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Abstract—The constraint-based approach has been proven
useful for inducing bilingual lexicons for closely-related low-
resource languages. When we want to create multiple bilingual
dictionaries linking several languages, we need to consider
manual creation by bilingual language experts if there are no
available machine-readable dictionaries are available as input.
To overcome the difficulty in planning the creation of bilingual
dictionaries, the consideration of various methods and costs,
plan optimization is essential. We adopt the Markov Decision
Process (MDP) in formalizing plan optimization for creating
bilingual dictionaries; the goal is to better predict the most
feasible optimal plan with the least total cost before fully
implementing the constraint-based bilingual dictionary induc-
tion framework. We define heuristics based on input language
characteristics to devise a baseline plan for evaluating our
MDP-based approach with total cost as an evaluation metric.
The MDP-based proposal outperformed heuristic planning on
total cost for all datasets examined.

1. Introduction

Nowadays, machine-readable bilingual dictionaries are
being utilized in actual services [1] [2] to support inter-
cultural collaboration [3], but low-resource languages lack
such sources. Previous work on high-resource languages
showed the effectiveness of parallel corpora [4] [5] and
comparable corpora [6] [7] in inducing bilingual lexicons.
Clearly bilingual lexicon extraction is highly problematic
for low-resource languages due to the paucity or outright
omission of parallel and comparable corpora. We recently
introduced the promising approach of treating pivot-based
bilingual lexicon induction for low-resource languages as
an optimization problem [8]. Bilingual dictionaries are the
only language resource required by our approach. Despite
the high potential of our approach in enriching low-resource
languages, it faces numerous issues when trying to create
plans to implement multiple bilingual dictionaries for a
set of low-resource languages like Indonesian ethnic lan-
guages. When actually implementing our constraint-based
bilingual lexicon induction approach, we need to consider
the inclusion of more traditional methods like manually
creating the bilingual dictionaries by bilingual language

experts. Despite of the high cost, this will be unavoidable
if no machine-readable dictionaries are available. Given the
various methods and costs that may need to be considered,
plan optimization is required. We address the following
research goals:

• Formalization of plan optimization in creating bilin-
gual dictionaries: Modeling bilingual dictionary de-
pendency with AND/OR graphs, and employing the
Markov Decision Process for plan optimization.

• Creating heuristic plans as baselines for evaluating
plans: We create plans that follow some basic heuris-
tics and then use total cost as the evaluation metric
for comparing performance.

The rest of this paper is organized as follows: In Section 2,
we will briefly discuss related research on pivot-based bilin-
gual dictionary induction. Section 3 discusses how to model
dictionary dependency. Section 4 details the formalization
of plan optimization, a core component of our proposal.
Section 5 describes our experiments and the results. Finally,
Section 6 concludes this paper.

2. Pivot-Based Bilingual Lexicon Induction

The first work on bilingual lexicon induction to create
bilingual dictionaries (language A and language C) via pivot
language B is Inverse Consultation (IC) [9]. It utilizes the
structure of input dictionaries to measure the closeness of
word meanings and then uses the results to prune erro-
neous translation pair candidates. The IC approach identifies
equivalent candidates of language A words in language C
by consulting dictionary A-B and dictionary B-C. These
equivalent candidates will be looked up and compared in
the inverse dictionary C-A.

The pivot-based approach is very suitable for low-
resource languages, especially when dictionaries are the only
language resource required. Unfortunately, for some low-
resource languages, it is often difficult to find machine-
readable inverse dictionaries and corpora to identify and
eliminate the erroneous translation pair candidates. To over-
come this limitation, our team [10] proposed to treat
pivot-based bilingual lexicon induction as an optimization
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Figure 1. One-to-one constraint approach to pivot-based bilingual dictionary induction.

