.5 Group Facility Matrix of Left Graph (level 2) 	 120

D.6 Units from Right Graph (Conditional at level 2) 	 120

D.7 Units Parallelism Matrix of Right Graph (level 2) 	 121

D.8 Groups of Units of Right Graph (level 2) 	 121

D.9 Facility Units Matrix of Right Graph (level 2) 	 121

D.10 Group Facility Matrix of Right Graph (level 2) 	 121

D.11 Units from Left Graph (Conditional at level 1) 	 122

D.12 Units Parallelism Matrix of Left Graph (level 1) 	 129

D.13 Groups of Units of Left Graph (level 1) 	 123

D.14 Facility Units Matrix of Left Graph (level I) 	 123

D.15 Group Facility Matrix of Left Graph (level 1) 	 123

D.16 Units from Right Graph (Conditional at level 1) 	 124

D.17 Units Parallelism Matrix of Right Graph (level 1) 	 124

D.18 Groups of Units of Right Graph (level 1) 	 124

D.19 Facility Units Matrix of Right Graph (level 1) 	 124

ix

Table 	 Page

D.20 Group Facility Matrix of Right Graph (level 1) 	 124

LIST OF FIGURES

Figure 	 Page

2.1 An example control process 	7

2.2 An example process 	 8

2.3 An example module 	 10

2.4 The parameters section of a module 	 12

2.5 The auxiliary section of a module 	 13

2.6 An example facilities section 	 14

2.7 An example provided types section (Auxiliary section) 	 15

2.8 An example variables section 	 16

2.9 An example auxiliary operations section 	 18

2.10 An example auxiliary initialization section 	 20

2.11 The interface section of a module 	 20

2.12 An example provided types section (Interface section) 	 21

2.13 An example interface section 	 27

4.1 Call DAG of the Vehicle Application Program 	 39

4.2 Extended Call DAG of the Vehicle Application Program 	 40

4.3 An if-statement (a) and its CDG (b) 	 44

4.4 The coordsEqual operation of coordinate module 	 46

4.5 The CDG of coordsEqual operation 	 47

4.6 The Statement Table of coordsEqual operation 	 48

4.7 Algorithm for building CDG 	 49

4.8 Algorithm for building DDG (searching for data dependence) 	 50

4.9 Algorithm for building DDG (finding successive statement) 	 51

4.10 Algorithm for building DDG (finding common parameters) 	 51

4.11 The DDG of coordsEqual operation 	 52

xi

Figure 	 Page

9.12 Algorithm for building CDDG 	 53

4.13 The CDDG of coordsEqual operation 	 54

4.14 The PDG of coordsEqual operation 	 55

4.15 The FDG of coordsEqual operation 	 56

4.16 Algorithm for Finding Units (main) 	 59

4.17 Algorithm for Finding Units (finding next statement) 	 60

4.18 Algorithm for grouping Parallel Units 	 62

4.19 Algorithm for Transforming Conditionals (main) .. 63

4.20 Algorithm for Transforming Conditionals (Depth-First-Search) 	 64

4.21 Conditional Transformation of coordsEqual operation at level 2 	 65

4.22 Extracting Left Graph of Conditional (level 2) 	 66

4.23 Extracting Right Graph of Conditional (level 2) 	 67

4.24 Cloning Requirements of Conditional (at level 2) 	 67

4.25 Conditional Transformation of coordsEqual operation at level 1 	 68

4.26 Extracting Left Graph of Conditional (level 1) 	 69

4.27 Extracting Right Graph of Conditional (level 1) 	 69

4.28 Cloning Requirements of Conditional (at level 1) 	 70

4.29 Transformed DDG of coordsEqual operation 	 70

4.30 The procedure AccessSeq of module pcomp 	 73

4.31 DDG of operation AccessSeq (module pcomp) 	 7I

4.32 DDG of the Loop (operation AccessSeq) 	 7I

4.33 DDG of the Unrolled Loop 	 76

4.34 DDG of the Unrolled Loop with Facility & Antidependences 	 77

4.35 Algorithm for Handling Loops (main) 	 78

4.36 Algorithm for Handling Loops (Unrolling Loop) 	 79

4.37 Algorithm for Handling Loops (Removing Atidependences) 	 80

4.38 Algorithm for Handling Loops (Adding Cross Iteration Fac. Dep's) 	 81

xii

Figure 	 Page

4.39 Algorithm for finding Direct-Clone-Requirements (DCR) 	 82

4.40 Algorithm for finding Transitive-Clone-Requirements (TCR) 	 83

4.41 Algorithm for finding Program-Clone-Needs 	 83

5.1 System Design of The Compiler at the top level or level 1 	 84

5.2 System Design of The Compiler at level 2 	 85

D.1 Left Graph of Conditional at level 2 	 119

D.2 Right Graph of Conditional at level 2 	 121

D.3 Left Graph of Conditional at level 1 	 122

D.4 Right Graph of Conditional at level 1 	 123

CHAPTER 1

INTRODUCTION

Software reusability has become a major issue primarily clue to the crisis of increasing

demand for new software systems and the inability of software engineers to keep pace

with it. As a result of such a rapid demand, software engineers are eager to exploit.

the results of their previous development efforts leading to the reuse of code modules.

One could easily argue that the vast majority of the code that exists today is not

reusable. What gives much credence to this argument is that, ever since the software

life cycle concept had been formulated, it has been found that most. of the time

and money is spent in software maintenance and most. of that effort is spent in

trying to determine what the code does. Reusing software components which have

already proved their correctness or have already been debugged is obviously one

way to reduce the development and maintenance cost. Improperly designed cock.

when attempted to reuse can create severe problems as it. may have a form that

makes them difficult to integrate into a system. Therefore many programmers and

language designers recognize the need to develop modules with reuse in mind and

thereby they frequently use the abstract data type (ADT) construct.. An abstract

data type component provides a collection of operations that can be invoked by other

components. Use of ADTs lead to many benefits such as information hiding. encap-

sulation, loose coupling and high cohesion. All these are highly desirable properties

for software reusability as they help to make software components easily adapt to

different application environments. Most of the object-based languages support the

constructs of abstract data types and abstract data objects (ADO). For example, Ada

provides the generic package which are parametrized by types and operations. Also.

C++ allows the definition of generic class templates which again when instantiated

2

with type and operation parameters gives rise to abstract. data object s. However

the cost of the reusability of programs constructed out of ADT and ADO modules

is its low execution efficiency especially when these modules arc highly generic and

are parametrized by data types, thereby rendering the run time management highly

expensive. Also the system performance deteriorates due to the cost of procedure

calls, the communication overhead, and the encapsulation of the abstraction's data

structures [10].

In this thesis, a parallel execution model (asynchronous remote procedure call,

or ARPC) is considered to improve the performance of programs developed with

ADTs and ADOs in a distributed and parallel system. In a. distributed system, an

abstract data type can be modeled as a server receiving requests for its operations

from various clients. The server and its clients interact using the interprocess commu-

nication (IPC) primitives provided by the operating system and run on either the

same or different machines. In such an environment, the server could be running on

a dedicated processor and the clients would be invoking its operations via remote

procedure calls. However, if multiple clients want to access their data variables

managed by one server at the same time and only one client. is granted access to the

server, there will be contention for the server and all the other clients will have to wait

until the server becomes available. To resolve this contention, the server code could be

replicated and copies of the code (or clones) could be placed on different. processors.

By replicating the ADT facilities and distributing them across the various processing

elements, multiple method calls could be served concurrently, thereby speeding up

the execution of programs. Techniques have been developed [1] for identifying units

of parallelism in programs composed of ADTs and for increasing parallelism by using

replicated ADT instances. The programming paradigm used in this work consists of

ADT and ADO templates, which form the basic reusable components.

3

To exploit parallelism from programs constructed out of ADT and ADO

modules automatically, the dependence relations among method calls are analyzed.

The classical data dependence graph (DDG) and control dependence graph (CDG)

are extended to include facility (ADT instances) dependences or code dependences

for the purpose of clone analysis. Algorithms presented in [1] have been implemented

for determining the maximum number of clones of each ADT facility that can be

used in an application.

In this section, we summarize the previous works on program dependence

analysis and cloning techniques.

1.1 Previous Work

The work in this thesis is mainly on extracting parallelism information from programs

constructed out of ADT and ADO modules and is based on two aspects:

• Program dependence analysis and

• Cloning of ADT modules.

In this section, previous research works on each of these areas is reviewed.

1.1.1 Program Dependence Analysis

The program dependence graph (PDG) is an intermediate representation of the data

and control dependences between statements in a program. In the PDG. program

statements are represented as nodes and directed edges denote the data and control

dependences which the statements have with one another according to their lexical

ordering in the source code. These dependence relationships determine I he necessary

sequencing between operations and can be used to expose potent ial parallelism in

the program. Most of the previous works [2, 6, 8, 9] have used these dependences for

code optimization and parallelism detection. However, data. and control dependences

4

arc not sufficient enough to represent relationships among statements in object -based

programs, where the major activity is method calls. Call statements having neither

data nor control dependences could be assigned to different. processors and run in a

parallel manner if no other dependence relations between the statements are revealed.

as is the case here. However, there could be code dependence between statements

if the statements call the same method, and this apparently could prevent such a

concurrency. The code dependence relation therefore, can reveal the contention for

the code of the shared method. None of the previous works has dealt with code

dependence relations.

We introduce facility dependences into the program dependence analysis to

reveal the contention between statements for common facilities. Two statements is

said to have a facility dependence between them if they use methods provided by the

same facility.

1.1.2 Cloning ADT Modules for Concurrency Enhancement

Previous research work on software component cloning has mainly been on compiler

optimization and fault tolerance. Keith Cooper [2] uses cloning techniques for

compiler optimization. His algorithm finds improvements in forward

interprocedural data-flow solutions and clones those procedures that. could lead to run time

improvement.

In [6], replication (node splitting) is applied al the statement level to reduce

communication and synchronization costs. Cloning ADT modules for exploiting

parallelism has been addressed by Welch [1]. In his work, the contention for an A DT

facility is revealed by partitioning the statements of an ADT module into units,.

A unit is defined as a sequence of one or more statements, which due to the data

dependences among them, must execute in their lexical order. The statement of a

unit cannot contend for a facility, but different units may. By further grouping thy

5

units, an upper bound on the number of clones of facilities that could be used in

an application is determined by a polynomial algorithm. Also, techniques have been

presented to increase parallelism within loops by iteration unrolling, code motion.

and removal of antidependences.

In this work, the PDGs have been extended to represent all kinds of depen-

dences (data, control and facility dependences) and further, such an extended

dependence graph is used to determine an upper bound on the number of clones of

facilities that could be used.

1.2 Overview of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, an introduction to

the language model and the programming paradigm assumed for the cloning analysis

is described. The execution paradigm is described in Chapter 3 and is illustrated

with an application program. Techniques for concurrency extraction forms the topic

of Chapter 4. The ARPC model of parallel execution, theorems related to the facility

dependence relations, and concurrency propagation techniques are discussed in this

Chapter. The implementation (system design) of the dependence graph extractions

and the cloning analysis is described in Chapter 5. Finally, we present the

contributions of the work in Chapter 6.

CHAPTER 2

THE PROGRAMMING LANGUAGE & ASSOCIATED TOOLS

2.1 The Language Model

The construct of ADTs and ADOs are supported in most of the object-based

languages like Ada, Modula-2, Clu and RESOLVE. The language model used in this

work defines an application program to be composed of three distinct components:

program definition, process definition and class definition. We explain each of these

in the following sections.

2.1.1 Program Definition

The program definition is the main component in an application. It. defines the

processes that are to be instantiated and their timing constraints. The timing

constraints of a process are the time parameters used by the run time system for

invoking the process periodically in a real-time environment. The component is

referred to as the control process of the application and has the following syntax:

control process:

control process process_name

begin

<process_decl_sec>

end process_name

<process_decl_sec>:

<process_decl> I <process_decl_sec> <process_decl>

<process_decl>:

process_name (deadline, frame);

Deadline and frame are the timing constraints on the process being defined. In

a real-time environment, frame is the time period (interval) within which a process

6

7

control process main
begin processA(100,200); processB(150,1000); end main

Figure 2.1 An example control process

activates, and deadline is its time deadline. An example of a control process is shown

in Figure 2.1.

2.1.2 Process Definition

The definition of a process includes a parameter section, variable declaration section,

facility declaration section and a procedure declaration section. The grammar is

defined below.

<process>:

process process_name

{ | process_parm }

{ | var_decl }

{ | fac_decl }

process_proc_decl

end process_name

The parameters of a process are the time constraints on it.. as outlined in

the previous section. Instantiation of a module creating instances or facilities is

carried out in the facilities section. Variables local to the process if any. are declared

in the variable declaration section. For any facility to be used in the procedure

defined inside the process, it has to be instantiated first, in the facilities section. We

explain the process of instantiation in detail in the next section. A process can have

only a single procedure defined inside its procedure declaration section. Sequential

8

process stackdr
facilities

i is integer;
s is stack(i.integer);

end facilities
procedure STACKDR

begin
local variables

st1 : s.STACK;
st2 : s.STACK;
one : i.integer;
five : i.integer;
ten : i.integer;

end local variables
s.set_stack_size(st1, ten);

s.set_stack_size(st2, ten);

s.spush(st1,one);
s.spush(st1,five);

end STACKDR
end stackdr

Figure 2.2 An example process

execution of the application program actually begins with the first statement inside

this procedure. The definitions of procedures and other subprograms supported by

the language are outlined in subsequent sections. An example of a. typical process is

shown in Figure 2.2.

