
Massively parallel split-step Fourier
techniques for simulating quantum systems on
graphics processing units

Author James Schloss
Degree Conferral
Date

2019-12-31

Degree Doctor of Philosophy
Degree Referral
Number

38005甲第41号

Copyright
Information

(C) 2019 The Author.

URL http://doi.org/10.15102/1394.00001054

Okinawa Institute of Science and Technology
Graduate University

Thesis submitted for the degree

Doctor of Philosophy

Massively parallel split-step Fourier
techniques for simulating quantum
systems on graphics processing units

by

James Schloss

Supervisor: Thomas Busch

December, 2019

Declaration of Original and Sole
Authorship

I, James Schloss, declare that this thesis entitled Massively parallel split-step Fourier
techniques for simulating quantum systems on graphics processing units and the data
presented in it are original and my own work.

I confirm that:

• No part of this work has previously been submitted for a degree at this or any
other university.

• References to the work of others have been clearly acknowledged. Quotations
from the work of others have been clearly indicated, and attributed to them.

• In cases where others have contributed to part of this work, such contribution
has been clearly acknowledged and distinguished from my own work.

• None of this work has been previously published elsewhere, with the exception
of the following:

– Some elements of Chapter 1 are similar to the discussion of the split-operator
method on the Algorithm Archive [1].

– Chapter 2 is largely derived from a paper published in the New Journal of
Physics (18(3):035012, 2016) [2].

– The GPUE codebase, which is a primary topic in Chapter 3 has been pub-
lished in the Journal of Open Source Software (3(32):1037, 2018) [4].

– Chapter 4 is largely derived from a paper published in Phys. Rev. Fluids
(4(5):054701, 2019) [3].

– Chapter 5 is largely derived from a recently submitted manuscript to Phys.
Rev. Fluids (arXiv:1910.02364) [5]. In addition, many figures for this chap-
ter have been created for the GPUE documentation [6].

– Figure 3.1 was created by Peter Wittek when comparing different numerical
solvers [7].

– Figure 3.5 was largely derived from tikz code provided by Xadisten during
a Twitch livestream.

– Figure 3.3 was largely derived from tikz code created by user Realz Slaw on
stackexchange [8].

iii

iv Declaration of Original and Sole Authorship

– Figure 5.2 was Reproduced by Nieddu et al. and Kumar et al. [9, 10].

All of the articles mentioned above have been (or will be published) under Cre-
ative Commons BY with attribution to the original authors, and in each chapter,
I clearly define my focus in each publication.

Date: December, 2019
Signature:

Abstract

Massively parallel split-step Fourier techniques for simulating
quantum systems on graphics processing units

The split-step Fourier method is a powerful technique for solving partial differential
equations and simulating ultracold atomic systems of various forms. In this body of
work, we focus on several variations of this method to allow for simulations of one,
two, and three-dimensional quantum systems, along with several notable methods for
controlling these systems. In particular, we use quantum optimal control and short-
cuts to adiabaticity to study the non-adiabatic generation of superposition states in
strongly correlated one-dimensional systems, analyze chaotic vortex trajectories in two
dimensions by using rotation and phase imprinting methods, and create stable, three-
dimensional vortex structures in Bose–Einstein condensates through artificial magnetic
fields generated by the evanescent field of an optical nanofiber. We also discuss al-
gorithmic optimizations for implementing the split-step Fourier method on graphics
processing units. All computational methods present in this work are demonstrated on
physical systems and have been incorporated into a state-of-the-art and open-source
software suite known as GPUE, which is currently the fastest quantum simulator of its
kind.

v

Acknowledgment

Firstly, I would like to acknowledge the work of my advisor, Thomas Busch. His
tireless effort to help his students pursue their best interests is honestly inspiring. I
greatly appreciate his kindness, honesty, and willingness to try new things. I would
also like to acknowledge the work of my online community, the Algorithm Archivists,
as they constantly motivated me to learn new methods for my research. This work has
been supported by the Okinawa Institute of Science and Technology (OIST) Graduate
University and used the computing resources of the Scientific Computing and Data
Analysis section. This work has also been supported by JSPS KAKENHI JP17J01488.
I would also like to thank (in no particular order) Lee, Mossy, Angela, Albert, Jérémie,
Peter, Irina, Ben, Tiantian, Peter (2), Rashi, Valentin, Ankur, the Quantum Systems
Unit, and the OIST community for being such wonderful people and helping to varying
degrees throughout my time at OIST. Finally, I would like to thank Ayaka for helping
me focus on something other than work for a change.

vii

Contents

Declaration of Original and Sole Authorship iii

Abstract v

Acknowledgment vii

Contents ix

Introduction 1

1 Introduction to the SSFM for simulating superfluid vortex systems 5
1.1 The SSFM . 6
1.2 Introduction to ultracold quantum systems 10

1.2.1 Bose–Einstein condensation and the Gross–Pitaevskii Equation 10
1.3 Superfluid systems and vortex dynamics 14

1.3.1 Rotation . 15
1.3.2 Phase imprinting . 17
1.3.3 Artificial magnetic fields . 18

1.4 Modifications to the SSFM for superfluid vortex simulations 20

2 Engineering NOON states in one-dimensional quantum gases 23
2.1 Optimization methods . 23

2.1.1 Nelder–Mead . 24
2.1.2 Chopped random basis optimal control 26

2.2 Shortcuts to adiabaticity . 27
2.3 Non-adiabatic generation of NOON states in a Tonks–Girardeau gas . . 28

2.3.1 Tonks–Girardeau gas . 29
2.3.2 NOON states in a TG gas . 29
2.3.3 Quantum optimal control protocols 32
2.3.4 Results with STA protocols . 34

2.4 Outlook . 39

3 General Purpose computing with Graphics Processing Units and the
GPUE codebase 41
3.1 Types of parallelism . 42

ix

x Contents

3.2 General purpose computing with graphics processing units 43
3.2.1 Limitations of GPU computing 43
3.2.2 GPU hardware architecture . 44
3.2.3 Comparison between various languages for GPGPU computation 51

3.3 Introduction to the GPUE codebase for n-dimensional simulations of
quantum systems on the GPU . 53
3.3.1 FFT optimization . 53
3.3.2 Dynamic field input and output in GPUE with expression trees 55
3.3.3 GPUE memory footprint . 56
3.3.4 Vortex tracking and highlighting 57
3.3.5 Energy calculation for superfluid simulations 60
3.3.6 Future direction and multi-GPU development 61

3.4 DistributedTranspose.jl . 62
3.5 Outlook . 63

4 Vortex analysis of chaotic, two-dimensional superfluid simulations for
few-vortex systems 65
4.1 Model . 66
4.2 Regular and irregular vortex dynamics 67
4.3 Characterizing chaotic vortex dynamics 70
4.4 Outlook . 73

5 Generation, control and detection of 3D vortex structures in super-
fluid systems 75
5.1 Three-dimensional vortex structures . 75
5.2 Controlled creation of three-dimensional vortex structures in Bose–Einstein

condensates using artificial magnetic fields 77
5.2.1 Bose–Einstein condensate dynamics in the presence of an optical

nanofiber . 78
5.2.2 Ground state vortex configurations 82
5.2.3 Dynamic vortex detection and scissor modes 85

5.3 Outlook . 87

Conclusion 89

6 Conclusion 89
6.1 Further development of GPUE . 89

6.1.1 Vortex tracking in two and three dimensions 90
6.1.2 General purpose Hamiltonian solver 90
6.1.3 Octree grid . 91

6.2 Future simulations of quantum systems 92

A Simple vector additions in CUDA, OpenCL, and JuliaGPU 93
A.1 Vector addition with C++ . 93
A.2 Vector addition with CUDA . 94

xi

A.3 Vector addition with OpenCL . 95
A.4 Julia . 98

Bibliography 99

1

Introduction

Massively parallel methods have become commonplace in High-Performance Comput-
ing (HPC) environments that often rely on large networks of distributed computing
nodes for performing simulations of various forms. In recent years, it has been found
that the Graphics Processing Unit (GPU) can provide a higher bandwidth for highly
parallelizable computation because all components are available in a single device that
has been developed specifically for the computation of many small actions in parallel.
As such, many supercomputers have been transitioning to GPU-based computation,
including Summit, currently the fastest supercomputer in the world [11]. For these
reasons, General-Purpose GPU (GPGPU) programming methods have become more
relevant than ever and many frameworks are beginning to cater to the demand [12–15],
with the current state-of-the art platform being NVIDIA’s CUDA (Compute Unified
Device Architecture) [16].

Though GPU devices are often faster than their CPU counterparts for simple tasks,
there are plenty of drawbacks to using the GPU. For example, each GPU card typically
has less available memory than the CPU, and inter-GPU or GPU-CPU communication
is an incredibly slow process, thereby encouraging developers to restrict communication
between devices as much as possible. In comparison to CPU software, developers need
to be more aware of how GPU memory is being used to write optimized code for their
specific purpose. In addition, individual GPU computing cores are weaker than those
found on the CPU, so iterative or recursive tasks are even less optimal and should be
avoided when programming for GPUs.

Spectral and pseudo-spectral methods are interesting subsets of problems that
are used for large-scale, distributed computation on HPC environments that rely on
FFTs (Fast Fourier Transforms) to solve partial differential equations of various forms.
Though there are robust FFT libraries, like FFTW [17] to perform distributed FFTs [18],
FFTs are still global operations, often requiring memory manipulation on multiple
nodes simultaneously and requiring communication between them. For this reason,
the FFT is often the computational bottleneck for many spectral and pseudo-spectral
methods. It is difficult to directly benchmark GPU and CPU software, but it is gen-
erally accepted that one-dimensional GPU-based FFTs perform more optimally as the
grid size increases; however, for higher-dimensional FFT operations, this performance
increase is not as drastic [19]. This leads to an interesting question about whether
spectral methods could be faster on distributed networks of GPU devices, as the bulk
of the parallelization occurs in a single device and should be faster than a distributed
CPU network. In this work, I will focus on a particular pseudo-spectral method known
as the Split-Step Fourier Method (SSFM) [20].

The SSFM is known as the primary workhorse for computation of wavepackets in
single and multi-mode fiber optic systems and is primarily intended to solve the non-
linear Schrödinger equation, which has obvious applications in many areas of quantum
simulation. In particular, the SSFM can be used to solve the Gross-Pitaevskii equation,
which is the governing formula for all dynamics of superfluid Bose–Einstein conden-
sates in the mean-field limit. Superfluid systems behave fundamentally differently than
classical fluids and there is significant interest in many areas of superfluid research, in-
cluding methods of vortex generation and their interaction; however, three-dimensional

2 Introduction

simulations can quickly become computational infeasible. For this reason, it is worth
exploring and developing GPU-based libraries for the computation of superfluid dy-
namics. I will discuss this work and also motivate several methods for simulation of
quantum engineering on GPU devices that I have developed. The structure of my
thesis is as follows:

Introduction to the SSFM for vortex simulations

I will begin with an introduction to the SSFM, along with the physical target for most
of this work: superfluid vortex simulations. As such, this chapter will also discuss
methods of vortex generation, including rotation, phase imprinting, and gauge fields,
along with modifications to the Gross–Pitaevskii equation for simulating these systems.
This chapter lays the groundwork for all subsequent chapters.

Engineering NOON states in one-dimensional quantum gases

This chapter will discuss several settings that are difficult to simulate on GPU archi-
tecture, focusing on methods of quantum engineering for a one-dimensional example
where macroscopic superposition states, like the maximally entangled |N, 0〉 + |0, N〉
(NOON) state, are generated in a Tonks–Girardeau gas. In addition, this chapter
will highlight methods in quantum optimal control and shortcuts to adiabaticity that
will serve as examples of quantum engineering methods that are difficult to perform
on GPU architecture. This work has been published in the New Journal of Physics
18(3):035012, 2016 [2].

Introduction to GPGPU and the GPUE codebase

This chapter will introduce the concept of GPGPU and the GPUE (GPU-based Gross-
Piteavskii Equation solver) codebase for superfluid vortex simulations. It will also cover
GPU architecture in-depth and discuss several optimizations performed in GPUE to
enable certain features which could not be done before with other GPU libraries with
similar purposes. This chapter will conclude with a discussion of a notoriously difficult
problem that could make spectral and pseudo-spectral methods even more efficient
on GPU hardware: an n-dimensional distributed transpose. The GPUE codebase has
been published in the Journal of Open Source Software 3(32):1037, 2018 [4].

Vortex analysis of chaotic, two-dimensional superfluid simula-
tions for few-vortex systems

This chapter will be related to an example of superfluid simulations with GPUE in
two-dimensions, where vortices essentially follow the dynamics of point-vortex models.
Here, the system is shown to exhibit chaotic dynamics with only a few vortices present.
This system highlights the necessity of good post-processing methods for the simula-
tions performed with GPUE, as time-dependent Lyapunov exponents are used on the
tracked vortex positions to ascertain the degree of chaotic motion. This work has been
published in Phys. Rev. Fluids 4(5):054701, 2019 [3].

3

Generation, control, and detection of 3D vortex structures in
superfluid systems

This chapter is another example of superfluid simulations performed with GPUE, this
time in three-dimensions. For this system, a novel device is proposed that can gener-
ate, control, and detect vortex ring-like structures by coupling the BEC to the light
of an optical nanofiber. This system highlights the need for many of the features
suggested during GPUE development for minimizing the memory footprint and ensur-
ing fast, dynamic simulations. This work has been submitted to Phys. Rev. Fluids
(arXiv:1910.02364) [5].

Outlook

Throughout this text, I will try to motivate future directions at the end of each chapter;
however, a global outlook, including new simulations possible with GPUE and other
areas of development will be discussed in the end.

Chapter 1

Introduction to the SSFM for
simulating superfluid vortex systems

The Split-Step Fourier Method (SSFM) is an essential technique for simulating a vari-
ety of physical systems and is particularly useful for simulating the propagation of wave
packets in single and multimode fibers [20–23] and in various quantum systems [24–26].
Though other methods, such as explicit and implicit Euler [27], Crank-Nicholson [28],
and Runge-Kutta [27], can solve similar differential equations, the SSFM has distinct
advantages over these methods. For example, the SSFM relies on embarrassingly par-
allel element-wise matrix multiplications and Fast Fourier Transform (FFT) routines
that have been optimized for parallel and distributed systems, but it also requires less
memory than Runge-Kutta, which requires multiple arrays of the size of the wave-
function in memory [29]. The SSFM also provides a lower error bound than either
the Euler or Crank-Nicholson methods, and does not require an implicit or tridiagonal
solver [30, 31] which are also not easily parallelizable [32–34]. In addition, the SSFM
is faster and requires fewer FFTs per step than similar methods, such as Runge-Kutta
4 in the Interaction Picture (RK4IP) [35]; however, the SSFM method’s speed comes
at a cost in accuracy. Though much of this work focuses on using the SSFM to sim-
ulate superfluid vortex states, I will not be discussing alternative methods, such as
point-vortex [36] or vortex-filament [37] models in rigorous detail, as this work focuses
primarily on engineering appropriate quantum states, while point-vortex and vortex
filament methods focus primarily on vortex structures, themselves.

In the work presented in this chapter, I will be focusing on the application of the
SSFM to superfluid vortex simulations and will use primarily physical arguments to
understand the details of the method itself. More details about General Purpose com-
puting with Graphics Processing Units (GPGPU) and the GPUE (Graphics Processing
Unit Gross-Pitaevskii Equation Solver) simulation software can be found in Chapter 3.
There, I will discuss several additional areas of interest for implementing similar solvers
on GPUs, including distributed transposes and important considerations for traditional
FFT routines for simulating quantum systems on multiple GPU devices.

This chapter will assume familiarity with basic principles of quantum mechanics and
will focus on considerations for simulating quantum systems with the SSFM. As such,
I will also introduce important physical insights for understanding ultracold atomic
systems that will be used throughout the rest of this work. In particular, I will fo-

5

6 Introduction to the SSFM for simulating superfluid vortex systems

cus on understanding superfluid systems created by Bose–Einstein condensation and
methods by which vortex structures can be generated and controlled in a Bose–Einstein
Condensate (BEC).

1.1 The SSFM

I will begin this discussion with the single-particle Schrödinger equation,

i~
∂Ψ(r, t)

∂t
=

(
p̂2

2m
+ V0(r)

)
Ψ(r, t) (1.1)

where p̂ = −i~ ∂
∂r

is the canonical momentum operator, m is the mass, V0(r) is the po-
tential, and Ψ(r, t) is the single-particle wavefunction. In this case, one often replaces
most of the right-hand side of the equation with a Hamiltonian operator, which for
this case would be Ĥ = p̂2

2m
+ V0(r). Noticeably, this has two components, one acting

in position-space, Ĥv = V0(r) and another in momentum-space, Ĥp = p̂2

2m
. For consis-

tency, I will denote all variables in momentum-space with a p, and real-space with a
v. Additionally, any wavefunction can be expanded into a complete set of eigenkets of
the Hamiltonian, with Ĥ |φn〉 = En |φn〉, which allows one to write

|Ψ(r)〉 =
∞∑
n=0

cn |φn(r)〉 , (1.2)

where cn is a constant for each constituent eigenfunction ψn(r).
Simply stated, the SSFM splits the Hamiltonian into separate operators and uses a

Fourier transform on the wavefunction to ensure that these operators are applied in the
appropriate space. In order to apply the Hamiltonian to the system, one first assumes
a formal solution to the Schrödinger equation,

Ψ(r, t+ dt) =
[
e−

iĤdt
~

]
Ψ(r, t) =

[
e−

i(Ĥv+Ĥp)dt
~

]
Ψ(r, t), (1.3)

where dt is a small timestep. If the system is being simulated in a timestepping manor
with a series of small timesteps, one can split this operation by using the Baker-
Campbell-Hausdorff formula,

Ψ(r, t+ dt) =

[
e−

iĤvdt
~ e−

iĤpdt
~ e−

[iĤv,iĤp]dt
2

2

]
Ψ(r, t). (1.4)

If neglected, the commutation of the real and momentum-space components of the
Hamiltonian will accrue an error on the order of dt2. This is noticeably high; however,
the dt2 error can be decreased to dt3 by performing a half-step in position space before
doing a full-step in momentum space, through a process called Strang splitting [38],

Ψ(r, t+ dt) =

[
e−

iĤvdt
2~ e−

iĤpdt
~ e−

iĤvdt
2~

]
Ψ(r, t) +O(dt3). (1.5)

1.1 The SSFM 7

Strang splitting can be best understood by performing a Taylor series expansion on
both eh(A+B) and ehAehB, where A and B are matrices and h is a defined step size [39].
When expanded,

eh(A+B) ≈ I + h(A + B) +
1

2
h2(A + B)2, (1.6)

where I is the identity matrix. Here, the first-order terms for the expansion in Equa-
tion (1.6) are identical to the expansion of ehAehB; however, when expanding the last
term, one finds,

1

2
h2(A + B)2 =

1

2

(
A2 + AB + BA + B2

)
. (1.7)

Here, the BA term is missing in the expansion of ehAehB because A always comes
before B. If a symmetric splitting is used instead, it is clear that all the terms up to
the second order are the same, such that eh(A+B) ≈ ehA/2ehBehA/2.