problem. The assumption was that lexicons of closely-
related languages offer instances of one-to-one mapping and
share a significant number of cognates (words with similar
spelling/form and meaning originating from the same root
language). This assumption yielded the development of a
constraint optimization model to induce an Uyghur-Kazakh
bilingual dictionary using Chinese language as the pivot,
which means that Chinese words were used as intermediates
to connect Uyghur words in an Uyghur-Chinese dictionary
with Kazakh words in a Kazakh-Chinese dictionary. The
proposal uses a graph whose vertices represent words and
edges indicate shared meanings; following [11] it was called
a transgraph. The proposal proceeds as follows: (1) use two
bilingual dictionaries as input, (2) represent them as trans-
graphs where wA

1 and wA
2 are non-pivot words in language

A, wB
1 and wB

2 are pivot words in language B, and wC
1 , wC

2

and wC
3 are non-pivot words in language C, (3) add some

new edges represented by dashed edges based on the one-to-
one assumption, (4) formalize the problem into conjunctive
normal form (CNF) and use the Weighted Partial MaxSAT
(WPMaxSAT) solver [12] to return the optimized translation
results, and (5) output the induced bilingual dictionary as
the result. These steps are shown in Figure 1. However,
the assumption of one-to-one mapping is too strong to
induce the many translation pairs needed to offset resource
paucity because few such pairs can be found. Therefore, we
generalized the constraint-based bilingual lexicon induction
framework by extending constraints and translation pair
candidates from the one-to-one approach to attain more
voluminous bilingual dictionary results with many-to-many
translation pairs extracted from connected existing and new
edges [8].

3. Modeling Dictionary Dependency

Our constraint-based bilingual dictionary induction re-
quires two bilingual dictionaries that share the same pivot
language. We can induce bilingual dictionary A-C from
bilingual dictionary A-B and B-C as input (language B
is the pivot). Nevertheless, we can also induce bilingual
dictionary A-C with different input bilingual dictionaries
using language D as the pivot language for instance. We
use an AND/OR graph to model the dependency: bilingual
dictionary A-C can be induced from bilingual dictionaries
A-B AND B-C OR from bilingual dictionaries A-D AND
D-C as shown in Figure 2.

Figure 2. Modeling Bilingual Dictionary Induction Dependency.

If two sets of input dictionaries can be used to induce
bilingual dictionary A-C, if we have to choose between
the two sets, we need to prioritize input dictionaries that
can induced bilingual dictionary A-C with more correct
translation pairs. But, the number of correct translation pairs
that can be induced depends on the quality of the constraint-
based bilingual dictionary induction which also depends on
the size and quality of the input dictionaries which can best
be treated as a search problem with uncertainty.

4. Formalizing Plan Optimization

We assume that user provides the number of existing
translation pairs for existing bilingual dictionaries. We cal-
culate language similarity between each language pair with
ASJP. Both characteristics are crucial in predicting the per-
formance of constraint-based bilingual dictionary induction
which also determines the number of translation pairs in the
output bilingual dictionary. User can also set the minimum
number of translation pairs the output bilingual dictionary
should have. Markov Decision Process (MDP) is a well-
known technique to solve problems containing uncertainty.
An MDP is the tuple (S, A, Ts,a,s′ , Cs,a,s′), where S is
a set of states, A is a set of actions, Ts,a,s′ is a transition
probability distribution over the state space when action a
is taken in state s, and Cs,a,s′ is the negative reward or cost
for taking action a in state s.

4.1. State

If n is a number of languages of interest specified
by user, the total number of all possible combinations of
bilingual dictionaries in the state is m = Cn

2 . For example,
if we have 4 languages (L1, L2, L3, L4), there will be
m = C4

2 = 6 bilingual dictionaries.
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Figure 3. Bilingual Dictionary Induction Dependency Model.

