
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Theses and Dissertations

5-31-1993

Fair and efficient transmission over GBPS dual ring networks Fair and efficient transmission over GBPS dual ring networks

Abdelnaser M. Adas
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Adas, Abdelnaser M., "Fair and efficient transmission over GBPS dual ring networks" (1993). Theses.
1717.
https://digitalcommons.njit.edu/theses/1717

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @
NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For
more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1717?utm_source=digitalcommons.njit.edu%2Ftheses%2F1717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Fair and Efficient Transmission
Over Gbps Dual Ring

Networks

by
Abdelnaser Mohammad Adas

The advances in fiber optics technology provide large bandwidth and

enable the support of a wide variety of services. New network architectures

have been proposed, such as Metaring and Distributed Queue Dual Bus

(DQDB), that try to take advantage of the new capabilities. Because of the very

small packet transmission time relative to the feedback time a challenging

issue in high speed networks is the efficient and fair share of the channel

bandwidth among the competing users. In this thesis we first investigate and

compare the performance of the Global and Local Fairness Mechanisms (GFM

and LFM, respectively). They have been proposed recently for fair bandwidth

allocation in high speed dual ring networks employing destination release. (a

slot that has been read by its destination is immediately released and can be

used again by other nodes). We show the sensitivity of both mechanisms to

various system parameters, such as channel bandwidth and ring latency. We

introduce the Dynamic Medium Access Control Mechanism (DMAC) which

does not suffer from the limitations of GFM and LFM, introduces fairness in a

very effective and efficient way, and is insensitive to the network parameters.

FAIR AND EFFICIENT TRANSMISSION

OVER GBPS DUAL RING

NETWORKS

by

Abdelnaser M. Adas

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering
May 1993

APPROVAL PAGE

Fair and Efficient Transmission
Over Gbps Dual Ring

Networks

Abdelnaser M. Adas

Dr. Dennis-Karvelas
Assistant Professor of Computer Science, NJIT

Dr. Anthony Robbi
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Sotirios Ziavras
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Abdelnaser Mohammad Adas

Degree: Master of Science in Electrical Engineering

Date: May 1993

Undergraduate and Graduate Education

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electrical Engineering,
University of Jordan, Amman, Jordan, 1988

Major: Electrical Engineering

iv

This thesis is dedicated to
My Father and Mother

v

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his

supervisor, Assistant Professor Dennis Karvelas, for his guidance,

friendship, and moral support throughout this research.

Special thanks go to Associate Professor Anthony Robbi and

Assistant Professor Sotirios Ziavras for serving as members of the

committee.

The author would like to express his gratitude to his dear friend

Magd Donia for his help with thesis formatting and his moral

support.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 METARING NETWORK 	 7

3 METARING FAIRNESS MECHANISMS 	 12

3.1 	Global Fairness Mechanism (GFM) 	 12

3.2 Local Fairness Mechanism 	 16

3.2.1 LFM Properties 	 20

3.2.2 Throughput Analysis 	 23

4 A NEW DYNAMIC MAC MECHANISM 	 25

4.1 Dual Bus Mechanisms for MANs 	 25

4.2 The Dynamic MAC Mechanism for Dual Ring
MANs 	 29

4.2.1 DMAC Implementation 	 30

4.2.2 The DMAC Operation 	 35

4.2.3 Advantages of DMAC Mechanism 	 40

5 PERFORMANCE ANALYSIS 	 42

6 CONCLUSIONS 	 49

APPENDICES 	 51

A- GFM Simulation Program 	 52

B- LEM Simulation Program 	58

C- DMAC Simulation Program 	 70

REFERENCES 	 80

vii

LIST OF FIGURES

Figure 	 Page

1 Dual Ring Architecture 	 7

2 Node Starvation 	 11

3 Three Independent Subsets of Users That Communicate
Only Among Themselves 	 15

4 The Basic LFM Operation For Slotted Mode 	 17

5 Heavily And Lightly Loaded Nodes In The Same
REQUEST PATH 	 20

6 	Distances Between The Interfering Nodes Are Not Similar . 	 22

7 DQDB Dual Bus Architecture 	 26

8 DMAC Node Components That Control The Transmission
On Ring A 	 32

9 A Pseudo Code For DMAC Algorithm 	 40

10 Asymmetric Location Of The Nodes And Asymmetric
Load 	 43

11 Traffic Of Lightly And Heavily Loaded Nodes Interfere 	 44

12 Localized Pattern Scenario 	 46

viii

LIST OF TABLES

Table 	 Page

I Throughput Performance For Traffic Scenario 2 	 43

2 Throughput Performance For Traffic Scenario 3 	 45

3 Throughput Performance For Traffic Scenario 4 	 47

4 Throughput Performance For Traffic Scenario 5 	 47

ix

CHAPTER 1

INTRODUCI 	ION

The increasing need to share computing resources and information has led to

the significant growth of the Local Area Network (LAN) industry. LANs

allow personal computers (PCs), hosts, and peripheral devices to

communicate with each other, in a relatively small geographical area

operating at various transmission speeds up to 20 mega bits per second

(Mbps).

In the past, dumb terminals and low speed desktop systems were the

main digital communication devices. Networks exclusively carried digital

data. Therefore, using a 16 Mbps LAN to connect these devices was considered

to be sufficient. Today, due to the advancements in information technology,

many types of information are carried in a digital form including human

voice, images, video, music, and facsimile. These types of information require

large bandwidths that current LANs cannot support. Another very important

development is the advancement in computer technology that enables

desktop systems to achieve speeds of 50 million instructions per second

(MIPS). In contrast, in the mid 80's, only main frames could achieve speeds in

excess of 10 MIPS. At the same time the software industry has introduced

multitasking and multi-user operating systems, like UNIX and OS/2, that can

support high speed high quality graphics, as well as windowing and graphical

user interfaces.

Some may argue that the increasing power of workstations and PCs may

decrease the need for computer networks. However, the opposite seems to be

true. Ubiquitous and distributed computing power of this magnitude

1

2

increases the demand of remote access to shared on-line information and

expensive computing resources such as high quality printing and plotting.

Furthermore, it enables the implementation of multimedia systems that can

support, in an integral manner, voice, data, image, and video applications.

The support of all these types of services over large distances is important,

since they have the potential of eliminating the tyranny of distances and

improving drastically efficiency and productivity. Therefore, the need of

Metropolitan Area Networks (MANs) that can provide the large bandwidths

required by the above applications and can connect the powerful PCs,

workstations and main frames over large distances becomes evident.

The feasibility of MANs in our days is mainly due to three reasons. The

first, is the advancement in computer technology. High speed processors can

provide very sophisticated communications functions. Similarly, powerful

software systems can support distributed processing, communications, and

offer software tools to help in the design and management of such networks.

The second, is the advancement in fiber optic technology that has increased

drastically the channel bandwidth, and has made fiber an economically viable

medium in almost any communication environment. The third, is that users

and vendors are beginning to understand and expect integrated

communication services.

LANs can not be extended directly to high speeds and large distances to

become MANs. The reason is inherent inefficiencies in their Medium Access

Control (MAC) schemes. For example, the performance of the Carrier Sense

Multiple Access with Collision Detection (CSMA/CD) is related to the ratio

between packet transmission time and propagation time. The larger the ratio,

the better the performance. It is clear that for MANs this ratio is small. On the

3

other hand, the performance of token ring networks is high when the ratio

between the packet transmission time and token rotation time is large.

Obviously the ratio is small in the case of a MAN, and the system efficiency is

low specially if we consider the case where just only one station transmits.

It has been shown [1] that the theoretical maximum utilization (U) of a

medium using an IEEE 802 MAC scheme satisfies the following inequality :

Where D = length of the medium, L = packet size, R = data rate, and V =

propagation speed. As an example, consider a LAN with the following values

for the system parameters: D = 1 km, L = 1024 bits, R = 10 Mbps and V =

230,000 km/sec (this is the propagation delay for coaxial cable = 0.77 the speed

of light). These values would yield an b = 0.0849 and a maximum utilization

of 92.2 percent. Consider now a MAN with D = 20 km, L = 1024 bits, R = 1

Gbps, and V = 200,000 km/sec (propagation speed for optical fiber). These

values would yield a value of 97.6 and a maximum utilization of only 1.0

percent.

The failure of LAN MAC schemes in high bandwidth networks

motivated the introduction of new control algorithms for fast networks: like

Express-Net, Fasnet, FDDI and C-net. The operation of these network

however, still follows a cyclic order in which the various nodes are allowed

to transmit one after the other. In order to initialize the cycle, an inter cycle

gap must be introduced. This gap becomes larger as the network size and the

4

bandwidth increase. As a result, the throughput of the network significantly

deteriorates. The low throughput of these algorithms and the fact that

destination release and concurrent transmission, over distinct segments of

the network, can significantly increase the effective throughput, have

inspired the introduction of other networks such as Metaring and Distributed

Queue Dual Bus (DQDB).

A challenging problem in high speed networks is the efficient and fair

channel bandwidth allocation among the competing nodes; which is due to

the small packet transmission time relative to the feedback time. Recently,

the Global and Local Fairness Mechanisms (GFM and LFM, respectively) have

been introduced for fair bandwidth allocation in high speed dual ring

networks with destination release. GFM regulates the access to the network by

considering it as a single communication resource. Therefore, it cannot fully

utilize the throughput advantages offered by destination release, especially

under non-uniform traffic conditions and when the number of active nodes

on the networks is relatively small.

LFM was introduced to solve the low throughput utilization of the GFM.

It considers the network as a distributed collection of resources and not as a

single resource. According to LFM, if there are m independent subsets of

nodes that communicate only among themselves, then the network will be

divided into m distinct segments. In each segment a fairness algorithm

similar to GFM will be used to regulate the transmission of the interfering

nodes.

We will show later that LFM has the following drawbacks: a) it wastes

bandwidth when heavily and lightly loaded nodes are competing for the

5

same network link(s), b) it exhibits unfair behavior, i.e. the location of a node

on the ring has a strong effect on the bandwidth they can acquire, c) its

operation is sensitive to network parameters such as size and bandwidth. We

also mention that in some cases we have derived analytic equations that can

provide the throughput of each node as well as the aggregate total throughput

of the network.

The limitations of GFM and LFM have motivated us to introduce the

Dynamic Medium Access Control (DMAC) mechanism for dual ring

networks with destination release. The operation of DMAC borrows ideas

from the operation of recently proposed MAC mechanisms for dual bus

architectures. The motivation is that in many cases a dual ring can be

considered as a collection of dual bus networks with each dual bus containing

a set of interfering nodes for the channel. Therefore, bandwidth allocation

techniques similar to the ones introduced for dual bus architectures can be

employed for dual ring networks. The proposed DMAC introduces fairness in

a very efficient way and provides high throughput. Its operation does not

involve any feedback signal and therefore it is insensitive to the various

network parameters.

The organization of the rest of the thesis is as follows. In Chapter 2 we

describe the Metaring architecture and we investigate its performance. In

Chapter 3 we briefly describe the GFM and LFM fairness mechanisms and

discuss their advantages and disadvantages. In Chapter 4 we provide a brief

description of the various bandwidth allocation mechanisms which have

been recently proposed for dual bus networks and we introduce the DMAC

algorithm. In Chapter 5 we investigate the performance of DMAC and we

6

compare it with the corresponding performance of GFM, LFM. Finally in

Chapter 6 we present the conclusions.

CHAPTER 2

METARING NETWORK

The introduction of large network size and high bandwidth, decreases

drastically the ratio of the packet transmission time to the end-to-end

propagation delay. This small ratio allows the network to accommodate

multiple packets simultaneously and makes the destination release and

concurrent transmission more attractive. The Metaring architecture was

introduced to increase the throughput of a ring-based Local Area Network

beyond its single link capacity, by destination release and concurrent

transmission over distinct segments of the ring.