Because position and momentum are conjugate domains, after Strang splitting one
can address each part of this solution in chunks, first in position space, then in mo-
mentum space, then in position space again by using Fourier transforms.

Ψ(r, t+ dt) =
[
Ûv(dt)F−1

[
Ûp(dt)F

[
Ûv(dt)Ψ(r, t)

]]]
+O(dt3) (1.8)

where Ûv = e−
iĤvdt

2~ , Ûp = e−
iĤpdt

~ , and F and F−1 indicate forward and inverse Fourier
transforms. In practice, these Fourier transforms are performed with Fast Fourier
Transforms (FFTs), typically using a variation on the Cooley-Tukey method, which
was first discovered by Gauss and later contemporized by Cooley and Tukey when they
independently discovered it [40]. This method is not straightforwardly parallelizable;
however, FFTs have become so fundamental to signal processing, that they have been
incredibly well-optimized with several libraries, including FFTW [17] and CuFFT [13]
for distributed and GPU calculations, respectively. I will discuss optimal techniques
for using FFTs with the SSFM method in Chapter 3.

Each timestep of the SSFM is essentially composed of the following steps:

1. Multiplication of the wavefunction in position space with the position-space op-
erator by using a half-step in position space.

2. Transformation into momentum space with an FFT operation on the wavefunc-
tion.

3. Multiplication of the momentum-space wavefuntion by the momentum-space op-
erator.

4. Transformation into position space with an inverse FFT on the wavefunction.

5. Multiplication of the wavefunction in position space with the position-space op-
erator by using a half-step in position space.

6. Repeating of 1-5 until satisfied.

8 Introduction to the SSFM for simulating superfluid vortex systems

Figure 1.1: Evolution of a one-dimensional simple harmonic oscillator in (a) real,
and (b) imaginary time after slightly shifting the trapping potential in the x̂ direction.
In (c), the energy as a function of time is shown and one can see that the energy
of the system when evolving in real time remains constant, but in imaginary time it
will decay to the known ground-state energy of the simple harmonic oscillator. The
simulated results are from evolution with the SSFM after 10,000 steps. Here, I use
a 87Rb atom with ωx = 10 Hz on a 256-point grid of size 200 µm, at t = 0, where
the trap has been shifted by 5 µm. The wavefunction has been normalized such that∫∞
−∞ |Ψ|2dx = 1. This simulation was performed with the GPUE codebase [4].

1.1 The SSFM 9

With the method described so far, one can simulate simple, one-dimensional quan-
tum systems. For example, if one uses a Gaussian wavefunction which is offset from the
center of a simple harmonic oscillator, one can simulate the wavefunction oscillation,
as shown in Figure 1.1(a).

In addition to this, one can find the lowest energy state of the system by performing
a Wick rotation and using τ = it for the simulation instead of traditional units of
time [41]. This changes the solution from the complex sinusoid shown in Equation (1.4)
to an exponential decay,

Ψ(r, τ + dτ) =
[
e−

Ĥdτ
~

]
Ψ(r, τ) =

N∑
n=0

[
cne
− (Endτ)

~

]
φn(r, τ). (1.9)

Note that it is not necessary to include the cn coefficients in the expansion as this
form of time stepping is no longer unitary. Overall, imaginary time evolution has two
notable effects:

1. There will be an exponential decay of all energy states, with higher-energy states
decaying faster than the ground-state.

2. The non-unitary evolution requires renormalization at every time step in imagi-
nary time evolution.

I will start with a discussion on the first point, by showing a simulation of the same
system as in Figure 1.1(a), but in imaginary time, shown in Figure 1.1(b). Here, the
wavefunction density is shifting to the center of the trap, and in Figure 1.1(c), the
energy is decaying to the known ground-state energy of a quantum harmonic oscillator
of 1

2
~ω = 3.31 × 10−33J for the chosen parameters. This is because all eigenstates of

the wavefunction are affected by the exponential decay, with the ground state decaying
the slowest, and because renormalization occurs every timestep, only the ground state
will survive imaginary time propagation.

The energy is computed as,

E = 〈Ψ(r)|Ĥ|Ψ(r)〉 . (1.10)

For many systems, one can assume the simulation has reached the ground state when
the energy converges to a fixed value. More quantitatively, this means that the sim-
ulation can be stopped when the change in energy every step in imaginary time is
below some provided threshold; however, this is not always the best course-of-action.
Further discussion on energy calculations performed in this work and the appropriate
convergence criteria can be found in Chapter 3.

Now to discuss the second point that non-unitary evolution requires renormaliza-
tion, which is problematic from a software perspective. In practice, every step in
imaginary time requires a relatively costly renormalization step,∫ ∞

∞
|Ψ(r, t)|2dr = 1. (1.11)

Computationally, this operation is a summation, which is not well-optimized for GPU
hardware; however, it is possible to perform a parallel reduction (summation), which

10 Introduction to the SSFM for simulating superfluid vortex systems

allows for a considerable improvement on massively parallel systems [42]. Even so, the
normalization is still a slow operation and should be used sparingly.

The implementation of the SSFM provided here assumes large-scale element-wise
matrix multiplications in position and momentum-space; however, even though this
implementation lends itself to parallelization, I will show other methods in Chapter 3
when I discuss the implementation of the SSFM on graphics processing units.

It is important to note that the complexity of the SSFM is similar to the complexity
of a convolution via the convolutional theorem,

f ∗ g = (F)−1 (F(f) · F(g)) . (1.12)

Here, f and g are arbitrarily chosen functions to be convolved. In fact, interpreting the
method as a series of convolutions can lead to important insight as to how the method
operates. For example, in imaginary time, the momentum-space operator becomes a
Gaussian and the position-space operator becomes a more tightly-confining potential.
In this way, every time-step in imaginary time corresponds to a blurring operation
with the momentum-space step and strong confinement with the position-space step.
Real-time propagation can be interpreted in a similar way, as the momentum-space
operator is similar to the Fourier transform of two Sobel filters, thereby performing
two spatial derivatives. For now, I will turn the focus to systems to be simulated via
the SSFM throughout this work: ultracold atoms.

1.2 Introduction to ultracold quantum systems
When atomic systems are cooled to temperatures near zero Kelvin, it becomes easier
to discern their quantum properties which vary drastically depending on whether the
particles are bosonic or fermionic. Because fermions have half-integer spin, they must
obey the Pauli exclusion principle and are constrained to Fermi–Dirac statistics. At
zero temperature, this creates a Fermi sea, where the particles fill the single particle
energy levels from the bottom-up with two particles of opposite spin per level. On the
other hand, bosons have integer spin and follow Bose–Einstein statistics. They will
condense into a single, macroscopic ground state when cooled [43, 44], and this state
of matter is known as a Bose–Einstein Condensate (BEC). A BEC has the properties
of a superfluid, which will be discussed more completely in the following section.

There are notable exceptions to these rules, such as the highly correlated Tonks–
Girardeau gas where bosons may act as spinless, non-interacting fermions [2, 45]. It
is also possible for interacting fermions to condense into a BEC-like state by forming
molecules with integer spin [46, 47]; however, I will not discuss fermionic systems
further in this work. For now, I will focus on BEC systems, but will also discuss
Tonks–Girardeau gases later in Chapter 2.

1.2.1 Bose–Einstein condensation and the Gross–Pitaevskii Equa-
tion

To motivate the formalism regularly used to describe BEC systems, I will follow a
straightforward derivation using the second quantization [48]. As mentioned in Sec-

1.2 Introduction to ultracold quantum systems 11

tion 1.2, bosons in a BEC occupy a single ground state, meaning one must introduce
a many-body Hamiltonian for the system and take inter-particle interactions into ac-
count. Because experimental systems are dilute, I will only consider two-body inter-
actions and assume any interactions between three or more atoms to be unlikely and
negligible. We can write the Hamiltonian with two body interactions in the second
quantized form as

Ĥ =

∫
Ψ̂†(r)

[
− ~2

2m
∇2 + V0(r)

]
Ψ̂(r)dr +

1

2

∫
Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r)drdr′,

(1.13)
where r and r′ are the positions of the two colliding particles, V (r−r′) is the interaction
potential, and Ψ̂†(r) and Ψ̂(r) are the creation and annihilation operators for the atomic
field that follow the bosonic commutation relations,

[Ψ̂(r), Ψ̂†(r)] = δ(r− r′) (1.14)

[Ψ̂†(r), Ψ̂†(r)] = 0 (1.15)

[Ψ̂(r), Ψ̂(r)] = 0. (1.16)

In the case of a BEC at T ≈ 0, one can perform a Bogoliubov expansion [49, 50]

Ψ̂(r, t) = Φ(r, t) + δΦ̂(r, t), (1.17)

where Φ(r, t) ≡ 〈Ψ̂(r, t)〉 is the wavefunction of the condensate known as the order
parameter and δΦ̂(r, t) represents quantum fluctuations of the BEC system; therefore,
the condensate density is defined as

n(r, t) = |Φ(r, t)|2. (1.18)

Now one may use the Heisenberg equation of motion,

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ], (1.19)

to determine the time evolution of the field operator Ψ̂(r, t) as

∂

∂t
Ψ̂(r, t) =

1

i~

[
− ~2

2m
∇2 + V0(r) +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t), (1.20)

which follows from Equation (1.13) after integrating over r. If it is assumed that two
bosons will only interact with a contact potential of the form

V (r′ − r) = gδ(r′ − r), (1.21)

which has a strength given by

g =
4π~2as
m

, (1.22)

where as is the species and state-dependent s-wave scattering length, we may write the
evolution for the wavefunction as

i~
∂

∂t
Φ(r, t) =

(
− ~2

2m
∇2 + V0(r) + g|Φ(r, t)|2

)
Φ(r, t). (1.23)

12 Introduction to the SSFM for simulating superfluid vortex systems

0

1× 107

2× 107

3× 107

4× 107

5× 107

6× 107

7× 107

8× 107

-250 -125 0 125 250

N
or

m
al

iz
ed

de
ns

it
y

x (µm)

TF
g = 1

Figure 1.2: Slice of the ground state of a two-dimensional simple harmonic oscillator
for the GPE equation with g = 1 (purple, dashed) and the TF distribution (blue,
solid). Here, the GPE solution follows a TF distribution near the center of the trap,
but the tail is slightly different. This simulation was performed with GPUE [4] for
a two-dimensional grid of 2562 elements of size 250µm with a trapping potential of
ωx = ωy = 1, and 5× 104 particles.

This is the celebrated the Gross–Pitaevskii Equation (GPE), which is known as the
governing equation for the physics of dilute BEC systems. When written in the time-
independent form it determines the chemical potential µ of the condensate as [51, 52]

µΦ(r) =

(
− ~2

2m
∇2 + V0(r) + g|Φ(r)|2

)
Φ(r). (1.24)

The time-dependent GPE allows one to determine the full dynamics of a BEC
system and the numerical solutions will be discussed in subsequent chapters. Similar
derivations of the GPE can be found in many introductory texts on BEC physics [44,
53, 54]. The main difference between this equation and the Schrödinger equation is
the non-linear interaction term g|Ψ|2, that accounts for the fact that BECs typically
consist of 103 to 106 particles. When solving this system in a simple harmonic oscilla-
tor in the limit where interactions are significant, one can find an analytical solution
for the wavefunction density, known as a Thomas–Fermi (TF) distribution, shown in
Figure 1.2. In this figure, the simulated wavefunction density is identical to the TF
distribution, except in the tail region where the BEC tapers to zero density.

1.2 Introduction to ultracold quantum systems 13

The TF distribution can be derived from the time-independent GPE in the limit
where there are a large number of bosons in the condensate (N � 1) as [55], so that
the interaction energy exceeds the kinetic energy and it becomes,

ΨTF(r) =

√
[µ− V (r)]Θ(µ− V (r))

g
(1.25)

where Θ is the Heaviside step function that ensures the density stays positive. The
shape of this function is that of an inverted parabola for a harmonic trap, and the
radius in any direction from the center can be found to be

RTF =

√
2µ

mω2
i

, (1.26)

where ωi is the trapping frequency in the ith direction. Using the normalization con-
dition,

∫∞
−∞ |Ψ(r, t)|2 = N , the chemical potential in the TF limit becomes

µTF =
hωi
2

(
15Nas
a

)2/5

. (1.27)

where a =
√

~/mω̄ and ω̄ is the average of all the harmonic trapping frequencies.
Using Equations (1.27) and (1.26) one finds that

RTF = a

(
15Nas
a

)1/5
ω̄

ωi
. (1.28)

This approximation is valid for stationary condensate solutions in simple harmonic
oscillator trapping geometries.

It is important to note that a BEC acts like a superfluid, which is a state of matter
that is similar to a classical fluid without viscosity. This means that once a superfluid is
set in motion, there is no retarding force to keep it from flowing. There are a few known
systems in which superfluidity can exist, such as 4He (sometimes called Helium II when
in its superfluid phase) [56], neutron stars [57], or BEC systems [43, 58]. BEC systems
are generally cleaner experimental systems to create, as they do not have a classical
fluid fraction, like 4He. They are therefore well-suited systems to study excitations
related to superfluid flow.

As a final note, the GPE is valid at zero temperature when the normal fluid com-
ponent is small, and other models exist to describe BEC systems when finite temper-
ature exists, such as the stochastic GPE [59] and the Zaremba-Nikuni-Griffin (ZNG)
model [60]. In general, there is a small error between the GPE and experimental
results, which can be slightly mitigated by performing fully three-dimensional simu-
lations; however the direct cause of this error is not precisely known [61]. It is now
important to discuss superfluids in more detail, focusing on vortex dynamics to be
simulated in this work.

14 Introduction to the SSFM for simulating superfluid vortex systems

1.3 Superfluid systems and vortex dynamics

Next, I will focus on the differences between vortex dynamics in classical and superfluid
systems before continuing to discuss three methods of vortex generation in superfluid
systems: rotation, phase imprinting and artificial magnetic fields. By rotating a fluid,
it is possible to create a vortex around the axis of rotation; however, because of the
viscosity of a classical fluid, the vortex will eventually disappear without constant
driving. In a superfluid, this is not necessarily the case. For this discussion, it is
worthwhile to start with the hydrodynamic description of a BEC, following the text of
Pethick and Smith [53]. To start, I will rewrite the condensate wavefunction as

Ψ(r, t) =
√
ρ(r, t)eiψ(r,t), (1.29)

with
ρ(r, t) = Ψ(r, t)∗Ψ(r, t) = |Ψ(r, t)|2, (1.30)

where ψ(r, t) is the BEC phase. By multiplying the GPE by Ψ∗(r, t) and subtracting
the complex conjugate, one can obtain the continuity equation [53],

∂

∂t
ρ(r, t) +∇ · J(r, t) = 0, (1.31)

where j is the current density of the condensate, defined as,

j(r, t) =
−i~
2m

(Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)) . (1.32)

By substituting Equation (1.29) into Equation (1.32), the form of the current density
for the GPE will be,

j(r, t) = |Ψ(r, t)|2 ~
m
∇φ(r, t). (1.33)

The velocity of the superfluid is defined as a ratio of the current density to the
density, itself, which is

v(r, t) =
j(r, t)

ρ(r, t)
=

~
m
∇φ(r, t). (1.34)

This can be interpreted to mean that the gradient of the phase determines the velocity
of atoms in the BEC, indicating that the system is irrotational (∇× v = 0). Because
the condensate wavefunction has to be single-valued, any rotation in a finite system
has to be quantized as, ∮

v · d` =
~
m

2π`, (1.35)

where, ` is the integer charge of the circulation. Equation (1.35) shows the quantized
nature of circulation in a superfluid with each vortex hosting multiples of 2π charges.
This means that every singly-charged vortex in a BEC will have a 2π phase winding,
and an example of one vortex in a two-dimensional condensate can be seen in Figure 1.3
(a and c). Equation (1.35) also indicates that the phase is not defined at the center of
the vortex; however, the condensate circumvents this problem by requiring the density

1.3 Superfluid systems and vortex dynamics 15

at this point to be zero. The density dip from the normal condensate density to zero
happens over the scale of the healing length, which is

ξ =
1√

8πρbas
(1.36)

for repulsive interactions, where ρb is the bulk density of the condensate.
In a cylindrically symmetric condensate with a single vortex at its center, the wave-

function can then be written as

Ψ(r) = |Ψ(r)|ei`φ, (1.37)

and the energy (Equation (1.10)) of the BEC is

E =

∫ ∞
−∞

~2

2m

(
|∇Ψ(r)|2 +

|Ψ(r)|2`2mv2

2

)
+ V0(r)|Ψ(r)|2 +

g

2
|Ψ(r)|4. (1.38)

Because E ∝ `2, as a superfluid is spun faster, a vortex will not grow in angular mo-
mentum, but multiple vortices with ` = 1 will spawn instead [53]. In other words,
it is energetically favorable for two vortices of smaller angular momentum to form
instead of a single vortex with a large amount of angular momentum; therefore, as an-
gular momentum increases and more vortices are introduced into the system, they will
eventually arrange themselves in a triangular lattice structure known as an Abrikosov
lattice [62, 63]. This behavior is identical to that of type II superconductors under the
effects of a magnetic field. An example of a vortex lattice and its phase can be seen in
Figure 1.3 (b and d).