2.1.3 Module Class

The facilities discussed in the previous section, are instances of module templates

which are ADT or ADO components. A typical ADT or ADO component in our

language model exports a type that can be used to declare variables and lies an

interface section which provides a set of operations or methods. These operations can

be used to manipulate (only) the variables which have been declared of the exported

type. In other words, variables of the exported type of the ADT component. can be

accessed only through the provided methods. The ADT components or modules can

9

be defined to be generic i.e., they can be parametrized by types or by operations.

and this generic nature of the component is what. contributes to their reusability. To

be used, modules must be instantiated. Instantiation of a module means fixing its

parameters (actual) and choosing one of many implementations. Such an instance

of a module is called a facility.

A module in the language model basically has three sections: the parameter

section, the auxiliary section and the interface section. In addition to these, the

number of operations or methods defined in the interface section is also explicitly

stated at the beginning of the module. The module definition is shown below.

module:

module module_name

num operations = 	;

{ | <mod_parm_sec>}

{ | <aux_sec>}

{ | <intf_see>}

end module_name

Example of a module is shown in Figure 2.3. The different sections of the

module are detailed in the following subsections.

2.1.3.1 Parameters Section In the parameters section, parameters of the module

are described, preceded and ended by the keywords module parameters and end

module parameters respectively. The parameters of a. module may include types and

operations. A type parameter, is simply stated preceded by the keyword hype. When

a module is parametrized by an operation (a. formal subprogram). the name of the

subprogram, its parameters, parameter passing modes. return variable name and its

type if any, are stated. Subprograms (operations or methods) in the language are

either procedures, functions or control functions. We discuss the different methods

10

module EXAMPLE
num operations = 2;

module parameters
. . .

end module parameters

auxiliary
. . .

end auxiliary

interface
procedure A . . .

end A

procedure B
. . .

end B
end interface

end EXAMPLE

Figure 2.3 An example module

11

supported by the language in subsequent sections. The parameters section has the

following definition:

<mod_parm_sec>:

module parameters

<mod_parm_seq>

end module parameters

<mod_parm_seq>:

<mod_parm> ; |

<mod_parm_seq> <mod_parm > ;

<mod_parm>:

type type_name

<proc_hdr>

<func_hdr>

<ctrl_func_hdr>

The parameter section of a module parametrized by a. type and an operation

is shown in Figure 2.4. Also, notice that the parameter of the function T_Copy(i.e.,

p) is declared to be of type T, which in fact is a. parameter type of I the module itself.

Preserves is a parameter passing mode; the different parameter passing mechanisms

of the language is covered in a separate section. Note that, the parameters section

is optional, i.e., a module which is not parametrized, obviously need not. require a

parameters section.

2.1.3.2 Auxiliary Section The definition of the auxiliary reaction is :

<aux_sec>:

auxiliary

{ J <fac_dec_sec> }

{ I <prvd_types> }

{ I <var_dec_sec> }

12m

module parameters
type T;
function T_Copy returns x :

parameters
preserves p : T;

end parameters
end T_Copy;

module parameters

Figure 2.4 The parameters section of a module

{ | <aux_oper_dec_sec> }

{ | <real_aux_sec> }

end auxiliary

We now discuss each of these sections separately. An example of an auxiliary

section is shown in Figure 2.5.

2.1.3.3 Facilities Section Instantiation of modules creating facilities, is done

inside the facilities section. This section is delimited with the keywords facilities

and end facilities. The process of instantiating a module involves creating specialized

copies of the module by fixing its formal parameters. The actual parameters being

supplied to a module for instantiating it, could be even operations or types exported

from other modules. Parameters exported by a module (operations. types) can be

used only after instantiating the module (which exports them) and thereby creating

a facility of it. In other words, to utilize any of the services provided by a module, an

instance of it has to be created first. Once modules are instantiated (in them auxiliary

section), the resulting facilities could be used in the operations defined inside the

module. The syntax of the facilities section is shown below.

<fac_dec_sec>:

<fac_dec> | <fac_dec_sec> <fac_dec>

<fac_dec>:

13

auxiliary
facilities

. . .
end facilities

provided types
. . .

end

variables
. . .

end variables

operations
. . .

end operations

initialization
. . .

end initialization
end auxiliary

Figure 2.5 The auxiliary section of a module

14

facilities
i is integer;

i1 is integer;
a is array(T);
r is record3(a.array, i.integer, il.integer);

end facilities

Figure 2.6 An example facilities section

facility_name is module_name (<arg_list>) ;

<arg_list>:

arg_name , <arg_list>

2.1.3.4 Provided Types Section Types exported by a module if any, are stated

in the provided types section. The keywords bounding the section are provided types

and end. The definition is shown below:

<prvd_types>:

| <prvd_types_sec>

<prvd_types_sec>:

provided types

<prvd_types_seq>

end

<prvd_types_seq>:

<prvd_type> | <prvd_types_seq> <prvd_type>

<prvd_type>:

type_name is represented by long_type_name

Apart from stating the name of the exported type, its representation (which

could be exported from another facility) is also stated, using the keywords is repre-

sented by. Note the distinction between types exported by a module and the type

15

provided types
STACK is represented by r.record2;

end

Figure 2.7 An example provided types section (Auxiliary section)

with which it is parametrized. An exported type (from a module) can be used to

declare variables (outside the module), and these variables can be manipulated only

with the operations provided by the module. Direct Access to the data definition of

the variable is not allowed and therefore any operation, if required to be performed

on the variable has to be through the methods defined in the module exporting the

variable's type. A parameter type on the other hand is a type imported by the

module which is used to fix the formal type wherever it has been used inside the

module. The provided types section of a module in which types exported by the

module are stated, is shown in Figure 2.7. The illustrated auxiliary section also has

a type which the particular module is exporting and note that the representation of

this type is being exported from another instantiated module (a facility).

2.1.3.5 Variable Declaration Section This section contains the declaration of

static facility variables of the module. These variables are quite similar to the global

variables in other languages as it can be referenced in any operation declared inside

the module. That is, variables declared in this section has a global effect within and

inside the module (only). Initialization of the variables declared in this section takes

place automatically when instances of the module (having this section) is created in

other modules. The variable declaration section has the definition:

<var_dec_sec>:

variables

<var_dec_seq>

16

variables
front: i.integer;
rear: i.integer;

end variables

Figure 2.8 An example variables section

end variables

<var_dec_seq>:

<var_decl> <var_dec_seq> <var_decl>

<var_decl>:

var_name : type_name ;

2.1.3.6 Auxiliary Operation Declaration Section This section contains the

declarations of operations, which have a local effect to the module. In other words,

operations declared in the auxiliary section of a module can be called only by the

operations declared in the interface section of the same module and not by any other

module (operations) which declares a facility of it. The auxiliary methods therefore,

are á la private methods. The syntax of the auxiliary operation declaration section

is as follows.

<aux_oper_dec_sec>:

| <aux_oper_dec_seq>

<aux_oper_dec_seq>:

operations

<oper_decl_seq>

	

end operations

<oper_decl_seq>:

<proc_decl> |

<func_decl> |

17

<ctrl_decl> |

<oper_decl_seq>

<proc_decl> |

<oper_decl_seq>

<func_decl> |

<oper_decl_seq>

<ctrl_decl>

<proc_decl>:

procedure proc_name

<proc_parm_sec>

begin

<loc_var_dec_sec>

<code>

end proc_name

<func_decl>:

function func_name returns var_name : type_name

<func_ctrl_parm_sec>

begin

<loc_var_dec_sec>

code

end func_name

<ctrl_decl>:

control func_name

<func_ctrl_parm_sec>

begin

<loc_var_dec_sec>

code

end func_name

18

operations
procedure set_stack_size

parameters
alters s: STACK;
alters size: i.integer;

end parameters
begin

local variables
contents: a.array;

end local variables
r.recl_access(s, contents);
a.set_array_size(contents, size);
r.recl_access(s, contents);

end set_stack_size

control is_empty
parameters

preserves s : STACK;
end parameters
begin

local variables
top : i.integer;
zero: i.integer;

end local variables
r.rec2_access(s, top);
if i.equal(top,zero) then

r.rec2_access(s,top);
return true;

else
r.rec2_access(s, top);
return false;

end if;
end is_empty

end operations

Figure 2.9 An example auxiliary operations section

19

The methods or operations (abstract data types) discussed above can be

procedures, functions, or control functions. A procedure may modify its parameters

whose modes are not preserves. We discuss the different parameter passing

mechanisms of the language in a separate section. Functions and control functions

may not modify their parameters. A function returns a value that. must be assigned

to a variable. A control function returns either true or false, which is used as the

condition in an if statement or a while statement.

2.1.3.7 Real Auxiliary Initialization Section This section of the auxiliary

section of a module contains the code which has to be executed first. when a facility

of the module is created. The syntax of the real auxiliary initialization section is as

follows.

<real_aux_sec>:

| <real_aux_init>

<real_aux_init>:

initialization

begin

{ | <var_dec_sec> }

<code>

end initialization

By default every module contains an implicit initialize operation which contains

code to initialize the facilities and static variables declared in the module. This code

for initialization is inserted by the compiler. However if the user desires any variables

to be initialized, then that could be stated explicitly in the real auxiliary initialization

section. The compiler would include the user specified initialization operations with

the default ones.

20

initialization
begin

local variables
front : i.integer;

end local variables
i.increment(front);

end initialization

Figure 2.10 An example auxiliary initialization section

interface
type type_name 	
end type_name

procedure A

. . .

end A

function B
. . .

end B
end interface

Figure 2.11 The interface section of a module

2.1.3.8 Interface Section The methods in a module are defined in the interface

section. The interface section has a type declaration section and an operation decla-

ration section. The section has the form:

<intf_sec>:

interface

{ | <type_decl_seq> }

{ | <opr_decl_seq> }

end interface

The interface section of a module is shown in Figure 2.11. We now explain each of these sections separately.

21

type STACK is represented by r.record2 exemplar ex
end STACK

Figure 2.12 An example provided types section (Interface section)

2.1.3.9 Provided Types The provided types are declared in the type declaration

section and has the syntax:

<type_decl_seq>:

<type_decl> | <type_decl_seq> <type_decl>

<type_decl>:

type type_name is represented by long_type_name

exemplar var_name

{ | <type_init> }

{ | <type_fin> }

end type_name

<type_init>:

initialization

begin

{ | <var_dec_sec> }

<code>

end initialization

<type_fin>:

finalization

begin

{ | <var_dec_sec> }

<code>

end finalization

22

As indicated in the type declaration section, each type in a synthesised module

is represented by another type which is a parameter to the module or a type provided

by some other facility instantiated in the module. A synthesized module therefore, is

a module built with types exported from other modules (while being instantiated),

as opposed to primitive ones which are totally built-in i.e., provided at the language

level. The type_init section contains the code to be executed when a variable of

the declared type is initialized. The exemplar is initialized at the beginning of the

execution of the operation by calling the initialization operation of the representation

type. Local variables may be declared and the statements (code) may modify the

initial value given to the exemplar. The type_init section is optional and if it is not

specified by the user, the compiler still would generate code for the operation, which

contains calls to the initialization operation of the representative type.

The type_fin section contains the code to be executed when a variable of the

declared type is finalized. The exemplar is finalized at the beginning of the execution

of the operation by calling the finalizing operation of the representative type. Like

the type_init section, this section is also optional and if not specified by the user,

the compiler as before, generates code which incorporates calls to the finalization

operation of the representative type.

2.1.3.10 Interface Operation Declaration Section This section is quite

similar to the auxiliary operation declaration section. However, unlike in the auxiliary

section, the operations defined in the interface operation declaration section can be

called by any external module which has an instance of the module with called

operation in it (

á la

 public methods). Also, note that the interface operations

are the operations which a module exports to other modules. The syntax of the

operation definition in this section is the same as that of its counterpart section

23

in the auxiliary. We now discuss the executable statements or instructions of the

language.

2.1.3.11 Code The definition of a method (as discussed) includes declaring its

parameters and local variables, followed by the actual code wherein the major activity

is instance calls, as in most other object-based languages. The code (executable

statements) of the language has a syntax:

<code>:

<stmt> | <code> <stmt>

<stmt>:

<swap> |

<assign> |

<if> |

<while> |

<return> |

<do> |

<proc_call>

As indicated, the different type of statements supported in the language are

swap, assign, if, while, return, do and procedure calls. Except for the swap statement,

the other operations are common features in all programming languages. We now

discuss each of these statements separately, in the following sections.

2.1.3.12 Swap Statement The only built-in primitive for manipulating the values

of variables is the swap statement, which simply exchanges the values of the two

variables (i.e., the operands involved). The swap operator is denoted by :=:. For

example, to swap the values of a and b, one would write a :=: b. The statement has

the form:

24

<swap>:

var_name :=: var_name

2.1.3.13 Assignment Statement The statement has the syntax:

<assign>:

var_name := func_call

The assignment statement in our language model, unlike in other languages

does not support copying of one variable to another. Thus, one cannot write a:=b.

To achieve a copy, one must explicitly call the copy function: a:=integer_copy(b).