Figure 1: Dual ring architecture.

Figure 1 shows the Metaring architecture. It consists of two

unidirectional links in which information travels in opposite directions. The

7

8

proposed network has two medium access modes: slotted and buffer

insertion. In both cases packets can be transmitted in either direction

according to the shortest path routing rule which always selects the ring on

which the destination is closer. The amount of information transmitted on

each bus is controlled by a special signal traveling on the opposite bus. The

opposite direction for data and control is necessary because starvation is

caused by the upstream traffic. Therefore, control signals should be sent

upstream to the source of starvation. Since information is transmitted on

both buses, each node will also execute independently two fairness

algorithms, one for each direction. The packets are removed by their

destinations and the addresses are arranged in an increasing order (e.g., the n

nodes on the ring are numbered from 1 to n). Furthermore, control messages

are exchanged between neighboring nodes enabling them to perform specific

functions.

The Metaring network can operate under two basic access control modes:

buffer insertion, for variable size packets, or slotted for fixed size packets. In

both modes the packets are removed by their destination. In order for the

nodes to be able to determine very quickly whether to remove a packet from

the network, a short 8 bits identity is used.

Buffer Insertion Mode

In this mode each node uses an insertion buffer (IB) on the receiving

side of each ring that can store one maximum size packet. A node can

transmit a packet at any time as long as its insertion buffer is empty. If traffic

arrives when the node is in the middle of a packet transmission, then the

ring traffic will be stored in the insertion buffer. Then, after the node has

9

transmitted the packet, it will pause transmission (even if it has more packets

waiting in its queue) until the insertion buffer becomes idle again. In this case

non preemptive priority is given to the ring traffic.

Slotted Mode

The slotted mode is used in order to reduce the delay caused by the

insertion buffer. This is done at the cost of making the packet size constant.

The same hardware interface of the insertion buffer mode is used for the

slotted mode. A control bit, the busy bit (BB), in the header of each slot is used

to describe the status of a slot. When a node writes on a slot it also makes the

busy bit equal to 1; indicating in this way to the other nodes that the slot is full

and no one else can write on it. When the destination node receives a slot, it

removes it from the network; resetting its busy bit to 0. This will indicate to

the other nodes that the slot is now empty and that they can write on it. A

node can transmit whenever it receives an empty slot and has a packet

waiting in its queue.

Throughput Performance

Let us now consider a dual network consisted of n overloaded nodes

(i.e., they always have packets to send). It is evident that the maximum

distance a packet can travel over the ring is n/2; since each time a packet is to

be transmitted, the node will select the ring for which the destination is

closer. If we now assume that we have uniform traffic, then the average

distance a packet must travel is n/4. Therefore, by using destination release

and allowing concurrent transmission we will have, on the average, four

stations transmitting simultaneously. Consequently, the overall bandwidth

10

provided by each link of the dual slotted or buffer insertion ring will be 4

times more than the one of a single token ring.

The previous discussion has shown that destination release and

concurrent transmission (combined with dual ring architecture) can

drastically improve the performance of the system. However, unrestricted

transmission by the nodes and destination release may cause several

problems which we discuss below:

• Starvation: unrestricted transmission may cause starvation, because

upstream nodes have a non preemptive priority over down stream

nodes. Starvation can happen if some nodes are in the path of the

transmission of an upstream heavily loaded node which will

prevent them from accessing the channel for a quite long period of

time. Figure 2, Provides an example of starvation. Node 1 transmits

continuously to node 4 on ring A and node 3 transmits

continuously to node 10 on ring B. As a result, 2 will not be able to

transmit any packet on either ring; it is a starved node.

11

Figure 2: Node Starvation.

0 	Priority: the distributed nature of the access and the destination

release, complicate significantly the implementation of a priority

access scheme and the integration of synchronous and

asynchronous traffic.

Fairness: It becomes extremely difficult to distribute the bandwidth

in a fair way between the nodes of each class. This is due to non-

preemptive priority inherent to upstream nodes.

The aforementioned problems clearly indicate that new MAC

mechanisms must be introduced. Such mechanisms must be able to take

advantage of the destination release and concurrent transmission, in order to

achieve high throughput. At the same time must prevent starvation and

provide fair bandwidth distribution among the nodes serving the same

priority class.

CHAPTER 3

METARING FAIRNESS MECHANISMS

There are mainly two Medium Access Mechanisms that have been proposed

for the Metaring Architecture: the Global and Local Fairness Mechanisms

(GFM and LFM, respectively). The main goal of these mechanisms is to

achieve high throughput and provide fairness among competing nodes. In

this Chapter we describe the GFM and LFM mechanisms and present their

advantages. Then we show where they fail to achieve their objectives and

provide reasons for their limitations. We finally derive analytic equations

which can estimate the throughput of each node under certain conditions.

3.1 	Global Fairness Mechanism (GFM)

GFM views the whole ring as a single resource and gives all nodes equal

transmission opportunities. The access on each direction of the ring is

regulated by a single control message, the SAT, which circulates in the

opposite direction (of the data traffic whose transmission is regulating). Each

node can transmit a maximum of K packets per transmission cycle;

transmission cycle is the time interval between two successive arrivals of the

SAT at the same node. A node is SATisfied if its queue is empty or it has

transmitted at least L packets since the last time it observed the SAT signal.

Otherwise, the node is said to be starved or unSATisfied and will hold the

SAT until it becomes satisfied.

12

13

The basic ring access mechanism for one direction is described below.

Note that GFM mechanism is the same for the slotted and buffer insertion

access modes. For more details the interesting reader is referred to [2, 3].

The GFM consists mainly of two algorithms: Forward SAT, and Send

packet. Forward SAT is used to determine what actions the node has to take

when it receives the SAT. Send Packet is used to determine what actions a

node should take when it sees a slot on the forward channel. We provide

below a description of both algorithms.

Forward SAT Algorithm: As we have already mentioned before when a

satisfied node sees the SAT signal it will forward it immediately to the

upstream nodes. Otherwise, i.e. the node is unsatisfied, it will hold the SAT

until it becomes satisfied. only then it will forward the SAT upstream. After a

node forwards a SAT, it can send K more packets, where K L (a simple case

K =L= 1).

Send Packet Algorithm: When a node sees a slot it will check the busy bit

of that slot to find if an upstream node has written on it. If the slot is busy and

the node is the destination for that slot, it will release it. If the slot is empty

the node will transmit a packet if and only if the number of packets that it has

transmitted since the last SAT arrival is less than K.

GFM has the following two advantages:

It is Fair: It guarantees, given K and L, that after each rotation of the SAT

signal the subset of nodes with L packets in their output buffer will have

transmitted at least L packets and at most K packets. All other nodes with less

than L packets will have transmitted all of them. The GFM can also be

14

implemented in an asymmetric manner, that is, the various nodes can use

different values for K and L, i.e. Ki and Li for node "i". In this way nodes with

higher traffic requirements (e.g., file servers, bridges) can acquire more

bandwidth.

It is deadlock free: When a node is unsatisfied it will hold the SAT until it

becomes satisfied. The upstream nodes will transmit their K packets and then

will stop until they see the SAT signal again. Therefore the upstream nodes of

node i will eventually become idle, and node i will transmit L packets and

forward the SAT. Therefore, the SAT signal can not be held indefinitely by a

node and GFM is deadlock free.

The GFM has two basic drawbacks. First, it is global. That is, it views the

whole network as a single resource and regulates the access to the network

according to that. In other words, every node sees the same transmission

constraints even if it does not interfere with any other node. In Figure 3 for

example, there are three independent subsets of users that communicate only

among themselves. The global fairness algorithm will force all groups to

maintain fairness among themselves even if they do not interfere at all.

15

Figure 3: Three independent subsets of users that
communicate only among them selves.

Second, the mechanism is continuous. That is, it operates even when no

node starves which may result in unnecessary performance degradation. For

example, consider the case where there is only one active node. The node will

transmit a packet (if K = L =1) or K packets (if K > 1) and will stop until it

receives the SAT. It is clear that as the network size and bandwidth increase,

the ratio between the packet transmission time and the SAT rotation time

will decrease and the throughput performance of the system will be

unacceptable. The above argument is also true for any case where the number

of active nodes in the network is relatively small. In the pervious example

the similarity between GFM and the token ring operation is obvious. It is

therefore evident why GFM is very sensitive to network parameters and

inappropriate for high speed MANs

16

3.2 	Local Fairness Mechanism

The disadvantages of GFM motivated the introduction of the Local Fairness

Mechanism (LFM) in [4, 51 which is initiated only when starvation is

detected. In addition, it involves only the segments of interfering nodes.

LFM divides the network into a collection of communication resources

according to the load distribution. Each resource is a subset of links. A fairness

algorithm, similar to GFM, is triggered in those subsets where starvation

occurs and regulates the medium access between the interfering nodes. At the

same time other nodes in the non-congested parts of the network can have

free medium access. According to this mechanism, a fairness algorithm can be

triggered locally only when the potential of starvation exists. Since each

resource in the network can be considered as a dual bus, LFM can be

implemented on both dual bus and dual ring topologies with only small

modifications. A full algorithm for dual bus networks is given in [51. A

description of LFM for dual ring is given below.

The LFM algorithm that is executed in each node alternate between two

modes of operations: non-restricted mode and restricted mode. In the non-

restricted mode, a node can transmit any time it sees an empty slot (slotted

mode) or its insertion buffer is idle (insertion buffer mode). In the restricted

mode, a node can transmit only a predefined quota of packets before it returns

back to the non-restricted mode.

Normally, each node is operating in the non-restricted mode. When a

node become starved, it activates a control mechanism that switches the

operation of the node as well as its upstream nodes, that cause the starvation,

into the restricted mode. When all the nodes involved in an access conflict

17

are satisfied, the restricted mode of operation is terminated. According to LFM

each node uses two types of control signals:

1. Request (REQ): this signal initiates the period of restricted mode of

operation and is forwarded upstream over the congested segment of

the ring.

2. Grant (GNT): this signal is used when the node is satisfied; in order

to terminate the local fairness cycle.

The basic operation of the Local Fairness algorithm for slotted mode is

demonstrated in Figure 4.

Figure 4: The basic LFM operation for slotted mode

In this figure, we assume that node "i" initiates the algorithm and that

there is at least one node upstream to "i" which does not see upstream traffic (

18

node "i -3"). Node "i" triggers the fairness operation by sending a REQ signal

upstream. It changes its state to tail node (T state) and switches to the

restricted mode of operation. When the upstream nodes receive the REQ

signal they will forward it upstream whenever they see a busy slot on the

forward channel; after forwarding the REQ signal a node will also switch to

the restricted mode of operation and change its state to body node (B state).

When the REQ signal reaches node "i-3" which does not see upstream traffic,

this node will switch to the restricted mode of operation, change its state to a

head node (H state) and block the request. In this way a REQUEST PATH with

a unique and distinct head and tail nodes is created.

When the tail node "i" becomes satisfied (i.e., it has transmitted its

predefined quota), it will send a GNT signal upstream, switch back to non-

restricted mode of operation, and change i.ts state to that of Free Access (F.A.

state). The upstream nodes which will receive the GNT signal will follow a

similar procedure. That is, if they are in B state, they will switch to T state and

forward GNT upon satisfaction. When the node in the H state (node "i-3")

receives the GNT, it will switch to the F.A. state (i.e., non restricted mode)

and the local cycle will be terminated.