Until now, I have focused primarily on vortex structures in two dimensions; however,
the three-dimensional properties of vortices in superfluid systems are also peculiar when
compared to their classical counterparts. Here, vortex lines are formed that must either
end at the surface of the condensate [64] or reconnect in the form of vortex rings or
other, more complicated vortex structures [65, 66]. Because the circulation around
superfluid vortices is quantized, when two vortices approach each other with different
velocity fields, they may reconnect into smaller, more energetically favorable vortex
structures. During this reconnection, the abrupt change in energy will create sound
waves at the reconnection site [67].

Three-dimensional vortex structures in BECs are difficult to controllably generate
experimentally, but I will discuss an experimentally viable method to generate, control,
and detect vortex ring-like structures in superfluid BEC systems in Chapter 5. In
that chapter, I will also further discuss three-dimensional vortex motion. In addition,
I will discuss important aspects of simulating two-dimensional condensate systems in
Chapter 4. For now, I will begin discussing three processes to generate vortex structures
in superfluid systems: rotation, phase imprinting, and artificial magnetic fields.

1.3.1 Rotation

Rotation of a BEC system will provide vortex lines that follow the axis of rotation and
start and end on the BEC boundary. To simulate the effects of rotation, one simply

16 Introduction to the SSFM for simulating superfluid vortex systems

Figure 1.3: Simulation of condensate under rotation that leads to a single vortex (a,
c) and a vortex lattice (b, d). The wavefunction density is shown in (a) and (b), while
the corresponding phase is shown in (c) and (d). An external rotation of Ω = 0.35ωx
was used for (a) and (b), while a rotation of Ω = 0.99ωx was used for (c) and (d). The
system consists of 87 Rb atoms is used with a trapping frequency of ωx = ωy = 2πHz
on a 512-point grid of size 200×200 µm. This simulation was performed with the
GPUE codebase [4], and the phase plots are created by multiplying the phase by the
wavefunction density to remove anomalous noise beyond the BEC boundary.

1.3 Superfluid systems and vortex dynamics 17

appends the angular momentum operator Lz = −i~(xpy − ypx) to the GPE in the
rotating frame,

i~
∂Ψ(r, t)

∂t
=

(
p2

2m
+ V0 + g|Ψ(r, t)|2 − ΩLz

)
Ψ(r, t), (1.39)

where Ω is the rotation frequency.
In order to generate a vortex via rotation in a harmonic trap, one must rotate

faster than the critical velocity of Ωc ≈ 0.7ω⊥, where ω⊥ is the trapping frequency
perpendicular to the axis of rotation [54]. In addition, if the rotation frequency is
greater than the trapping frequency, the atoms will no longer be bound by the trap due
to centripetal forces. As such, finding the appropriate rotation frequency for creating
vortex lattices in BEC systems is a precarious balancing act. Even so, large scale vortex
lattices have been generated both experimentally and theoretically [68–71].

Experimentally, rotation for a small number of vortices can be generated in a num-
ber of ways, such as a “rotating bucket” approach that has been extended to ultracold
atomic systems [72]. For this method, bosons are confined to a magnetic trap and
an anisotropic potential is superimposed that rotates with the desired angular veloc-
ity [64, 70, 73, 74]. For rotation velocities close to the harmonic trapping frequency,
additional methods must be used to ensure the atoms remain in-place. These methods
include adding an extra confining potential [75], or the evaporative spin-up technique,
where atoms with less angular momentum are evaporated such that the remaining
atoms have a higher rotation speed [71, 76]. Additionally, vortex ring-like structures
have recently been generated experimentally via rotation [77].

In this work, I use rotation in a qualitatively similar way to Equation (1.39); how-
ever, I will later introduce artificial magnetic fields, a broader framework that encom-
passes rotation that will be used in all simulations moving forward. We will discuss
this in more detail in Section 1.4.

1.3.2 Phase imprinting

Phase imprinting is a powerful tool to allow for the generation of various structures
in atomic systems, including vortices [78–82]. To generate vortices in a BEC, this
technique relies on imprinting a 2π phase winding onto a ground state condensate
wavefunction, after which the density adjusts to zero at regions near the phase sin-
gularity. Experimentally, phase imprinting can be done in a number of ways. As an
example, the phase could be imprinted with a two-photon Raman process to transfer
orbital angular momentum to atoms from a Laguerre–Gaussian beam [79, 83]. An-
other method is through pulsing a spatially dependent potential for a short time when
compared to the trapping frequency, which will imprint its potential energy onto the
phase of the system [84] and can be used to generate solitons [81], vortices [85], or
other states with quantized circulation [78]. Phase imprinting has also been used in
theoretical studies to create a defect in a large vortex lattice by flipping the phase
(and therefore rotation direction) of a selected vortex by imprinting a −4π phase at
the vortex’s location [69]. Note that if a phase greater than |2π| is imprinted onto the
system, the vortices are likely to decay into multiple vortices of |2π| phase [86].

18 Introduction to the SSFM for simulating superfluid vortex systems

For the purposes of this work, I will only consider imprinting vortices in two-
dimensional settings by applying phase imprinting operations, such that

ΨIMP(x, y, t) = |Ψ(x, y, t)|ei(θ(x,y,t)+θIMP(x,y)), (1.40)

where ΨIMP(x, y, t) is the condensate wavefunction after phase imprinting. This method
allows one to apply a phase mask to any location in the transverse plane.

Phase imprinting has allowed for the generation of many interesting vortex topolo-
gies in theoretical and experimental studies [87, 88]; however, it is a dynamical process
that does not create eigenstates of the system. As such, it is not as useful for engineer-
ing stable vortex structures, but is instead useful for dynamical studies, such as those
found in Chapter 4.

1.3.3 Artificial magnetic fields

Magnetic fields are capable of generating rotational effects in charged systems through
the Lorentz force, Fl = q(E + v × B), where q is the charge of the system, E is the
electric field, B is the magnetic field, and v is the velocity of the particle. This effect
allows for the creation of vortices in type II superconductors; however, it is not directly
applicable to BEC systems because BECs are composed of neutral atoms. Even so, it
is possible to generate artificial magnetic fields with similar effects, and these artificial
magnetic fields have been shown to create vortices experimentally [89]. In addition,
artificial magnetic fields create a broader framework that encompasses rotational effects
previously shown in Section 1.3.1, and I will use this framework instead of rotation for
simulations in this work. For this, a detailed introduction, similar to that given by
Dalibard in [90], will be presented below.

If written in the Hamiltonian formalism, the Lorentz force law becomes

Ĥ =
(p̂− qA(r))2

2m
(1.41)

where A is a vector potential such that the magnetic field is given by B = ∇×A and
q is the charge of the particle. Because cold atoms are neutral, one must find ways to
simulate the effects of magnetic fields instead of using magnetic fields, themselves.

Firstly, I will describe how rotation can be considered to be an artificial vector
potential and thus generate vortex structures in BEC systems. Imagine a plane rotating
with an angular velocity Ω around the z-axis (Ω = Ωẑ). In this case, the Coriolis force
is defined as

FCoriolis = 2mv ×Ω, (1.42)

which is formally similar to the Lorentz force law. By applying the transformation
Ĥ = Ĥ0 − ΩL̂z, where L̂z = x∂y − y∂x, one finds [91]

Ĥ = − ~2

2m
∇2 +

1

2
mω2(x2 + y2)− ~Ω

i
(x∂y − y∂x)

=
1

2m

(
~
i
∇−m(Ω× r)

)2

+
m

2

(
ω2 − Ω2

)
r2

=
(p̂−mA(r))2

2m
+ V0(r),

(1.43)

1.3 Superfluid systems and vortex dynamics 19

where ω is the trapping frequency for a symmetric two-dimensional harmonic trap,
A ≡ Ω×r, and V0 = m/2 (ω2 − Ω2) r2. The final form is similar to that of the Lorentz
force law and coincides with an effective magnetic field of 2Ω ∝ B. In this way, one can
recreate the rotation expected from the Lorentz force law in a cold atomic system with
an artificial magnetic field [64, 70, 92]. Artificial magnetic fields provide a powerful tool
to researchers who wish to generate and control complex vortex structures, and because
of this, it is worth discussing them in further detail. Important implementation details
for how to use artificial magnetic fields with the SSFM will be discussed in Section 1.4
and further discussions of how these modifications can be applied on GPU architecture
can be found in Chapter 3.

Geometric Gauge Fields

As I have already described how rotation can act as an artificial Lorentz force, I will
now turn the attention towards methods that might allow one to generate more general
rotational effects and vortex structures. In particular, I will discuss the adiabatic
motion of free atoms undergoing geometric phase transformations through a Berry
phase. For this, one can assume that the system has an external parameter λ such
that

Ĥ(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 , (1.44)
where the set of eigenstates {|ψn(λ)〉} allows one to define the time evolution of the
system such that

|ψ(t)〉 =
∑
n

cn(t) |ψn(λ(t))〉 , (1.45)

where λ evolves slowly with time. If one considers the initial state of the system to be

cl(0) = 1, cn(0) = 0, for all n 6= l, (1.46)

the state of the system is proportional to |ψl(λ(t))〉. In this case, cl(t) is determined
by the equation

i~ċl = [El(t)− λ̇ ·Al(λ)]cl, (1.47)
where

Al(λ) = i~ 〈ψl|∇ψl〉 . (1.48)
This quantity is called the Berry connection, which is considered to be a vector po-
tential, such that one can define a new artificial magnetic field, the Berry curvature as

Bl = ∇×Al. (1.49)
Now imagine that the λ parameter follows the closed contour C such that λ(T) =

λ(0). By integrating Equation (1.47), one finds

cl(t) = eiΦdyn(t)eiΦB(T)cl(0), (1.50)

where

Φdyn(T) = −1

~

∫ T

0

El(t)dt

ΦBerry(T) =
1

~

∫ T

0

λ̇ ·Al(λ)dt =
1

~

∮
Al(λ) · dλ.

(1.51)

20 Introduction to the SSFM for simulating superfluid vortex systems

In this case ΦBerry is called the Berry phase and it only depends on the motion path
of λ. It should be mentioned that both of the exponential terms in Equation (1.50)
are gauge invariant and thus remain unchanged when |ψn(λ)〉 is multiplied by a phase
factor. The Berry phase allows one to transfer angular momentum into a BEC and
generate a vortex geometry, which has been experimentally demonstrated in 2009 by
Lin et al. [89]. As a note, the vortex structures generated in this way follow the magnetic
field lines, thus providing the capability to generate complex vortex structures beyond
simple, straight lines. A method to generate these gauge fields in an experimentally
realizable way with the evanescent field of a dielectric system undergoing total internal
reflection will be described in Chapter 5, and there are a wealth of applications of these
fields in different areas of physics [93]. In addition, other field effects can be generated
in a similar manner and with similar effects as the Berry phase [94], but these are not
considered in this work. For now I will discuss how these fields can be implemented in
the SSFM, with an emphasis on their effects for superfluid simulations.

1.4 Modifications to the SSFM for superfluid vortex
simulations

As shown above, in order to simulate the effects of artificial magnetic fields on BEC
systems, one must modify the Hamiltonian, such that

Ĥ =
(p−mA)2

2m
+ V0 + g|Ψ(r, t)|2, (1.52)

where A is an artificial vector potential. As a note, some texts absorb the mass term
into the artificial vector potential, but here I am stating it explicitly for clarity. When
expanded, that the gauge field has a component in position space, mA2

2
, which couples

with the trapping potential, and another component that is partially in both position
and momentum space, −

(
pA+Ap

2

)
.

Firstly, I will discuss the component purely in position space. Here, it is impor-
tant to properly balance the trapping potential and the artificial vector potential when
simulating BEC systems with artificial vector potentials, otherwise the trapping geom-
etry will become warped. In the case of rotation, this is effectively balanced by the
centripetal force; however, in the case of arbitrarily chosen vector potentials, this can
create rather unusual potential geometries, as shown in Figure 1.4 for a Gaussian Ax

and Ay. Though one might be able to balance this warping with a centripetal force
tailored to the gauge fields introduced, this was not considered this for the simulations
within this work.

The components of the artificial vector potential that are partially in position and
momentum space are somewhat difficult to consider numerically. For many physical
examples, such as rotation, ∂Ai

∂i
= 0 for i ∈ x, y, z, which means the only relevant

term is −Aipi
2

. This will effectively create a variable that resides in both position and
momentum space, and multiplication with this operator can be performed with a one-
dimensional FFT across n-dimensional data on the wavefunction first. This means that
if there are three operators, Axpxx̂, Aypyŷ, and Azpz ẑ, one needs to perform an FFT
on the wavefunction in the x̂, ŷ, and ẑ dimensions, respectively, before performing an

1.4 Modifications to the SSFM for superfluid vortex simulations 21

0

2× 10−32

4× 10−32

6× 10−32

8× 10−32

1× 10−31

1.2× 10−31

1.4× 10−31

-200 -100 0 100 200

F
ie

ld
st

re
ng

th
(J

)

r (µm)

1
2mA2 + 1

2mω
2x2

1
2mω

2x2

1
2mA2

Figure 1.4: (solid blue) Modified trap geometry due to the influence of high artificial
vector potential strength. The vector potential (A2

2
) is shown in dotted blue and the

original, harmonic trap is shown in dashed red.

element-wise multiplication. As I will discuss in Chapter 3, this has significant perfor-
mance penalties if one does not consider the underlying computational architecture.
This also requires the usage of more intricate FFT plans for the FFTW or CuFFT
libraries, which are non-trivial for three-dimensional simulations.

If ∂Ai

∂i
6= 0, then the other operator, −piAi

2
, must also be considered. To perform this

operation, a derivative must be performed on A before application to the wavefunction.
This operation doubles the complexity of the application of artificial magnetic fields to
the system.

At this point, I have discussed the SSFM, itself, along with the primary system
that will be simulated in this work; however, I have yet to discuss key techniques
in quantum state engineering that are necessary to motivate several design decisions.
As such, I will consider two dynamic methods for quantum state engineering in the
following chapter: shortcuts to adiabaticity and quantum optimal control.

Chapter 2

Engineering NOON states in
one-dimensional quantum gases

Until recently, simulating dynamic control protocols to engineer specific quantum states
have been difficult to perform on GPU devices without full control of the software,
itself. This meant that researchers wishing to engineer specific quantum states by using
GPU simulations would be required to have domain-specific knowledge in both software
design and quantum mechanics, neither of which are trivial to understand. This chapter
serves as motivation for several methods to be discussed in Chapter 3 to allow for the
simulation of quantum control methods on GPU devices, with a particular focus on
quantum optimal control [95] and Shortcuts To Adiabaticity (STA) [96]. Both of these
control protocols will be used in a physical example for the non-adiabatic generation of
superposition states in a one-dimensional Tonks–Girardeau (TG) gas [2]. Between the
two methods, the drawbacks to STA methods are the strengths of quantum optimal
control. Where shortcuts can only be used on a specific subset of problems to evolve
adiabatically and that are amenable to the analytical methods used, quantum optimal
control is a more general tool for a wider variety of systems. On the other hand, STA
protocols are semi-analytical and if such protocols can be found, they greatly reduce the
computational cost to engineering particular quantum states. To start, I will discuss
the field of optimization algorithms before moving to STA protocols and a physical
system using both in practice.

The work in this chapter has been published in New Journal of Physics [2], and in
this publication, I performed all calculations for all the figures generated and focused
primarily on optimal control methods. The STA protocol was devised by Jérémie
Gillet, and the research was supervised by Albert Benseny and Thomas Busch.

2.1 Optimization methods

Optimization algorithms have become essential to many areas of modern computing
and focus on either minimizing or maximizing a cost function by modifying several
control parameters [97]. The number of control parameters create an n-dimensional
space to traverse, and optimization algorithms are tasked at finding the global mini-
mum or maximum of this domain. For certain domains, it is difficult to find a global

23

24 Engineering NOON states in one-dimensional quantum gases

optimization strategy and many methods instead get caught in local minima while at-
tempting to find the appropriate solution. Because generalized optimization is such a
fundamental problem, there are many known optimization methods, such as gradient
descent [98], the Nelder–Mead or simplex method [99], genetic algorithms [100], and
many more [97]. Of these, gradient descent is often considered to be one of the easiest
to implement with favorable complexity and convergence guarantees, and because of
this, it has become ubiquitous in many areas such as machine learning, which is of
particular interest for GPU engineering. Even so, there are limitations to gradient de-
scent, such as its dependence on calculating the gradient of the cost function’s solution
domain along with lengthy convergence times for high-precision solutions.

For this work, I am primarily interested in the area of quantum optimal control,
which is a method typically used to determine the optimal time-dependent control pa-
rameters necessary to transform an initial state to a final, desired state [95]. This means
that one will often be maximizing the fidelity between states, defined as F = | 〈ψ|φ〉 |2,
where ψ is the engineered quantum state and φ is the state one is attempting to
replicate. This problem can be re-framed as an attempt to find the maximum of
a fidelity landscape, where each point in the domain is a calculation of the fidelity.
This means that each point in the fidelity landscape necessarily involves solving the
Schrödinger equation for chosen control parameters. For this reason, I will be introduc-
ing a gradient-less (derivative-free) optimization algorithm, the Nelder–Mead (simplex)
method, which is often used as a heuristic approach to this problem and there are sev-
eral known optimizations for this method [99, 101, 102]. The Nelder–Mead method
is also the recommended optimization algorithm for the chosen quantum optimal con-
trol method of the physical example that will be discussed in Section 2.1.2, Chopped
RAndom Basis (CRAB) optimal control.