Each state stores m bilingual dictionaries, each D(x,y)

with four possible status types: not existing D(x,y):n, ex-
isting but number of translation pairs is below user re-
quested size D(x,y):eu, induced from pivot action with z
as pivot language but the number of translation pairs is
below user request D(x,y):pu(z), and existing or induced
from pivot action where the number of translation pairs
equals or exceeds user requested number of translation pairs
D(x,y):s, hence, the maximum number of MDP states is
4m = 46 = 4, 096. Based on the status, we further cate-
gorize the bilingual dictionary as either SATDict (D(x,y):s)
or UnSATDict ((D(x,y):n, D(x,y):eu, or D(x,y):pu(z))). Each
state also stores information about the dependency between
its dictionaries as shown in Figure 3.

After an agent takes an action in state s to enrich an
UnSATDict of language x and y, if the size of the output
dictionary satisfies user request, the agent will transit to
the next one step ahead state, s′, which has an SATDict
of the same languages, x and y, while the other bilingual
dictionaries in s′ are unchanged from the previous state, s.
State s′ takes its state, SATState or UnSATState, from that
of state s, as shown in Figure 4.

Figure 4. Example of State Transition to SATState or UnSATState.

The number of states increases exponentially with the
number of languages as shown in Table 1. So as to cast
formulation complexity into a graph theory problem, we ini-
tially create only one Start-State where each bilingual dictio-
nary status is calculated from the input bilingual dictionaries
size given by user. We then generate all possible actions,
including the next one step ahead states s′k that would result

TABLE 1. EXPONENTIAL RELATIONSHIP BETWEEN NUMBER OF

LANGUAGES AND STATES

#Languages (n) #Dictionaries (m) #states
2 1 4
3 3 64
4 6 4,096
5 10 1,048,576
6 15 1,073,741,824

from taking those actions, based on the bilingual dictionary
induction dependency model as shown in Figure 3. We
iterate the same procedure on s′k until the Final-State is
reached where all m bilingual dictionaries from n languages
are available where the number of translation pairs equals
or exceeds user requested number of translation pairs.

4.2. Action

Some bilingual dictionary creation methods require only
bilingual dictionaries as input, and thus they can be used in
this MDP model such as the Inverse Consultation method,
the one-to-one constraint-based approach, and our general-
ized constraint-based bilingual lexicon induction framework.
However, since our method outperformed both previous
methods, we apply our method as one of MDP action and
call it pivot action Ap

(x,z,y) where z is the pivot language.

As we assume low-resource language, adequate machine-
readable bilingual dictionaries will be unavailable, and we
define manual bilingual dictionary creation by a language
expert as investment action Ai

(x,y). The purposes of the pivot
action and investment action are to enrich and change the
category of the bilingual dictionaries stored in each state
from UnSATDict to SATDict. An UnSATDict with status
D(x,y):n or D(x,y):eu can be enriched by both investment
action and pivot action. For an UnSATDict with status
D(x,y):pu(z), however, we limit the next action to investment
action only because pivot action Ap

(x,z,y) was already tried

exactly one step prior. A pivot action can be taken from
input dictionaries with status D(x,y):s and D(x,y):eu.

4.3. Cost

In the MDP model, the agent expects to get a reward
after taking some actions. The reward will guide the agent to
reach the final state and obtain the best path or in this case
the best plan. Because for creating a bilingual dictionary
we need to pay some cost instead of getting some rewards
afterward, here we cast the reward as a cost. The terms of
reward and cost are interchangeable in many previous MDP
studies [13]. When we take an investment action, we are
actually asking a language expert to manually create a bilin-
gual dictionary and we need to pay for the time and effort
incurred. For the sake of modeling simplicity, we take $0.3
to be the cost of the investment action for one translation
pair. For taking pivot action, i.e., using the constraint-based
bilingual lexicon induction framework, when we already
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have the input dictionaries, we can generate the output
dictionary in a short time. Thus, we assume that there is
no cost in taking the pivot action.