The symmetry of the ring will cause a deadlock problem when the

network traffic is high; since all nodes will see busy upstream traffic and the

REQUEST PATH will cover the entire ring. In this case, all the nodes will be

in the B state. Therefore, the nodes will eventually transmit their quotas and

no node will be allowed to transmit any packets. The reason is that in order

for the nodes to transmit more packets they have to renew their quotas. This

will not happen unless they switch to the non-restricted mode. Since only the

node in the T state can send a GNT signal upstream no such node exists,

19

because all nodes are in the B state, and the ring will be in a deadlock because

there is no tail node present.

In order to solve the deadlock problem, the request control signal must

have a REQ_ID as a parameter and the request must be send in the following

format: REQ(REQ_ID). Each node must maintain a REQ_ID variable. This

variable will identify the original tail node of the REQUEST PATH. By using

the REQ_ID, two REQUEST PATHs can be merged when they overlap as

follows:

a. when a node receives REQ(j) and its REQ_ID is i ≠ j , it will merge

the two REQUEST PATHs and switch to B state; if it is not already in

the B state. Then if j > i, it will forward upstream the REQ(j) and

change its REQ_ID variable to j. Otherwise (i.e. j < i), it will delete

the request from the ring.

b. if the REQ_ID of the node is the same with the one arrived on the

REQ signal, then the same REQUEST PATH covers the entire ring

and no head is currently present. In this case the node switches to

the combined head-tail (HT) state.

According to LFM mechanism each node can be in one of 5 states , Free

Access (RA.), Tail (T), Body (B), Head (H) and the combined Head-Tail (HT). A

simple election algorithm is used to ensure that each REQUEST PATH has a

single tail and a single head; except when the REQUEST PATH covers the

entire ring. In this case we will have one node in the head-tail state (HT) and

all the other nodes will be in the body (B) state.

20

3.2.1 LFM Properties

In this section we provide a brief discussion of the properties of LFM in terms

of throughput, fairness and possibility of deadlock.

Throughput: The introduction of fairness usually affects the maximum

system throughput. In LFM the fairness algorithm is triggered only when

starvation is detected and it is enforced locally (i.e., only among the segment

of the network, where the conflict occurs); allowing the other nodes in the

non congested segments to transmit freely without any constrain. Hence LFM

is expected to have higher throughput than GFM where the fairness

algorithm is applies to all nodes continuously.

However, this algorithm wastes bandwidth in the case where the traffic

of heavily and lightly loaded nodes interfere. This bandwidth loss depends on

both the distances between the nodes and the offered load. The larger the

distances between the nodes, the larger the band width wastage. This case is

presented in Figure 5.

Figure 5: Heavily and lightly loaded nodes in the
same REQUEST PATH

21

In the above figure, there is no traffic upstream to node 1. Node 1 is

heavily loaded and transmits continuously to node 3 and node 2 is lightly

loaded and transmits to node 4. Since node I is upstream to node 2 and is

continuously transmitting, node 2 will starve. Therefore it will send a REQ to

node I. At the same time it will switch to T state and enter the restricted

mode of operation. When node 1 receives the REQ signal, it will change to

the H state and switch to the restricted mode. A REQUEST PATH is now

complete. Let us assume that the quota for both nodes are the same and equal

to q and the number of slots between node 1 and node 2 is n. Then the node's

transmission during each local fairness cycle will be as follows:

Node 1 will transmit q frames and after that it will allow empty slots to

pass by. When the empty slots arrive at node 2, it will transmit q frames (or

less depending on how many packets are waiting in its queue), switch to non-

restricted mode, and send a GNT signal upstream. Since node 2 is lightly

loaded, it may not have any other frames to transmit. Nevertheless, it will

still see 2*n empty slots that node 1 has allowed to pass which will be wasted.

The reason for these empty slots is that when node 2 sends the GNT

upstream, all the n slots on the forward channel between node I and 2 will be

empty. It will also take another n slots for the GNT to arrive at node 1 and

enable node 1 to transmit again. It is clear from the above example that as the

distance between nodes 1 and 2 becomes large, the number of slot between

them will increase and more bandwidth will be wasted.

Fairness: In the case where the network size is relatively small and the

distances between neighbor active nodes in the REQUEST PATH are similar,

local fairness is achieved by limiting the transmission of each node in the

restricted mode to a predefined quota of frames or bytes. However, if the

22

network size is large and the distances between the neighbor active nodes are

not similar, then same quota for all nodes does not necessarily lead to similar

throughputs. The reason is that during the transition from the restricted

mode to non-restricted mode some of the nodes may have an advantage over

others and transmit more frames; even though they have the same quota. An

example of such a case is shown in Figure 6. In this figure we have three

active nodes 1, 2, and 3. The nodes are heavily loaded and their traffic

interferes. The distances between them are not similar. Node 1 will have an

advantage over nodes 2 and 3 and will acquire more bandwidth than any of

them.

Figure 6: Distances between the interfering nodes are
not similar

Deadlock free: The presence of one head and one tail for each REQUEST

PATH (except for the case where we have a single head-tail node), ensures

that one GNT signal will be sent and the network will never into a deadlock.

We also mention that when the network is fully loaded (i.e., nodes have

always something to transmit), a single REQUEST PATH will cover the entire

23

ring. In this case all the nodes will transmit their quotas. When a node

switches to the non-restricted mode and renew its quota, it will almost

immediately switch back to the restricted mode; this is because it will be

always covered by heavily loaded up-stream nodes. In this case each node

will be in the restricted mode most of the time and the LFM will operate

similar to GFM.

3.2.2 Throughput Analysis

In the case of slot reuse the derivation of analytic estimates for the

throughputs of the various nodes under every load condition is a very

difficult problem. However, our simulation results have shown that for

certain cases of loading such derivation is possible. Consider for instance

Figure 6 where nodes 1,2 and 3 are heavily, loaded and all of them transmit to

nodes below node 3. The number of slots between 1 and 2 is Li, and between 2

and 3 is l2 (where /1 > 2). The quotas for 1,2 and 3 are q1, q2, and q3,

respectively. We have found that if the condition 2l2 + q2 + q3 > 2 /1 is

satisfied, then the number of times the three nodes switch to restricted mode

is the same. That is any time a REQUEST PATH is established, it will include

the 3 nodes which will move to the non-restricted mode before a new

REQUEST PATH is established. If the above condition is satisfied, then the

throughput of each node is given by the following equation:

Where Ti is the throughput of node i, and ni is the number of slots

transmitted by node i between any successive REQUEST PATH

24

establishments. In this case ni will be equal to qi, plus the number of slots

between node i and the nearest neighbor active node which is part of the

same REQUEST PATH. Therefore we can write:

It is clear from the above example that the throughput of each node will

depend on the distances between the nodes. This dependency will make the

LFM exhibit an unfair behavior and enable some nodes to have higher

throughputs. In the above example if the nodes have the same quota, node

will have higher throughput than node 2 or node 3.

CHAPTER 4

A NEW DYNAMIC MAC MECHANISM

The performance analysis of GFA and LFA shows clearly their sensitivity to

network parameters, especially under non-uniform load distribution. In this

chapter we introduce a new access mechanism, the Dynamic MAC

mechanism (DMAC), that tries to solve GFA and LFA problems. The

operation of DMAC borrows ideas from a variety of access mechanisms that

have been recently proposed for high speed MANs. For this reason, in the

sequel, we first provide a brief description of the most prominent MAC

mechanisms that have been proposed for dual bus architectures. Then we

introduce DMAC and discuss its properties and advantages.

4.1 	Dual Bus Mechanisms for MANs

Recently the Distributed Queue Dual Bus (DQDB) was introduced [6, 7] for

dual bus high speed MANs; DQDB has been adopted by the IEEE as the 802.6

standards for MANs. However, the basic DQDB MAC mechanism exhibits

unfair behavior. That is, the location of a node in the network drastically

affects the amount of channel bandwidth it can receive. A modification of

this algorithm, called the Bandwidth Balancing (BWB) mechanism was

proposed in [8] to deal with the above unfairness problem; we will refer to

this mechanism as BWB_DQDB. BWB-DQDB can provide the lightly loaded

nodes with the requested bandwidth, and evenly distribute the remaining

bandwidth among the heavily loaded nodes. However its operation requires

some bandwidth wastage and its converges to the steady state, where fair

bandwidth allocation is achieved, is rather slow.

25

26

For these reasons the No Slot Waste Bandwidth Balancing (NSW_BWB)

mechanism was introduced [9, 10, 11]. NSW_BWB divides the channel

bandwidth in a fair and efficient way among the competing nodes but

without wasting any channel slots. Furthermore, it can converge faster to the

steady state (than BWB_DQDB) and is insensitive to the network parameters.

The performance of NSW_BWB mechanism under the presence of erasure

nodes has been also investigated in [12]. The erasure nodes have been

introduced to allow slot reuse. That is, when a slot that has been read by its

destination passes in front of an erasure node, it released and another node

can write it. As a result the aggregate system throughput increases. In the

sequel, we provide a brief description of these mechanisms. Such discussion

will facilitate understanding the operation of DMAC.

DODB MAC Mechanism

In DQDB the network nodes are connected to two unidirectional buses A

and B; as it shown in Figure 7.

Figure 7: DQDB dual bus architecture.

The information on the buses travels in opposite directions. Node 0 on

bus A and node N-1 on bus B are responsible for generating the slots. When a

node wants to transmit to other nodes located to its right, it will use bus A.

Otherwise it will use bus B. The operation of both buses is the same.

27

Therefore, we will describe only the operation on bus A. We will use the term

forward bus for bus A, and reverse bus for bus B. In DQDB the header of each

slot has a Busy Bit (BB), which indicates whether the slot on the forward bus

is full (i.e., an upstream node has used the slot) and a Request Bit (RB) which

indicates whether a downstream node on the reverse bus has requested a

reservation for a slot.

Each node has a Request Counter (RQ_CTR) and a Count Down

Counter(CD_CTR). Their operation is as follows. When the node is idle, it

increments RQ_CTR by one for every RB = I seen on the reverse bus, and

decrements RQ_CTR by one for every empty slot seen on the forward bus. In

this way RQ_CTR keeps track of the number of down stream nodes that have

made slot's reservation. When a packet arrives at a node, the node sends a

request upstream (on the reverse bus), transfers the content of RQ_CTR to

CD_CTR, and resets RQ_CTR to 0. After this instant, CD_CTR is decremented

by one for every empty slot seen on the forward bus, and RQ_CTR is

incremented by one for every RB = I seen on the reverse bus. When CD_CTR

becomes zero, the node transmits its packet in the first empty slot on the

forward bus. We see that CD_CTR determines the number of empty slots that

a node must allow to pass, due to reservations by downstream nodes, before it

is allowed to transmit its packet.

BWB DQDB Mechanism

According to this mechanism every time a node transmits M packets

increases the value of RQ_CTR by one; allowing in this way an empty slot to

go downstream and be written by the first active downstream node with

CD_CTR =0. It is evident that if all the downstream nodes are idle, this free

28

slot will be wasted. The amount of channel bandwidth loss will depend on

the value of M. The smaller the value of M, the higher the bandwidth

wastage. However, as the value of M increases, the system takes more time to

reach the steady state where the fair bandwidth allocation is achieved.

Therefore, there is a tradeoff between channel utilization and convergence

speed.

NSW BWB Mechanism

NSWBWB mechanism informs a node in advance about the future of

the free slot that may allow to pass; i.e. whether another node will use it.

Therefore, the node can let a free slot to pass only if a downstream node is

going to use it. In this way no slot is wasted. Consequently, the nodes can use

a small value of M and decrease significantly the required time to reach steady

state.