2.1.1 Nelder–Mead

The Nelder–Mead method is one of the most commonly implemented gradient-less
optimization algorithms to-date and relies heavily on the concept of a simplex, which
is a generalization of the three-dimensional tetrahedron to n-dimensions. For example,
a 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron, and so on. If the Nelder–Mead method is attempting to optimize a cost
function with n control parameters, an n + 1 point simplex will be created, and the
points of this simplex will be manipulated until they have converged to a minimum or
maximum in the domain. For this section, I will focus on the method introduced in
the original work by Nelder and Mead in 1965 while working at the National Vegetable
Research Station in Warwick, England [99]. For this method, one is attempting to
find the minimum value in some n-dimensional space. In Nelder and Mead’s original
notation, a “height” is defined as the value of the cost function with provided input
parameters, often depicted as the an elevation out of the plane.

For Pi ∈ i = {0, ..., n} simplex points with heights of yi ∈ i = {0, ..., n}, the
Nelder–Mead method is tasked at minimizing all points such that

√∑
(yi − ȳ)2/n < η,

where ȳ denotes the height of the centroid location of the simplex, and η is some pre-
defined convergence threshold value. This convergence criteria assumes that if all
points have converged with this method, the final location must be the minimum of

2.1 Optimization methods 25

the optimization domain; however, as mentioned in the previous section, this method
may become trapped in a local minimum. At every step in the Nelder–Mead method,
the points with the highest and lowest values are determined and denoted as Ph and
Pl, respectively. In addition, the centroid location is found as P̄ . This method then
performs up to three basic operations on the simplex, itself:

Reflection For this operation, Ph is flipped across P̄ , such that the new location,

P ∗ = (1 + α)P̄ − αPh. (2.1)

Here, α > 0 is a constant known as the reflection coefficient. After this operation,
the new height is compared to yl. If it is lower, the method proceeds to an
expansion step. Otherwise, the method checks whether the new height is lower
than some other yi ∈ {0, ..., n}, n 6= {l, h}, and if it is, the point is kept and
the method continues to find the new simplex ordering. If it is found that the
reflected point, P ∗, is higher in value than all other points, the method then
keeps whichever point corresponds to the lowest height between the reflected and
previous highest point and proceeds to the contraction step.

Expansion For this operation, an expansion is performed, such that the new location,

P ∗∗ = γP ∗ + (1− γ)P̄ . (2.2)

Here, γ > 1 is a constant known as the expansion coefficient. If the new height is
less than the previously lowest point, the expanded point, P ∗∗, is kept, otherwise
the reflected point is kept.

Contraction For this operation, a contraction is performed, such that the new loca-
tion,

P ∗∗ = βPh + (1− β)P̄ . (2.3)

Here, 0 < β < 1 is a constant known as the contraction coefficient. If the
contracted point, P ∗∗, is lower than the previous highest point, the contracted
point is kept, otherwise, the entire simplex is contracted closer to the lowest point
with Pi = (Pi + Pl)/2.

Each step in the Nelder–Mead method begins with a proposed reflection of the
least optimal point about its centroid position. From there, the method follows the
protocol described above. The choice of α, β, and γ is somewhat arbitrary and should
be optimized by-hand. An example of the centroid locations for minimization using
this method with the Rosenbrock banana function [103] can be seen in Figure 2.1.

Even though the Nelder–Mead method is a heuristic approach and can become
stuck in a local minimum, as long as a sufficient number of random simplexes are
chosen at the start of the simulation, it can be used to find an adequately optimal
solution. Ultimately, any gradient-less optimization algorithm can be used to traverse
the fidelity landscape for quantum optimal control, and in the next section, I will
discuss a common method used in the field: the CRAB optimal control method.

26 Engineering NOON states in one-dimensional quantum gases

-2 -1 0 1 2
x

-2

-1

0

1

2

y

0

500

1000

1500

2000

2500

3000

3500

4000

R
os

en
br

oc
k

va
lu

e

Figure 2.1: Plot of the centroid locations (green dots connected with white line) for
the Nelder–Mead method while optimizing the Rosenbrock banana function, f(x, y) =
(a − x)2 + b(y − x2)2, with a = 1 and b = 100. Here, centroid locations start at
(−0.851,−1.553) and end at the known minimum of (1, 1) in 19 iterations. For this
simulation, α = 1, β = 0.5, and γ = 1.5.

2.1.2 Chopped random basis optimal control

The CRAB technique works by modifying a control parameter for a given system, Γ,
with a multiplicative term as

ΓCRAB(t) = Γ0(t)γ(t), (2.4)

where Γ0(t) is an initial guess, and the function γ(t) is written as a sum of 2J sinusoidal
functions,

γ(t) = 1 +
1

λ(t)

J∑
j=1

(Aj sin(νjt) +Bj cos(νjt)). (2.5)

Here, λ(t) is usually defined by the system, such that ΓCRAB and Γ0 coincide at initial
and final times. This means that limt→0 λ(t) = limt→T λ(t) = ∞, where T is the final
time of evolution. As such, any smooth function may be chosen with these constraints.
For example, one might use

λ(t) =
T 2

4t(t− T)
, (2.6)

which satisfies the provided conditions. This then transforms the optimization problem
into an optimization of the space spanning {Aj, Bj, νj}, which can be done by using
Nelder–Mead with a simplex of random initial points. As an example, if J = 10, a
thirty-dimensional space would be created and a thirty-one simplex would be formed
to traverse this space. It is important to remember that each new simplex and simplex-
operation requires re-solving the Schrödinger equation for those values, and as such,

2.2 Shortcuts to adiabaticity 27

this is a computational costly technique. Even though higher J values will produce a
more accurate result, lower values should be chosen, if possible.

This method is a general-purpose computational tool for determining the optimal
pulse to ensure the generated state is as close to the desired state as possible, and I
will show an example of it being used later in this chapter. Even so, it is sometimes
worthwhile to attempt to devise analytical frameworks that serve a similar purpose,
and for certain systems, this can be done with STA protocols.

2.2 Shortcuts to adiabaticity
STA protocols are semi-analytical methods that allow for quantum state generation
while retaining the effects of adiabatic movement. Here, adiabatic processes are defined
as actions by which slow changes in the control parameters leave particular properties
invariant, such as the quantum number [96]. The ultimate goal of STA protocols is
to achieve adiabatic motion in sub-adiabatic time, and this can be done in a number
of ways; however, in this section, I will introduce only the invariant-based inverse-
engineering approach using Lewis–Riesenfeld invariants [104]. In particular, I will
focus on the specific methods necessary for the example to be introduced later in
this chapter and much of this section will follow traditional derivations from various
sources [2, 96, 104].

With the method of Lewis-Riesenfeld invariants, the theory for relating different
eigenstates of a time-dependent, Hermitian invariant to the solutions to the Schrödinger
equation [105] can be applied to systems with time-dependent Hamiltonians, such that

i~
∂I(t)

∂t
−
[
Ĥ, I(t)

]
= 0, (2.7)

where I(t) is the invariant. This ensures that the expectation values for the states
driven by Ĥ are constant in time. It is possible to expand the state of the system
|Ψ(t)〉 into the orthonormal basis of the invariant with,

|Ψ(t)〉 =
∞∑
n=1

cne
iαn(t) |φn(t)〉 , (2.8)

where cn are time-independent amplitudes for each state, and |φn(t)〉 are orthonormal
eigenvectors of the invariant, such that

I(t) =
∞∑
n

|φn(t)〉λn 〈φn(t)| . (2.9)

Here, the λn are real constants, and the phase is defined as [105]

αn(t) =
1

~

∫ t

0

〈φn(t′)|i~ ∂

∂t′
− Ĥ(t′)|φn(t′)〉 dt′. (2.10)

From here, inverse engineering can be used to create the desired time-dependent
Hamiltonian, by imposing some dynamics on the system. The phases, αn(t) may be

28 Engineering NOON states in one-dimensional quantum gases

chosen as arbitrary functions to create a time-dependent, unitary evolution operator,

U =
∞∑
n

eiαn(t) |φn(t)〉 〈φn(0)| , (2.11)

that obeys i~U̇ = Ĥ(t)U and the dot is a time-derivative. If one considers Hamiltonians
of the Lewis and Leach variety [106],

Ĥ =
p2

2m
− F (t)x+

m

2
ω2(t)x2 +

1

ρ(t)2
U

[
x− xc
ρ(t)

]
+ f(t), (2.12)

there will be an invariant that is quadratic in momentum,

I =
1

2m
[ρ(p−mẋc)−mρ̇(x− xc)]2 +

1

2
mω2

0

(
x− xc
ρ

)2

+ U

(
x− xc
ρ

)
. (2.13)

These equations are valid so long as ρ, xc, ω, and F satisfy

ρ̈+ ω2(t)ρ =
ω2

0

ρ3
(2.14)

ẍc + ω2(t)xc = F (t)/m, (2.15)

with ω0 as a constant whose physical interpretation depends on the system. As in the
case of quantum optimal control, additional constraints must be considered to ensure
the Hamiltonian and its invariant commute at initial and final times t0 and T .

Now that I have provided specific examples of methods used in quantum engi-
neering, it is time to put them into practice with an example of creating large-scale
superposition states non-adiabatically in the highly-correlated TG gas regime.

2.3 Non-adiabatic generation of NOON states in a
Tonks–Girardeau gas

For this example application of quantum optimal control and STA protocols, I am
interested in generating the maximally entangled |N, 0〉+|0, N〉 (NOON) state, which is
composed of two modes where all particles can be found exclusively in one or the other.
Recently, Hallwood et al. proposed an experimentally realistic method to generate
NOON states in a gas of strongly interacting, neutral bosons on a one-dimensional ring.
In this system, different rotational states can be coupled by breaking the rotational
symmetry and it is possible to create superposition states with rotating and non-
rotating components. Because the atoms are considered to be in the strongly correlated
TG gas regime, this process results in a macroscopically-entangled state. It is worth
discussing the TG gas in further detail before moving to the precise method of NOON
state generation for this example.

2.3 Non-adiabatic generation of NOON states in a Tonks–Girardeau gas29

2.3.1 Tonks–Girardeau gas

As mentioned in Chapter 1, the TG gas consists of a number of bosons that have the
properties of spinless, non-interacting fermions. This is a particular case of the one-
dimensional Schrödinger equation where the repulsive interaction strength g →∞. In
this case, the bosons cannot be at the same location, which acts formally similar to the
Pauli-exclusion principle for fermionic systems. In this case, the bosonic Hamiltonian
can be solved by the Bose–Fermi mapping theorem [107, 108], which replaces the
interaction terms in the Hamiltonian with a boundary condition on the many-body
bosonic wavefunction,

ΨB(x1, x2, . . . , xN) = 0, if xi − xj = 0 with i 6= j, (2.16)

following the many-body Hamiltonian,

Ĥ =
N∑
n=1

(
p2
n

2m
+ Vn + bδ(xn)

)
+
∑
j<k

V (|xj − xk|). (2.17)

Here, pn = −i~ ∂
∂xn

, Vn = 1
2
mω2x2

n, bδ(xn) is a delta barrier with strength b, and V
is an interaction potential between bosonic particles. This allows us to treat strongly
interacting bosons as spinless, non-interacting fermions, for which the many-body wave-
function can be calculated using the Slater determinant [109],

ΨF (x1, x2, . . . , xN) =
1√
N

det
[
ψn(xj)

]N
n,j=1

, (2.18)

where ψn(xj) are the single-particle eigenstates of the trapping potential Vn. Because
the fermionic many-body wavefunction is anti-symmetric, it needs to be symmetrized
for bosonic states as,

ΨB(x1, x2, . . . , xN) =
∏
i<j

sgn(xi − xj)ΨF (x1, x2, . . . , xN), (2.19)

which means that calculating the time evolution of a TG gas requires evolving single-
particle states, governed by a much simpler Hamiltonian.

2.3.2 NOON states in a TG gas

Similar to other ring systems introduced in the literature [110, 111], the system sug-
gested by Hallwood et al. considers a gas of N interacting bosons of mass m on a
one-dimensional ring with circumference L [112]. In addition, this system includes a
potential barrier, modeled by a Dirac δ-function that rotates with an angular frequency
Ω, as shown in Figure 2.2. In the rotating frame, the scaled Hamiltonian of the system
in the rotating frame is given by [112]

H(N) =
N∑
n=1

[
1

2

(
− i ∂

∂xn
− Ω

)2

+ bδ(xn) + g

N∑
j<k

δ(xj − xk)
]
, (2.20)

30 Engineering NOON states in one-dimensional quantum gases

Figure 2.2: Schematic of the system. Here, the density profile for five atoms in a TG
gas is shown being stirred by a highly localized potential, indicated by the vertical line.

where b is the height of the barrier (in units of ~2/mL2), xn ∈ [−1/2, 1/2] is the position
of the n–th particle (in units of L) and g (in units of ~2/mL2) is the effective interaction
strength between the atoms. As discussed in the previous section, the evolution of the
full TG gas can be calculated from the evolution of single-particle states, and in the
case of this system, the Hamiltonian in the laboratory frame becomes,

H = −1

2

∂2

∂x
+ bδ [x− x0(t)] , (2.21)

where x0 is the position of the barrier at time t.
The energy spectrum of this system is shown in Figure 2.3 as a function of the

rotational frequency Ω ≡ ẋ0/L of the system. In Figure 2.3(a) it is shown that in
the absence of a barrier, when the eigenstates of Ĥ are plane waves with quantized
angular momentum in integer multiples of 2π, each angular momentum manifold exists
separately such that the energy levels cross; however when b > 0 (Figure 2.3(b)), the
rotational symmetry is broken and avoided crossings appear in the energy spectrum.
This makes transitions between different manifolds possible [113].

By adiabatically accelerating the barrier’s rotational frequency from 0 to π, a par-
ticle will enter a superposition between two rotational states, and in the case of the
TG gas, this will create a macroscopic NOON superposition state between successive
values of angular momentum [112]. This means that the manifolds will have an angular
momentum of 0, 1, 2, . . ., N , where N is the number of particles in the system. Any
non-adiabatic behavior around the rotational frequencies of the avoided crossings can
lead to a transition to a higher energy state and destroy the NOON state. For this
reason, the condition for adiabaticity must depend on the gap size, which is dictated
by the barrier strength [114]; however, for a constant delta barrier, the gap size stays
constant to first-order approximation [115].

Because this system requires adiabatic movement to properly generate the NOON
state, it is difficult to efficiently generate it experimentally. For this reason, it is a
perfect example of a system where quantum optimal control and STA protocols can
be used to rapidly engineer the appropriate states. For quantum optimal control in
this system, a non-adiabatic rotational frequency Ω(t) must be found, for which I will

2.3 Non-adiabatic generation of NOON states in a Tonks–Girardeau gas31

Figure 2.3: Single-particle energy spectrum as a function of Ω for a barrier height of
(a) b = 0 and (b) b = 2. When a barrier is present in the system, avoided crossings
appear in the energy spectrum which grow as the barrier strength increases.

use the CRAB technique with an initial condition of Ω = 0 and final condition of
Ω = π. For each simulation in the fidelity landscape, this pulse will be modified with
procedurally generated sinusoidal functions, the fidelity will be calculated, and then
the Nelder–Mead method will be used to optimize the result. This will allow one to
determine an optimal pulse that maximizes the fidelity of the generated state when
compared to the expected NOON state in a pre-set amount of time. For this system,
I will show the optimal pulse for the cases where I manipulate the rotational velocity,
the barrier height, and both.

For STA protocols, the acceleration process will be split into two, one that breaks
the rotational symmetry and another that accelerates the atoms. At the end of the
protocol, the potential is lowered to restore rotational symmetry. Here, it is worth
mentioning that a FAst, QUasi-ADiabatic (FAQUAD) shortcut for the creation of
superposition states in a TG gas has also been created with some similarities [116].

For both of these methods, instead of calculating the fidelity I calculate the infi-
delity, which is simply 1 − F = 1 − | 〈Ψ|Φ〉 |2, as the function to minimize. It is also
worth mentioning that the fidelity between two many-particle states in a TG gas can
be calculated by using the method of mode projections [117, 118],

〈Ψ|Φ〉 =
1

N !

∑
η,µ∈P

εηεµ 〈ψη1(x1)|φµ1(x1)〉 · · · 〈ψηN (xN)|φµN (xN)〉

= det
[
〈ψi|φj〉

]N
i,j=1

(2.22)

which follows directly from the form of the TG state [45]

Ψ(x1, x2, . . . , xN) =
1√
N !

∏
i<j

sign(xi − xj)
∑
η∈P

εηψη1(x1) · · ·ψηN (xN). (2.23)

32 Engineering NOON states in one-dimensional quantum gases

0

2

4

6

8

10

12

0.2 0.4 0.6 0.8

ro
ta

ti
on

al
ve

lo
ci

ty
,Ω

normalized evolution time, t/T

(a)
T = 1

T = 10
T = 100

0

5

10

15

20

0.2 0.4 0.6 0.8

ba
rr

ie
r

he
ig

ht
,b

normalized evolution time, t/T

(b)
T = 1

T = 10
T = 100

Figure 2.4: Accelerating a single particle from the ground state with J = 15. (a)
Optimal rotational velocity pulses for T = 1, 10, and 100 for fixed barrier height b = 1.
(b) Optimal barrier height for a linearly increasing rotational velocity, Ω = πt/T for
T = 1, 10, and 100.

Here P represents the set of all permutations of N elements, εη represents the anti-
symmetric tensor of the permutation η, and ψi represent the orbitals. Now I will discuss
the findings with both quantum optimal control and STA protocols.