In fact, assignment statement in the language, assigns the return value of a function

call to a variable. For copying the value of one variable to another, a call to the copy

function of the module providing the variable's type must be made.

2.1.3.14 If Statement The statement has the syntax:

<if>:

if { | not } <ctrl_call> then

<code>

{ | else

<code> }

end if

If statements always contain a control call which returns a boolean value. The

problem of "dangling else" cannot occur because of the explicit end if.

2.1.3.15 While Statement The statement has the form:

<while>:

while { I not } <ctrl_call> do

25

<code> 	end while

	

Like the if statements, the while statements of the language also, always

contains a control call.

2.1.3.16 Do Statement The statement has the syntax:

<do>:

do count times

begin

<code>

end do

count is an integer constant and as implied, the loop is executed count number

of times.

2.1.3.17 Return Statement The statement has the syntax:

<return>:

return |

return true |

return false |

return true and return false can be used only in control functions to return a

boolean value. However return can be used in any operation for an unconditional

return from it.

2.1.3.18 Procedure Call The statement has the following definition:

<proc_call>:

long_proc_name { | (arg_list) }

26

long_proc_name is similar to long_name i.e. it signifies that the called procedure

can be

• Provided by the module itself,

• Provided by an instantiated facility or

• Parameter to a module.

The arg_list specifies the parameters to the procedure. func_call and ctrl_call are quite

similar to the proc_call except for the difference in the parameter passing modes as

discussed previously. An example of the interface section is given in Figure 2.13.

2.1.4 Mechanisms for Parameter Passing

Conceptually, parameters are passed by swapping i.e., at operation invocation. the

values of the formal parameters are swapped with the values of actual parameters;

and on operation return, they are swapped again. Any implementation of parameter

passing that achieves this abstract effect is, of course, acceptable. As discussed

in [4], component efficiency increases when the values of composite data structures

are swapped instead of copying them. The arguments to a call must be unique. i.e.

the same variable may not appear twice in a particular argument list.

The different parameter passing modes are defined below:

1. Alters: The value of the actual parameter is modified. Information flows from

the caller to the callee at invocation and flows in the reverse direct ion upon

return.

2. Preserves: The value of the actual parameter may be modified. but is restored

to its original value before the operation returns. Information flows from the

caller to the callee at invocation and the same information flows in the reverse

direction upon return.

interface
type QUEUE is represented by r.record3 exemplar ex
end QUEUE

procedure setsize
parameters

alters Q; QUEUE;
alters size: i.integer;

end parameters
begin

local variables
contents: a.array;

end local variables
r.rec1_access(Q, contents);

a.set_array.size(contents, size);
r.rec1_access(Q, contents);

end setsize

control IsEmpty
parameters

preserves Q: QUEUE;
end parameters

begin
local variables

front: i.integer;
rear: i.integer;

end local variables
r.rec3_access(Q, rear);
if i.equal(rear,front) then

return true;
else

return false;
end if;

end IsEmpty
end interface

Figure 2.13 An example interface section

28

3. Consumes: The value of the parameter passed to the operation is "consumed."

by the procedure. Information flows only from the caller to the callee. An

initial value is assigned to the actual parameter upon return.

4. Produces: Is used to provide the caller with a. value created by the operation.

Information flows only from the operation to the caller. The actual parameter

is finalized before the new value is assigned.

Local variables are automatically initialized (by allocating storage and giving a

value to the contents of the storage) upon entry to an operation that 'declares them,

and finalized (by reclaiming storage) upon exit from an operation that declares it. A

call to initialize (or finalize) a variable is inserted by the compiler at the beginning

(or end) of the code of the operation that declares it. The language provides the

types integer and array of integer. Variables are automatically assigned initial values.

Integer variables are assigned the initial value of zero (0). Integer arrays are initialized

to have sizes of zero.

Additional features of the language include the complete absence of global

variables. Instead, operations can access three kinds of data: operation parameters.

local variables and module variables (static variables associated with a module

instance that are shared among operations exported by that. instance). Aliases

cannot occur, i.e., the data structure representing a variable's value can only he

known by one name at any time. No types are built into the language. therefore

almost all statements are procedure calls, since manipulating a variable's value can

take place only by a call to the facility operation exporting the variable's type.

Modules cannot be instantiated dynamically, i.e., instantiations of modules are

declarations (the analogy could be that of the variable-type relation i.e.. an instance

is to a module what a variable is to its type) that occur outside the code of the module

operations and all instantiations are performed when a program begins execution.

29

The operations for manipulating integer and array variables are automat ically

defined and should not be redefined in a user's program. The complete grammar of

the language is given in Appendix A and the different integer and array operations

provided at the language level are defined in Appendix B.

2.1.5 Compiling, Assembling & Linking

An application is developed in the proposed language model through separately

written and compiled modules. Separate compilation of modules is a feature of our

language model and this enables to develop programs in a highly modular fashion.

contributing much to an off the shelf style of programming. The compiled modules

are then assembled (also done separately), before being linked together by the linker

and loaded.

The compiler expects the module files to be named with the name of the module

itself. That is, a file containing a module say, queue has to be named queue itself

and this naming convention has been standardized with the language associated tools

also, which we discuss in the next section. Also, note that the source code of a module

has to be contained in a single file. The compiler doesn't support the spreading of a

module code across multiple files. The compiler is invoked by the name CR. and to

compile a source module:

$CR module_file

The compiler generates a set of four files:

•
module_file.asm

• module_file.fac

• module_file.gpd

• module_file.xtrn

30

These are needed by the assembler and the linker. Once compiled, the same source

module files are then assembled as:

$assem module_file

The assembler generates the machine code in a file, module_file.mac. The linker

is then invoked to link all the assembled files. The argument to the linker is just the

file name of the control process module say, ctl_file which is the root module in the

application. Note that this file ctl_file also must be compiled and assembled as any

other module in the application. The linker is invoked as:

$linker ctl_file

The linker produces the files:

• ctl_file. code

•
ctl_file.proc

• ctl_file.exe

• ctl_file.disp

Once these files are produced, the application is ready to be loaded onto the run-time

system. The run-time system is then invoked as:

$rtss ctl_file

2.2 Associated Tools

The language associated tools developed as part of this work and otherwise, includes

a DAG Generator and a Graph & Clones Extractor. The DAG Generator generates

the Call DAG and the Graph & Clones Extractor extracts the program dependence

graphs of an application. We explain the Call DAG and the dependence graphs in

Chapter 4. The DAG Generator takes the file name of the control process module as

the argument and generates the Call DAG of the application. It is invoked as:

31

$daggen ctl_file

The daggen produces the following files describing the Call DAG.

• dict.dag

• edges.dag

• obj.dag

• proc.dag

The Graph & Clones Extractor generates the dependence graphs and the cloning

needs of facilities for each operation of a module in the application. It is therefore

invoked with module file as the argument, as:

$graphgen module_file

The graphgen generates the files:

• module_file.cdg

• module_file.ddg

• module_file.cddg

• module_file.fdg

• module_file.pdg

• module_file.clone

The "._dg" files describes the different dependence graphs and the module _file.clone

details the facility-clone needs of the module.

32

2.3 An Application Program

In this section, a real-time application called vehicle developed in our language model

is selected and explained, as an example to illustrate the programming paradigm.

The application program basically uses six modules, each declared before its

use. These are the main module, process vehicledr, integer, vehicle, coordinate and

record2. All the modules (except for the primitive ones, integer and record2) are

illustrated in Appendix C. The main module is the control process main and it calls

a single process, the vehicledr.

The process vehicledr uses the facilities i, an instance of the module integer

and v, which is an instance of the module vehicle. The process also incorporates

the procedure definition vehicledr in it, which has its own set of local variables and

most of them have been declared to he of the types exported from other modules.

The facility i, an instance of the integer module exports the type integer and r.

an instance of the vehicle module exports a user - defined type: vehicletype. As

illustrated, the code in the vehicledr procedure is mostly call statements, invoking

operations defined in facilities i and v. The integer module is a primitive module

provided at the language level for integer operations and is used for manipulating

integer variables.

The vehicle module is defined and compiled separately. It illustrates a typical

module of the language which is parametrized by a type, vehicleType. Note that the

vehicleType defined in the auxiliary section is itself an instance of a type exported

from another facility, re. The facility re is an instance of the module record2 and is

instantiated with the parameters in.integer and co.coordtype which again are exported

from the respective modules. The operations defined in the interface section of the

vehicle module further illustrates the parameter passing modes, the facility instant

iations, the mechanism of type exporting etc., in our object-based paradigm. We use

33

the vehicle application program throughout this thesis for illustrating the execution

paradigm, ARPC model and the concurrency propagation techniques.

CHAPTER 3

THE EXECUTION PARADIGM

3.1 Introduction

The execution paradigm is explained in this Chapter, based on the vehicle application

program which was illustrated in Chapter 2. The main module, control process main

acts as an informer to the compiler and the linker, informing the system about the

process vehicledr that has to be instantiated with the actual parameters. which are its

timing constraints. An instance of the process vehicledr is then created by the linker

and the execution of the program begins with a call to the operation gen_one, which is

the first executable statement in it. Within the process vehicledr, the instantiation of

the modules integer and vehicle takes place to create the facilities it and v respectively.

Facility variables are declared in the procedure vehicledr using the types provided by

i and v. Operations of the facilities i and v are called in the procedure vehicledr of

the process vehicledr, using the notation: facility.operation(parameters).

In the vehicle module, instantiation of integer, coordinate and record2 modules

takes place, creating the facilities in, co and re respectively. The type integer

provided by the facility in and coordtype provided by the facility coordinate are used

to instantiate the record2 module, creating the instance re. Further, the type record2

provided by the facility re is exported as the type vehicleType of the module vehicle

itself.

3.2 The Execution Model

Sequential execution of the application program proceeds as follows. The initial-

ization operation of a facility invokes the facility initialization operations of all

facilities it instantiates; initializes its facility variables: and executes the user-

defined facility initialization code. Execution begins when the facility initialization

34

35

operation of the main facility i.e., process vehicledr is invoked by the run-time system.

We denote the facility initialization operation of this process as vehicledr.minit

and a similar convention is adopted with all the other facilities. The operation

vehicledr.minit invokes i.minit and v.minit. Since v creates facilities in, co and re,

its facility initialization operation, v.minit invokes in.minit, co.minit and re.minit.

Further, co invokes i.minit, in.minit and re.minit. Notice that we have different

instantiations of the modules integer, record2 in different as well as same modules.

Thus the minit operation of each facility initializes the module instances created by

that facility.

After vehicledr.minit initializes the facilities declared in vehicledr, it initializes

the facility variables of vehicledr (veh1, veh2, id1 etc.) by calling the type initial-

ization operations of facilities i and v. We denote the type initialization operation for

typei provided by facility p as p.typeitinit. Similarly, p.typeitfin will denote the type

finalization operation for typei provided by facility p. The initialization of variables

veh1, veh2, id1 etc., is therefore accomplished by invoking v.type1tinit. v.type1tinit

i.type1init respectively and so on.

The language is implemented by having each type initialization operation

return a pointer to the representation of a variable, storing the pointer in the

activation record of the operation that declared the variable. When the variable

is passed as a parameter, only the pointer is passed. Since information hiding is

enforced by the language, such a pointer will only be dereferenced by an operation

of the facility providing the variable's type; operations of facilities other than the

one providing the variable's type can only pass the pointer to other operations.

Once the facility variables of vehicledr have been initialized. the user-defined

code of the facility initialization operation is executed. Thus, procedure vehicledr

being the facility initialization operation of vehicledr, i.gen_one is called, then

i.increment is called and so on.

CHAPTER 4

TECHNIQUES FOR CONCURRENCY EXTRACTION

4.1 Asynchronous Remote Procedure Call

In this section, the parallel execution model proposed for the execution of programs

constructed out of ADTs is discussed. Architecture for Reusable software Components

(ARC) [5] is an environment which has been developed for the execution of ADT

modules supporting reusability, taking into account the potential run time ineffi-

ciencies of such software. In the distributed memory, parallel computing environment

assumed for our execution paradigm, ARC is used as the basic processing element..

In the proposed model, programs are executed in parallel as follows. (Refer

to the Vehicle Application discussed in Chapter 2). The code of the facilities is

statically assigned to the PEs (Processing Elements) and multiple facilities may

reside on the same PE. Execution of the program begins when the facility

initialization operation of the main facility vehicledr is invoked by the run time system.

The operation vehicledr.minit, then invokes the initialization operations of all other

facilities instantiated in it; i.minit and v.minit. The execution of these operations

which had been called by vehicledr.minit proceeds in a parallel fashion, if the facilities

i and v are residing on different PEs. Also, since the facility v creates or instantiates

the facilities in, co and re, its initialization operation v.minit invokes in.minit co.minit

and re.minit. Similarly, the minit operations of each facility initializes the module

instances created by that facility.

After vehicledr.minit initializes the facilities declared in vehicledr, it then

initializes the variables veh1, veh2, id1 etc., declared in vehicledr by calling

v.type1tinit, v.type1tinit, i.type1init respectively and so on. Initialization of a

variable involves storage allocation and assigning an initial value to the allocated

storage. Thus, a variable's representation is stored on the PE where the code of

36

37

the type initialization operation that creates it resides. Therefore the only way the

pointer to the variable can be used (by operations of facilities other than t lie one

which provides the variable's type) is by passing it as a parameter. Since information

hiding is enforced by the language, such a pointer will only be dereferenced by an

operation of the facility providing the variable's type and such operations will reside

on the same PE as the representation of the variable; operations of facilities other

than the one providing the variable's type can only pass the pointer as a parameter

to other operations.