The NSW BWB mechanism uses an additional control bit in the slot

header called the Transmit Additional Request (TAR) bit. Whenever a node i

transmits its Mth packet, it makes the TAR bit = 1 in the written slot. The first

active downstream node j that has an available packet, for which a request

has not yet been sent, will make the TAR bit equal to zero and send an

additional request upstream. This additional request will be seen by node i,

which will increment its RQ_CTR by one; allowing a free slot to go

downstream. It is clear that an extra request will be sent upstream only if a

downstream node has an available packet. This will insure that the idle slot

that node i will allow to pass will be written and no slots will be wasted.

We point out that the extra request that node j will send, will be also

seen by all the nodes upstream to node i, which will increment their

29

RQ_CTRs by one. These nodes will be compensated by not allowing node i to

send a request for the next packet waiting in its queue.

Bandwidth Balancing Mechanism Under the Presence of Erasure Nodes

In [12] the performance of NSW_BWB and BWB_DQDB is investigated

in the presence of erasure nodes. The erasure nodes are special nodes that will

release any slot that has already been read by its destination. The released slots

can then be used by other nodes, and this will significantly increase the

throughput of the system. We will refer to NSW_BWB under the presence of

erasure nodes as NSW_BWB_EN. According to this mechanism each erasure

node has an Erased Slot Counter (ES_CTR) and a Request Counter (RQ_CTR).

The operation of the RQ_CTR is similar to that of regular nodes. ES_CTR on

the other hand, increases by one whenever a slot is erased and RQ_CTR is

greater than 0; which is an indicator that there are active nodes downstream

and one of them may use the erased slot. When the erasure node sees a

request on the reverse bus and its ES_CTR is greater than 0, it will reset the

request and decrement its ES_CTR by one.

4.2 	The Dynamic MAC Mechanism for Dual Ring MANs

The objective of the new mechanism is to achieve fairness and high

throughput regardless of system parameters such as number of nodes,

network size, channel capacity, and load distribution. In order to achieve high

throughput, the nodes must transmit continuously unless there is an active

downstream node that may be affected by this transmission. In this case the

downstream node must inform the upstream nodes about its bandwidth

requirements by sending reservations. Since the operation of both rings is the

30

same, in the next section we will give a full description of the operation on

ring A. We will use the term forward channel for ring A and reverse channel

for ring B.

4.2.1 DMAC Implementation

According to DMAC mechanism, the header of each slot will have a Request

Bit (RB), Busy Bit (BB) and Transmit Additional Request (TAR) bit. The RB

will indicate whether a slot on the reverse channel is carrying a reservation

from a downstream node. The BB will indicate whether the slot on the

forward channel is empty. Finally, the Transmit Additional Request (TAR) bit

will allow a downstream node to send an extra request when it has packets

waiting in its queue. Each node sends two types of requests to the upstream

nodes: a) Regular requests, that is, requests that a node sends when a packet

becomes first in queue. b) Extra requests, that is, requests that a node sends

when it erases a TAR bit.

The problem with ring networks is that there is no physical termination

of the channel and for this reason an inserted request may circulate forever

and increase continuously the values of RQ_CTR at the various nodes. It is

evident that a mechanism is needed for the removal of requests. A solution

to this problem is to use a REQ_ID instead of a Request Bit in the header of

each slot. When a node wants to send a request on the reverse channel, it

actually inserts its own ID in the REQ_ID field. Therefore, the source nodes

will be able to remove their own requests from.the ring. In the sequel we

describe the various components inside each node that control the

transmission on ring A. As shown in Figure 8, each node has the following:

31

Upstream Request Counter (URQ_CTR): Counts the number of requests

(regular and extra) that this node has to send to upstream nodes.

Request Counter (RQ_CTR): Keeps track of the number of free slots this node

must allow to pass, due to the reservations made by downstream nodes,

before it can transmit a packet

Queue: Contains the packets that have arrived at the node for transmission

on channel A.

Transmit Register: Holds the first packet in the Queue. When this first packet

starts its transmission, the bits of the next packet in the Queue start entering

the Transmit Register and the next available packet becomes first in the

Queue. Therefore, it can be transmitted on the immediate next slot.

Bandwidth Balancing Counter (BWB_CTR): It is used to determine when the

node will transmit a TAR=1 bit on the forward channel. Its operation is as

follows. BWB_CTR is incremented by one for every packet transmitted by the

particular node. Whenever BWB_CTR = M the node sends a TAR bit

downstream, resets BWB_CTR to 0, and sets a flag, the TAR_FLAG, to 1.

When a packet becomes first in queue and the TAR_FLAG = 1, the node will

not send a request upstream, compensating in this way the upstream nodes

for the additional request they saw which was inserted by a downstream node

will send when it erased a TAR bit.

32

Figure 8: DMAC node components that control the
transmission on Ring A.

Unregister Counter (UNRG_CTR): Counts the number of unregistered

packets in the node's Queue. Unregistered are packets for which requests

have not yet been sent upstream and whose presence may enable a node to

erase a TAR=1 bit and send an extra request. In order for a node to do that its

UNRG_CTR must be equal to greater than M. For more information on

UNRG_CTR we refer to [9].

Register Counter (RG_CTR): counts the number of registered packets in the

node's Queue. Registered are packets for which a request has been sent or

packets whose presence has been already used. for erasing a TAR= 1 bit.

Packets can become registered in the following two ways: a) when a packet

becomes first in Queue and a regular request for it is sent upstream, b) when

UNRG_CTR is greater than or equal to M and a TAR = 1 bit is seen on the

33

forward channel. In this case the node will reset the TAR bit to 0, increase

RG_CTR by M, and decrease UNRG_CTR by M; we see that in this case a set

of M packets becomes registered. For more details on the operation of

RG_CTR we refer to [9]. The objective of RG_CTR and UNRG_CTR is to

ensure that the node will transmit the same number of TAR = 1 bits that

erases. It is shown in [9] that this condition will guarantee fair bandwidth

allocation among the various nodes.

Delay Upstream Request Counter (DURQ_CTR): counts the number of

requests that a node has removed from the reverse channel. These requests

will be forwarded to the upstream nodes whenever the node sees a busy slot

on the forward channel, or erased (if the node upstream traffic is idle). The

objective of DURQ_CTR is to increase the system throughput by reducing the

number of requests on the reverse channel.

Erased Slot Counter (ES_CTR): This counter determines the number of

requests that can be erased by the node. In the sequel we describe its operation

on the forward and reverse channels.

Operation on Forward Channel: When a node releases a slot it increments its

ES_CTR by one only in two cases: a) if there is an active downstream node

that will use the slot, i.e. RQ_CTR > 0, b) if there is no active downstream

node present, but the node itself can use the slot to transmit a packet for

which it has not sent a request, i.e. RQ_CTR = 0 and URQ_CTR > 0.

Operation on Reverse Channel: When a node sees a RB = 1 on the reverse

channel and its ES_CTR > 0, it resets RB to 0 and decrements ES_CTR by one.

On the other hand if the RB = 0 and both ES_CTR and URQ_CTR are greater

than zero (this is the case where the node uses the slot that released to

34

transmit a packet for which a reservation has not been made), the node will

decrement both URQ_CTR and ES_CTR by one.

We point out that the motivation for erasing requests, in addition to

erasing slots, is higher system throughput. Otherwise upstream nodes seeing

the same number of requests (as with no erasure nodes) will allow free slots

to go downstream which may be wasted, since downstream nodes may have

already sent their packets in the released slots, and the improvement in the

throughput will be minor. We also mention that it is not a good idea to

simply erase a request for every slot released. Consider for instant the case

where there is only one active node, say node i. Node i is heavily loaded and

transmits to node j. If node j increments its ES_CTR for every slot it releases

its ES_CTR will increase to a large value. If later a node downstream to node j

becomes active and sends a request bit upstream, this request will be erased by

node j (since its ES_CTR > 0) and the downstream node may not receive any

bandwidth.

Head Counter (H_CTR): This counter is used to assist the node to decide on

whether it will be a head node. It operation is as follows. The node initializes

H_CTR with H (the value of H used depends on the network size). When it

sees an empty slot on the forward channel it decrements H_CTR by one.

Otherwise (i.e., the slot is busy), it sets H_CTR to H. The node is considered a

head when H_CTR = 0. The head node does not see upstream traffic.

Therefore it will not send any request upstream for its own packets and will

erase all requests seen on the reverse channel. The motivation behind the

H_CTR is to increase the system throughput by allowing the head node to

block its own requests and any request it sees on the reverse bus. Since the

upstream to head nodes have no effect on its transmission, or to the other

35

downstream nodes, any request passing upstream to head will only prevent

the upstream nodes from transmitting their packets.

The main idea of DMAC is to split the network into a number of

independent ring packets. Each ring packet contains the nodes that interfere

with each other. A dynamic fairness algorithm can then be applied to each

packet. This fairness algorithm will allow each node to transmit continuously

unless it starts affecting a downstream node. In this case the downstream

node will inform the upstream nodes about its traffic requirements by

sending requests on the reverse channel and forcing them to allow free slots

to pass by. The DMAC mechanism will provide the lightly loaded nodes with

the requested bandwidth and evenly divide the remaining bandwidth among

the heavily loaded nodes. It will achieve high throughput by allowing

destination release and will be insensitive to the network parameters; since

the interaction between the nodes does not require any feedback control

messages.

4.2.2 The DMAC Operation

In this section we describe the operation of DMAC by looking at the various

events that may occur, and describing the corresponding behavior of the

node. We assume that the nodes will first look at the reverse channel and

then at the forward bus.

a- Segment arrival(s): UNRG_CTR will increase by one; if a long message

arrives UNRG_CTR will increase by the number of packets in the message.

b- Segment becomes first in queue: if TAR flag is equal to 0 and RG_CTR is

greater than 0 (packet is registered), the node will send a regular request on

36

the reverse bus. If TAR_FLAG = 0 and RG_CTR = 0 (unregistered packet) the

node will send a regular request, increment RG_CTR by one and decrement

UNRG_CTR by one. If the node is a head node it will not send any request

upstream. Finally, if the TAR flag = 1 no action will be taken by the node.

c- A slot arrives at the reverse bus: There are two cases: RB=0 and RB=1.

When RB = 0: if both ES_CTR and URQ_CTR are greater than 0 (the node has

used the erased slot to transmit a packet for which it has not sent a request),

the node will decrement both of them by 1. If at the same time DURQ_CTR is

greater than 0, the node will make RB = 1, and decrease DURQ_CTR by 1.

However, if DURQ_CTR is equal to 0 and URQ_CTR is still greater than 0

(after it was decreased by one), the node will send a request upstream and will

decrement URQ_CTR by 1.

When RB = 1: The node will increment RQ_CTR by 1. If ES_CTR is greater

than 0 the node will make RB = 0, and decrement ES_CTR and RQ_CTR by 1.

Then the node will check DURQ_CTR. If it is greater than 0 it will decrement

DURQ_CTR by I and make RB = 1. Otherwise (i.e. DURQ_CTR is 0), the node

will check the URQ_CTR. If URQ_CTR > 0 then it will make RB = 1 and will

decrement URQ_CTR by 1. If ES_CTR = 0 and DURQ_CTR = 0 then RB = 0

and DURQ_CTR = 1. If ES_CTR = 0 and DURQ_CTR > 0 the node will not

take any action.

d- A slot is seen on forward bus: This event can be divided into the following

two events:

Slot is erased: The node will increment ES_CTR by 1 if: a) RQ_CTR > 0 (an

active downstream node will use the released slot). b) RQ_CTR = 0 and

37

URQ_CTR > 0 (the node can use the released slot for a packet for which a

request has not been sent yet). If TAR bit is equal to 1 the node will erase it.