2.3.3 Quantum optimal control protocols

First, I will focus on the acceleration of a single particle, initially in the ground state
of the system. Figure 2.4 (a) shows the results of this simulation if the barrier height is
kept constant and one assumes an initial unmodified pulse that corresponds to a linear
ramp from Ω = 0 to π for a preset total time, T . For longer evolution times, there
are many local maxima for the fidelity, and as such, longer evolution times effectively
produce noisy signals and the Nelder–Mead method converges on one of many local
minima. For shorter evolution times, the pulse greatly affects the system and the
shapes vary greatly from the initial linear ramp. The infidelities for the linear guess
pulse and its corresponding optimized pulse can be found in Figure 2.6, and one can see
an improvement of several orders of magnitude. Here, for longer evolution times, the
initial linear pulse is a reasonable method to generate NOON states with an infidelity
of 10−2 because it is already close to adiabatic; however, even in this case, the NOON
state generation fidelity is better with optimization. For all quantum optimal control
results in this chapter, the CRAB method was run 100 times and the data with the
highest fidelity was kept.

For optimizations of the barrier strength, a simple linear ramp for Ω and an initial
and final height for the barrier of b = 1 were chosen. The optimal pulses for the barrier
height for T = 1, 10, and 100 are shown in Figure 2.4(b) and shorter evolution times
similarly produce larger deviations from the initial pulse. Again these pulses lead to

2.3 Non-adiabatic generation of NOON states in a Tonks–Girardeau gas33

0

2

4

6

8

10

12

0.2 0.4 0.6 0.8

ro
ta

ti
on

al
ve

lo
ci

ty
,Ω

normalized evolution time, t/T

(a)
T = 1

T = 10
T = 100

−1

0

1

2

3

4

0.2 0.4 0.6 0.8

ba
rr

ie
r

he
ig

ht
,b

normalized evolution time, t/T

(b)
T = 1

T = 10
T = 100

Figure 2.5: Optimal pulses to accelerate a single particle initially in the ground state
of the trap for T = 1, 10, and 100 for the (a) rotational velocity and (b) barrier height
when optimizing over both simultaneously.

significant improvements in the fidelity shown in Figure 2.6.
With the CRAB method, it is possible to optimize over as many control parameters

as one would like, and as such, it is possible to optimize over both the barrier strength
and rotational frequency. The results can be seen in Figure 2.5, where (a) is the
modified rotational frequency and (b) is the barrier height. When comparing to the
previous cases, similar trends emerge. In particular, shorter evolution times result in
less noisy optimizations when compared to longer evolution. Even so, all sets of pulses
are radically different when compared to optimizations over a single variable. When
comparing the fidelities in Figure 2.6, it is clear that optimizations over rotation alone
provide the simplest method to optimize the fidelity. It is likely that each run of the
CRAB method is stuck in a local minimum in the fidelity landscape at some point and
that optimization over both variables can provide the same optimization as rotating,
alone.

As such, when discussing the dynamics of a TG gas with 3 and 5 particles, I
have only optimized over rotation. Because of the Bose–Fermi mapping theorem, the
evolution of an N -particle TG gas can be calculated by evolving a gas of N spinless
fermions. In the zero-temperature limit, the fermions in the initial and target state
create a Fermi sea by filling the lowest N energy levels. In this case, only atoms near
the Fermi edge can transition into empty states and it is thus crucial to optimize the
dynamics of the overall gas with respect to the particle with highest energy [116].
In Figure 2.7, I show the fidelity for the particle closest to the Fermi edge and the
entire TG gas for N = 3 and 5. In this figure, one can see that by performing the
optimization for the atoms near the Fermi edge, one can increase the fidelity of the
entire gas for certain regimes; however, in contrast to Figure 2.6, there seems to be
no fidelity increase from a linear pulse for short evolution times. One can also observe
what appears to be a crossover regime where optimizations of the particle at the Fermi

34 Engineering NOON states in one-dimensional quantum gases

10−6

10−5

10−4

10−3

10−2

10−1

100

1 10 100

in
fid

el
it
y,

1
−
F

evolution time, T

linear
b + Ω

Ω
b

Figure 2.6: Infidelities as a function of the overall process time for optimally controlled
rotational acceleration, barrier height, or both. Here, ‘linear’ refers to an unoptimized
linear acceleration from Ω = 0 to π while keeping the barrier height fixed at b = 1.

edge seem to fail, but evolution of the entire gas is still slightly better than the linear
pulse. It is clear that the CRAB method creates highly effective pulses; however, for
very short and long evolution times, the fidelity increase from a linear pulse is not as
drastic.

2.3.4 Results with STA protocols

In this section, I will describe an STA protocol to generate NOON states in this system
non-adiabatically, and though this was mentioned briefly in Section 2.3.2, it will be
described more rigorously here. In this case, I will start with rotational symmetry
and break break this symmetry by introducing a time-dependent external potential at
t = 0 and removing it in the end. For this, we do not choose a δ function, but instead
a harmonic or sinusoidal potential along the ring.

The protocol consists of five steps:

1. Adiabatic raising of a weak harmonic or sinusoidal potential around the ring.

2. Fast tightening of this potential to localize the particles.

3. Accelerating the particles by moving the center of the potential.

4. Loosening the potential by reversing step 2.

5. Adiabatic lowering of the harmonic or sinusoidal potential.

A schematic of this process is shown in Figure 2.8. For steps 2-4, pre-existing STA
protocols can be used, and these will be discussed in this section. The full protocol

2.3 Non-adiabatic generation of NOON states in a Tonks–Girardeau gas35

10−5

10−4

10−3

10−2

10−1

100

101

1 10 100

in
fid

el
it
y,

1
−

F

evolution time, T

(a)
linear
TG
NEF

10−5

10−4

10−3

10−2

10−1

100

101

1 10 100

in
fid

el
it
y,

1
−

F

evolution time, T

(b)
linear
TG
NEF

Figure 2.7: Infidelities for the evolution of a TG gas with (a) N = 3 and (b) N = 5
particles using the CRAB optimal control technique. The infidelities for optimized
pulses with the particle at the Fermi edge is shown as blue crosses, and for the full TG
gas as red circles. Here, the green squares show the fidelity of a linear pulse for the
atom closest to the Fermi edge. A clear range where the CRAB algorithm is effective
for generating NOON states with multiple particles can be clearly identified.

for the TG ring example will follow the STA methods outlined above with Lewis–
Riesenfeld invariants and in this case, one needs to fulfill boundary conditions such
that Ĥ(t0) = Ĥ(T) = p2/2m. To be clear, the NOON states created with the STA
protocol are slightly different those generated with quantum optimal control, as the
STA variant does not rely on a δ barrier.

One of the two shortcuts explored for this system involves raising and lowering a
harmonic potential [119, 120]. For this shortcut, a stationary harmonic potential is
required and F , xc, and U from Equation (2.12) can all be set to zero, leading to

Ĥ = −1

2

∂2

∂x
+

1

2
ω2(t)x2. (2.24)

To change the frequency while keeping the commutation relations and ω(t) continuous,
one must impose the following conditions:

ρ(t0) = 1, ρ(tf) = γ =
√
ω0/ωf ,

ρ̇(t0) = 0, ρ̇(tf) = 0,
ρ̈(t0) = 0, ρ̈(tf) = 0.

(2.25)

Which, together with Equations (2.14) and (2.25) allow one to choose any form of ρ.
A good choice is the polynomial,

ρ(s) = 6 (γ − 1) s5 − 15 (γ − 1) s4 + 10 (γ − 1) s3 + 1, (2.26)

where s = (t− t0)/(tf − t0) allows one to numerically find a solution for ω(t) that leads
to the squeezing or expansion of the particle wavefunction with high fidelity in a short

36 Engineering NOON states in one-dimensional quantum gases

Figure 2.8: Scheme for the acceleration of a single atom using STA. In this example,
the homogeneous ground state gets localized, accelerated and released at the angular
velocity of Ω = π into the state (exp(i2πx) + 1) /

√
2. The atomic density is indicated

in blue and the potential is in red.

time. As an important note, for small values of ω0, Equation (2.14) leads to purely
imaginary values for ω(t), corresponding to repulsive potentials. In order to avoid this
and because the final states of this protocol require the external potential to be absent,
the first and final steps in the protocol for this system involve adiabatically raising and
lowering a potential to a suitable ω0 value.

Once the potential has been raised, the particles are then accelerated to the chosen
frequency, and a shortcut for this process with a harmonic trap exists [121–123]. In
the rotational shortcut, the trapping frequency is held constant and the position of the
potential is modified. This means that U = 0, F = ω2

0x0(t), and

H = −1

2

∂2

∂x
+

1

2
ω2

0(x− x0(t))2. (2.27)

Here, Equation (2.15) becomes the only relevant auxiliary equation,

ẍc + ω2
0(xc − x0) = 0, (2.28)

and the conditions that must be imposed on xc, are such that

xc(t0) = x0(t0), xc(tf) = d,
ẋc(t0) = 0, ẋc(tf) = Ωf ,
ẍc(t0) = 0, ẍc(tf) = 0,

(2.29)

where d is the final position of the potential minimum and Ωf is its final velocity. For
most applications of this shortcut, d is important, and Ωf is set to zero; however, this
case is the opposite.

2.3 Non-adiabatic generation of NOON states in a Tonks–Girardeau gas37

Like for the shortcut for raising the potential, the exact form of xc can be chosen
somewhat arbitrarily, and a convenient choice is

xc(s) = (6d− 3Ωf)s
5 − (15d− 7Ωf)s

4 + (10d− 4Ωf)s
3 + x0(t0), (2.30)

where, as above, s is the normalized time. The value of Ωf can then be chosen to be
odd multiples of π to generate the desired NOON states based on the energy spectrum
shown in Figure 2.3.

Unlike the shortcut to raise the potential, this shortcut is only approximate and
works best when ω is large so that the particles are highly localized. Both of these
shortcuts rely on the presence of a harmonic potential of the form

VH(x, t) =
1

2
ω2(t) (x− x0(t))2 , (2.31)

where ω is the frequency of the trap (in units of ~/mL2) and x0 the position of its
minimum. In the case of the TG ring, the potential must be symmetric around x0,
such that it is continuous at x = ±1/2; therefore, the real form of (x − x0) must
be (x − x0 + 1/2)(mod 1) − 1/2. The potential VH is then continuous everywhere on
the ring, but its derivative is discontinuous at x = x0 + 1/2 because this position is
diametrically opposite to x0. Though VH is easy to work with theoretically, it is not
necessarily experimentally realistic, and for this reason, we also consider a sinusoidal
potential of the form [124, 125],

VS(x, t) =
ω2(t)

2π2
sin2 (π (x− x0(t))) , (2.32)

where the notation is the same as before. Here, prefactors are chosen such that VH is
an approximation of VS around x0.

In Figure 2.9, I show the difference between the two potentials by computing the
energy spectra of both Hamiltonians. Here, the eigenstates at ω = 0 are the angular
momentum states ei2πkx, with degenerate clockwise and counterclockwise momentum
states of opposite quantum number k. As ω is increased, the degeneracy ceases and the
spectrum asymptotically approaches that of a harmonic oscillator. For the sinusoidal
case, the difference with the harmonic spectrum increases with the quantum number
n.

Like the case of quantum optimal control, I will first show the single-particle results.
In Figure 2.10(a), the values for ω(t) and Ω(t) are shown, and in Figure 2.10(b), the
infidelities for the state preparation of plane waves eiΩfx with Ωf = 1 . . . 10 × 2π are
shown. Here, it is clear that even for a large amount of angular momentum, the fidelities
remain high for both the harmonic and sinusoidal potentials.

For a multi-particle case in the TG regime, the initial states for the particles will be
eigenstates of free space, which are simply plane waves ei2πkx with integer k. Because
the states with ±k are degenerate, it is equally valid to consider the initial eigenstates

φi0(x) = 1, (2.33)

φi2l−1(x) =
1√
2

(
ei2πlx − e−i2πlx

)
= i
√

2 sin(2lπx), (2.34)

φi2l(x) =
1√
2

(
ei2πlx + e−i2πlx

)
=
√

2 cos(2lπx), (2.35)

38 Engineering NOON states in one-dimensional quantum gases

Figure 2.9: Energy eigenspectrum of the system with (a) a harmonic or (b) a sinu-
soidal potential as a function of ω. The eigenstates continuously change from angular
momentum states of energy Ek = 2π2k2 (with k = 0,±1, . . .) at ω = 0, towards
harmonic-oscillator states of energy En = ω(n + 1/2) (with n = 0, 1, . . .) for large ω.
For comparison, the horizontal lines on the right vertical axis give the energy levels in
a harmonic potential with ω = 200.

Figure 2.10: (a) Plot of the parameters ω(t) and the angular velocity Ω(t) for the
entire protocol. The parameters are ω0 = 2, ωf = 100, d = 100, each step is executed in
tf−t0 = 10, and Ωf is picked depending on the desired output state (here, Ωf = 5×2π).
(b) Final infidelities for Ωf = 1, 2, . . . , 10× 2π for VH (dotted blue line) and VS (solid
red line). The rest of parameters are as shown in (a).

2.4 Outlook 39

Figure 2.11: Final fidelities F of TG states of increasing particle number for the
protocol shown in Figure 2.10(a) with Ωf = π for VH (red circle) and VS (blue cross).
Plot (a) shows the fidelity of the protocol with ωf = 100 and (b) with ωf = 200.

for l = {1, 2, . . .}. These states have a total angular momentum of zero and are well-
suited for the provided STA protocol because when an odd number of particles occupies
the lower eigenstates, the sine and cosine pairs are guaranteed to be populated.

For Ωf = π, the plane wave of quantum numbers k+ 1 and −k are degenerate and
one can construct the target states

φt2l(x) =
1√
2

(
ei2π(l+1)x + e−i2πlx

)
=
√

2 cos[(2l + 1)πx]eiπx, (2.36)

φt2l+1(x) =
1√
2

(
ei2π(l+1)x − e−i2πlx

)
= i
√

2 sin[(2l + 1)πx]eiπx, (2.37)

for l = {0, 1, 2, . . .}. The states with total angular momentum π are similar to NOON
states.

Any initial state |φil〉 can be brought to the target state |φtl〉 with high fidelity with
the proposed protocol, and the process also works for TG gases. In Figure 2.11(a), the
harmonic potential fidelities are shown to remain high for N ≤ 11 after which they
decrease due to a finite maximum height of the potential enforced by periodic bound-
ary conditions. The fidelities can be improved by increasing the maximum trapping
frequency ωf as was demonstrated in Figure 2.11(b) where the value of ωf is doubled
and the fidelities remain high until N ≤ 21. When using the sinusoidal potential,
the fidelity drops for smaller particle numbers compared to the harmonic potential
(although it also increases with ωf), due to the lower height VS has compared to VH .

2.4 Outlook

In this chapter, quantum optimal control and STA protocols were introduced to op-
timize quantum engineering tasks in cold atomic gases. I have introduced a physical
system to generate NOON states in a TG gas non-adiabatically with both methods,
and they were shown to be highly effective. Such dynamical evolution techniques re-
quire time-dependent control parameters, such as rotation frequency or barrier height,
and allowing for these dynamic operations has hitherto been a difficult task on GPU

40 Engineering NOON states in one-dimensional quantum gases

hardware. In the following chapter, I will discuss GPU hardware in-depth and also
tackle this issue, along with several others noted in Chapter 1.

Chapter 3

General Purpose computing with
Graphics Processing Units and the
GPUE codebase

The Graphics Processing Unit (GPU) is a computing card that connects to the moth-
erboard through a Peripheral Component Interconnect Express (PCIE) slot. As the
name implies, the GPU is designed to rapidly manipulate data to create images or
graphics that are sent to a display device, such as a monitor. Because individual pixels
in images are independent of each other and modern computers require updating all
pixels on the display device quickly, the GPU has been developed as a massively parallel
computing device, capable of efficiently performing simple tasks (such as pixel genera-
tion or manipulation) rapidly by distributing the computation among many computing
cores. This design methodology starkly contrasts the few, powerful cores on the Central
Processing Unit (CPU), which is the default computing device on modern computing
systems. Due to this difference in hardware design, there are also several optimizations
to consider when programming for massively parallel GPU devices, and several of these
techniques will be covered in this chapter.

As GPU technology grew, other areas of computational science became increas-
ingly hungry for computing power, specifically in the area of scientific computing on
High-Performance Computing (HPC) systems. Historically, HPC systems were often
developed as large, distributed networks of computing nodes intended for CPU-based
computation. As such, these systems facilitated the development of highly parallel and
distributed numerical methods to perform scientific computation.

With new, parallel algorithms being developed for HPC systems and GPU technol-
ogy advancing rapidly to perform more computation in parallel to satiate the consumer
demands for high-quality videos and graphics for video games and other media, it be-
came possible to use the GPU as a scientific computing device as well with a new tech-
nique called General Purpose computing with Graphics Processing Units (GPGPU).
Modern HPC design often incorporates the GPU into each computing node, thereby
increasing the throughput of the system, overall. The fastest known supercomputer
today (Summit, ORNL [11]), is entirely composed of GPU nodes with NVIDIA Tesla
V100 cards (up to 32 GB of available RAM), connected with NVlink and IBM’s power
architecture. In addition to the utility of GPGPU for scientific computing, GPU tech-

41

42
General Purpose computing with Graphics Processing Units and the

GPUE codebase

nology has also been rapidly developed for AI and related fields.

In this chapter, I will discuss the design methodology for the hardware and software
related to GPGPU before proceeding to the development of GPUE, the GPU-based
Gross-Pitaevskii Equation solver, which will be used for the remainder of this work. To
start, I will first look into different types of parallelism and how these affect different
hardware and software practices.