Once the facility variables of vehicledr have been initialized, the user-defined

code of the facility initialization operation is executed. Thus operations gen_one,

increment etc., are called in their lexical order.

When a variable is passed as an argument in a call, the implementation ensures

that only a pointer to its representation is passed. Thus there exists little commu-

nication overhead for calls. Also, to maintain consistency, only a single copy of the

pointer to a data structure is accessible at any instant. To hide the latency of a remote

call, an operation is permitted to continue execution until it. attempts to, access a

"locked" variable. This model of parallel execution is termed Asynchronous Remote

Procedure Call or, ARPC. A variable is automatically locked when it is passed as a

parameter to a call and is unlocked upon return of the call. Any operation attempting

to access a locked variable must wait for a remote call to return (and then unlock

the variable) before retrying to access.

The ARPC model can achieve parallel execution at multiple levels in the

abstraction hierarchy. Thus potential parallelism within a program increases with

the number of levels of abstraction and the model encourages the development of

highly cohesive, loosely coupled modules.

38

4.1.1 The Program Call DAG

In this section, the construction of the Directed Acyclic Graph (DAG) is illustrated

, which can be used to model the potential parallelism in a program. The DAG for a

particular program shows the relationship among its distributable components, and

the maximum amount of parallelism attainable with ARPC. The graph can be used

for assigning the facilities on to the PEs.

A program is modeled by the DAG, G = (V,E), where:

• v ϵ V denotes the operations of a facility, f(v);

• (x,y) ϵ E indicates that the code of facility f(x) calls some operation(s) provided

by facility f(y); and

• There exists exactly one vertex in G with indegree 0, representing the facility

at the highest level of the abstraction hierarchy. This vertex is referred to as

G.root.

The DAG representing a particular program can be constructed as follows.

1. Place a vertex in the graph for each facility used in the program.

2. Place an edge in the graph for each call dependency in the program. Only calls

between operations of different facilities are represented in the graph.

The DAG for the sample program (shown in Figure 9.1) contains a node for

each module instance used. The node control process main in the graph indicates the

root module invoking other modules in the program. Edges between nodes denote

calls to operations of one facility by another facility. As an example, vehicledr process

calls operations of facilities i and v and so on. Also, note the flow of edges in the DAG

between siblings, indicating call relationship between facilities at the same level. This

is due to the instantiation of one facility using the types and/or operations provided

by other facilities at the same level. For example. in the vehicle module, an instance

39

Figure 4.1 Call DAG of the Vehicle Application Program

of the record2 module (re) is created using types exported from instances of integer

(in) and coordinate (co) modules.

4.1.2 Concurrency Propagation Techniques

In this section, the A RPC model is evaluated and theorems identified in the context

of concurrency propagation and parallelism extraction are discussed. Before the

proposed theorems are formally stated, the terminology used is first elaborated.

The term chain is defined as a sequence of facility names: a o b o· · ·o, 	where f

immediately preceding g in the sequence indicates that an operation of f calls an

operation of g. A chain basically denotes a calling sequence that occurs in the source

code of a program. For example, the chain a o b o e signifies that an operation

of facility a calls an operation of facility b, that an operation of facility b calls an

operation of facility c. The chain also indicates the execution of an operation of the

last facility named in the chain. Thus, the chain a o b o e represents the state in

which an operation of facility e is executing as a result of a call from an operation

40

Figure 4.2 Extended Call DAG of the Vehicle Application Program

of facility b (which in turn was called by an operation of facility a). Operations of

facilities a and b may or may not be executing in parallel with the operation of e,

depending upon synchronization constraints; the chain does not specify these facts.

In the remainder of this Chapter, greek letters (α, β, γ, ...) are used to specify

chains, and lower case English letters (a, b, c, ...) are used to denote facility names

and operation names.

4.1.2.1 The Extended Call DAG The program Call DAG described previously

could be extended to demonstrate two kinds of parallelism relationships.

In the extended Call DAG, all pairs of facilities say (a,b) where a.p calls b.q and

where a.p can continue its execution after calling b.q because there are no

common parameters between the two (call) statements, are represented in the Call DAG as an

edge drawn using parallel lines. As as an example, if (a,b) ϵ E. then a can execute

in parallel with b if ∃p, q such that

41

1. a.p calls b.q and

2. the call is immediately followed by at least one statement. that does not access

any of the parameters passed to q.

The extended Call DAG for the example application program is shown in

Figure 4.2. The parallel edge between the nodes vehicledr and integer in the graph

indicates that the process vehicledr can continue with its execution even after calling

i, an instance of the integer module, at least in one case, because of the absence of

common parameters.

The Call DAG can also be used to indicate which immediate descendants of a

vertex can execute in parallel with each other by placing labels on the edges. For

example, suppose that (a,b) ϵ E, representing a call from operation a.p to operation

b.q; and (a,c) ϵ E, representing a call from operation a.p to operation c.r. Assume

the call to q is immediately followed by a call to r, and that the two calls have no

parameters in common. Using the ARPC model, the execution of q can proceed in

parallel with the execution of r. Such parallelism between facilities is denoted as

labels on the edges (a,b) and (a,c). The labels are sets of facilities. Thus t he labels

on the edge (a,b) is c and the label on edge (a,c) is b. In the Extended Call DAG

shown in Figure 4.2, the label v on the edge (vehicledr,i) indicates that the process

vehicledr can continue its execution by calling the facility v, even after invoking a

call to the facility i.

4.1.2.2 Theorems for Concurrency Propagation The fact that all chains

begin with the same facility is true since a single sequential program is being

paral-lelized, and only a single chain executes initially. Thus for any two chains a, b of

an application program, it is true that they have a common prefix. This is formally

stated in Theorem 1.

42

Theorem 1 For any two chains a, /3 of a program, it is true that 3-,./S. c(a =

-yoSAO.-yoe)

Assume that an operation p of facility a (denoted as a.p) calls an operation q

of facility b (denoted as b.q), and that q calls an operation r of facility c (denoted as

c.r). Let a represent an arbitrary chain. If the following are true,

1. the chain a o a can execute in parallel with the chain a o a. o b.

2. the chain a o a o b can execute in parallel with the chain a o a o b o c.

then it is also true that the chain a o a can execute in parallel with the chain a o a

o b o c. Intuitively, this means that if a.p can execute in parallel with its call to b.q.

and if b.q can execute in parallel with its call to c.r, then a.p can execute in parallel

with the call of b.q to c.r. This fact is formally stated as Theorem 2. The symbol II

when placed between two chains denotes that the chains can run in parallel.

Theorem2if a llaoanaoall a oaobthenaIIa o a. o b

Theorem 2 is used in the assignment algorithms (assigning modules to

processors) discussed in [3]. The II relation is not transitive. That. means. for

some arbitrary chains say, a, Q and if a II Q A#II 7 is true, then a II I need not

be true. To further illustrate this, consider the case where a.p calls b.q and a.p calls

c.r . It will be true that a o a 11a o a o b if after the call to q. a.p executes code

(which may be a call statement like c.r) which does not access parameters passed to

q. For example, a.p may call r with different parameters than that were used in the

call to q. However following the call to r, p may access one of the parameters passed

to r. Such an access can cause p to wait until r returns. Thus a o all caoaobAn

oaobilaoaoc,but-(aoallaoaoc).

Theorem 3 deals with the parallel execution of chains. It states that, if two

chains a and /3 can execute in parallel, then chains a o a and /3 o b can also execute

in parallel as long as a does not represent the same facility as b, and a is not used in

43

chain /3 and b is not used in chain a. For example, if a o b aoci hen aobod

aocoe,but-i(aobodllaocod),and-i(aobodilaocob).Thetheoremis

formally stated as follows.

Theorem 3 if a II /3 then a o a II fi o b, if all of the following are true:

1. a 0 b

2. a is not in the chain

3. b is not in the chain a

4.2 Cloning of ADT Instances

The amount of potential parallelism inherent in the program is fully revealed by

analyzing the dependence relations of the source code. As discussed in Chapter

1, we extend the dependence relations of the program to include facility depen-

dences (or instance dependences), since that could identify greater opportunities

for exploiting parallelism. In this section, the identification of such opportunities

through dependence analysis and the constraints to the ARPC model are discussed.

We begin with the program dependence graphs.

4.2.1 Program Dependence Graphs

The relation among statements in the program is represented by the program

dependence graphs. In the program dependence graphs, statements are represented

as nodes and edges denote the dependences between them as implied by their lexical

order. The basic dependences among the statements are control and dai a. and

this results in the Control Dependence Graph (CDC) and the Data Dependence

Graph (DDG). The dependences among program statements due to facilities are

represented in the Facility Dependence Graph (FDG) and in the MG. an edge

indicates that the source and the destination use the same facility. Each of these

44

Figure 4.3 An if-statement (a) and its CDG (b)

dependences are defined in the following sections and also, it is shown how these

graphs are generated at compile-time for the cloning analysis to follow.

4.2.1.1 Control Dependence For any two statements Si and Sj, if Sj has

to be executed after Si because of the control structures of the language (such

as if-statements, while-statements), then the statement Sj is said to be control

dependent upon statement Si .

For example, in an if-statement structure, all the statements in the two branches

of the conditional must wait for the completion of the if-statement which is the

evaluation statement, before the execution could continue any further. Therefore all

the statements in the two branches of the if-statement are control dependent upon

the conditional evaluation statement.

A control dependence graph (CDG) is a directed acyclic graph (DAG) in

which nodes represent program statements and edges, control dependencies between

them. Formally,

45

The CDG could be built in different ways as outlined in [2. 6]. We build

the CDG from another graph called the Statement Table which contains all

pertinent information about each statement in the program. The attributes

of program statements like statement type, statement dependence nesting level.

statement address, facility used, parameters etc., are stored in the statement. table

and such a graph is easily generated from the compiler. A statement called entry is

added to the CDG for convenience and it just means that all statements in the CDG

are directly or indirectly control dependent upon entry, and no statements could

be executed without executing this entry node. Also, for a statement which has

two or more branches, a Region node is added to the CDG for each branch. Thus

the start of a branch is indicated by the region node and the region node becomes

control dependent upon the statement that branches. All the statements in the two

branches of the conditional now becomes control dependent upon their respective

region nodes. This is illustrated in Figure 4.3. The attributes of statements stored

in the statement table are defined below:

1. Statement Type indicates the type of the statement such as call. if-then-else.

while, for etc.

2. Statement Dependence Nesting Level in the statement. table is defined as the

number of region nodes on the path from the root to it..

3. Statement Address is the line number in the source code. 4.

Facility Used is the set of facilities used by the statement..

5. Statement Parameter List is the set of variables used by the statement.

6. Childs point to the statement table of the children (left child or right child).

statements of the statement. This occurs when the statement happens to be

an if, while or a do for which there are control dependences. For all other

46

S I 	accessX(C 1, X 1);

S2 	i.increment(X 1);

S3 	accessY(C1, Y2);

S4 	Y2 := in_integer_copy(Y 1);

S5 	if i.equal(X1, X2) then

S6 	 accessX(C2, X2);

S7 	 if in.equal(Y1, Y2) then

S8 	 re.recl_access(C1, X2);

S9 	 re.rec2_access(C2, Y1);

else

S 10 	 re.recl_access(C2, X1);

Si 1 	 re.rec2_access(C1, Y2);

end if

S12 	 Y1 := in.gen_five;

S13 	 return true;

else

S14 	 resecl_access(C1, X1);

S15 	 return false;

end if

Figure 4.4 The coordsEqual operation of coordinate module

statements, this would be a null pointer. Thus the statement table graph is a

binary tree with each statement having a left child or a right. child depending

upon its statement type.

The algorithm for building the CDG from the statement table is shown in

Figure 4.7. We select the coordsEqual operation of the coordinate module (the vehicle

application, explained in Chapter 2), as an example program segment to illustrate

all the dependence graphs and the cloning analysis thereafter. The coordsEqual

operation is shown in Figure 4.4. The CDG of the operation is shown in Figure 4.5

and the statement table of the component is illustrated in Figure 4.6. We now discuss

the data dependence graph.

47

Figure 4.5 The CDG of coordsEqual operation

4.2.1.2 Data Dependence Graph For any two statements Si and Sj, if Sj is

lexically after Si and Sj needs some parameters which were passed on to

Si

, then Sj

is data dependent upon Si .

Intuitively, this means that the statement Sj must wait for the completion of

statement Si in order to access the data used by Si. This data. dependence between

Si and Sj is denoted as Si →d Sj . Formally, the Data Dependence Graph is defined

as follows.

We now present the algorithms for building the DDG. The main algorithm is

shown in Figure 4.8, and the supplementary ones in Figure 4.9 & Figure 4.10. The

DDG of the coordsEqual operation (Figure 4.4) obtained by applying the

is shown in Figure 4.11.