Slot is empty: If H_CTR is greater than 0 the node will decrement it by 1. If

RQ_CTR is greater than 0, the node will allow the slot to pass by. Otherwise

(i.e., RQ_CTR = 0), the node will transmit a packet; if one is available (i.e.,

RG_CTR + UNRG_CTR > 0).

e- Node Transmits a packet : If TAR_FLAG is equal to 1 and RG_CTR is equal

to 0, UNRG_CTR will decrease by 1. Otherwise, the RG_CTR will be decrease

by 1. The node will increment the BWB_CTR by 1 and it will reset the

TAR_FLAG to 0. If by increasing BWB_CTR its value becomes equal to M,

the TAR bit will be set to 1 in the written slot, BWB will be reset to 0, and

TAR_FLAG will be set to 1; to indicate, that a request should not be sent

upstream for the next packet becomes first in queue. In the following Figure 9

we provide a pseudo code description of the various actions that a node must

take.

a- Packet arrival(s):

UNRG_CTR = UNRG_CTR + number of packets in the message.

b- Packet becomes first in queue:

If TAR_FLAG = 0 AND RG CTR > 0 then
If H_CTR > 0 then

URQ_CTR = URQ_CTR + 1;
End if

Else If TAR_FLAG = 0 AND RG_CTR = 0 then
RG_CTR = RG_CTR + 1;
UNRG_CTR = UNRG_CTR - 1;
If H_CTR > 0

URQ_CTR = URQ_CTR + 1;
End if

End if

c- Slots arrived at the reverse bus:

When the RB = 0

If (ES_C FR > 0) and (URQ_CTR > 0) Then

ES_CTR = ES_CTR - 1;
URQ_CTR = URQ_CTR - 1;

End If
If (DURQ_CTR > 0) Then

DURQ_CTR = DURQ_CTR - 1;
RB = 1;
SL REQ _ID = DURQ_CTR_ID

Else If (URQ_CTR > 0) Then
URQ_CTR = URQ_CTR - 1;
RB = 1;
SL REQ _ID = i;

End if
End if

When RB = 1

RQ_CTR = RQ_CTR + 1;
If (ES_CTR> 0) Then

If (URQ_CTR > 0) Then
ES CTR = ES_CTR - 1;
RB = 1;
SL REQ _ID = i;

Else If (DURQ_CTR > 0) Then
RB = 1;
ES_CTR = ES_CTR - 1;
DURQ_CTR = DURQ_CTR - 1;
SL_REQ_ID = DURQ_CTR_ID;

Else RB = 0;
ES_CTR = ES_CTR -1;

End if
End if

Else If (DURQ_CTR = 0) Then
 RB = 1;

DURQ_CTR = DURQ_CTR + 1;
DURQ_CTR_ID = SL_REQ_ID

End if
End if

d - Slot is seen on forward bus:

38

If slot is erased:

If (RQ_CTR > 0) OR ((RQ_CTR = 0) AND (RG_CTR > 0)) Then
ES_CTR = ES_CTR + 1;

End if
If TAR bit = 1 Then

TAR bit = 0;
End if

Slot is empty:

If (H CTR > 0) Then
H_CTR- 	= H_CTR - 1;

End if
If (RQ_CTR > 0) Then

RQ_CTR = RQ_CTR - 1;
If (RQ_CTR = 0) AND (DURQ_CTR > 0) AND (H_CTR = 0) Then

DURQ_CTR = DURQ_CTR - 1;
End if

Else If (RG_CTR + UNRG_CTR > 0) Then
call transmit packet event;

End if
End if

Slot is busy

H_CTR = H;
If TAR bit = 1) AND (UNRG_CTR >= M) Then

TAR bit = 0;
RG_CTR = RG_CTR + M;
UNRG CTR = UNRG_CTR - M;
If (H CTR > 0) Then

URQ_CTR 	= URQ_CTR + 1;
End if

End if

Transmit packet:

If (TAR flag = 1) AND (RG_CTR = 0) Then
UNRG_CTR = UNRG_CTR - 1;

Else
UNRG_CTR = UNRG_CTR - 1;

End if
If (TAR flag = 1) AND (ES_CTR > 0) Then

ES_CTR = ES_CTR - 1;
End if
TAR flag = 0;

39

40

BWB_CTR = BWB_CTR + 1;
If (BWB_CTR = M) Then

BWB_CTR = 0;
TAR flag = 1;
TAR bit = 1;

End if

Figure 9: A pseudo code for DMAC algorithm

4.2.3 Advantages of DMAC Mechanism

Fairness: By ensuring that the number of TAR bits that a node erases is equal

to the number of TAR bits that it inserts, the lightly loaded nodes will get the

requested bandwidth and heavily loaded nodes will evenly share the

remaining bandwidth.

High Throughput: In DMAC the network is considered to consist of multiple

resources rather than a single resource. The network is divided into segments

that contain the competing nodes. A local fairness mechanism is used in each

segment independently from the other segments and allows the nodes to

transmit continuously, unless a downstream node makes a reservation.

Therefore, the DMAC mechanism will have a high throughput. For example,

if we have 4 independent groups of nodes, the aggregate throughput of the

system will be 4 times the throughput of a single link. Furthermore, the slot

reuse inside each segment may increase the throughput even more. Finally,

even if the network is heavily loaded and no head is present, slot reuse will

allow the network to carry traffic greater than twice the single link capacity.

Deadlock Free: By using the REQ_ID in each slot, we guarantee that if a

request is not deleted due to slot release, the request will be removed from the

network by the node that inserted it and the values of RQ_CTR will not

increase indefinitely.

41

Insensitivity of DMAC to Network Parameters: The fairness and throughput

are not affected by system parameters such as network size, channel capacity,

number of nodes, or load distribution. This is because the mechanism is

dynamic and it does not involve any feedback signal.

CHAPTER 5

PERFORMANCE ANALYSIS

In this chapter we study the throughput performance of GFM, LFM and

DMAC mechanisms. The simulator for each mechanism has been

implemented in the C programming language. The number of nodes, the

destination distribution, the ring size and the distance between the nodes are

all variables. This enables us to study and simulate a wide range of system

configurations.

In the cases presented here, we simulate the operation of one ring (the

operation and performance of the other ring is similar). The packets

generated have a fixed size of 1000 bits, this is the typical packet size used in

the Metaring architecture. The slot size is equal to 1 packet size, the ring

capacity is 1 Gbps, and the propagation delay is 5 µsec. In order to analyze and

compare the performance of the three MAC mechanisms, different traffic

scenarios have been constructed. The simulation results and the

corresponding discussion are given below.

Scenario 1: Only one node is active and it is heavily loaded. The network size

is 20 km. The number of nodes is 10, symmetrically located around the ring.

Then with the previous values for the system parameters, the number of

slots between two neighboring nodes will be equal to 10. In this case the

simulation provides for both DMAC and LFM a throughput of 1.0. In

contrast, the throughput of GFM is only 0.2 (the value used for K is 20). These

results are expected, since LFM and DMAC allow nodes to transmit

continuously unless their transmission affects downstream nodes. In scenario

1, where there is one only active node, there is no downstream node affected

42

43

and for this reason the throughput of the active node will be 1.0. However, in

the case of GFM, the node will transmit K packets and then stop and wait for

the SAT control signal. Since the SAT rotation time is 100 µsec and the time

for transmitting 20 packets is 20 µsec, the active node throughput will be 0.2.

Figure 10: Asymmetric location of the nodes and asymmetric load.

Scenario 2: As shown in Figure 10, nodes 1,3, and 4 are the only active

nodes, and they are heavily loaded. Node 1 transmits to 5, 3 and 4 transmit to

6. The distance between nodes 1 and 3 is 20 slots and between nodes 3 and 4 is

4 slots. The quota in LFM is 24 and the value of k in GFM is also 24. The

throughputs of the three active nodes are presented in table 1.

Node ID 1 3 4 total

GFM 0.20 0.20 0.20 0.60

LFM 0.52 0.24 	0.24 1.0

DMAC 0.333 0.333 0.333 1.0

Table 1: Throughput performance for traffic scenario 2.

44

The above results show that in the case of GFM the three active nodes

acquire the same bandwidth and the aggregate throughput is only 0.6. LFM

has a total throughput of 1.0, but node 1 acquires more than twice as much

bandwidth as nodes 3 or 4. The simulation results show that only DMAC has

a throughput of 1.0, and at the same time evenly distributes the channel

bandwidth among the three nodes. The reason for the unfair behavior of

LFM is the different distances between the active nodes. Therefore, the

throughput of each active node depends on both the number of slots between

these nodes and their quota. Our analysis which was presented in Chapter 3

can also be used here to provide estimates of the nodes' throughputs. Our

equations provide the following values of throughput for the three active

nodes: 0.518 for node 1, 0.241 for node 2 and 0.241 for node 3. We see that the

analytic estimates are in excellent agreement with the simulation results.

Scenario 3: In this scenario we investigate the case where we have both

heavily and lightly loaded nodes. As it is also shown in Figure 11, we have

two active nodes, 1 and 4. Node 1 is heavily loaded. Node 4 is lightly loaded

(offered load = 0.1).

Figure 11 : Traffic of Lightly and heavily loaded nodes interfere.

45

Table 2 shows that all three mechanisms provide the lightly loaded node

with the requested bandwidth but DMAC is the only one that does not waste

any bandwidth. This result verifies the conclusions of our previous

discussion on the disadvantages of LFM. That is, the heavily loaded node

allows empty slots for the lightly loaded node which can not use them and

therefore are wasted.

Node ID 1 4 Total

GFM 0.24 0.1 0.34

LFM 0.76 0.1 0.86

DMAC 0.9 0.1 1.0

Table Throughput performance for traffic scenario 3

Scenario 4: In this case we consider a localized pattern. The nodes in this

traffic scenario can be divided into 4 groups (see Figure 12). Each group has

nodes that communicate only among themselves and do not transmit to

nodes in other groups. As it shown in this figure, group 1 contains node 1,

group 2 contains nodes 2 and 3, group 3 contains nodes 4,5 and 6, and group 4

contains nodes 7,8,9 and 10.

46

Figure 12: Localized pattern scenario.

Table 3 shows the throughputs of the various nodes and the aggregate

throughput of the system for all three mechanisms. In this scenario both

DMAC and LFM achieve a very high throughput of 4.0 and at the same time

they introduce fairness among the interfering nodes. DMAC considers the

ring as 4 independent resources and therefore divides the dual ring to 4

independent segments. Each segment runs a localized fairness algorithm

which, as we have explained before, distributes the channel bandwidth in a

fair and efficient way. LFM treats these groups independently. A local fairness

algorithm is also used here to regulate the transmit simultaneously. The

difference between DMAC and LFM is that in the case of lightly loaded nodes

inside the groups, LFM may waste bandwidth and its aggregate throughput

may be less than 4.0; whereas in the case of DMAC the lightly loaded node

will have no effect and the aggregate throughput will remain the same (4.0).

47

Node ID 1 2 3 4 5 6 7 8 9 10 Total

GFM 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 2.5

LFM 1.0 0.5 0.5 0.333 0.333 0.333 0.25 0.25 0.25 0.25 4.0

DMAC 1.0 0.5 0.5 0.333 0.333 0.333 0.25 0.25 0.25 0.25 4.0

Table 3: Throughput performance for traffic scenario 4

Scenario 5: We investigate the case where all nodes are heavily loaded and we

have uniform traffic. The results are shown in Table 4.

Node ID 1 2 3 4 5 • 6 7 8 9 10 Total

GFM 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 3.5

LFM 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 3.2

DMAC 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 2.2

Table 4: Throughput performance for traffic scenario 5.