3.1 Types of parallelism

Older CPU architecture with a single core was designed as SISD (Single Instruction,
Single Data) according to Flynn’s taxonomy [126]. This simply means that no par-
allelism exists in the instructions or data. Even now, most code is naïvely written
as if it is to be executed on SISD architecture, even though it is rare to find such a
system in modern environments. For capable devices, there are two separate methods
to parallelize computation: task parallelism and data parallelism.

Task parallelism allows programmers to split their computation along separate, non-
interacting tasks or instructions, where each core performs its designated computation
before moving on. On the other hand, data parallelism allows programmers to perform
the same, repetitive task along a large data set by distributing worker threads across the
data. Task parallelism is often better for dealing with a large number of specific actors,
while data parallelism is often better for dealing with a large number of similar tasks on
the same data, such as operations on a large matrix. If a computing architecture allows
for multiple instructions, but only a single data stream, it is considered to be MISD
(Multiple Instruction, Single Data) by Flynn’s taxonomy; meanwhile, if the architecture
allows for multiple data streams with only a single instruction, it is considered to be
SIMD (Single Instruction, Multiple Data). Most modern HPC systems are designed to
be MIMD (Multiple Instruction, Multiple Data), and both task and data parallelism is
exploited by developers; however, for GPU computation, data parallelism is used more
frequently.

In the realm of data parallelism, there is an extreme case where the data is em-
barrassingly parallel. Here, there could be a large matrix of data to manipulate, but
no single element depends on any other. This means that when distributing compu-
tation along this matrix, one can simply assign tasks to each core without considering
interactions with the rest of the data set. In this way, it is embarrassingly easy to
parallelize, and hence the term embarrassingly parallel. As a note, element-wise matrix
multiplications are embarrassingly parallel operations; however, FFTs are not [127].
As such, the SSFM is not overall embarrassingly parallel; however, because the FFTs
are handled by the CuFFT library, programmers do not often need to consider task
parallelism at all when developing SSFM code. Even so, understanding all the features
of GPUE and its future directions requires a strong understanding of GPGPU, and
this will be discussed in the following section.

3.2 General purpose computing with graphics processing units 43

Figure 3.1: Comparison between GPUE (CUDA), Trotter-Suzuki on both GPU
(CUDA) and CPU (C++), and GPElab (Matlab). Here, it is shown that GPUE is
marginally faster than Trotter-Suzuki, but both GPU implementations are faster than
the CPU-based variants. Both software packages are much faster than GPElab [7].
These benchmarks show two-dimensional GPE simulations for 256 × 256 points for
20,000 steps in real and imaginary time using an NVIDIA Tesla C2050 and Intel i7-
4790 at 3.60GHz.

3.2 General purpose computing with graphics pro-
cessing units

GPGPU programming is a relatively new development to the computing world and
is generally much faster than CPU-based computation for tasks that can be easily
parallelized in a SIMD-like fashion. Though benchmarks vary greatly depending pro-
gramming languages, code quality, and intent of the software being benchmarked, our
GPUE codebase is often 5 to 10 times faster than well-optimized CPU C/C++ code
and 100-200 times faster than Matlab code that is simulating the same system [7]. This
is shown in Figure 3.1, where a comparison between GPUE, GPElab [128], and Trotter-
Suzuki [129] are shown for two-dimensional GPE simulations for 256 × 256 points for
20,000 steps in real and imaginary time using an NVIDIA Tesla C2050 and Intel i7-4790
at 3.60GHz. These benchmarks are consistent with other GPGPU programs [130–132].

As it is possible to massively increase the performance of certain programs by using
GPU hardware, it is important to discuss the differences between GPGPU and CPU-
based computation, along with important optimizations for GPU computing that will
be used throughout this work. For the remainder of this work, I will use the term host
interchangeably with CPU and device with GPU.

3.2.1 Limitations of GPU computing

GPGPU and massively parallel computation are best suited for embarrassingly parallel
systems and there are several problems that are poorly suited to parallelization. For
example, any task that is inherently iterative (such as summation) or recursive (such
as tree traversal) is not suited for parallel computation. Even so, there are methods

44
General Purpose computing with Graphics Processing Units and the

GPUE codebase

to re-frame these problems such that they are better optimized for massively parallel
devices, and these will be covered when relevant to the development of GPUE.

In addition to these algorithmic limitations, GPU cards have several notable draw-
backs in terms of available memory on individual cards, which is often much less than
the amount available on the host. As such, when simulating a large system on the GPU,
one often limits the resolution to what can fit onto GPU memory. In addition the data
transfer between GPUs and between the GPU and CPU through the PCIE bus is a
slow process. Until recently, these limited the size of the simulated wavefunction with
GPUE to roughly 5123 on a single Tesla K80 card. Higher resolution simulations could
be performed with more recent cards (such as the Tesla V100) or by using multiple
cards; however, because it takes time to transfer data between GPUs, it is preferred
to use a single card where possible. At this point, it is worthwhile to fully discuss
GPU hardware and software ideologies, with particular focus on areas relevant to the
development of GPUE. We will discuss important methods used in the development of
GPUE to overcome shortcomings in GPGPU afterward in Section 3.3.

3.2.2 GPU hardware architecture

Even though several programming frameworks exist with the capability of running code
on the GPU, most of these hide necessary optimizations from the user. As such, I have
chosen to focus exclusively on programming frameworks that expose the hardware for
software developers, such as CUDA, OpenCL, and Julia-GPU. Though the following
discussion will primarily focus on CUDA, a brief discussion of OpenCL and Julia can
be found in Section 3.2.3, and example code for both languages can be found in the
Appendix A. For the purposes of this discussion, I will cover only the GPU memory
architecture of NVIDIA GPU accelerators as these are the most common computing
devices for HPC systems.

This topic is easiest to describe by dividing it into two parts: an introduction
to the software interface as defined by the CUDA API, followed by a discussion of
the memory and thread hierarchy of GPU devices. Throughout these sections, I will
discuss performance tips to ensure maximum GPU utilization, memory throughput,
and instruction throughput.

Introduction to CUDA software interface

The CUDA parallel computing platform bares the hardware of the GPU to software
developers. This means that important elements of this programming interface will
appear in subsequent sections regarding hardware limitations and performance guide-
lines. Much of this discussion can be found in the CUDA C Programming Guide [16],
while other sources will be cited as necessary. Full code for this discussion can be found
in the Appendix A.

I will show a simple example where I would like to add two vectors such that
a + b = c. This can be done with a simple loop in C, shown in Listing 3.1. In this
case, each element with a specified index in a and b and is added to the appropriate
index in c. In some parallel programming models (OpenACC [133], OpenMP [134],
GPUifyLoops.jl, and many others), parallelization of this method is possible by adding

3.2 General purpose computing with graphics processing units 45

Listing 3.1: An example of vector addition performed in C or C++ for a, b, and c,
all of size n

1 for (int i = 0; i < n; ++i){
2 c[i] = a[i] + b[i];
3 }

Listing 3.2: An example of a vector addition kernel in CUDA

1 __global__ void vecAdd(double *a, double *b, double *c){
2
3 // Global Thread ID
4 int id = threadIdx.x;
5
6 c[id] = a[id] + b[id];
7 }

a pragma to the start of the loop to specify that the operation is to be performed
in parallel; however, this obscures GPU hardware for the user and does not always
have the same performance guarantees [12]. As such, CUDA takes a slightly different
approach by requiring software developers to write kernels, specific to the computation
at hand. An example CUDA kernel for vector addition is shown in Listing 3.2, which
has a number of notable differences to the loop in Listing 3.2. Because this kernel
is remarkably different than an expected function on the CPU, it is worth comparing
Listings 3.1 and 3.2 in detail for a better understanding of GPU hardware.

The first peculiarity appears in line 1 with the __global__ function specifier. This
is a necessary element of all CUDA kernels that specifies where and when this kernel
is capable of being called. A __global__ kernel can be called by either host (with a
standard CPU function) or the device (with a GPU kernel). A __host__ function is
exactly the same as a CPU function and can only be called by other CPU functions.
Finally, a __device__ function can only be called by other __device__ functions or
__global__ kernels. As a note __global__ kernels are incapable of returning vectors
or other variables, and must instead mutate the variables, themselves. This is why the
__global__ vecAdd(...) kernel does not return c, but instead assumes it is a pre-
allocated variable. All kernels are performed asynchronously, and special care must be
taken for iterative tasks. Here, it is also important to note the distinction between the
device and host in CUDA. It is often much harder to manipulate data on the GPU,
specifically because of the communication through the PCIE bus.

Another peculiarity appears on line 6, where the addition, itself, occurs. Though
there was a necessity for a loop in Listing 3.1, there does not seem to be one at all in
Listing 3.2. This is because the GPU is performing this task in parallel and handling
the parallelism behind the scenes on line 4 with the int id = threadIdx.x command.
In this line, I am identifying which element of the array is being operated on with the
CUDA-specific threadIdx.x variable.

Here, each thread is an individual instructional element acted on in parallel with

46
General Purpose computing with Graphics Processing Units and the

GPUE codebase

Listing 3.3: An example of a vector addition kernel in CUDA using blocks and
threads, and ensuring no computation happens beyond the size of the array, n.

1 __global__ void vecAdd(double *a, double *b, double *c, int n){
2
3 // Global Thread ID
4 int id = blockDim.x * blockIdx.x + threadIdx.x;
5
6 if (id < n){
7 c[id] = a[id] + b[id];
8 }
9 }

other threads in the same block, and multiple blocks are organized into grids. All
threads in the same block have a shared memory resource, while all three structures
have access to global memory. In general, it is important to use shared memory when
possible, as it has a lower latency than global memory, and this will be discussed
further in subsequent sections. As a note, threads often work without feedback from
other threads; moreover, it may be necessary to stop thread execution until all other
threads have caught up. This can be done with the __syncthreads() function in
CUDA.

Threads, blocks, and grids are all dim3 variables with x, y, and z attributes. The
way in which these threads and blocks are allocated are defined by the user before
kernel execution. Often times, a thread number of 256, 512, or 1024 is chosen based
on register usage, and the number of blocks is decided based on the size of the input
array. If there are more elements to compute than threads in a block, one then needs
to use the blockDim.x and blockIdx.x variables to access the appropriate threads
for computation. Though threads may be three-dimensional in indexing, data is often
indexed as one-dimensional vectors even in a multidimensional space, as shown in
Figure 3.2. Even though threads are rarely acted on sequentially, the thread ID has
important ramifications that will be discussed further with other performance tips.

As another note, CUDA will execute code on unallocated memory if one does not
tell it to otherwise and thus one needs to check the bounds of every computation. As
such, if one had failed to set the number of threads in the block to the number of
elements in the array in Listing 3.2, the kernel would exhibit undefined behavior. For
this reason, one needs to take into account potential out-of-bounds computation. If one
takes the above example of vector addition, assuming that the thread count is higher
than can fit in one block and take into consideration potential out-of-bounds behavior,
the kernel would instead look like Listing 3.3.

Finally, I need to discuss how software developers call these CUDA kernels in host
code. This requires the developer to allocate space on the device for use in the CUDA
kernel via a cudaMalloc(...) command. Often times, arrays on the host must also be
established and transferred to the device with cudaMemcpy(...) functions as well. In
addition, the kernel must be configured before running with <<<grid, threads,...>>>.
When everything is considered, the host code might look like what is shown in List-

3.2 General purpose computing with graphics processing units 47

T15

B3
T11

B7

T7

B11

T3

B15

T14

B2
T10

B6

T6

B10

T2

B14

T13

B1
T9

B5

T5

B9

T1

B13

T12

T8

B4

T4

B8

T0

B12

G0

Figure 3.2: Each grid is subdivided into multiple blocks, which is further subdivided
into threads for computation. Each thread has a specified ID, which acts as a one-
dimensional array, even in a two or three-dimensional system. Here, all areas outlined
in red have access to global memory, and any area outlined in blue has access to shared
memory. This figure has been slightly modified from [135]

48
General Purpose computing with Graphics Processing Units and the

GPUE codebase

ing 3.4
All said, vector addition is often known as the “Hello World!” of GPU programming

as it is the first application that shows the parallelism of GPU devices; however, even
here, a distinction between users and developers can be seen. As more complex software
is developed, it becomes more important to write software in such a way that users
do not directly interface with CUDA code, and the full ramifications of this will be
discussed in later in this chapter. In addition, this discussion highlights the important
distinction between host and device code, including the concept of threads and blocks,
shared memory, and the ability to transfer data from the host to the device, all of
which are essential to understanding particular design decisions of GPUE. For now,
I will continue this discussion by moving to GPU hardware, focusing on thread and
memory hierarchy.

Discussion of GPU thread and memory hierarchy

Every time host code invokes a CUDA kernel call (as shown in Listing 3.4), the data
is mapped to a scalable array of multiprocessors on GPU hardware. Multiple blocks
might be distributed to the same multiprocessor, but blocks are always distributed con-
tiguously. Each multiprocessor is designed to execute hundreds of threads in parallel
by using a unique SIMT (Single Instruction, Multiple Threads) architecture, which is
similar to SIMD and can be used as such for most cases; however, there are performance
benefits to optimizing instruction-level parallelism at the thread level. Each multipro-
cessor distributes its parallel processes into warps, which are units of 32 threads that
execute a single common operation at a time. Notably, the way a block is distributed
into warps is always the same, so it is important to ensure that the input data is in
powers of 32 to avoid wasting unnecessary computation. Outside of this, developers
can often ignore SIMT behavior as long as they do not allow threads in a warp to have
separate operations.

Understanding GPU memory architecture is essential to properly using GPU hard-
ware, and as such, it is worth discussing in-detail. There are four forms of GPU
memory that are useful for most applications of GPGPU for scientific computation:
global memory, shared memory, local memory, and texture memory. Of these memory
types, local memory has the smallest scope and is only available on each individual
thread. On the other hand, global memory is shared between all grids, blocks, and
threads and is considered to be the slowest memory. As such, whenever a warp ac-
cesses global memory, it tries to perform as few accessing operations as possible, which
is made easier if the warp needs to access contiguous memory blocks. Essentially, each
time a warp needs to access global memory, it tries to read a word of 1, 2, 4, 8, or 16
bytes, and if the warp is required to access non-contiguous blocks, more accesses will
be necessary and thus performance will take a relatively large hit. This is shown in
Figure 3.3, where the size of each word is depicted as a gray box on global memory. If
each element is 1 byte, a single word is considered to be 4 bytes, and a transfer of 4
elements is required from global memory, a coalesced memory transfer corresponds to
4 consecutive elements in memory, while a strided memory transfer will not work on
consecutive elements. In this example, if the stride is 2, an additional access to global
memory must be used to transfer the memory, and thus the operation will be half as

3.2 General purpose computing with graphics processing units 49

Listing 3.4: An example of host code to run Listing 3.3.

1 int main(){
2
3 int n = 1024;
4
5 // Initializing host vectors
6 double *a, *b, *c;
7 a = (double *) malloc(sizeof(double)*n);
8 b = (double *) malloc(sizeof(double)*n);
9 c = (double *) malloc(sizeof(double)*n);

10
11 // Initializing all device vectors
12 double *d_a , *d_b , *d_c;
13
14 cudaMalloc (&d_a , sizeof(double)*n);
15 cudaMalloc (&d_b , sizeof(double)*n);
16 cudaMalloc (&d_c , sizeof(double)*n);
17
18 // Initializing a and b
19 for (size_t i = 0; i < n; ++i){
20 a[i] = i;
21 b[i] = i;
22 c[i] = 0;
23 }
24
25 cudaMemcpy(d_a , a, sizeof(double)*n, cudaMemcpyHostToDevice);
26 cudaMemcpy(d_b , b, sizeof(double)*n, cudaMemcpyHostToDevice);
27
28 dim3 threads , grid;
29
30 // threads are arbitrarily chosen
31 threads = {100, 1, 1};
32 grid = {(unsigned int)ceil((float)n/threads.x), 1, 1};
33 vecAdd <<<grid , threads >>>(d_a , d_b , d_c , n);
34
35 // Copying back to host
36 cudaMemcpy(c, d_c , sizeof(double)*n, cudaMemcpyDeviceToHost);
37
38 // Check to make sure everything works
39 for (size_t i = 0; i < n; ++i){
40 if (c[i] != a[i] + b[i]){
41 std::cout << "Yo. You failed. What a loser! Ha\n";
42 exit (1);
43 }
44 }
45
46 std::cout << "You passed the test , congratulations !\n";
47
48 free(a);
49 free(b);
50 free(c);
51
52 cudaFree(d_a);
53 cudaFree(d_b);
54 cudaFree(d_c);
55 }

50
General Purpose computing with Graphics Processing Units and the

GPUE codebase

Coalesced Strided

Figure 3.3: An example of a coalesced and strided memory transfer. In this figure,
each element is 1 byte and a single word consists of 4 bytes (Gray box). If 4 elements
are required to be transferred (green boxes), a coalesced accessing patters will access
4 consecutive elements, while a strided one will not. In this case, the strided memory
access pattern requires an additional transfer and will thus be less optimal. In this
figure, worker threads are seen as blue arrows. This figure was modified from the tikz
source from [8].

optimal. For this reason, it is important to make sure all data accesses are coalesced,
which ensures that the warp will access consecutive elements as depicted in Figure 3.2.

For optimal memory throughput, shared memory is an essential tool to understand
and use appropriately. As described, shared memory is on-chip memory that is shared
between all threads in a block. The amount of shared memory available is hardware-
dependent and configurable on kernel execution. In general, it is worthwhile to transfer
data with a large number of accesses to shared memory for performance. Shared
memory is split into several memory banks which can be accessed simultaneously. If
two memory accesses are required of the same bank, there will be a conflict (known
as a bank conflict) and the operation can no longer be performed in parallel. It is
sometimes necessary to pad variables to prevent bank conflicts from occurring [136].