4.4. State Transition Probability

The number of translation pairs in the current state
affects the performance of the pivot action taken in the
current state, and thus the number of induced translation
pairs in the next state. When the bilingual dictionary output
by the pivot action Ap

(x,z,y) equals or exceeds user requested

size, the agent will transit to the next state, s′ in which the
bilingual dictionary status of languages x and y is D(x,y):s

or else transit to the next state, s′ in which the bilingual
dictionary status of languages x and y is D(x,y):pu(z) and the
remaining bilingual dictionaries in the state s′ are unchanged
from the previous state s.

The state transition probability for taking a pivot action
depends on the size of output bilingual dictionary which also
depends on the precision of the constraint-based bilingual
lexicon induction framework. If the precision is 1, then all
translation pair candidates are taken as translation pairs. The
experiment results in our previous work [8] showed a trend
that precision is greater than input language similarity and
we can obtain at least as many translation pair candidates
as number of entries of the smaller of the input bilingual
dictionaries. For the sake of simplicity, we assume that we
can obtain as many translation pair candidates as the number
of entries of the smaller input bilingual dictionaries and that
the precision of constraint-based bilingual lexicon induction
equals or exceeds input languages similarity. Nevertheless,
since we do not know the exact precision for the different
input language sets before implementing the constraint-
based bilingual lexicon induction and evaluating the result,
we do not know the exact number of translation pairs of the
evaluated output bilingual dictionary EPair. Therefore, we
calculate the probability of the transition to the SATState
by Equation 1 where SATRange is the range of precision
that will ensure that the output dictionary size will satisfy
user request while UnSATRange is the range of precision
that will not satisfy user requested size. We use Equations
2 and 3 to calculate SATRange and UnSATRange, re-
spectively, given precision SATPrec, i.e., the minimum
precision required to satisfy user request following Equation
4. We assume that output bilingual dictionary size is linear
to pivot action precision as shown in Figure 5.

Ts,a,s′ = SATRange/(SATRange+ UnSATRange) (1)

SATRange = maxPrec− SATPrec (2)

UnSATRange = SATPrec−minPrec (3)

SATPrec = RPair/CPair (4)

For instance, when we want to enrich UnSATDict
D(1,2):n with pivot action Ap

(1,3,2) from existing UnSAT-

Dict D(1,3):eu with input dictionary size equals 6, 000 and
D(2,3):eu with input dictionary size equals 8, 500, we can

E
P
ai
r

precisionminPrec maxPrec

In this example:
#trans. pair cand. 
(CPair) = 12,000
#requested size
(RPair) = 10,000
Similarity(i,j) = 0.70
EPair = CPair x precSATPrec

Figure 5. Example of Linear Relationship between Output Bilingual Dic-
tionary’s Size and Precision.

get the number of translation pair candidates (CPair) that
equals the minimum input dictionary size which is 6, 000.
If we also get information about user requested size of
output bilingual dictionary (RPair) which is 5, 000 with
0.70 language similarity, we can assume the minimum
precision (minPrec) of the pivot action is also 0.70 and
the maximum precision (maxPrec) is 1. In this exam-
ple, SATPrec = 5, 000/6, 000 = 0.83, and we can
further calculate SATRange = 1 − 0.83 = 0.17 and
UnSATRange = 0.83 − 0.70 = 0.13. Thus, the transi-
tion probability when taking action a which in this case
Ap

(1,3,2) in state s which has UnSATDict D(1,2):n to a

SATState s′SAT which has SATDict D(1,2):s is Ts,a,s′:SAT =
0.17/(0.17 + 0.13) = 0.57. Consequently, the transition
probability to UnSATState s′UnSAT which has UnSATDict
D(1,2):pu(3) is Ts,a,s′:UnSAT = 1−Ts,a,s′:SAT = 1−0.57 =
0.43. To enrich the bilingual dictionary D(1,2):n with in-
vestment action Ai

(1,2), we assume that the language expert
can always satisfy user requested output bilingual dictionary
size, thus the agent will transit to SATState with probability
of 1. This state transition example is depicted in Figure 4.