The results above show that all mechanisms provide nodes with the

same throughput. We see that GFM has the highest throughput in this case.

The reason for the low throughput of DMAC is the busy slots that all nodes

will see on the forward channel, which will prevent any node from becoming

a head node. Therefore, the number of requests that will go around the ring

will increase with end result empty slots to remain unused for larger

48

intervals of time (since number of nodes that will see each request will

increase).

The above case is extremely unlikely to happen in MANs for two

reasons. First, MAN traffic tends to be burst. Therefore, one would never

expect all nodes to be simultaneously busy for a long period of time. Second,

any network attempting to operate at 100 percent of capacity for an extended

period of time will quickly grind to halt because of queuing delay.

CHAPTER 6

CONCLUSIONS

In this thesis we have investigated the performance of GFM and LFM, two

recently proposed MAC mechanisms, for high speed dual ring networks with

destination release. We have shown that the performance of both

mechanisms are sensitive to network parameters such as channel capacity,

load distribution, and ring size. Their sensitivity is due to the dependency of

their operation on feedback control signals, the SAT in the case of GFM and

the GNT in the case of LFM. We have shown the similarity of GFM with the

Token Ring which clearly demonstrates why GFM is inappropriate for high

speed MANs. We have also shown the fairness and bandwidth wastage

problems of LFM, and we have derived analytic estimates for its throughput

under certain cases of loading.

The limitations of LFM and GFM have motivated us to introduce a new

access mechanism, the DMAC, which provides bandwidth fairness by

allowing downstream nodes to make direct reservations to upstream nodes

without involving feedback signals like SAT, which degrade the system

performance. As a result DMAC introduces fairness in a very effective and

efficient way, provides high throughput, and it is insensitive to the various

system parameters.

Finally, we have investigated and compared the performance of the

three mechanisms (GFM, LFM and DMAC) using simulation results. We

have looked at different traffic scenarios and we have found that in all cases

DMAC and GFM could distribute the bandwidth in a fair way among the

competing nodes. In contrast, LFM exhibited an unfair behavior in the case

49

50

where the distances between the active nodes were not the same. In terms of

throughput performance, we have found that the total throughput of GFM

can be extremely low in some cases. In contrast, DMAC can achieve higher

throughput than GFM or LFM, except in the case where all nodes are heavily

loaded under a uniform traffic distribution. We point out, however, that this

scenario is not very likely in the case of LANs and MANs because the traffic

tends to be burst. Furthermore, even in this case, DMAC could achieve a

throughput of 2.2 times the single channel bandwidth.

APPENDICES

We have included in the appendices the code in C for GFM, LFM, and DMAC

simulation programs respectively.

51

A- GFM Simulation

Program

52

/* 	 GFM SIMULATION 	 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define n 10
#define c 100000
#define slotsize 1000
#define slotmax 2*n

main 0

int i,SlotN[n+1],SlotNO[n+1],NP[n+1],MdestN[n+1];
int SLdest[slotmax +1];
int nslot,oslot,nmsgSAT[n+1],flagl[n+1],flag2[n+1];
int slotSATB[slotmax], k=5,1=1,j;

long int tmsg=0;
long int nmsg[n+1];
float Tar[n+1],delay[n+1],u;
float tar=0,Arate,treal=0,tslot=0.01,averdelay=0;

float arriv time(float);
int destination (int , int);

printf("Please Enter the Utilization 	 ");
scanf("%f", &u);
printf("c = old 	utiliz =%f , slotsize = %d

",c,u,slotsize);
Arate = (u*c)/(slotsize * n * 10.0);
printf ("\n Arate = %f ",Arate);

/* initializaton part */

for (i=1;i <= n;i++)

/* Init. the SAT protocol variables */

flag1[i] = 0;
flag2[i] = 0;
SlotNO[i] = 2*i - 1;
delay[i] = 0;
nmsg[i] = 0;
nmsgSAT[i]=0;
Tar[i]= arriv_time(Arate);
MdestN[i]= destination(i,n);

53

NP[i]=10;
SlotN[i]= 2*i - 1;

for(i=1;i <= slotmax; i++)

SLdest[i] = 0;
slotSATB[i] = 0;

slotSATB[1] = 1; /* assign the SAT with slot 1 on the outer
Ring. 	 */

/* 	Start the Simulation until Tx. 500000 messages. */

while (tmsg <500000)

/* 	Do this in tslot steps 	*/

for(i=1; i <=n ; i++)

/* check if station i recieved the SAT */

oslot = SlotNO[i];
if (slotSATB[oslot] == 1)

/* Check if the node is satisfied or buffer empty */

if ((nmsgSAT[i] >= 1) || (Tar[i] > treal))

nmsgSAT[i]=0; /* # of messages between 2
sacs. SAT = 0 	*/

else 	 /* station not satisfied 	*/

slotSATB[oslot] = 0 ; /* station i deleted the
SAT */

flag1[i] = 1; /* indicate station i deleted the
SAT*/

/* if station i did not recieve the SAT check if it
is the one who deleted the SAT & it is now
satisfied */

else

54

55

if ((flag1[i] == 1) && flag2[i] == 1)

slotSATB[oslot] = 1;/* put the SAT on the Ring */
flag1[i] = 0;
flag2[i] = 0;

}
}

/* when the destination = i make the slot that i
recieved empty */

nslot = SlotN[i];
if (SLdest[nslot] == i)

SLdest[nslot] = 0;

/* station i will transmit. IF it has an arrival and #
of messages between successive SATs < k and the
slot it received is empty */

if (Tar[i] < treal)

if ((SLdest[nslot] == 0) && (nmsgSAT[i] < k))

SLdest[nslot]=MdestN[i]; /* put the
dest.address. */

NP[i]=NP[i] - 1;
if (NP[i] == 0) 	/* check if the whole message

is Tx. */
{
delay[i]=delay[i]+treal+tslot-Tar[i];
nmsg[i]=nmsg[i]+1;
tmsg=tmsg+1;
switch (tmsg)

case 1000:
printf("tmsg = old ",tmsg);
break;

case 5000:
printf("tmsg = old ",tmsg);
break;

case 10000:
printf("tmsg = old ",tmsg);
break;

case 25000:
printf("tmsg = old ",tmsg);
break;

tar=arriv_time(Arate);
Tar[i]=Tar[i]+tar;
MdestN[i]= destination(i,n);
nmsgSAT[i]=nmsgSAT[i] + 1;
NP[i]=10;

56

/* if station i was the one who deleted the
sat and it becomes sat. after the
transmit of this message it will set

flag2[i] to indicate that*/

if (flag1[i] == 1)

if ((Tar[i] > treal) II (nmsgSAT[i] >=1))
flag2[i]=1;

/* The state on the network for the next tslot */

treal=treal+tslot;

for (i=1;i<=n;i++)

SlotN[i]=SlotN[i] - 1;
if (SlotN[i] == 0)
SlotN[i] = slotmax;

SlotNO[i] = SlotNO[i] + 1;
if (SlotNO[i] == slotmax)

SlotNO[i] = 1;

}
for(i=1; i <=n ;i++)
printf("nmsg[%d]= %ld 	Average delay [%d] = %f\n",

i,nmsg[i],i,delay[i]/nmsg[i]);
for(1=1;i<=n;i++)
averdelay=averdelay + (delay[i]/nmsg[i]);
averdelay= averdelay / n ;
printf("average delay in the system = %f \n",averdelay);
printf("treal = %f 	total messages TX. = %ld \n",

treal,tmsg);
printf(" # of stations = %d ",n);

}/* End main */

int destination (int j , int t)

int ndest,k;
float x;
float random1 ();

x=random1();
k = ((n-1)/2.0)*x +1;
ndest = k + j;
if (ndest > t)
ndest = ndest - t;
return(ndest);

float random1()

float y, z;
int i;
z=RAND_MAX;
y=rand()/(z+1);
return(y);

float arrive_time(float rate)

float x,y; y=random1();

x= 	(-1) * (log(1 -y)/rate);
return(x);

57

B- LFM Simulation

Program

58

/* 	 LFM SIMULATION 	 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define n 10
#define slot size 1000
#define slots_Bet_stations 6
#define slotmax 	n*slots Bet stations
#define c 1000000

main 0

{

/*Definition of Variables 	*/

struct que {

int 	dest;
float 	Tar;
int 	NP;

} 	;

struct status {

struct que 	Q[n+1];
int 	slot N A;
int 	slot _N B;
long int 	tnmsg;
float 	del;
int 	mode;
int 	Req ID;
int 	nmsg;

}

	;

struct status 	stat[n+1];

struct slot

int 	Req;
int 	Req ID;
int 	Gnt;

} 	;

struct slot slot Ring B[slotmax+1];

59

int i,j,ndest_A[slotmax+1];
int nslot_A,nslot_B,quota=2;
long int tmsg=0;
float Arate=3.0,tar=0,treal=0,tslot=0.01,averdelay=0;

60

int H to B[n+1]; 	/*

int satisfied[n+1]; /*

int starved[n+1]; 	/*

flag indicates station was H, and
upstream is busy */
flag is set when station was T or
H/T and it become satisfied */
flag is set when station was in
F.A.and it become starved */

float arriv_time(float);
int destination (int , int);
float random1();

/* Initialization */

for (i=1;i <= n;i++)

satisfied[i] = 0;
starved[i] = 0;
H to B[i] = 0;

stat[i].del = 0;
stat[i].tnmsg = 0;
stat[i].mode = 0;
stat[i].Req_ID = 0;
stat[i].nmsg = 0;
stat[i].slot_N_A = (slots_Bet_stations * i) - 1;
stat[i].slot_N_B = (slots_Bet_stations * i) - 1;
stat[i].Q[1].Tar = arriv_time(Arate) ;
stat[ii.Q[1].dest= destination(i,n);
stat[i].Q[1].NP = 10;
for (j=2;j <= 10;j++)

{
tar= arriv_time(Arate) ;
stat[i].Q[j].Tar = stat[i].Q[j-1].Tar + tar;
stat[i].Q[j].dest= destination(i,n);
stat[i].Q[j].NP = 10;

/* initialize the slots on both rings 	*/

for(i=1;i <= slotmax; i++)
{

SLdestA[i]=0;
slot_Ring_B[i].Reg = 0;
slot_Ring_B[i].Reg_ID = 0;
slot Ring B[i].Gnt = 0;

/* 	 starting of the simulation 	*/

while (tmsg < 500000)

for (i=1;i<=n;i++)

/* **********************************
Operation on Ring B

************************************/

nslot B = stat[i].slot N B;

switch (stat[i].mode)

case 0 	/* state is FA */

if ((slot_Ring_B[nslot_B].Req == 1) &&
(starved[i] == 1))

starved[i] = 0;
stat[i].mode = 2 ;
if (slot Ring_B[nslot_B].Req_ID < i)
{ 	
slot Ring B[nslot B].Req_ID = i;
stat[i].Req_ID = i;

}
else

stat[i].Req_ID = slot_Ring_B[nslot_B].Req_ID;

}
else

if ((slot Ring_B[nslot_B].Req == 1) &&
(starved[i] == 0))

stat[i].mode = 3;
stat[i].Req_ID = slot Ring_B[nslot_B].Req_ID;
slot_Ring_B[nslot_B].eq = 0;
slot Ring B[nslot B].Req ID = 0;

else
if ((slot_Ring_B[nslot_B].Req == 0) &&

(starved[i] == 1))
{
starved[i] = 0;
stat[i].mode = 1;
slot Ring B[nslotB].Req = 1;