48

Figure 4.6 The Statement Table of coordsEqual operation

BuildCDG(StaTab : StaTab_TYPE, entry : NODE_TYPE)
var Q: QUEUE of node;

x, y, z: NODE_TYPE;
begin

ENQUEUE(entry, Q):
while not EMPTY(Q) do

begin
x := FRONT(Q);
DEQUEUE(Q);
for each none NULL ChildStaTab C of x in the StaTab do
/* ChildStaTab is either x.LeftC or x.RightC */

begin
if (x.Type = "if") then

begin
y := getRegionNode; /* get a new region node */
insert(x,y,CDG); /* insert an edge from x to y in the CDG

end
else

y:=x;
for each entry N in C do

begin
z := getNode(N); /* get a new node with the label. Nlabel */
insert(y,z,CDG);
ENQUEUE(z,Q);

end for
end for

end while
end BuildCDG

49

Figure 4.7 Algorithm for building CDG

SearchDD(tt : StatementType)
PS : stack(StatementType)
begin

if (tt.rightc 0 null) or (tt.leftc 0 null) then
Push tt.rightc & tt.leftc into stack PS;

else
begin

st = successiveStatement(tt);
if (st ≠ null) then stack.push(st, PS);

end
while not stack.empty(PS) do

begin
st = stack.pop(PS);
if (st ≠ null) then

begin
if (checkDD(st,tt) = true) then

begin
DDG(tt,st) = true;
Remove (st.Parameters n tt.Parameters) from tt;
if no more parameters in tt remain to be checked then

while not stack.empty(PS) do st = stack.pop(PS);
else

begin
st = successiveStatement(tt);
if (st ≠ null) then stack.push(st, PS);
else flag = true;

end
end

else
if (st.rightc ≠ null) or (tt.leftc ≠ null) then

Push st.rightc & st.leftc into stack PS;
else

begin
st = successiveStatement(tt);
if (st ≠ null) then stack.push(st, PS);

end
end

if (flag = true) then
while not stack.empty(PS) do st = stack.pop(PS);

end while
end SearchDD

50

Figure 4.8 Algorithm for building DDG (searching for data dependence)

successiveStatement(st : StatementType) returns StatementType;
begin

if (st.rightc ≠ null) or (st.leftc ≠ null) then
begin

if (st.leftc ≠ null) then
return (st.leftc);

if (st.rightc ≠ null) then
return (st.rightc);

end
else

if (st.sibling ≠ null) then
return (st.sibling);

else
begin

while (st.parent ≠ null and st.parent.sibling = null) do
st := st.parent;

if (st.parent $ null and st.parent.sibling ≠ null) then
return (st.parent.sibling);

else
return null;

end
end successiveStatement

Figure 4.9 Algorithm for building DDG (finding successive statement)

checkDD(st, tt : StatementType) : boolean;
begin

if (st.Parameters n tt.Parameters = 0) then
return true;

else
return false;

end checkDD

51

Figure 4.10 Algorithm for building DDG (finding common parameters)

Figure 4.11 The DDG of coordsEqual operation

52

53

BuildCDDG(DDG,CDG,CDDG)
begin

copy CDG to CDDG;
for each Si →d 	Sj in DDG do

begin
if Si is not the ancestor of Sj in CDG then

begin
if parent(Sj) is a region node which is the ancestor of Si in CDG then

remove the edge from parent(Sj) to Sj in CDDG;
add an edge from Si to Sj in CDDG;

end
end for

end BuildCDDG

Figure 4.12 Algorithm for building CDDG

4.2.1.3 Program Dependence Graph & Facility Dependence Graph The

data dependences represented in the DDG could be built into the CDG, and a new

graph called the Control and Data Dependence Graph (CDDG) could be formed.

This graph represents the combination of control and data dependences between the

program statements. The algorithm for building the CDDG from the DDG and the

CDG is shown in Figure 4.12.

The CDDG also represents parallelism relationship between the statements.

Any two statement nodes in the CDDG, could run in parallel if they do not have

any transitive closed dependence relations. That is, statements which are dependent.

on one another (either through control or through data. and by direct dependence or

by ancestral dependence) cannot execute concurrently.

In all the graphs discussed so far, the possible code contention or facility

dependence between the program statements have not. been considered. Facility

dependence between statements is defined as:

For any two statements Si and Sj that use the same facility. if Sj is lexically

after Si , then Sj is said to be facility dependent upon Si .

54

Figure 4.13 The CDDG of coordsEqual operation

Formally the Facility Dependence Graph (FDG) is,

By adding facility dependence into the CDDG, the graph consists of three

kinds of dependences - control, data, and facility. We call the new graph as the

Program Dependence Graph (PDG). The CDDG of the coordsEqual operation

is illustrated in Figure 4.13 and the PDG, in Figure 4.14. The FDG of the operation,

indicating only the facility dependences is shown in Figure 4.15.

55

Figure 4.14 The PDG of coordsEqual operation

Figure 4.15 The FDG of coordsEqual operation

56

57

Note that while building the PDG, we add only those facility dependences

into the CDDG (from FDG) that connects a node with one of its siblings. In other

words, we do not add any facility dependence that connects a node to its descendant

in the PDG. This is because, the facility dependences represented in the FDG may

be affected by data and control dependences. Therefore, even if we have nodes

depending on the same facility in the FDG, the inherent potential parallelism (the

idea being that every edge in the FDG, represents code contention, and t hat. could

be removed by cloning the code, thus enhancing concurrence) is made ineffective by

the presence of a data or control dependence, which cannot be removed at any cost.

4.2.2 Extracting Parallelism from Graphs

Identifying program statements that contend for a facility is accomplished by

considering the DDG, CDG and FDG in conjunction. Extracting the cloning

requirements of facilities considering all the graphs simultaneously have been

discussed in [1]. In [1] by Welch, the idea is to cluster program statements in

an operation (a method in the module) which due to the data dependences among

them has to execute in order, into what is called units. The statements of a unit

therefore cannot contend for a facility but different units in an operation may. with

each other. Also, each unit can utilize only one clone of each of the facilities that

it uses, since the statements of a unit must execute sequentially. Algorithms have

been proposed by Welch for identifying the units and thereafter for grouping those

units which could be run in parallel. A group therefore would then contain a set. of

units in which, each unit can run in parallel with the every other. Given the groups,

a Group Facility Matrix is then constructed to determine the number of clones of

a facility that can be used concurrently. Each row of this matrix corresponds to a

group, each column a facility, and each entry indicates the number of clones of the

facility needed by the group. The maximum number in a column of the matrix is an

58

upper bound on the number of clones of a. facility that can he used simultaneously.

The results include transformation rules for conditionals, so that t he clone analysis

algorithm avoids considering an exponential number of paths through the program.

Also, techniques have been proposed by Welch to determine the number of clones

required each time a loop is unrolled.

In this work, the dependence graphs extracted from each operation of a module

is subjected to the cloning analysis algorithms of Welch, for determining an upper

bound on the facility clone requirements.

4.2.3 Cloning Analysis of the Application Program

In this section, we illustrate how the cloning analysis techniques are applied to the

graphs for revealing concurrency and to further drive home the idea. the algorithms

developed are applied to the application program and the results are shown.

The Data Dependence Graph extracted for the coordsEqual operation shown in

Figure 4.11 illustrates, constraints to the ARPC model due to data at the statement

level. Dependences due to data, though poses threat to concurrency, have to obeyed

strictly to maintain program correctness and is done so in this work. However,

a set or collection of program statements having heavy data dependences among

them could he identified from the code and could be executed concurrently with

other similar sets if any, provided these sets between them do not. have any depen-

dences. Welch [1], proposes theorems in this regard for identifying such collection

of statements (called units) in the program. The algorithm developed for extracting

units from the program is shown in Figure 4.16 and Figure 4.17.

Once clusters of program statements having data dependences have been

identified, the Units Parallelism Matrix, (UPM) is constructed which shows the

potential concurrency in the program at the unit level. This matrix defines paral-

lelism relation between units or in other words, indicates which units could run in

GetUnits(DDG, UNITS)
var Q : QUEUE of DDG node type;
begin

insert_node(UNITS); /* inserts a new node in UNITS */
for each node in DDG do

begin
while not EndNode(node,DDG) do

begin
if (node ≠ null) then

node=next_stmt(node,DDG,Q,UNITS);
else

break;
insert_stmt(UNITS,node); /* inserts the graph stmt into the l NITS */

end while
if (node ≠ null) then

node=next_stmt(node,DDG,Q,UNITS);
else

break;
insert_node(UNITS);
insert_stmt(UNITS,node);

end for
end GetUnits

59

Figure 4.16 Algorithm for Finding Units (main)

next_stmt(node DDG_node, graph_node : DDG_node, Q : QUEUE, Units : UNITS)
returns DDG_nodetype;

var x : DDG_nodetype;
begin

while not graph_node ≠ null do
/* i.e, for each node in DDG */
begin

if (graph_node.label = node.label) then
begin

if (graph_node.next ≠ null) then
if -(MergeNode(graph_node.next)) or

V SEimmediate_predecessor s(graph_node .next)(S E Units) then
ENQUEUE(graph_node.next,Q);

end
graph_node = graph_node.next;

end while
if (EndNode(node) = true) then

begin
x := FRONT(Q);
DEQUEUE(Q);
if (x n Units = 0) then

return x;
end

else
begin

x := dependent_stmt(node,DDG); /* the statment dependent upon node */
remove_stmtQ(x,Q); /* remove the statment x from the QUEUE */
return x;

end
if (3sEDDG(S n Units = 0)) then

return S;
end next_stmt

60

Figure 4.17 Algorithm for Finding Units (finding next statement)

61

parallel with each other. Based on the UPM, we then construct groups of units in

which every unit can run in parallel with every other. The algorithm for building

parallel units is shown in Figure 4.18.

The basic facility requirements of the units is illustrated in the Facility Unit

Matrix (FUM). This matrix has all the facilities used in the program as its row

elements and the units identified, along its column. Note that no unit can have

more than a single requirement of a facility in FUM, even if that unit incorporates

statements using the same facilities. This is because, the statements have been

clustered together to form a unit since they have data dependences in the first place

and therefore such a facility dependence is totally ineffective. Units thus represents

the basic units of parallelism in this work. An exception to the above stated fact

(regarding FUM) occurs when conditional statements appear in the program and this

will be discussed subsequently. We use FUM later on to build the Group Facility

Matrix (GFM), which finally shows the upper bound on the cloning requirements of

the facilities used.

4.2.3.1 Conditional Handling We continue to use the coordsEqual operation

of the vehicle module which has been used throughout this work as t he appli-

cation example, for illustrating the cloning analysis also. The coordsEqual operation

(Figure 4.4) has conditional statements in its code, and this calls for applying the

transformation algorithms first, before it could be subjected to a complete clone

analysis. The transformation algorithms causes the DDG of the code to be metamor-

phosed into a graph where all the conditional statement nodes (the statements

appearing inside the body of the conditional) are replaced with a single node (a

super node) having specific cloning needs. The idea. of transforming t he conditional

statements in the graph is to avoid considering an exponential number of paths

through the program for determining an upper bound on the clone requirements.

BuildGroups(UPM,GROUPS)
begin

num_groups := 0; /* total number of groups */
/* For each row of P, i.e., for each unit i, */
/* Build groups containing i and units parallel to i. */
for i := 1 to NUM_UNITS in UPM do

begin
/* Create a group containing only i. */
num_groups++;
start := num_groups;
end := num_groups;
GROUPS(num_groups) := {i};
for j := i+1 to NUM_UNITS do

begin
/* For each column of P, i.e., for each unit j. */
if (P(i,j) = 1) then

stop := false;
for k := start to end do

begin
/* does j fit into an existing group? */
if Vuegroups(k) (P(j, u) = 1) then

begin
GROUPS(k) := groups(k) U {j}
stop := true;

end if
end for

if (stop = false) then
begin

/* Make a new group for i,j */
end++;
num_groups++;
GROUPS(end) := {i,j};

end if
end if

end for
end for

end BuildGroups

69

Figure 4.18 Algorithm for grouping Parallel Units

63

ConditionalTransform(DDG,StaTab)
begin

for each entry N in StaTab do
begin

if (N.type = "if") then
Depth_First_Search(N,DDG);

end for
end ConditionalTransform

Figure 4.19 Algorithm for Transforming Conditionals (main)

For the transformation, we first identify the boundaries of the conditional in the

DDG and then replace every edge crossing the boundaries (from the outside of the

conditional body) with edges to the boundary. For example, a directed edge (P,Q)

crossing the beginning of the conditional (P preceding the conditional, and Q within

the conditional), is replaced with edges (P,C) and (C,Q), where C is the start of the

conditional. Edges crossing the end limits of the conditional body are transformed

in a similar way. Once transformed, the graph of the conditional body. which is

now totally independent with respect to the outside program domain is extracted

out. The extracted DDG is then subjected to the cloning algorithms discussed in

Figure 4.16, Figure 4.17 and Figure 4.18, considering each branch of the conditional

in isolation with the rest. Units, Groups, UPM, FUM, and GFM are formed for each

branch and the maximum of the clone requirements (of facilities per group) of all

the branches is determined. This maximum value represents an upper limit on the

cloning needs of the entire conditional. The conditional is then defined in the DDG

as a single node with these specific cloning needs. The DDG is thus transformed into

a graph defining a single thread of execution.