Of the four types of memory mentioned, texture memory is the least-often used for
scientific computing and is primarily on the GPU for graphics computation and focuses
on performance for two-dimensional structures. Texture memory has a relatively long
write time, but is quick to read. It is also faster than global memory for non-coalesced
access patterns and therefore can be useful for certain tasks with slowly varying op-
erators. In principle, this is the case for the momentum-space operator in the SSFM;
however, because texture memory uses single-precision, it will not be used further in
this work.

In addition to GPU memory considerations, it is also essential to minimize data
transfers between the device and host and between devices in multi-GPU setups. The
data transfer between the host and device or between devices must send data through
the PCIE slot on the motherboard, which is a slow operation. For data transfer be-
tween devices, this transfer time can be slightly alleviated on Power architecture where
NVlink technology can directly transfer data from device to device [137], but the data
transfer between devices will still likely be the slowest part of the computation. Though

3.2 General purpose computing with graphics processing units 51

CUDA-aware MPI for multi-GPU setups functions can be used, the development of this
API is still in its early stages, and using such functionality may greatly increase soft-
ware development time [138, 139]. As such, developers often try to keep all of their
computation on a single card, if possible, and several optimization strategies are used
when multiple GPU cards are needed. These strategies will be covered on a case-by-
case basis as they arise in this work. The easiest way to mitigate the amount of time
spent transferring data is to perform these transfers asynchronously; however, even in
this case, transfer time will likely affect the runtime of the program.

As a final note, one optimization strategy for CUDA code that will not be discussed
in-depth in this work is the maximization of instruction throughput. The simplest opti-
mizations here involve increasing the number of instructions performed over a specified
period by trading precision for speed and minimizing thread synchronization. Because
this work involves high-precision superfluid simulations, a trade-off between precision
and computational speed cannot be performed. In addition, when optimizing the in-
struction throughput for GPU devices, it is important to discuss conditionals, like if
and switch statements. Here, programmers need to be careful not to accidentally
cause the operation executed on threads in a warp to diverge, and special care has
been taken to ensure this is not the case with GPUE.

3.2.3 Comparison between various languages for GPGPU com-
putation

As one might expect, specialized programming languages are necessary to write code
that compiles and runs on GPU architecture. There are several known libraries to
extend modern programming languages such as Matlab, Python, and C++ to GPU
devices; however, I will limit this discussion to common programming methods that
allow fine-grained control of GPU memory and could be used for the development of
GPUE. We will briefly discuss the advantages and disadvantages of three competing
languages considered here: CUDA, OpenCL, and Julia-GPU, and as a simple example,
vector addition in these languages is shown in Appendix A.

CUDA

CUDA is a computing API provided by NVIDIA for interfacing with NVIDIA GPUs
and is the industry standard for GPGPU programming. CUDA is primarily limited by
the NVIDIA-specific hardware it runs on, and although NVIDIA currently produces the
most common GPUs for GPGPU programming, AMD GPU devices are also available
and provide a similar level of computational power. In addition, CUDA support has
recently ceased for MacOS systems as NVIDIA cards are no longer bundled with current
generation Mac computers, so CUDA code can only be used on Windows and Linux
devices with NVIDIA cards. GPUE was written entirely in CUDA; however, due to
the aforementioned limitations, there has been some consideration to re-writing the
software in OpenCL or Julia.

52
General Purpose computing with Graphics Processing Units and the

GPUE codebase

OpenCL

Though CUDA is the industry-standard for GPGPU programming, OpenCL (Open
Compute Language) is largely competitive in terms of performance and has the benefit
of being compatible with both NVIDIA and AMD GPU devices [15, 140]. OpenCL
is also completely open-source and works as additional libraries to C or C++, which
allows developers to compile OpenCL code with traditional compilers like gcc or clang.
OpenCL has nearly similar structure to CUDA with slightly more verbose syntax, and
thus provides all necessary functionality to develop and maintain scientific software. It
should be mentioned that OpenCL can also run on a large variety of other computing
architectures, such as Field-Programmable Gate Arrays (FPGA) and is a more general-
purpose computing library than CUDA. In addition, compute kernels are compiled at
run-time, meaning that users can potentially modify kernels without recompiling the
code. This could be a huge boon for developers writing software for users who may
need to quickly simulate a slightly modified system. Because OpenCL is defined as
a general-purpose API with higher access to low-level functionality, it is often more
cumbersome for developers than CUDA for GPGPU [141]. As such, it is not as widely
used for scientific computing software.

In the end, although OpenCL does provide the ability to more easily construct ker-
nels that can be compiled at runtime, the increased engineering time necessary to write
software in OpenCL is often not worth the cost; however, further advances in compiler
design for heterogeneous architecture has been made in the past few years [142], which
has provided the unique opportunity for computer scientists to write maintainable and
fast code in new languages, like Julia.

Julia-GPU

Julia is a new language to scientific computing, but boasts promising results. It claims
to be as usable as Python, but as performant as C [143], which is beneficial for main-
tainability of HPC software. In addition, Julia’s runtime is comparable to CUDA C for
GPGPU computation and allows for similar hardware optimizations [14, 144], while
also allowing users to edit the compiler implementations at will. This is an important
point that will be discussed in more detail in Section 3.3.2.

In addition, because Julia is much easier to write than C for new programmers,
GPU-based Julia code could allow developers to provide fast, efficient code with a
usable interface for scientists and engineers. The trade off between performance and
readability in programming has been described as the “two-language” problem, as most
scientific computing solutions require using two languages: a fast language for the
back-end and a readable language for the user interface. Julia succeeds in bridging the
gap between the languages, effectively solving the two-language problem and allowing
scientists and engineers to write efficient code that is also compilable on the GPU. For
these reasons, we have begun porting our CUDA code to Julia-GPU, as it will lead to
simpler and more maintainable code in the future. This will be further discussed in
the outlook of this work, Chapter 6. In Chapters 4 and 5, I will also introduce systems
that could benefit from a Julia interface.

3.3 Introduction to the GPUE codebase for n-dimensional simulations of
quantum systems on the GPU 53

3.3 Introduction to the GPUE codebase for n-dimensional
simulations of quantum systems on the GPU

At this point, all the motivation and background necessary has been provided to dis-
cuss GPUE, the GPU-based Gross-Pitaevskii Equation solver. This codebase will be
used for all remaining simulations performed in this work and its development has also
inspired the development of other libraries such as the DistributedTranspose.jl
package, which will also be discussed in Section 3.4. Some additional information on
prior development of GPUE can be found in other sources [135]. The GPUE codebase
was published in the Journal of Open Source Software in 2018 [4] and was originally
designed by Lee J. O’Riordan with the capability of simulating large-scale Abrikosov
lattices in two-dimensional superfluid BECs [68, 69, 135]. My focus with GPUE devel-
opment has been with the simulation of three-dimensional systems and optimization of
the software for dynamic studies on GPU hardware. For this section, I will first describe
the FFT optimizations used in GPUE for three-dimensional simulations, followed by
additional features necessary for dynamic simulations on GPU architecture.

3.3.1 FFT optimization

As mentioned in Chapter 1 and previously in this chapter, the SSFM is primarily lim-
ited by the complexity of the FFT operations. For a three-dimensional simulation with
gauge fields in the x̂, ŷ, and ẑ directions, one set of global FFTs and three sets of
one-dimensional FFTs must be performed. This is equivalent to two three-dimensional
FFT operations, which become much more undesirable when scaling to multiple GPU
devices [127]. The CuFFT API provides an option for computing FFT’s on separate
batches of an array in GPU memory with the cufftPlanMany(...) command; how-
ever, if this command is repurposed for one-dimensional FFT operations, it does not
provide the necessary functionality for FFTs across the ŷ or ẑ dimensions for gauge
field simulation. With the CuFFT library, all FFT operations performed with the
cufftPlanMany(...) plan must follow an indexing pattern, such that

input[b*idist + x*istride]
output[b*odist + x*ostride]

where b is the batch index, x is the element index, idist and odist are the distances
between batches for the input and output array, respectively, and istride and ostride
are the strides between consecutive elements for computation with the input and output
array, respectively. On the other hand, if data is transferred to the GPU, it is often
re-indexed as a one-dimensional array, such that

array[i,j,k] = array[i + j*xDim + k*xDim*yDim]

where i, j, and k are iterable variables in the x̂, ŷ, and ẑ directions, and xDim, yDim,
and zDim are the dimensions in x̂, ŷ, and ẑ, respectively. As such, it is not possible
to use the cufftPlanMany functionality to perform one-dimensional FFTs in ŷ and ẑ;
however, if one increases the number of batches to yDim*zDim, set the distance between
each stride to 1, and assume the stride between each element is xDim*yDim, one can
recreate the functionality of the FFT in the ẑ direction. For the ŷ FFT operations,

54
General Purpose computing with Graphics Processing Units and the

GPUE codebase

Figure 3.4: An example 23 data cube with indices 000→111 with stride and batches
shown for x, y, and z FFTs. For the x FFT, the stride is 1, the batch number is 4,
and the distance between each batch is 2. For the z FFT, the stride is 4, the batch
number is 4, and the distance between each batch is 1. Here, every other line is dashed
for visualization. These two transforms can be performed with the cufftPlanMany
functionality. For the y FFT, the stride should be 2, and the number of batches should
be 4; however, no matter what one specifies the distance between each batch to be,
it is not possible to perform the operation. This figure can be found in the GPUE
documentation [6].

3.3 Introduction to the GPUE codebase for n-dimensional simulations of
quantum systems on the GPU 55

one needs an external loop that iterates over each xy slab, performing xDim operations
on each slab, and this greatly hampers performance. This is depicted in Figure 3.4 for
a 2× 2× 2 grid.

With this considered, only one-third of the necessary FFT operations are appropri-
ately coalesced in memory for three-dimensional simulations. Because FFTs are global
operations that are best performed on contiguous chunks of memory, multi-GPU sim-
ulations with the SSFM are even less optimal. In addition, the cufftPlanMany(...)
functionality does not exist in the CUDA multi-GPU API. This has motivated the
development of other packages to allow for memory coalescence with FFT operations,
such as the distributed transpose, which will be described in Section 3.4. Even though
the three-dimensional FFT operations are the biggest bottleneck in the GPUE code-
base, it is not easy to avoid usage of the cufftPlanMany(...) operation while still
using CUDA. This is why optimizations to GPUE FFT operations will be performed
exclusively in GPUE.jl. Next, I will focus on another feature that was inhibited by the
CUDA framework, but is nevertheless possible: methods to enable dynamic quantum
state engineering with expression trees.

3.3.2 Dynamic field input and output in GPUE with expression
trees

As mentioned in Chapter 2, quantum state engineering typically requires some form
of time-dependent variables, along with evolution in real time. This means that the
user must be able to input a time-dependent equation to GPUE, often for V (t), g(t),
or A(t). Because GPUE is written in C/C++ and CUDA, there is no straightforward
method for the user to input time-dependent fields without recompiling the source code
and modifying CUDA kernels at will, which is unnecessarily cumbersome for the user.
As such, a method for users to input the fields of their choosing as strings has also
been provided. These strings will be compiled into a set of operations to perform on
the GPU through expression trees, which are similar to Abstract Syntax Trees (ASTs)
in compiler design [145, 146].

An example of an expression tree can be seen in Figure 3.5. These are evaluated
depth-first to follow the traditional order of operations. With this method, a user can
type in a string, like "V = m*omega*omega*x*x*t", and this will be parsed into a set of
operations to be performed on-the-fly by the GPU. After parsing user-provided equa-
tions, certain leaf nodes are designated as either spatially or temporally dynamic. In
the case of spatially dynamic variables (x, y, and z), values are taken from constituent
vectors based on their threadIdx.xyz values, and for any equation that is dependent
on t, a stored time variable is used. This operation necessitates the usage of a dictio-
nary data structure to hold all variables on the host in some fashion, which inhibits
host performance; however, because the bulk of the computation is performed on the
GPU, this does not significantly impact GPUE performance, overall. On the GPU,
each necessary variable can be stored in a shared memory buffer, and even though the
embarrassingly parallel element-wise matrix multiplications are being replaced with
these expression trees, the performance is not severely impacted; however, because
parsing expression trees naïvely is a recursive or iterative process, the longer the ex-

56
General Purpose computing with Graphics Processing Units and the

GPUE codebase

V = 1
2
mω2x2t
·

·

·

0.5 m

t

·

·

ω ω

·

x x

Figure 3.5: Example of expression tree for V = 1
2
mω2x2t. Blue, filled nodes are

operations, leaf nodes are variables, time has been highlighted in red, and spatially-
dependent variables are in green.

pression, the less optimal using this method is. There are ways to use task parallelism
when parsing expression trees to allow for greater efficiency; however, because a new
expression tree must be parsed for every element in the wavefunction array, adding an
additional layer of task parallelism is not straightforward. Ultimately, more work could
be done in the future to maximize instruction throughput with our implementation of
GPU-accelerated expression trees.

Not only do expression trees allow for STA and quantum optimal control methods
to be used with GPUE, but they also eliminate the need to store any operators in
GPU memory, effectively increasing the available memory by a factor of 5 for each
three-dimensional simulation, as V , K, Ax, Ay, and Az no longer need to be stored.
This allows one to perform higher-resolution simulations and could allow for dynamical
turbulence studies in the future; however, in order to scale beyond this limit, either
multiple GPUs must be used or one must find some way to compress the wavefuntion.
This will be discussed further in Section 3.3.6. As a final note, dynamic equation
parsing can be implemented easier in other GPU frameworks, such as OpenCL and
Julia.

As mentioned, the implementation of expression trees in GPUE effectively decreases
the memory footprint of our simulations and allows for dynamical studies on the GPU;
however, dynamical studies also require a large amount of file input and output. Next,
I will briefly discuss efforts to curtail the memory and storage footprint of GPUE
simulations.

3.3.3 GPUE memory footprint

For the simulations to be shown in Chapter 4, roughly 50 TB of storage was used for
relatively simple two-dimensional, dynamic simulations; however, at the time of that
study, there was no compression performed on the output data. It is clear that some
level of compression is necessary for three-dimensional, dynamic studies and that this
level of compression is likely beyond what can be performed with higher-dimensional,
compressed data formats like HDF5. For many vortex studies, it is possible to output

3.3 Introduction to the GPUE codebase for n-dimensional simulations of
quantum systems on the GPU 57

only the vortex locations with proper vortex tracking methods, and these methods will
be discussed in Section 3.3.4. Though HDF5 is now fully supported by GPUE, this
section will focus on other methods that could allow for compressed SSFM simulations.

Initially, the Compressed Split-Step Fourier Method (CSSFM) [24] was considered
to compress the size of our wavefunction. The CSSFM attempts to compress the
wavefunction into a basis where it is sparse and then performs the SSFM on this com-
pressed wavefunction with operators that have been transformed into the appropriate
spaces. After CSSFM operation, the wavefunction is then reconstructed to an effec-
tively higher resolution with compressed sensing [147], and in the original work by
Bayindir [24], one-dimensional simulations of soliton dynamics were performed. This
provided a considerable improvement in both performance and memory usage for a
wide range of potential resolutions. After attempting to use this method with GPUE,
it was found to be unsuitable for two and three-dimensional vortex simulations, be-
cause compressed sensing does not provide adequate compression for simulations of
this nature.

In addition to this, an octree-based grid reduction scheme has been considered
for two and three-dimensional simulations with the SSFM. This method creates an
octree grid based on the Sobel filter of the density with the intent of creating a higher-
resolution simulation at locations where the condensate density fluctuates. Further
discussion of this system can be found in the outlook of this work, Chapter 6.

3.3.4 Vortex tracking and highlighting

In order to analyze the motion of vortices in a superfluid system, some form of vortex
tracking must be implemented, and the current vortex tracking methods used in GPUE
for two dimensions can be found in prior work [135] or the GPUE documentation [6].
It is important to describe two-dimensional vortex-tracking first before continuing to
three-dimensional vortex analysis, which is a much more complicated process.

At a first glance, one might assume that vortices are located at areas of low density
in a superfluid system; however, this is not always the case. Because a condensate sim-
ulated with GPUE is often inhomogeneously trapped and does not necessarily extend
to the edges of the simulated domain, there might be large areas of zero density out-
side the condensate. In addition, sound waves and other perturbations with minimal
density can occur. As such, locations of low density should only be used as educated
guesses as to where actual vortices are located, but should not be used as the final
predictor.

Instead, the phase can be used to uniquely identify vortex locations, as shown in
Figure 3.6. In the highlighted region, all elements sum to a value of 2π. In this way,
vortex tracking essentially transforms into the task of locating all the 2π phase windings
in the simulated domain via minimization routines where one attempts to find any four
grid elements whose sum is 2π. This process also necessitates a mask for regions outside
of the BEC domain, as these regions create spurious 2π phase windings because of the
density is roughly zero outside of the condensate region. Further discussion on how to
refine this position can be found in previous work [6, 135].

In three dimensions, vortices are no longer confined to a plane and can extend in
any direction, so long as the vortex lines either end at the superfluid surface or re-

58
General Purpose computing with Graphics Processing Units and the

GPUE codebase

Figure 3.6: An example phase plot of a condensate with four vortices. The inset
shows the values of the phase at each location each vortex location and highlights
where the sum is 2π for vortex tracking. This image can be found in the GPUE
documentation [6].