4.5. Value Iteration

We use value iteration algorithm [14] to calculate utility
(optimal policy) of each state by summing the cost for
starting at state s and acting according to policies thereafter
as shown in Equation 5. Every state will have a policy of
best action in order to minimize cumulative costs.

Ui+1(s) = mina∈A(s)

∑

s′
Ts,a,s′

(
Cs,a,s′ + Ui(s

′)
)

(5)

5. Experiment

Automated Similarity Judgment Program (ASJP) was
proposed by [15] with the main goal of developing a
database of Swadesh lists [16] for all of the world’s lan-
guages from which lexical similarity or lexical distance
matrix between languages can be obtained by comparing
the word lists. We utilize ASJP to select the target languages
used in our simulation case studies. Indonesia has 707 low-
resource ethnic languages [17], all of which are suitable
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TABLE 2. SIMILARITY MATRIX OF 6 INDONESIAN ETHNIC LANGUAGES RANKED BY NUMBER OF SPEAKERS

Language Indonesian Old Javanese Minangkabau Makasar Sasak
Old Javanese 0.2409
Minangkabau 0.6159 0.2501
Makasar 0.3305 0.2239 0.3307
Sasak 0.4391 0.2045 0.4439 0.3507
Lampung 0.2070 0.1960 0.1910 0.1990 0.2079

TABLE 3. EXISTING PRINTED BILINGUAL DICTIONARY SIZE

Bilingual Dictionary Number of Translation Pair
Indonesian - Old Javanese 8,600
Indonesian - Minangkabau 12,600
Indonesian - Makasar 4,300
Indonesian - Sasak 19,300
Indonesian - Lampung 9,200

as target languages in our study. From them we selected
Indonesian, Old Java, Minangkabau, Makasar, Sasak, and
Lampung. We then generated the language similarity matrix
by utilizing ASJP as shown in Table 2. There is no avail-
able dictionary either machine readable or printed format
between these Indonesian ethnic languages. Nevertheless,
we can find several printed bilingual dictionaries for In-
donesian (the official language) and several ethnic languages
as shown in Table 3. Actually we need to convert those
printed dictionaries to machine readable dictionaries either
manually by human or automatically as shown in [18]. For
test simplicity, we assumed that all printed dictionaries had
been converted into machine readable form.

5.1. Experiment Settings

To show effectiveness of our method, we use, as base-
lines, heuristic plans to choose an action to take based on
input language characteristics as follows:

A. Heuristic 1:

• Only investment actions are considered.

B. Heuristic 2:

• Prioritizing pivot actions over investment actions as
the first priority.

• Prioritizing input bilingual dictionary size (bigger is
better) as the second priority.

• Prioritizing language similarity (closer is better) as
the third priority.

• Before taking the selected pivot action, an invest-
ment action can be taken to ensure that the input
dictionaries specified by the selected pivot action
satisfying user requested size.

C. Heuristic 3:

• Prioritizing pivot actions over investment actions as
the first priority.

• Prioritizing language similarity (closer is better) as
the second priority.

• Prioritizing input bilingual dictionary size (bigger is
better) as the third priority.

• Before taking the selected pivot action, an invest-
ment action can be taken to ensure that the input
dictionaries specified by the selected pivot action
satisfying user requested size.

We conducted experiments on four datasets from the
printed dictionaries of Indonesian ethnic languages. We
randomly selected language pairs to get two four-languages
datasets and two five-languages datasets. Dataset 1 had four
languages: (1) Indonesia, (2) Minangkabau, (3) Lampung,
and (4) Sasak. Dataset 2 also had four languages: (1) In-
donesia, (2) Minangkabau, (3) Makasar, and (4) Old Java.
Dataset 3 had five languages: (1) Indonesia, (2) Minangk-
abau, (3) Lampung, (4) Sasak, and (5) Makasar. Dataset 4
also had five languages: (1) Indonesia, (2) Minangkabau,
(3) Lampung, (4) Makasar, and (5) Old Java. Plans were
evaluated by comparing the total cost of MDP and heuristic-
based optimal plan.