61

62

stat[i].Req ID = i;
slot Ring B[nslot B].Req ID =

stat[i].Req_ID;

break;

case 1 : 	/* state is T */

if ((slot RingB[nslotB].Req == 1) &&
(satisfied[i] == 1))

satisfied[i] = 0;
stat[i].mode = 3;
slot Ring_B[nslot_B].Gnt = 1;
stat[i].nmsg = 0;
stat[i].Req ID = slot Ring_B[nslot_B].Req_ID;

slot_Ring_B[nslot_B].Req = 0;
slot Ring B[nslot B].Req ID = 0;

else
if ((slot Ring B[nslot B].Req == 1) &&

(satisfied[i] == 0))

if (slot Ring_B[nslot B].Req_ID == stat[i].Req_ID)

stat[i].mode = 4;
slot_Ring_B[nslot_B].Req = 0;
slot Ring B[nslot B].Req ID = 0;

}
else

if (slot Ring B[nslot B].Req ID >
stat[i] .ReqID)

{
stat[i].mode = 2;
stat[i].Req_ID =

slot Ring B[nslot B].Req ID;

else

stat[i].mode = 2;
slot_Ring_B[nslot_B].Req = 0;
slot Ring B[nslot B].Req ID = 0;

} 	/* end else */
} 	/* end if req = 1 && satsfied = 0 */

else
if ((slot Ring B[nslot B].Req == 0) &&

(satisfied[i] == 1))
{
satisfied[i] = 0;

63

slot Ring_B[nslot_B].Gnt = 1;
stat[i].mode = 0;
stat[i].Req_ID = 0;
stat[i].nmsg = 0;

break;

case 2 : /* state is B */

if (slot Ring B[nslot B].Gnt == 1)

stat[i].mode = 1;
slot Ring B[nslot B].Gnt = 0;

if (slot Ring_B[nslot_B].Req == 1)
{
if (slot Ring B[nslot B].Req ID ==

stat[i].Req_ID)

stat[i].mode = 4;
slot_Ring_B[nslot_B].Req_ID = 0;
slot Ring_B[nslotB].Req = 0;

else
if (slot_Ring_B[nslot B].Req ID >

stat[i].Req_ID)
{
stat[i].Req_ID = slot_Ring_B[nslot_B].Req_ID;

else
if (slot_Ring_B[nslot_B].Req ID <

stat[i].Req_ID

slot_Ring_B[nslot_B].Req_ID = 0;
slot Ring B[nslot B].Req ID = 0;

/* end if (Req = 1 & satisfied = 0) */

break;

case 3 : /* state is H */

if ((slot_Ring_B[nslot B].Req==0) &&
(slot Ring B[nslot B].Gnt==0))

if (H to_B[i] == 1)
{
H to B[i] = 0;
stat[i].mode = 2;
slot_Ring_B[nslot_B].Req = 1;
slot_Ring_B[nslot_B].Req_ID = stat[i].Req_ID;

64

}
} /* end if (req = 0) && (gnt = 0) but upstream

was busy */

else

if (slot Ring B[nslot B].Gnt == 1)
{

if (H to_B[i] == 1)
(
H to B[i] = 0;
stat[i].mode = 1;
slot_Ring_B[nslot_B].Gnt = 0;
slot Ring B[nslot B].Req_ID = stat[i].Req_ID ;
slot_Ring_B[nslot_B].Req = 1 ;

else

stat[i].mode = 0;
stat[i].Req ID = 0;
slot Ring_B[nslot_B].Gnt = 0;
stat[i].nmsg = 0;

/* end Gnt = 1 */

if (slot Ring B[nslot B].Req == 1)

if (H to_B[i] == 1)
{
H to_B[i] = 0;
if (slot Ring B[nslot B].Req_ID ==

stat[i].Req_ID)

stat[i].mode = 4;
slot_Ring_B[nslot_B].Req_ID = 0;
slot Ring_B[nslot_B].Req = 0;
}

else

if (slot_Ring_B[nslot_B].Req ID >
stat[i].Req_ID)

stat[i].Req ID =
slot Ring B[nslot B].Req ID ;

else

slot Ring B[nslot B].Req = 0;
slot _Ring_B[nslot_B].Req ID = 0;

}

 /* end if H_to_B = 1 */

else /* i.e if(Req = 1) & (H_to_B = 0) */

65

if (slot_Ring_B[nslot_B].Req_ID >
stat[i].Req_ID)

stat[i].Req_ID =
slot Ring B[nslot_B].Req_ID;

slot Ring B[nslot B] .Req ID = 0;
slot Ring B[nslot_B].Req = 0;

else

slot Ring B[nslot B].Req_ID = 0;
slot Ring B[nslot_B].Req = 0;

} 	
}

/* end else */

} /* end if (Req = 1) 	*/

/* end else of if req =0 & gnt = 0 	*/

break;

case 4 : /* state is H/T 	*/

if (satisfied[i] == 1)

satisfied[i] = 0;
stat[i].mode = 3;
slot Ring B[nslot B].Gnt = 1;

}

if (slot Ring B[nslot_B].Req == 1)

if (slotRingB[nslotB].ReqID > stat[i].ReqID

{
stat[i].Req ID = slot Ring B[nslot_B].Req_ID;
slot_Ring_B[nslot_B].Req_ID = 0;
slot Ring B[nslot B].Req = 0;

}
else

{
slot_Ring_B[nslot_B].Req_ID = 0;
slot Ring B[nslot B].Req = 0;

}
} /* end if (Req = 1) */
break;

} /* end of switch statement */

/* ** *
Operations on Ring A

66

* ***/

/* check if the dest. of the slot on ring A is
station i */

nslot A = stat[i].slot_N_A;
if (SLdest A[nslot A] == i)

SLdest_A[nslotA] = 0;

/***
* Check if slot is busy, then if state = H then set H to_B *
* flag and if the state is F.A. set starved flag
**/

if (SLdest_A[nslot_A] != 0)

if (stat[i].mode == 3)

H_to_B[i] = 1;
}

if ((stat[i].mode == 0) && (stat[i].Q[10].Tar <
treal))

starved[i] = 1;

/* 	Tx. of the packets 	*/

if (stat[i].Q[1].Tar < treal)

if (SLdestA[nslotA] == 0)

if((stat[i].mode == 0) || ((stat[i].mode != 0)
&& (stat[i].nmsg < quota)))

SLdest_A[nslot_A] = stat[i].Q[1].dest;
stat[i].Q[1].NP = stat[i].Q[1].NP - 1;
if (stat[i].Q[1].NP == 0)

stat[i].del=stat[i].del+treal+tslot-
stat[i].Q[1].Tar;

stat[i].tnmsg=stat[i].tnmsg + 1;

if (stat[i].mode != 0)

67

/* only if station in Restricted mode
then increase nmsg */

stat[i].nmsg = stat[i].nmsg + 1;

tmsg=tmsg+1;
for (j=1;j <= 9 ;j++)

stat[i].Q[j] = stat[i].Q[j+1];
}

tar=arriv time(Arate);
stat[i].Q[10].Tar = stat[i].Q[9].Tar +

tar;
stat[i].Q[10].dest= destination(i,n);
stat[i].Q[10].NP=10;

}

/* end if slot is empty */

} /* end if (stat[i].Q[1].Tar < treal) 	*/

/*********************************'*************************
*check if the station is T or H/T and it become satisfied *

set satisfied flag
*** */

if ((stat[i].mode == 1) II (stat[i].mode == 4))
{
if((stat[i].nmsg >= quota) II

(stat[i].Q[1].Tar > treal))
satisfied[i] = 1;

}

/* end for (i=1;i<=n;i++) */
/***

Change the state of the system for next tslot
* ** */

treal=treal+tslot;
for (i=1;i<=n;i++)

stat[i].slot_N_A = stat[i].slot_N_A - 1;
if (stat[i].slot_N_A == 0)
stat[i].slotNA = slotmax;

stat[i].slotNB = stat[i].slotN_B + 1;
if (stat[i].slot N B > slotmax)

68

stat[i].slot N B = 1 ;

} /* end While 	*/

for(i=1; i <=n ;11+)

stat[i].del = stat[i].del / stat[i].tnmsg;
printf("tnmsg[%d]= %ld 	Average delay [%d] = %f\n

"f ir stat[i].tnmsg,i,stat[i].del);
}
for (i=1; i<=n; i++)
averdelay=averdelay + stat[i].del;
printf("average delay in the system = %f

\n",averdelay/10.0);
printf("arrival rate for each station = %f

messages/msec.\n",Arate);
printf("treal = %f 	 quota= %d\n" ,treal,quota);
printf("tmsg = %ld 	slots between stations =

%d\n",tmsg,slots Bet stations);
} /* end main 	*/

int destination (int j , int t)

int ndest,k;
float x;
float random1 ();
x=random1();
k = ((t-1.0)/2.0)*x +1;
ndest = k + j;
if (ndest > t)
ndest = ndest - t;
return(ndest);

float random1()

float y, z;
int i;
z=RAND_MAX;
y=rand()/(z+1);
return(y);

69

float arriv time(float rate)

float x,y;
y=random1();
x= (-1) * (log(1-y) /rate) ;
return(x);

C- DMAC Simulation

Program

70

71

/ * 	 MAC SIMULATION 	 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define n 10
#define slot size 1000
#define slots_Bet_stations 2
#define slotmax 	n*slots Bet stations
#define c 1000000

main 0

/* 	Definition of Variables 	*/

struct que {

int 	dest;
float 	Tar;
int 	NP;

) 	;

struct status {

struct que 	Q[n+1];
int 	slot NA;
int 	slot NB;
long int 	tnmsg;
float 	del;
int 	UNRG CTR;
int 	RG_CYR;
int 	RQ_CTR;
int 	BWB_ CTR;
int 	URQ_CTRF;
int 	URQ CTRP;
int 	DURQ_CTR;
int 	DURQ CTR ID;
int 	TAR flag;
int 	CTRF FLAG;
int 	M;
int 	ES CTR;
int 	HEAD;

72

int 	RB ZERO CTR;
int 	TAR CTR ERASED;
int 	TAR CTR INSERTED;

} 	;

struct status 	stat[n+1];

int
i, j,SL Dest_A[slotmax+1],SL TAR A[slotmax+1],SL_RB_B[slotmax+
1];
int nslot A,nslot B,SL REQ_ID[slotmax+1];
long int tmsg=0,REQ DEL=0;
float Arate=4000.0,tar=0,treal=0.001,averdelay=0.0;
float tslot = 0.01;

float arriv time (float)
int destination (int , int);
float random1();

/* 	Initialization 	 */

for (i=1;i <= n;i++)
{

stat[i].del = 0;
stat[i].tnmsg = 0;
stat[i].UNRG CTR =1;
stat[i].RG_CTR = 1;
stat[i].RQ CTR = 0;

stat[i].BWB_CTR = 0;
stat[i].URQ_CTRF = 1;

stat[i].URQ CTRP = 0;
stat[i].DURQ_CTR = 0;

stat[i].DURQ CTR ID = 0;
stat[i].TAR -flag= 0;

stat[i].CTRF FLAG = 0;
stat[i].M = 4;
stat[i].slot_N_A = (slots_Bet_stations * i) - 1;
stat[i].slot_N_B = (slots Bet stations * i) - 1;
stat[i].Q[1].Tar = arriv_time(Arate) ;
stat[i].Q[1].dest= destination(i,n);
stat[i].Q[1].NP = 1;
stat[i].HEAD = 10;
stat[i].RB ZERO CTR = 0;

stat[i].TAR_CTR_ERASED = 0;
stat[i].TAR CTR INSERTED = 0;

stat[i].ES 	0;