While constructing the Units, Groups etc., for the single scenario DDG, we

consider the transformed super node like any other program node. However. when

the Facility Units Matrix (FUM) is constructed, the facility requirements of the

64

Depth_First_Search(N : StaTab, DDG)
begin

for each childStaTab C of N in StaTab do
/* childStaTab is either C.LeftC or C.RightC */

begin
for each entry x in C do

begin
if (x.type = "if") then

Depth_First_Search(x,DDG);
end for

end for
Transform_Edges(DDG,N);

end Depth_First_Search

Figure 4.20 Algorithm for Transforming Conditionals (Depth-First-Search)

super node would be that of the previously determined one. Nested conditionals

are handled by transforming them inside-out. That is, the conditional nested at

the deepest level say n, is transformed first. Then, it is treated as an atomic unit

while the conditional at level n - 1 is transformed. The transformation continues at

successively shallower levels of nesting, until all conditionals are transformed. We

perform a Depth-First-Search on the graph for such a transformation. The algorithm

for transforming the conditionals is shown in Figure 4.19 and Figure 4.20. Note that

the algorithm needs the statement table also, since all information regarding the

program structure is stored in it, where as the DDG reveals only the data dependence

relations.

Since the DDG of the coordsEqual operation contains conditional statements

(nesting at 2 levels), it is first filtered through the transformation algorithms. The

transformation at level 2 is shown in Figure 4.21. The four different graphs in the

Figure 4.21, illustrate the transformation process of the DDG. The initial DDG

shown at the left extreme (same as that in Figure 4 .1 1) is the untransformed graph

showing all the data dependences between the program statements ignoring their

65

Figure 4.21 Conditional Transformation of coordsEqual operation at level 2

66

Figure 4.22 Extracting Left Graph of Conditional (level 2)

control dependences. Note that the statements S8, S9 S10 & S11 belong to the

innermost conditional (at level 2) and therefore, have a control dependence upon the

statement S7 with the same precedence. Once these set of statements are identified

from the graph, the next step is to transform the edges crossing the conditional

boundaries (S7 - S11) as discussed before. The conditional statement nodes now

become data independent with the outside program statements and it is extracted

out. The extracted graph is then split into different graphs simulating all the possible

execution paths in the program. Thus we have as many graphs as the possible

run time scenarios. The programming model supports only the if statement as a

conditional construct and therefore the splitting (of graphs) is always limited to (a.

maximum of) two - the left graph and the right graph.

Each of the graphs (left and right graphs) is then subjected to the cloning

analysis algorithms separately. The extracted left graph (at level 2) is shown in

Figure 4.22.

Statements S7, S8 and S9 forms the left graph. Units are then identified and

the Units Parallelism Matrix (UPM) is constructed. This is followed by the grouping

of parallel Units and the construction of the matrices, Facility Unit Matrix (FUM)

& Group Facility Matrix (GFM). We illustrate the Units, Groups and all the other

matrices in Appendix D. The last row of the matrix GFM, indicates the maximum

number of clones of the facilities i, in and re that could be used inside the inner condi-

67

Figure 4.23 Extracting Right Graph of Conditional (level 2)

Figure 4.24 Cloning Requirements of Conditional (at level 2)

tional, if the execution of the left graph (at level 2) occurs al run time. Statements

S7, S10, S11 forms the right branch of the conditional at level 2. The right graph

is therefore constructed with these statements and is shown in Figure 4.23. Note

that the conditional evaluation statement S7, forms part of both the right and left

graphs when considered for the cloning analysis, since we are trying to speculate the

possible execution scenarios. The construction of Units, Units Parallelism Matrix

(UPM), Groups, FUM and GFM, then proceeds in the same way as before. All these

matrices are illustrated in Appendix D.

68

Figure 4.25 Conditional Transformation of coordsEqual operation at level

It is found that 0 clones of i, 1 clone of in and 2 clones of re are required for

both the left and right branches of the conditional. Maximizing the cloning needs

for the two cases though does not make any difference, is still shown in Figure 4.24

to illustrate the algorithm. Once the upper bound on the cloning needs of the

(innermost) conditional have been determined, we now replace the entire conditional

body (statements S7 - S11) with a single node (i.e., S7) in the DDG. The cloning

needs of the statement node S7 (i.e., 0 of i, 1 of in and 2 of re) is recorded separately.

The transformed DDG is shown in Figure 4.25. Now we transform the conditional

at level 1, considering the conditional at level 2 as a single node, S7. The conditional

body (at level 1) is then identified (statements S5, S6, S7, S12, S13, S14 & S15)

and the edges are transformed like before. The process is shown in Figure 4.25.

The left and right graphs are extracted out from the transformed DDG. The left

graph (statements S5, S6 , S7, S12 & S13) is shown in Figure 4.26. Note that

the statement S7 which is a supernode, becomes Unit 3 during the analysis and

in the Facility Units Matrix (FUM), its cloning needs have been assigned as the

69

Figure 4.26 Extracting Left Graph of Conditional (level 1)

Figure 4.27 Extracting Right Graph of Conditional (level 1)

predetermined clone requirements of the entire conditional statements at level 2.

The Units, Groups and the other matrices constructed are shown in Appendix D.

The right graph (statements S5, S14 & S15) is shown in Figure 4.27. The different

matrices generated during these transformations are also shown in Appendix D.

Maximizing the cloning needs of the left and right graphs gives us an upper

hound on the cloning requirements of the conditional at level 1. This is illustrated in

Figure 4.28. Finally, the entire conditional statements (S5 - S15) is replaced in the

DDG with the supernode S5. We show the final transformed DDG in Figure 4.29.

Figure 4.28 Cloning Requirements of Conditional (at level 1)

Figure 4.29 Transformed DDG of coordsEqual operation

70

71

Table 4.1 Units of coordsEqual operation

Un1 S1
Un2 S2
Un3 S3
Un4 S4
Un5 S5

Table 4.2 Units Parallelism Matrix of coordsEqual operation
- Un1 Un2 Un3 Un4 Un5
Un1 - 0 0 1 0

Un2 - 1 1 0

Un3 - 1 0
Un4 - 0
Un5 -

4.2.3.2 Clone Analysis of Transformed DDG Units formed from the trans-

formed DDG in Figure 4.29 by applying the algorithm in Figure 4.16 and Figure

4.17 is shown in Table 4.1. Note that the statement S5 is a super-super node repre-

senting two nested conditionals. The Units Parallelism Matrix showing the paral-

lelism relation between the units is illustrated in Table 4.2. Groups formed from the

Units in Table 4.1 by applying the algorithm discussed in Figure 4.18 is shown in

Table 4.3.

Table 4.3 Groups of Units of coordsEqual operation
- - - -
Gr1 Un1 Un4
Gr2 Un2 Un3 Un4
Gr3 Un3 Un4
Gr4 Un4
Gr5 Un5

72

Table 4.4 Facility Units Matrix of coordsEqual operation
- Un1 Un2 Un3 Un4 Un5
i 1 1
in 1 2
re 2

Table 4.5 Group Facility Matrix of coordsEqual operation
- i in re

Gr1 0 1 1
Gr2 1 1 1
Gr3 0 1 0
Gr4 0 1 0
Gr5 1 2 2
Max 1 2 2

The Facility Units Matrix illustrating the facility requirements of the different

units is shown in Table 4.4. Notice that the facility needs of Unit 5 was predetermined

and it represents the requirements of the nested conditional statements.

Finally, the Group Facility Matrix is constructed which illustrates the facility

requirements per group. The matrix is shown in Table 4.4. The last. row in the matrix

indicates the maximum number of clones of the facilities in coordsEqual operation

that could used concurrently per group, and it represents an upper bound on the

cloning requirements.

4.2.4 Parallelism inside Loops

The opportunities for parallelism that exist inside loops (both bounded and

unbounded) through clones, could be identified by unrolling them. Unrolling a

loop simply means extending the code of the loop beyond a single iteration. The

idea of unrolling a loop is to reveal chances of parallelism between loop iterations

which, due to facility dependences (across iterations) may be getting lost. Removing

73

Figure 4.30 The procedure AccessSeq of module pcomp

these dependences by providing additional clones of the facilities causing it, we

enhance concurrency inside loops, further rendering accuracy to the clone analysis.

We illustrate this process of exploiting parallelism inside loops with an example

operation (procedure AccessSeq) shown in Figure 4.30. The procedure A AccessSeq is

actually defined in the interface section of the module pcomp used in time vehicle

application. The complete module is given in Appendix C.

The procedure AccessSeq incorporates a. simple loop mechanism. We use this

unbounded loop (the while) to illustrate the clone analysis of loops. The DDG of

the procedure AccessSeq is shown in Figure 4.3]. For the purpose of clone analysis.

while constructing the DDG, we ignore the presence of loops and treat them as mere

straight line code. The DDG of the loop (extracted out. from the rest. of the graph)

is shown in Figure 9.32.

Figure 4.31 DDG of operation AccessSeq (module pcomp)

Figure 4.32 DDG of the Loop (operation AccessSeq)

74

75

Note that the graph contains backward edges indicating cross iteration depen-

dences i.e., statements from one iteration of the loop depending on statements from

others. Now if the loop is unrolled once (i.e., considering two iteration executions

of the loop), the backward dependences would appear as forward dependences. We

show the DDG of the once unrolled loop in Figure 4.33. The facility dependences

between statements across iterations are then added into the unrolled loop DDG to

reveal parallelism between loop iterations. This graph is shown in Figure 4.34. There

exists a pure facility dependence between statements S3 and S4 due to contention

for the facility q. An additional clone of q can resolve this contention and thereby

statements S3 and S4 can be executed concurrently. Such a potential concurrency

and thereby the additional clone requirement of the facility q is revealed only after

unrolling the loop and this justifies the overhead of such an analysis at compile-time

or even at link-time. Thus the total number of clones required for exploit ing paral-

lelism between all possible iterations of the loop is revealed by unrolling the loop as

many times. But in general, unrolling the loop once is sufficient enough to determine

the additional amount of clones required.

Also, there could be antidependences [12] between statements across loop

iterations. In the loop DDG shown in Figure 4.34, the dependence between

statements S3 and S5 due to the common parameter temp is an antidependence.

Such an antidependence can be revealed at link-time by checking the parameter

passing modes of the operations enqueue of statement S3 and dequeue of statement

S5 (in module queue, q being an instance of it) and thereafter, could be removed by

replacing the data (causing the antidependence) with a temporary variable. without

affecting code correctness. Welch illustrates this aspect in [I]. In the illustrated

application example, such a removal doesn't make any difference since the statements

(S3, S5) do not have a facility dependence. We now propose an algorithm for deter-

mining the cloning requirements inside loops by the unrolling technique. The main

76

Figure 4.33 DDG of the Unrolled Loop

77

Figure 4.34 DDG of the Unrolled Loop with Facility & Antidependences

78

Figure 4.35 Algorithm for Handling Loops (main)

algorithm is given in Figure 4.35 and the supplementary ones are shown in Figure

4.36, Figure 4.37 and Figure 4.38.

4.2.5 Interfacility Clone Analysis

An application is developed in the proposed language model through separately

written and compiled modules. Independent compilation of modules is a. feature of

our paradigm as discussed in Chapter 2. Until now, we have presented methods

to compute cloning requirements of modules in an independent fashion. However,

this framework needs to be extended when we have to deal with an entire appli-

cation where modules are combined together and between which complicated call

relationships often exist. In this section we discuss algorithms for computing the

cloning requirements of the module instances used in an application based on their

call relationships (Call DAG), as outlined by Welch in [I].

Interfacility clone analysis can be achieved by modifying the way in which the

clone requirements of units were hitherto calculated. The facility cloning needs of

79

Figure 4.36 Algorithm for Handling Loops (Unrolling Loop)

80

Figure 4.37 Algorithm for Handling Loops (Removing Antidependencies)

81

Figure 4.38 Algorithm for Handling Loops (Adding Cross Iteration Far. Dep's)

a unit includes, the cloning requirements of the methods (of other facilities) called

by the statements in the unit, in addition to the single facilities directly called by

the statements. Welch [1] refers to this additional cloning needs of a statement (i.e.,

a method call in a unit) as its Transitive Cloning Requirements or TCR. For this

purpose a function clones(u,x) is defined to denote the number of clones of facility x

required by the unit u. The value of the function denotes the result of combining the

direct and transitive requirements of u. Direct requirements of the unit is what. the

Facility Unit Matrix indicates and Transitive Cloning Requirements is determined by

examining the needs of the methods invoked by the statements of the unit. Formally,

clones(si,x) = DC R(si , x) TCR(si , x)

clones(u, x) = maxSiϵu(clones(si

, x))

The above definition is extended for groups and operations also. The cloning needs

of a group g for a facility x is defined as:

82

Figure 4.39 Algorithm for finding Direct-Clone-Requirements (DCR)

Similarly, the number of clones of facility x required by an operation op of a facility

f is defined as:

clones(f.op, x) = maxgϵ f.op(clones(g , x))

Computing the cloning requirements of an application begins with determining

the direct cloning needs of each operation in a facility represented as a node in the Call

DAG, starting at the root vertex of the DAG. The cloning needs are then re-computed

using the above functions where we consider the transitive requirements also. We

now present the algorithms for the interfacility clone analysis. The algorithm for

computing DCR is shown in Figure 4.39, TCR in Figure 4.40 and finally. the clone

needs for an entire application (Program-Clone-Needs) in Figure 4.4 I .