5.2. Experiment Result

The heuristic approach that uses only the language char-
acteristics with rules to follow fails to find the optimal path
with the least cost. The language characteristics should be
processed into more useful information like both cost of
action and transition probability as in the proposed MDP
approach to get the feasible optimal plan with the least
cost. The result depicted in Table 4 shows that our MDP
model outperformed the heuristic plans as regards total cost
of the optimal plan for all datasets. Compared to heuristic 1,
heuristic 2 and heuristic 3 plans, respectively, our MDP plan
reduced total cost by, for dataset 1, 75%, 65%, and 68%;
for dataset 2, 59%, 47%, and 47%; for dataset 3, 77%, 68%,
and 68%, and for dataset 4, 62%, 51%, and 51%.

Our recursive algorithm greatly reduced the complexity
of the MDP model as shown in Table 5. In datasets 1 and
2, both of which held 4 languages, the number of states
was reduced by 93% compared to the maximum number of
states shown in Table 1. For datasets 3 and 4, which had 5
languages, the reduction was 99%.

6. Conclusion

Our constraint-based bilingual lexicon induction ap-
proach has the potential to enrich low-resource languages
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TABLE 4. TOTAL COST COMPARISON BETWEEN MDP AND HEURISTICS APPROACH

Dataset Method Planning Total Cost

1

Heuristic 1 Ai
(1,2)

→ Ai
(1,3)

→ Ai
(1,4)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ai
(3,4)

$23,670

Heuristic 2 Ai
(1,4)

→ Ai
(1,2)

→ Ap
(2,1,4)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ap
(3,1,4)

→ Ai
(2,4)

→ Ai
(2,3)

→ Ai
(3,4)

$16,937

Heuristic 3 Ai
(1,4)

→ Ai
(1,2)

→ Ap
(2,1,4)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ap
(3,2,4)

→ Ai
(1,3)

→ Ai
(3,4)

$18,515

MDP Ai
(1,3)

→ Ap
(2,1,4)

→ Ai
(2,4)

→ Ap
(1,4,2)

→ Ap
(3,1,4)

→ Ap
(1,2,4)

→ Ap
(2,4,3)

$5,884

2

Heuristic 1 Ai
(1,2)

→ Ai
(1,3)

→ Ai
(1,4)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ai
(3,4)

$28,350

Heuristic 2 Ai
(1,2)

→ Ai
(1,4)

→ Ap
(2,1,4)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ap
(3,1,4)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ai
(3,4)

$21,992

Heuristic 3 Ai
(1,2)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ai
(1,4)

→ Ap
(2,1,4)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ap
(3,2,4)

→ Ai
(3,4)

$21,973

MDP Ai
(1,3)

→ Ai
(1,4)

→ Ap
(3,1,4)

→ Ap
(2,1,3)

→ Ai
(2,3)

→ Ap
(1,3,2)

→ Ap
(2,3,4)

$11,629

3

Heuristic 1 Ai
(1,2)

→ Ai
(1,3)

→ Ai
(1,4)

→ Ai
(1,5)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ai
(2,5)

→ Ai
(3,4)

→ Ai
(3,5)

→ Ai
(4,5)

$46,380

Heuristic 2 Ai
(1,4)

→ Ai
(1,2)

→ Ap
(2,1,4)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ap
(3,1,4)

→ Ai
(1,5)

→ Ap
(2,1,5)

→ Ap
(4,1,5)

→ Ap
(3,1,5)

→ Ai
(2,4)

→ Ai
(2,5)

→ Ai
(4,5)

→ Ai
(2,3)

→ Ai
(3,4)

→ Ai
(3,5)

$33,380

Heuristic 3 Ai
(1,4)

→ Ai
(1,2)

→ Ap
(2,1,4)

→ Ai
(1,5)

→ Ap
(2,1,5)