/* Initialize the Slots on Both Rings 	*/

73

for(i=1;i <= slotmax; i++)

SL Dest A[i]=0;
SL_TAR A[i] = 0;

SL_RB_B[i] = 0;
SL_REQ_ID[i] = 0;

}

/* 	 Starting of the Simulation
*/

while (tmsg < 50000)

for (i=1;i<=n;i++)

/* **********************************
Operation on Ring B

* 	******************************* **/

nslot B = stat[i].slot_N_B;

/*** 	Remove the request if its circulating around
the ring ***/

if (SL_RB_B[nslot_B] == 1)

if (SL_REQ_ID[nslot_B] > i)
{

if ((SL REQ ID[nslot B] - i) == 0)

SL_RB B[nslot_B] = 0;
SL REQ_ID[nslot B] = 0;

}

else

if((i - SLREQID[nslotB]) == 0)

SL_RB B[nslot_B] = 0;
SL_REQ_ID[nslot B] = 0;

I

}

if (SL RB B[nslot B] == 0)

74

if ((stat[i].ESCTR > 0) && (stat[i].URQ_CTRF >
0)

stat[i].ES CTR --;
stat[i].URQ_CTRF --;

if (stat[i].DURQ_CTR > 0)

stat[i].DURQ_CTR --;

SL RE B[nslot_B] = 1;

SLREQID[nslotB] = stat[i].DURQ_CTR_ID;

}

else
{ if (stat[i].URQ_CTRF > 0)

stat[i].URQ_CTRF --;
SL_RB_B[nslot_B] = 1;

SL_REQ_ID[nslot_B] = i;
}

} /* end else */
/* end if ES_CTR = 0 */

/* end else ES CTR > 0 */

} /* end if RB = 0 */

else /* i.e RB = 1 */

stat[i].RQCTR ++;
if (stat[i].ES_CTR > 0)

{ if (stat[i].URQ_CTRF > 0)

stat[i].ES CTR --;
stat[i].URQ_CTRF --;

SL_REQ_ID[nslot_B] = i;
}

else

if (stat[i].DURQCTR > 0)
{

stat[i].ES CTR --;
stat[i].DURQ_CTR --;

SL_REQ_ID[nslot_B] = stat[i].DURQCTRID;

else

75

SL_RB_B[nslot_B] = 0;
stat[i].ES CTR --;

} /* end if ES CTR > 0 */
else

if ((stat[i].DURQ_CTR == 0) && (
stat[i].CTRF FLAG == 0))

{
SL RB B[nslot B] = 0;
stat[i].DURQ_CTR ++;
stat[i].DURQ CTR ID = SL REQ ID[nslot B];

} /* 	end else 	*/

} /* end else (i.e RB = 1) 	*/

/* ** *

Operations on Ring A
*

* **
*/

nslot A = stat[i].slot N A;

/**** 	Erasing a slot 	****/

if (SL Dest A[nslot A] == i)
{
SL Dest A[nslot A] = 0;

if ((stat[i].RQ_CTR > 0) II ((stat[i].RQ_CTR ==
0) &&

(stat[i].RG CTR > 0)))
stat[i].ESCTR ++;

if (SL TAR A[nslot A] == 1)

SL_TAR A[nslot A] = 0 ;
stat[i].TAR CTR ERASED ++;

}

/*** 	Slot is empty event 	 ***/

if (SL Dest_A[nslot_A] == 0)
{
if (stat[i].HEAD > 0)

stat[i].HEAD --;

if(stat[i].RQ_CTR > 0)

stat[i].RQ CTR --;
if ((stat[i].DURQ_CTR > 0) && (stat[i].RQ_CTR

== 0) &&
(stat[i].HEAD<= 0))

{
stat[i].DURQ CTR --;
if ((i != 1))

REQ DEL ++;
if 7 fmod(REQ DEL,100.0) == 0.0)
printf(" REQ DEL = %ld ", REQ_DEL);
printf("\n %a REQ ID = %d ",

stat[i].DURQCTRID);

}

}
else /* (i.e RQ CTR = 0) */

if(stat[i].UNRG CTR == 0)
stat[i].UNG CTR = 10 ;

if (stat[i].RG CTR + stat[i].UNRG CTR > 0)

/* 	Tx. of the packets 	*/

SL Dest A[nslot A] = stat[i].Q[1].dest;
stat[i].Q[1].NP = stat[i].Q[1].NP - 1;
if (stat[i].Q[1].NP == 0)

stat[i].del=stat[i].del+treal+tslot-
stat[ij.Q[1].Tar;

stat[i].tnmsg=stat[i].tnmsg + 1;

tmsg=tmsg+1;
tar=arriv time(Arate);

stat[i].Q[1].Tar = stat[i].Q[1].Tar
tar;

stat[i].Q[1].dest= destination(i,n);
stat[i].Q[1].NP=1;
stat[i].CTRF FLAG = 0;

76

77

/**** Events after Segement Transmission. 	****/

if ((stat[i].TAR_flag ==
1)&&(stat[i].RG CTR == 0))

stat[i].UNRG CTR --;
else

stat[i].RGCTR --;

if((stat[i].TAR flag == 1) &&
stat[i].ES CTR > 0))

stat[i].ES CTR --;

stat[i].TAR_flag = 0;
stat[i].BWB_CTR ++;
if (stat[i].BWB CTR == stat[i].M)

SL TAR A[nslot A] = 1;
stat[i] .TAR_CTR_INSERTED ++;

stat[i].BWB_CTR = 0;
stat[i].TAR flag = 1;

/** 	Event segment becomes first in queue **/

if ((stat[i].TAR flag ==0)&&(stat[i].RG_CTR
> 	(stat[i].HEAD != 0))

stat[i].URQ CTRF ++;
if ((stat[i].TAR flag ==0)&&(stat[i].RG CTR

== 0)&& (stat[i].HEAD != 0))
{

stat[i].URQ CTRF ++;
stat[i].RG_CTR ++;

stat[i].UNRG CTR --;
}

	

} /*End if (UNRGCTR + RG_CTR) = 0 	*/

else /* i.e REQ_CTR = 0 and the station has no
messages */

stat[i].URQ CTRF = 0;
stat[i].DURQ _CTR = 0;

}

} /* end else RQCTR = 0 */

} /* end if slot is empty */

/******* 	Slot is busy event ******/

else 	/* 	i.e slot is busy 	*/

if ((stat[i].RG CTR + stat[i].UNRG CTR) > 0)
stat[i].CTRF _FLAG = 1;

stat[i].HEAD = 100;
if ((i >= 1) && 	(i <= 10))

if (SL TAR A[nslot A] == 1)

SL TAR A[nslot A] = 0;
stat[i] .TAR CTR ERASED ++;
stat[i].URQ_CTRF ++;

stat[i].RG CTR = stat[i].RG CTR + stat[i].M;
/* if station i is a head of a path it

should not Tx. Req. */

if (stat[i].HEAD == 0)
{ stat[i].URQ CTRF --;

stat[i].RG_CTR = stat[i].RG CTR-
stat[i].M;

} 	/* End slot is busy */

} 	/* end for (i=1;i<=n;i++) 	*/

/* 	**

Change the state of the system for the next tslot*
* ** */

treal=treal+tslot;
for (i=1;i<=n;i++)

stat[i].slot_N A = stat[i].slot_N_A - 1;
if (stat[i].slot N A == 0)

stat [I] .slot_N_A = slotmax;

stat[i].slot_N B = stat[i].slot_N_B + 1;
if (stat[i].slot N_B > slotmax)

stat[i].slot_N_B 	= 1 ;

} /* end While 	*/

for(i=1; i <=n ;i++)
{
if (stat[i].tnmsg > 0)

stat[i].del = stat[i].del / stat[i].tnmsg;

78

79

printf("%d tnmsg = %ld delay = %f URQ_CTRF = %d\n
",i,stat[i].tnmsg,stat[i].del,stat[i].URQ CTRF);

printf("stat[%d] erased %d TARs & inserted %d TARs
\n",i,stat[i].TAR CTR ERASED,stat[i].TAR CTR INSERTED);

}
for(i=1;i<=n;i++)
averdelay=averdelay + stat[i].del;

	

printf("treal = %f 	\n" ,treal);

	

printf("tmsg = %ld 	slots between stations =
%d\n",tmsg,slotsBetstations);

} /* end main 	*/

int destination (int j , int t)

int ndest,k;
float x;
float random1 ();
x=random1();
k = ((t-1.0)/2.0)*x +1;
ndest = k + j;
if (ndest > t)
ndest = ndest - t;

return (ndest);

float random1()

float y,z;
int i;

z=RAND_MAX;
y=rand()/(z+1);
return(y);

float arriv_time(float rate)

float x,y;
y=random1();
x= (-1) * (log(1-y)/rate);
x = 0.0;
return(x);

REFERENCES

1. Kessler, Gary C. and David A. Train. Metropolitan Area Networks:

Concepts, Standards, and Services. McGraw-Hill, Inc. New York, 1991.

2. Cidon, Israel and Yoram Ofek. "Metaring - A Full-Duplex Ring with

Fairness and Spatial Reuse." IBM Research Report RC14961, September

22, 1989.

3. Offek, Yoram. "Integration of Multi-ring on the Metaring Architecture."

IBM Research Report RC16058, August 27,1990.

4. Cidon, Israel and Yoram Ofek. "Distributed Fairness Algorithms for Local

Area Networks with Concurrent Transmissions." IBM Research Report

RC15051, October 17, 1989.

5. Chen, J., Israel Cidon and Yoram Ofek. "A Local Fairness Algorithm for

Gigabit LANs/MANs with Spatial Reuse." IBM Research Report

RC18114, June 24, 1992.

6. IEEE 802.6 Working Group. "Proposed Standards, Distributed Queue Dual

Bus(DQDB) Metropolitan Area Network." Unapproved Draft D9,

August 1989.

7. M. Conti et al. "A Methodological Approaches to an Extensive Analysis of

DQDB Performance and Fairness." IEEE J. Select. Areas Commun., Vol.

SAC-9, n0.1, pp. 76-87, January 1991.

80

81

8. E.L. Hahne et al. "Improving the Fairness of Distributed Queue Dual Bus

Networks." Proceed. INFOCOM'90, San Francisco, pp. 175-184, June

1990.

9. Karvelas, D., and M. Papamichail, "DQDB : A FAST Converging

Bandwidth Balancing Mechanism that Requires No Bandwidth loss."

Proceed. ICC'92, Chicago, June 14-18, 1992.

10. Karvelas, D., and M. Papamichail, " The No Slot Wasting Bandwidth

Mechanism for Dual Bus Architecture ." Technical Report CIS-92-15,

CIS Dept., New Jersey Institute of Technology.

11. Karvelas, D., and M. Papamichail, "Performance Study of a New

Bandwidth Balancing Mechanism Under a Single and Multiple Priority

Classes of Traffic." Proceed. First International Conf. on Computer

Commun. Networks, San Diego, June 8-10, 1992.

12. Karvelas, D., and M. Papamichail. "Performance Analysis of a New

Bandwidth Balancing Mechanism Under the Presence of Erasure

Nodes." Proceed. INFOCOMM'93, San Francisco, March 30 - April 1,

1993.

	Fair and efficient transmission over GBPS dual ring networks
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Metaring Network
	Chapter 3: Metaring Fairness Mechanisms
	Chapter 4: A New Dynamic MAC Mechanism
	Chapter 5: Performance Analysis
	Chapter 6: Conclusions
	Appendices
	Appendix A: GFM Simulation Program
	Appendix B: LFM Simulation Program
	Appendix C: DMAC Simulation Program

	References

	List of Figures
	List of Tables