Figure 4.40 Algorithm for finding Transitive-Clone-Requirements (TCR)

Figure 4.41 Algorithm for finding Program-Clone-Needs

CHAPTER 5

ILLUSTRATION OF SYSTEM DESIGN

In this Chapter, we discuss the system design of the implementations of the compiler.

Note that, all the parallelism information (i.e., graphs and cloning needs) is extracted

from the source code at compile-time. The system design at the top most level is

shown in Figure 5.1.

The compiler, while compiling the application source code extracts the

different dependence graphs and the facility-cloning needs from it. As discussed

in Chapter 2, the modules are compiled separately and linked together by the linker,

before being loaded. The graph extraction is done by the compiler after generating

the intermediate representation i.e., the Statement Table, which is done while parsing

the source program. The Statement Table thus becomes the direct output of the

parser and is then given to the Graph Extractor. The Graph Extractor generates the

different dependence graphs. The graphs are produced in the form of separate files,

the naming convention of which was outlined in Chapter 2. The Data Dependence

Graph (DDG) from the Graph Extractor is then filtered through the Graph Filter.

This filtering process transforms the conditionals and handles the loops if any, in

the DDG. The transformed DDG is then sent to the Cloner which then generates all

the matrices required for the concurrency analysis. The final matrix (Group Facility

Matrix) generated by the cloning routines becomes the end output of the compiler

Figure 5.1 System Design of The Compiler at the top level or level 1

84

85

Figure 5.2 System Design of The Compiler at level 2

and it contains the cloning requirements of the different facilities in the application.

The matrix is generated as the module_name.clone file. The complete design of the

compiler is shown in Figure 5.2.

CHAPTER 6

CONTRIBUTIONS TO KNOWLEDGE

The potential of ADT modules for reusability is made ineffective to a large extent

by their inefficiencies at run time. The ARPC model of parallel execution, when

applied to programs constructed out of ADT modules in conjunction with the cloning

techniques, can significantly enhance the run time performance of such programs.

Extending the dependence graphs of programs to include code dependence is found

to reveal greater opportunities for concurrent execution. Implementations of the

algorithms for graph extraction at compile-time proved these facts. Further more,

by subjecting the graphs to cloning analysis at most by link-time. an upper bound

on the number of clones that could be used could be determined. Algorithms for

handling conditional statements (through transformations) and loops (by unrolling)

were designed and implemented and was found to enhance the accuracy of the clone

analysis. These are the main contributions of this work. The parallelism information

so extracted, could be used for constructing a feasible schedule statically, and this

could be of importance to hard real-time systems where timing constraints are a

concern.

86

APPENDIX A

GRAMMAR OF RT-RESOLVE

Realization Module

START:

PROCESS |

MODULE |

CONTROL_PROCESS

PROCESS:

PROCESS_TOKEN PROCESS_NAME

OPT_PROCESS_PARM_SEC

OPT_VAR_DECL_SEC

OPT_FAC_DECL_SEC

PROCESS_PROC_DECL

END_TOKEN PROCESS_NAME

OPT_PROCESS_PARM_SEC:

| PARM_TOKEN OPT_DEADLINE OPT_FRAME

| PARM_TOKEN OPT_FRAME OPT_DEADLINE

OPT_DEADLINE: 		|

DEADLINE_TOKEN DEADLINE

OPT_FRAME: 		|

FRAME_TOKEN FRAME

CONTROL_PROCESS:

CNTRL_TOKEN PROCESS_TOKEN PROCESS_NAME

87

BEGIN_TOKEN

PROCESS_DECL_SEQ

END_TOKEN PROCESS_NAME

PROCESS_DECL_SEQ:

PROCESS_DECL

| PROCESS_DECL_SEQ PROCESS_DECL

PROCESS_DECL:

PROCESS_NAME OPT_PROCESS_ARGS SEMICOLN_TOKEN EN

OPT_PROCESS_ARGS: 	|

LPREN_TOKEN DEADLINE COMA_TOKEN FRAME

RPREN_TOKEN

DEADLINE:

INT_TOKEN

FRAME:

INT_TOKEN

MODULE:

MOD_TOKEN MOD_NAME

NUM_OPS

OPT_MOD_PARM_SEC

OPT_AUX_SEC

OPT_INTF_SEC

END_TOKEN MOD_NAME

Module Parameter Section

NUM_OPS:

88

NUM_TOKEN OPR_TOKEN ASS_TOKEN INT_TOKEN

SEMICOLN_TOKEN

OPT_MOD_PARM_SEC: 	|

MOD_PARM_SEC

MOD_PARM_SEC:

MOD_TOKEN PARM_TOKEN

MOD_PARM_SEQ

END_TOKEN MOD_TOKEN PARM_TOKEN

MOD_PARM_SEQ:

MOD_PARM SEMICOLN_TOKEN

| MOD_PARM_SEQ MOD_PARM SEMICOLN_TOKEN

MOD_PARM:

TYPE_TOKEN TYPE_NAME

| PROC_HDR

| FUNC_HDR

| CTRL_HDR

PROC_HDR:

PROC_TOKEN PROC_NAME

OPT_PROC_PARM_SEC

END_TOKEN PROC_NAME

FUNC_HDR:

FUNC_TOKEN FUNC_NAME RETS_TOKEN VAR_NAME

COLN_TOKEN

LONG_TYPE_NAME

OPT_FUNC_CTRL_PARM_SEC

END_TOKEN FUNC_NAME

89

CTRL_HDR:

	

CNTRL_TOKEN CTRL_NAME

	

OPT_FUNC_CTRL_PARM_SEC

	

END_TOKEN CTRL_NAME

OPT_PRVD_TYPES:

	

|

PRVD_TYPES_SEC

PRVD_TYPES_SEC:

PRVD_TOKEN TYPS_TOKEN

PRVD_TYPES_SEQ

END_TOKEN

PRVD_TYPES_SEQ:

PRVD_TYPE |

PRVD_TYPES_SEQ PRVD_TYPE

PRVD_TYPE:

TYPE_NAME IS_TOKEN REPRESENT_TOKEN BY_TOKEN

LONG_TYPE_NAME SEMICOLN_TOKEN

Auxiliary Section

OPT_AUX_SEC: 	|

AUX_SEC

AUX_SEC:

AUX_TOKEN

OPT_FAC_DECL_SEC

90

OPT_PRVD_TYPES

OPT_VAR_DECL_SEC

OPT_AUX_OPR_DECL_SEC

OPT_REAL_AUX_INIT

END_TOKEN AUX_TOKEN

Facility Declaration Section

OPT_FAC_DECL_SEC: 	|

FAC_DECL_SEC

FAC_DECL_SEC:

FAC_TOKEN

FAC_DECL_SEQ

END_TOKEN FAC_TOKEN

FAC_DECESEQ:

FAC_DECL

| FAC_DECESEQ

FAC_DECL

FAC_DECL:

FAC_NAME IS_TOKEN MOD_NAME OPT_FAC_ARG_LIST

SEMICOLN_TOKEN

OPT_FAC_ARG_LIST: 	|

LPREN_TOKEN FAC_ARG_LIST RPREN_TOKEN

FAC_ARG_LIST:

FAC_ARG

91

	| FAC_ARG_LIST COMA_TOKEN FAC_ARG

FAC_ARG:

LONG_NAME

Auxiliary Operation Declaration Section

OPT_ AUX_OPR_DECL_SEC:

	|

	

AUX_OPR_DECL_SEC

AUX_OPR_DECL_SEC:

OPR_TOKEN

OPR_DECL_SEQ

END_TOKEN OPR_TOKEN

OPT_REAL_AUX_INIT:

	|

	

REAL_AUX_INIT

REAL_AUX_INIT:

INIT_TOKEN

BEGIN_TOKEN

OPT_LOC_VAR_DECL_SEC

CODE

END_TOKEN INIT_TOKEN

Interface Section

OPT_INTF_SEC:

92

93

INTF_SEC

INTF_SEC:

INTF_TOKEN

OPT_TYPE_DECL_SEQ

OPT_OPR_DECL_SEQ

END_TOKEN INTF_TOKEN

Provided Types

OPT_TYPE_DECL_SEQ:

		|

		

TYPE_DECL_SEQ

TYPE_DECL_SEQ:

TYPE_DECL

| TYPE_DECL_SEQ

TYPE_DECL

TYPE_DECL:

TYPE_TOKEN TYPE_NAME IS_TOKEN REPRESEN'Is_TOKEN

BY_TOKEN

LONG_TYPE_NAME EXEMPLAR_TOKEN VAR_NAME

OPT_TYPE_INIT

OPT_TYPE_FIN

END_TOKEN TYPE_NAME

OPT_TYPE_INIT:

		|

		| TYPE_INIT
TYPE_INIT:

INIT_TOKEN

BEGIN_TOKEN EN

OPT_LOC_VAR_DECL_SEC

CODE

END_TOKEN INIT_TOKEN

OPT_TYPE_FIN: 	| 	TYPE_FIN

TYPE_FIN:

FIN_TOKEN

BEGIN_TOKEN

OPT_LOC_VAR_DECL_SEC

CODE

END_TOKEN FIN_TOKEN

OPT_LOC_VAR_DECL_SEC:

	|

	

LOC_VAR_DECL_SEC

OPT_VAR_DECL_SEC:

	|

	

VAR_DECL_SEC

VA R_DECL_SEC:

VAR_TOKEN

		

VAR_DECL_SEQ

END_TOKEN VAR_TOKEN

VA R_DECL_SEQ:

VAR_DECL

| VAR_DECL_SEQ VAR_DECL

94

VAR_DECL:

VAR_NAME COLN_TOKEN LONG_TYPE_NAME

SEMICOLN_TOKEN

LOC_VAR_DECL_SEC:

LOCAL_TOKEN VAR_TOKEN

LOC_VAR_DECL_SEQ

END_TOKEN LOCAL_TOKEN VAR_TOKEN

LOC_VAR_DECL_SEQ:

LOC_VAR_DECL

| LOC_VAR_DECL_SEQ LOC_VAR_DECL

LOC_VAR_DECL:

VAR_NAME COLN_TOKEN LONG_TYPE_NAME

SEMICOLN_TOKEN

OPT_OPR_DECL_SEQ:

	|

	

OPR_DECL_SEQ

OPR_DECL_SEQ:

PROC_DECL |

FUNC_DECL |

CTRL_DECL |

OPR_DECL_SEQ

PROC_DECL |

OPR_DECL_SEQ

FUNC_DECL|

OPR_DECL_SEQ

CTRL_DECL

PROC_DECL:

95

96

PROC_TOKEN PROC_NAME

OPT_PROC_PARM_SEC

BEGIN_TOKEN

OPT_LOC_VAR_DECL_SEC

CODE

END_TOKEN PROC_NAME

PROCESS_PROC_DECL:

PROC_TOKEN PROC_NAME

OPT_PROC_PARM_SEC

BEGIN_TOKEN

OPT_LOC_VAR_DECL_SEC

CODE

END_TOKEN PROC_NAME

FUNC_DECL:

	

FUNC_TOKEN FUNC_NAME RETS_TOKEN VAR_NAME

COLN_TOKEN LONG_TYPE_NAME

OPT_FUNC_CTRL_PARM_SEC

BEGIN_TOKEN

OPT_LOC_VAR_DECL_SEC

CODE

END_TOKEN FUNC_NAME

CTRL_DECL:

CNTRL_TOKEN CTRL_NAME

OPT_FUNC_CTRL_PARM_SEC

BEGIN_TOKEN

OPT_LOC_VAR_DECL_SEC

CODE

97

END_TOKEN CTRL_NAME

OPT_PROC_PARM_SEC:

		|

		

PROC_PARM_SEC

PROC_PARM_SEC:

PARM_TOKEN

PROC_PARM_SEQ

END_TOKEN PARM_TOKEN

PROC_PARM_SEQ:

PROC_PARM

| PROC_PARM_SEQ PROC_PARM

PROC_PARM:

PRESV_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NA ME

SEMICOLN_TOKEN

ALT_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NAME

SEMICOLN_TOKEN

PROD_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NA ME

SEMICOLN_TOKEN

CONSU_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NAME

SEMICOLN_TOKEN

OPT_FUNC_CTRL_PARM_SEC:

		|

		

FUNC_CTRL_PARM_SEC

FUNC_CTRL_PA RM _SEC:

98

PARM_TOKEN

FUNC_CTRL_PARM_SEC

END_TOKEN PARM_TOKEN

FUNC_CTRL_PARM_SEQ:

FUNC_CTRL_PARM

| FUNC_CTRL_PARM_SEQ FUNC_CTRL_PARM

FUNC_CTRL_PARM:

PRESV_TOKEN VAR_NAME COLN_TOKEN LONG_TYPE_NAME

SEMICOLN_TOKEN

CODE:

STMT SEMICOLN_TOKEN |

CODE STMT SEMICOLN_TOKEN

STMT:

SWAP

| ASSIGN

| IF

| WHILE

| RETURN

| DO

|PROC_CALL

SWAP:

VAR_NAME COLN_TOKEN ASS_TOKEN COLN_TOKEN

VAR_NAME

ASSIGN:

VAR_NAME COLN_TOKEN ASS_TOKEN FUNC_CALL

IF:

IF_TOKEN OPT_NOT CTRL_CAL THEN_TOKEN

CODE

OPT_ELSE

END_TOKEN IF_TOKEN

OPT_NOT:

NOT_TOKEN

| OPT_ELSE:

| ELSE_TOKEN

CODE

WHILE:

WHILE_TOKEN NOT_TOKEN CTRL_CALL DO_TOKEN

CODE

END_TOKEN WHILE_TOKEN |

WHILE_TOKEN CTRL_CALL DO_TOKEN

CODE

END_TOKEN WHILE_TOKEN

DO:

DO_TOKEN INT_TOKEN TIMES_TOKEN

BEGIN_TOKEN

CODE

END_TOKEN DO_TOKEN

RETURN:

RET_TOKEN

| RET_TOKEN TRUE_TOKEN | RET_TOKEN FALSE_TOKEN

99

PROC_CALL:

LONG_PROC_NAME LPREN_TOKEN OPT_ARG_LIST

RPREN_TOKEN

| LONG_PROC_NAME

FUNC_CALL:

LONG_FUNC_NAME LPREN_TOKEN OPT_ARG_LIST

RPREN_TOKEN

| LONG_FUNC_NAME

CTRL_CALL:

LONG_CTRL_NAME LPREN_TOKEN OPT_ARG_LIST

RPREN_TOKEN

| LONG_CTRL_NAME

OPT_ARG_LIST:

|

ARG_LIST

ARG_LIST:

VAR_NAME

| ARG_LIST COMA_TOKEN VAR_NAME

LONG_TYPE_NAME:

LONG_NAME1

LONG_PROC_NAME:

LONG_NAME

LONG_FUNC_NAME:

LONG_NAME

LONG_CTRL_NAME:

LONG_NAME

LONG_NAME1:

100

NAME

LONG_NAME1:

FAC_NAME DOT_TOKEN NAME

LONG_NAME:

NAME

LONG_NAME:

FAC_NAME DOT_TOKEN NAME

NAME:

ID_TOKEN

TYPE_NAME:

ID_TOKEN

PROC_NAME:

ID_TOKEN

FUNC_NAME:

ID_TOKEN

CTRL_NAME:

ID_TOKEN

VAR_NAME:

ID_TOKEN

MOD_NAME:

ID_TOKEN

FAC_NAME:

ID_TOKEN

PROCESS_NAME:

ID_TOKEN

101

APPENDIX B

PRIMITIVE MODULE OPERATIONS

Integer Operations

1. procedure increment(alters i:int)

ENSURES: i = #i + 1

2. function add(preserves i: int; preserves j: int) returns x: int

ENSURES: x = i + j

3. function subtract(preserves i: int; preserves j: int) returns x: int

ENSURES: x = i - j

4. function multiply(preserves i:int; preserves j: int) returns x: int

ENSURES: x = i * j

5. function divide(preserves i:int; preserves j:int) returns x: int

ENSURES: x = i / j

6. control less_than_or_equal(preserves i: int; preserves j: int)

ENSURES: less_than_or_equal if i ≤ j

7. control equal(preserves i: int; preserves j: int)

ENSURES: equal iff i = j

8. function get_min_int returns x: int

ENSURES: x = the minimum integer value allowed

9. function get_max_int returns x: int

ENSURES: x = the maximum integer value allowed

102

103

10. function integer_copy (preserves

ENSURES: j=i

11. function gen_one returns one: int

ENSURES: one= 1

12. function gen_five returns five: int

ENSURES: five=5

13. function read returns x: int

ENSURES: x = next value in input stream

14. procedure write(preserves x: int)

ENSURES: x is appended to output stream

15. function integer_initialize returns i: int

ENSURES: i=0

16. procedure integer_finalize(alters i: int)

ENSURES: storage is reclaimed for i

Array Operations

1. procedure access(alters a: array, preserves position: int, alters item: int)

ENSURES: a(position)=#item and item=#a(position)

2. procedure set_max_size(alters a:array, preserves size: int)

ENSURES: a.size=size and a(i)=INIT(int), for 0<i<size+1

3. function get_max_size(preserves a:array) returns size: int.

ENSURES: size=a.size

4. procedure array_initialize returns a: array

ENSURES: a.size=0

5.

104

5. procedure array_finalize(alters a: array)

ENSURES: storage is reclaimed for a, and each element of a is finalized

APPENDIX C

VEHICLE APPLICATION PROGRAM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

APPENDIX D

CONDITIONAL TRANSFORMATIONS

The data dependence graphs (DDGs) and the different matrices generated i.e.. Units.

Groups, Units Parallelism Matrix (UPM), Facility Units Matrix (FUM) & Group

Facility Matrix (GFM) during the transformation of conditionals at two levels of the

application program (coordsEqual operation, coordinate module) discussed in Chapter

4, is illustrated in this Appendix.

We first show the subgraphs which are being subjected to the cloning analysis,

before illustrating the generated matrices. Extraction of the subgraphs discussed in

this Appendix have already been detailed in Chapter 4. Note that, the algorithms

for transformation are applied at the two different levels of the conditional and after

each transformation, the conditional body is replaced with a single supernode. The

convention for representing the statements in the graphs i.e., as Sn. where n is the

statement label number, is also adopted here. Further, a Unit is denoted as Unx

where x is the unit number, a Group as Grx, where x is the group number. The

facilities are simply represented by their names. Facilities used by the sta t ements in

the subgraphs are i, in and re.

Figure D.1 Left Graph of Conditional at. level 2

119

Table D.1 Units from Left Graph (Conditional at level 2)
- - -

Un1 S7 S9
Un2 S8

Table D.2 Units Parallelism Matrix of Left Graph (level 2)
- Un1 Un2

Un1 -

Un2 -

Table D.3 Groups of Units of Left Graph (level 2)
- - -

Gr1 Un1 Un2
Gr2 Un2

Table D.4 Facility Units Matrix of Left Graph (level 2)
Un1 Un2

i
in 1
re 1 1

Table D.5 Group Facility Matrix of Left Graph (level 2)
- i in re
Gr1 0 1 2

Gr2 0 0 1
Max 0 1 2

Table D.6 Units from Right Graph (Conditional at. level 2)
- - -

Un1 S7 S11
Un2 S10

120

Figure D.2 Right Graph of Conditional at level 2

Table D.7 Units Parallelism Matrix of Right Graph (level 1)
- Un1 Un2
Un1 - 1
Un2 -

Table D.8 Groups of Units of Right Graph (level 2)
- - -

Gr1 Unl Un2
Gr2 Un2

Table D.9 Facility Units Matrix of Right Graph (level 2)
- Un1 Un2
i

in 1
re 1 1

Table D.10 Group Facility Matrix of Right Graph (level 2)
i in re

Gr1 0 1 2
Gr2 0 0 1

Max 0 1 2

121

Figure D.3 Left Graph of Conditional at level 1

Table D.11 Units from Left Graph (Conditional at level 1)
- -
Un1 S5
Un2 S6
Un3 S7
Un4 S12
Un5 S13

Table D.12 Units Parallelism Matrix of Left Graph (level I)
Uni Un2 Un3 Un4 Un5

Un1 - 0 0 1 1

Un2 - 1 1 1
Un3 - 1 1

Un4 - 1

Un5 -

122

Table D.13 Groups of Units of Left Graph (level 1)
- - - - -

G1 Un1 Un4 Un5
Gr2 Un2 Un3 Un4 Un5

Gr3 Un4 Un5
Gr4 Un5

Table D.14 Facility Units Matrix of Left Graph (level 1)
- Un1 Un2 Un3 Un4 Un5
i 1 0

in 1 1
re 2

Table D.15 Group Facility Matrix of Left Graph (level 1)
i in re

Gil 1 1 0
Gr2 0 2 2
Gr2 0 1 0
Gr2 0 0 0
Max 1 2 2

Figure D.4 Right Graph of Conditional at level

123

Table D.16 Units from Right Graph (Conditional at level 1)
- - -
Un1 S5 S14
Un2 S15

Table D.17 Units Parallelism Matrix of Right Graph (level 1)
- Un1 Un2
Un1 - 1
Un2 -

Table D.18 Groups of Units of Right Graph (level 1)
- - -

Gr1 Un1 Un2
Gr2 Un2

Table D.19 Facility Units Matrix of Right Graph (level 1)
- Un1 Un2
i 1
in
re 1

Table D.20 Group Facility Matrix of Right Graph (level 1)
- i in re

Gr1 1 0 1

Gr2 0 0 0

Max 1 0 1

124

REFERENCES

1. L. R. Welch. "Cloning ADT modules to increase parallelism: Rationale and
techniques," In Fifth IEEE Symposium on Parallel and Distributed
Computing. IEEE, December 1993.

2. K. D. Cooper, M. W. Hall, and K. Kennedy. "A methodology for procedure
cloning," Computer Languages, 19(2):105-117, April 1993.

3. L. R. Welch. "Assignment of ADT modules to processors," In The International

Parallel Processing Symposium. IEEE, March 1992.

4. D. Harms and B.W. Weide. "Types, copying, and swapping: Their influences
on the design of reusable software components," IEEE. Transactions on

Software Engineering, 17(5):424-435, May 1991.

5. L. R. Welch. "Architectural Support for, and Parallel Execution of. Programs
Constructed from Reusable Software Components," PhD Thesis. The Ohio
State University, December 1990.

6. J. Ferrante, K. J. Ottenstein, and J. D. Warren. "The program dependence graph
and its use in optimization," ACM Trans. on Programming Languages and
Systems, 9(3):319-349, July 1987.

7. R. A. Steigerwald, C. A. Warack and D. A. Cook. "Issues in Integrating
Reusable Ada 9X Objects into Distributed Real-Time Systems." In The
Second Workshop on Parallel and Distributed Real-Time Systems. IEEE,

April 28-29, Cancun, Mexico 1994.

8. R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. "The program dependence
web: A representation supporting control-, data-, and demand-driven
interpretation of imperative languages," In Proceedings of the ACM
SIGPLAN'90 Conference on Programming Language Design and Imple-

mentation, pages 257-271. ACM, June 1990.

9. E. C. Cooper. "Circus: A replicated procedure call facility." In Proc. 4th Symp.

Reliability in Distributed Software and Databases, pages 11-24. 1984. I.

10. F. Bastani, W. Hilal, and S. S. Iyengar. "Efficient. abstract. data type
components for distributed and parallel systems," Computer, 20(10):33-44.
October 1987.

11. L. R. Welch, A. D. Stoyenko, and S. Chen. "Assignment of ADT modules
with random neural networks," In Proceedings of Hawaii International

Conference on System Sciences, pages 546-555. IEEE, January 1993.

12. D. Padua and M. Wolfe. "Advanced compiler optimizations for supercom-
puters," CA CM, 29(12):1184-1201, December 1986.

125

126

13. Guohui Yu. "Use of concurrency enhancement in off-line schedule construction."
In The Second Workshop on Parallel and Distributed Real-Time
IEEE, April 28-29, Cancun, Mexico 1994.

14. W. Rossak, A. D. Stoyenko, and L. R. Welch. "THE COMPONENT
MANAGER - A Hybrid Reuse-Tool Supporting Interactive and Automated
Retrieval of Software Components," Technical Report CIS-92-04. New
Jersey Institute of Technology, 1992.

15. M. Sitaraman, L. R. Welch, and D. E. Harms. "On Specification of
Reusable Software Components," In The International Journal of Software
Engineering and Knowledge Engineering, 3(2), 1993.

16. R. A. Steigerwald and L. R. Welch. "Reusable Component Retrieval for Real-
Time Applications," In Proceedings of The First IEEE Workshop on Real-
Time Applications, May, 1993.

17. J. P. C. Verhoosel, L. R. Welch, D. K. Hammer and A. D. Stoyenko. "Assignment.
and Pre-Runtime Scheduling of Object-Oriented, Hard Real-Time Parallel
Processes Using Bead Partitioning," Technical Report. CIS-93-16. New
Jersey Institute of Technology, December, 1993

18. J. P. C. Verhoosel, L. R. Welch, D. K. Hammer and A. D. Stoyenko. ''A Model for
Scheduling of Object-Based, Hard Real-Time Parallel Processes." Journal

of Real-Time Systems, 1994 (to appear).

19. L. R. Welch, A. D. Stoyenko, and T. J. Marlowe. "Modeling Resource Contention
among Distributed Periodic Processes," Fourth
IEEE Symposium on Parallel and Distributed Computing, December, 1992.

20. L. R. Welch. "A Parallel Virtual Machine for Programs Composed of Abstract
Data Types," IEEE Transactions on Computers, accepted for publication-
to appear.

21. L. R. Welch, A. L. Samuel, M. W. Masters, R. D. Harrison. A. D. Stoyenko.
and J. Caruso. "A Framework for Automated Reengineering of Complex
Computer Systems," In Proceedings of The Fourth Systems, Reengi
neering Technology Workshop, pages 44-56, Naval Surface Warfare Center.
February 1994.

22. C. Rich and R. Wills. "Recognizing a Program's Design: A Graph-Parsing
Approach," IEEE Software, volume 7, number 1, 1990.

	Extracting parallelism at compile-time through dependence analysis & cloning techniques in an object-based paradigm
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The Programming Language & Associated Tools
	Chapter 3: The Execution Paradigm
	Chapter 4: Techniques for Concurrency Extraction
	Chapter 5: Illustration of System Design
	Chapter 6: Contributions to Knowledge
	Appendix A: Grammar of RT-Resolve
	Appendix B: Primitive Module Operations
	Appendix C: Vehicle Application Program
	Appendix D: Conditional Transformations
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