→ Ai
(2,4)

→ Ai
(2,5)

→ Ap
(4,2,5)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ap
(3,1,4)

→ Ai
(4,5)

→ Ai
(3,4)

→ Ap
(3,4,5)

→ Ai
(2,3)

→ Ai
(3,5)

$33,325

MDP Ai
(1,3)

→ Ai
(1,5)

→ Ap
(2,1,4)

→ Ai
(2,4)

→ Ap
(1,4,2)

→ Ap
(3,1,4)

→ Ap
(2,4,3)

→ Ap
(4,1,5)

→ Ap
(1,2,4)

→ Ap
(2,4,5)

→ Ap
(3,2,5)

$10,594

4

Heuristic 1 Ai
(1,2)

→ Ai
(1,3)

→ Ai
(1,4)

→ Ai
(1,5)

→ Ai
(2,3)

→ Ai
(2,4)

→ Ai
(2,5)

→ Ai
(3,4)

→ Ai
(3,5)

→ Ai
(4,5)

$49,590

Heuristic 2 Ai
(1,2)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ai
(1,5)

→ Ap
(2,1,5)

→ Ap
(3,1,5)

→ Ai
(1,4)

→ Ap
(2,1,4)

→ Ap
(4,1,5)

→ Ap
(3,1,4)

→ Ai
(2,4)

→ Ai
(2,5)

→ Ai
(2,3)

→ Ai
(4,5)

→ Ai
(3,4)

→ Ai
(3,5)

$38,443

Heuristic 3 Ai
(1,2)

→ Ai
(1,4)

→ Ap
(2,1,4)

→ Ai
(1,5)

→ Ap
(2,1,5)

→ Ai
(1,3)

→ Ap
(2,1,3)

→ Ai
(2,4)

→ Ai
(2,5)

→ Ap
(4,2,5)

→ Ap
(3,1,4)

→ Ap
(3,1,5)

→ Ai
(4,5)

→ Ai
(3,4)

→ Ai
(3,5)

→ Ai
(2,3)

$38,424

MDP Ai
(1,3)

→ Ai
(1,4)

→ Ai
(1,5)

→ Ap
(3,1,4)

→ Ap
(4,1,5)

→ Ai
(4,5)

→ Ap
(3,4,5)

→ Ap
(2,1,4)

→ Ai
(2,4)

→ Ap
(1,4,2)

→ Ap
(2,4,3)

→ Ap
(2,3,5)

$18,761

TABLE 5. MDP MODEL COMPLEXITY REDUCTIONS

Dataset #Languages #States #Invest. Action #Pivot Action
1 & 2 4 280 408 432
3 & 4 5 8,704 12,800 15,360

with the only input being machine readable bilingual dic-
tionaries. Unfortunately, the scarcity of such dictionaries
for low-resource languages makes it difficult to plan which
bilingual dictionary should be invested first or which bilin-
gual dictionary should be induced right from the start in
order to obtain all possible combination of bilingual dictio-
naries from the language set with the minimum total cost
to be paid. The exponential complexity of formulating the
bilingual dictionary creation planning into a graph theory
problem indicates a greater complexity of obtaining the
optimal planning with the least total cost by only following
the heuristic. Nevertheless, our algorithm greatly reduced the
complexity, so that the MDP planning can find the feasible
optimal plan with less total cost compared to heuristic
planning. Our MDP model can calculate the cumulative
cost while predicting and considering the probability of the
pivot action to yield a satisfying output bilingual dictionary
as utility for every state to better predict the most feasible
optimal plan with the least total cost.

Our key research contribution is a formalization of plan-
ning optimization for creating bilingual dictionaries. Our
formalization with MDP allow user to predict the feasible

optimal plan with the least total cost before implementing
the constraint-based bilingual dictionary induction frame-
work in a big scale. To the best of our knowledge, our study
is the first attempt to formalize planning optimization for
creating bilingual dictionaries.
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