3.3 Introduction to the GPUE codebase for n-dimensional simulations of
quantum systems on the GPU 59

Figure 3.7: An example of vortex highlighting with a Sobel filter. The upper left
quadrant is the superfluid density with no modifications and the upper right quadrant
is an isosurface of the density with an opacity of 0.6. Note here that if there is no
opacity set, it is not possible to see the vortex because it is obscured by the outside
boundary of the BEC. The lower right quadrant is the superfluid density after Sobel
filtering and the bottom left quadrant is an isosuface on the Sobel filtered density.
Here, one can easily create isosurfaces of vortices that would be occluded when using
the density, alone. The scale varies depending on whether it is coloring the normalized
wavefunction density or the filtered density.

connect in the form of vortex rings or more complicated vortex structures. Tracking
three-dimensional vortices is a much more difficult problem which does not have many
solutions in superfluid simulations where the superfluid does not fill the simulation
domain. The current state-of-the-art solution has been proposed by Villois et al. [148],
and requires finding density dips in the superfluid as initial guesses as to where a vor-
tices might exist. From there, a vorticity plane is determined and the entire vortex is
discovered by moving perpendicularly to the vorticity plane at each gridpoint. This is
a tedious and time-consuming process that does not lend itself well to GPGPU com-
putation without communication between the host and device. Because some systems
simulated with GPUE do not fill the contents of our simulation domain, the Villois et
al. method will not work without some modification. This method could still be used if
one has some understanding of the trapping geometry to mask out regions beyond the
condensate density; however, as I discussed in Chapter 1, this is not always the case
with gauge fields. As such, we are currently seeking a more computationally efficient
method for tracking vortices in three dimensions, and some thoughts on how this could
be done can be found in the outlook of this work, Chapter 6.

For these reasons, instead of focusing on vortex tracking, I have instead implemented
a simple vortex highlighting scheme for three dimensions. This can be done with a Sobel
filter on the condensate density, and can easily create crisp visualizations like those
found in the computer graphics literature [149]. An example of a vortex highlighted
wavefunction density, along with an isosurface of both the density and the highlighted
density can be seen in Figure 3.7. In this figure, I show that the density after being Sobel
filtered can be more easily used to isolate vortex structures without the background

60
General Purpose computing with Graphics Processing Units and the

GPUE codebase

BEC. Though it would be possible to use further edge detection methods, such as the
Canny edge detector [150], this would add a significant computational overhead and
thus was not implemented in the current work. The problem of efficiently tracking
vortex skeletons in three-dimensions is a difficult problem that requires further study;
however, vortex highlighting is enough for most three-dimensional vortex simulations.
In Chapter 5, I show and example simulation where vortex highlighting has been used
to determine the vortex isosurfaces.

3.3.5 Energy calculation for superfluid simulations

As discussed in Chapter 1, energy calculations can play an essential role in SSFM sim-
ulations and can be used to help understand vortex dynamics in certain simulations.
More importantly, energy calculations lie at the heart of convergence criteria for imag-
inary time propagation. Essentially, in order to avoid unnecessary computation, many
SSFM implementations will cease simulating the system in imaginary time when the
change in energy at every timestep drops below a certain threshold value. Though
this option is available in GPUE, it is not a native feature for at least three important
reasons:

1. Certain systems, such as large vortex lattices with high rotation, seemingly have
many near-degenerate ground states with different vortex configurations [68, 69,
135].

2. GPUE is often run on a computing cluster where the maximum simulation time
is set before-hand. For this, the user must be able to estimate the duration of
their simulation, and this is not straightforward if imaginary-time propagation
finishes at an unknown time.

3. The energy calculation is memory and operation-intensive and requires at least
one additional object of the size of the wavefunction to be created and stored on
GPU memory.

The first and second of these are somewhat self-explanatory, but the third requires
further elucidation.

Energy calculations in GPUE are essentially composed of the following operation,

E = 〈Ψ|Ĥ|Ψ〉 (3.1)

The first problem with this operation is that it requires a summation for the final
energy value, and as discussed, this is a poorly-suited problem for GPU hardware.
Even though a robust implementation of parallel reduction exists in GPUE, this is still
a slow process. The next problem comes from the nature of the Hamiltonian, itself.
As described in Chapter 1, the Hamiltonian is essentially composed of three separate

3.3 Introduction to the GPUE codebase for n-dimensional simulations of
quantum systems on the GPU 61

components for vortex simulations:

Ĥv = V0 + g|Ψ|2 +
mA2

2
(3.2)

Ĥp =
p2

2m
(3.3)

Ĥpv = −pA + Ap

2
(3.4)

where Ĥv, Ĥp, and Ĥpv are the Hamiltonians in position-space, momentum-space, and
mixed-space, respectively. These operations can be considered with expression trees;
however, for three-dimensional simulations they still require either a set of forward and
inverse FFT’s or a derivative function with fixed stride along with the parallel reduction
operation. This ultimately amounts to the same number of operations required for a
single step of imaginary-time evolution; however, because the simulated wavefunction
cannot be influenced by the energy calculation, the operation requires at least one
additional allocation of a wavefunction-sized array. Due to the computational time
required for each energy calculation, users are requested to input the set of timesteps
they would like to compute the energy for before-hand. In addition, at certain points,
it is impossible to run GPUE with the energy calculation, simply because there is not
enough memory available on the device.

Though finding the energy of the wavefunction is a useful feature for certain simu-
lations, it should not be used regularly for memory-limited tasks or tasks that should
be performed quickly. Even so, for most applications of GPUE on HPC environments,
there should be no problem running the energy-calculation alongside the simulation,
itself.

3.3.6 Future direction and multi-GPU development

At this point, I would consider GPUE to be close to feature-complete. It is capable of
simulating a wide-variety of quantum systems and can even perform dynamic quantum
engineering studies with minimal file input and output. Though more work can be done
to maximize instruction throughput, this will not significantly improve the performance
of the software because it relies heavily on double-precision.

The next logical step for GPUE development is scaling to larger simulations. This
means that one either needs to increase the number of GPUs used for the simulation or
decrease the size of the wavefunction, itself. Though the CSSFM method [24] should
allow for the latter, it was ultimately found unsuitable for general-purpose simulations.
As such, the next logical progression is to scale GPUE to multiple GPU devices; how-
ever, as I hope to have impressed by now, this is not a trivial task. Even though the
CuFFT library can support multiple GPU devices, this comes with a huge performance
penalty because it is still a global operation requiring data transfer between GPU de-
vices. In addition, the cufftPlanMany(...) functionality is unavailable on multiple
GPU systems. To scale to multiple GPU devices efficiently, while still using the SSFM,
a large-scale, in-place, multi-GPU transpose is required to ensure proper memory co-
alescence for FFT routines, which eliminates the need for cufftPlanMany(...) in
GPUE. A transpose of this nature is performed at some step with the CuFFT library;

62
General Purpose computing with Graphics Processing Units and the

GPUE codebase

however, unlike FFTW, this step is not outward facing and cannot be controlled by the
user. In addition, the CuFFT library does not allow proper control over the threads
designated in each grid when performing large-scale allocations of data on multi-GPU
memory.

Other languages, like Julia, provide more robust features for distributed GPU com-
putation, and for this reason, development of GPUE.jl has begun. Currently, GPUE.jl
has similar performance to GPUE, but is currently lacking the expression tree func-
tionality. Once GPUE.jl is at feature parity with GPUE, it will become the primary
software package for future development. Ultimately, the Julia language allows for the
development of GPUE in a much more maintainable fashion, and also allows for the
accessing of GPU hardware in a more convenient way. In addition to this, Julia allows
for more modular development of certain features, such as the DistributedTranspose.jl
package that should allow for multi-GPU transposes when fully developed.

3.4 DistributedTranspose.jl
At its heart, the two-dimensional transpose is a straightforward operation consisting of
a swap of all row and column elements. Unsurprisingly, this is a difficult task to ensure
memory coalescence, but it is possible to perform a two-dimensional transpose at the
same performance as a simple copy, so long as the operation is out-of-place in memory,
the operation is performed on shared memory tiles, and bank conflicts are avoided
by padding the data structure being transposed [136]. The transpose becomes even
more difficult to create when one wishes to transpose large three-dimensional matrices,
potentially spanning across multiple GPU devices, while also ensuring the operation is
in-place in memory.

In principle, there are three types of three-dimensional transposes:

Simple Copy A benchmark for other transpositions,

Axyz → Axyz (3.5)

Involution A transpose where a two-dimensional transpose is operated on a three-
dimensional data structure,

Axyz → Axzy (3.6)
Axyz → Axyz (3.7)
Axyz → Azyx (3.8)

Rotation A fully three-dimensional transpose,

Axyz → Ayzx (3.9)
Axyz → Azxy (3.10)

It has been shown that for out-of-place transpositions, it is possible to perform all of
these operations as efficiently as a a simple copy; however, in-place rotational transposes

3.5 Outlook 63

can only attain 60-70% of the performance based on currently known methods [151,
152]. In addition, distributed transposes of this nature on GPU devices are most often
implemented for an out-of-place operations [153].

At its current state, the DistributedTranspose.jl package is able to do out-of-place,
distributed transposes; however, when feature-complete, it should allow for the imple-
mentation of new distributed methods for such computation. It should be mentioned
that this package has potential to be used by many other software packages that require
using spectral methods on multiple GPU devices. With an appropriate distributed
transpose method, it might be more optimal to perform spectral and pseudo-spectral
simulations in certain regimes over other methods.

3.5 Outlook

In this chapter, I presented the fundamentals of GPGPU, along with the GPUE code-
base for simulating superfluid vortex systems. It is important to note that GPU ar-
chitecture is best at embarrassingly parallel tasks, and as such, the SSFM is severely
limited by its FFT routines; however, because one-dimensional FFT operations on GPU
devices are often faster for larger matrix sizes than their CPU-based counter-parts [19],
it seems that the SSFM is better suited for GPU architecture. In this chapter, I also
discussed important optimizations done in GPUE to ensure proper utilization of GPU
architecture for dynamic simulations of superfluid vortex simulations in two and three
dimensions, including expression trees, FFT optimizations, vortex tracking and high-
lighting, methods used to decrease GPUE’s storage footprint, and GPUE.jl. Finally, I
discussed the future development of the DistributedTranspose.jl package, which should
allow for large-scale spectral methods to be suitable for distributed GPU systems, of-
ten found in HPC environments. Though not mentioned here, GPUE has also been
extended for multicomponent simulations, and there is a wide variety of physical sys-
tems that can be simulated with this feature, some of which will be mentioned in the
outlook of this work, Chapter 6.

An interesting question involves scaling GPUE to become a more general-purposes
quantum simulator, similar to XMDS [154]. In comparison to XMDS, GPUE uses the
pseudo-spectral SSFM method, while XMDS uses a variety of methods, depending on
the task at-hand, primarily relying on interaction-picture methods, such as RK4IP [29].
In addition, the XMDS user interface is entirely in XML, which is slightly more cum-
bersome to the user, but much easier for development. If GPUE is to scale and become
a broader, general-purpose library beyond the GPE and Schrödinger equation, more
work has to be done to extend the current framework. As an important note, even
though future development for GPUE.jl will be in Julia, the GPUE codebase has been
written to minimize the amount of code users will see when simulating superfluid BEC
systems. As such, transitioning to Julia will not radically change the user-interface for
GPUE, but will instead serve as a way for developers to write more maintainable code
for large-scale, multi-GPU simulations in the future. In addition, GPUE.jl will become
a useful tool for users who wish to perform post-processing metrics in the same envi-
ronment as GPUE, itself, potentially eliminating some file output. For Chapters 4 and
5, I will discuss two physical examples that were enabled by the GPUE codebase, also

64
General Purpose computing with Graphics Processing Units and the

GPUE codebase

highlighting future physical directions and re-enforcing the future directions discussed
here.

Chapter 4

Vortex analysis of chaotic,
two-dimensional superfluid
simulations for few-vortex systems

In this chapter, I will describe an application of the GPUE codebase by simulating a
two-dimensional system with few vortices that displays chaotic dynamics. In addition,
this chapter intends to highlight the dependence of post-processing metrics such as
vortex tracking and the Lyapunov exponent to dynamical studies of superfluid systems.

Chaotic evolution is typically identified by a significant divergence in trajectory
based on a small change in the initial conditions [155], and there have recently been
studies into controlling the degree of chaos in quantum systems [156, 157]. For fluid
systems, it is possible to induce chaotic behavior in turbulent flow [158, 159]. For
classically turbulent flow, the degree of chaos depends on the Reynolds number [160];
however, the nature of quantum chaos for superfluid flow is still an active area of
research [87]. Because superfluid vortices have well-defined strength and quantized
winding numbers, they can be considered less complex when compared to classical
vortices where circulation is continuous; therefore, there has also been significant in-
terest in the differences between classical and quantum turbulence [161–164]. In spite
of the differences between the fluid models, vortex dynamics in superfluid systems are
remarkably similar to classical point-vortex models and key features of classical turbu-
lence, such as the Kolmogorov spectrum have been shown to exist for large, turbulent,
quantum systems [165–168].

It is known that it is not possible to easily excite chaotic behavior in large vortex
lattices, as these systems have been proven to be stable to many external perturba-
tions [135]. For this reason, it is interesting to attempt to probe classical chaos in
systems with a small number of vortices. Chaotic, few-vortex systems have been stud-
ied previously by Aref and Pomphrey [169–171], who showed that chaos can be excited
in systems with as few as four vortices in an infinite plane [169]. Unlike chaos in
classical fluids, the onset of chaos in quantum systems seems to appear with fewer
vortices present, and few-vortex systems have been explored experimentally for two,
three, and four vortices in harmonically trapped BECs [164]. When analyzed with a
reduced Hamiltonian approach, harmonically trapped BECs seem to exhibit chaotic
effects with as few as three vortices, two co-rotating vortices and an anti-vortex ro-

65

66
Vortex analysis of chaotic, two-dimensional superfluid simulations for

few-vortex systems

tating in the other direction [162, 163]. In this approach, the system can be seen as
having three degrees of freedom with two integrals of motion, the energy and angular
momentum. This can be further reduced to two degrees of freedom with appropriate
canonical transformations and using the angular momentum as a parameter [163]. For
this reason, it seems that three point-vortices is the minimum number necessary for
chaotic dynamics.

Experimentally, it is now possible to detect vortex circulation [172] and image
vortices in-situ [173]. It is also possible to probe vortex dynamics at different times
within a single experiment [174, 175]. Because quantum vortices are simple and BECs
are highly controllable experimental systems that can be restricted to two dimensions,
there has been significant interest in two-dimensional quantum turbulent systems as
well [86, 176]. Additional effects, such as the Kármán vortex street [177] and Onsager
vortex clusters [178, 179] have already been shown to exist experimentally.

Because chaotic events require very small changes in the initial conditions of the
system, it is important to create a system with well-controlled initial conditions. For
this, I will start with a small vortex lattice of four vortices, and then create a defect
in this lattice using phase imprinting, as described in Chapter 1. This process will
controllably induce chaotic vortex dynamics in an experimentally feasible way. We
also show that the chaotic dynamics are enhanced by the close approach of vortices.

The content of this chapter has been published in Phys. Rev. Fluids (4(5):054701,
2019), and for this work, I oversaw the simulations performed by Tiantian Zhang and
developed the GPUE codebase to allow for the phase imprinting methods necessary
to generate the chaotic vortex behavior described in this study. This work had two
separate advisors, Thomas Busch and Angela White, who both directed the physics
and helped interpret the results.

4.1 Model
The physics simulated in this Chapter is purely two-dimensional, so it is appropriate
to begin this section with a disclaimer about the dimensionality of the system I will
be simulating. In principle, all real-world physics is three-dimensional, but just as a
one-dimensional cigar-shaped BEC can be created, a pancake-like geometry can also
be constructed by increasing the trapping frequency in the ẑ (perpendicular) direction
with respect to the x̂ and ŷ (transverse) directions. With this geometry, one can
assume that the condensate is in the ground state along the ẑ dimension so long as
any excitations in the ẑ direction requires an energy larger than the chemical potential.
One can then factorize the wavefunction as Ψ(r, t) = Ψ(x, y, t)φ(z), where Ψ(x, y, t) is
the wavefunction in the transverse plane and φ(z) = (mωz/(π~))exp(z2mωz/(2~)) is
the ground state along the ẑ dimension. By integrating over ẑ, the interaction strength
is modified for a two-dimensional condensate to be

g2D = g

√
mωz
2π~

. (4.1)

With these changes, one can simulate two-dimensional settings with the GPUE code-
base [3, 68, 69, 135]. This chapter will apply several of the techniques mentioned in

4.2 Regular and irregular vortex dynamics 67

0

⇡

�⇡

0

⇡

�⇡

(a)

(b)

Figure 4.1: Phase distribution of the initial four co-rotating vortex system is shown
at the left. In the center is the applied phase mask of −2π for (a) and −4π for (b),
and the resulting phase distribution is shown on the right. By applying a −2π phase
winding, a vortex is erased from the system, and by applying a −4π phase winding,
the vortex is flipped, creating an anti-vortex.

Chapters 1 and 3 to a rotating two-dimensional BEC system for a small number of
vortices.

For this study, a condensate with N = 106 87Rb atoms in the co-rotating frame with
an s-wave scattering length of as = 4.76 × 10−9m in a pancake geometry with typical
trapping frequencies of (ω⊥, ωz) = (2π, 32π) Hz will be considered. Here, the effective
two-dimensional interaction strength is g = 6.8 × 10−40 m4kg/s2. These simulations
were performed on a grid of 210× 210 points and covering an extent of 700µm× 700µm

Although large rotational frequencies will create a triangular lattice, for smaller
frequencies, other configurations are known [180], and I will focus on the regime where
the ground state is composed of four vortices in a square configuration [181]. Once this
configuration is achieved, one vortex is manipulated via phase imprinting, such that
three co-rotating vortices and one anti-vortex exist in the system. Examples of phase
imprinting on this system can be seen in Figure 4.1, where the top row shows a simple
vortex annihilation and the bottom row shows a vortex flip.

4.2 Regular and irregular vortex dynamics

It is known that a lattice of vortices with the same direction of rotation will exhibit
regular dynamics [70], and this is confirmed in Figure 4.2(a). In this figure, I show
a histogram of the vortex trajectories over 20 seconds of evolution when removing
and then re-imprinting a vortex of the same rotational direction at the same location.
Even though a small residual movement appears, potentially due to phonon excitations
that were not fully removed from the imaginary time evolution, the vortices remain
stationary. In Figure 4.2(b), I also show that if the re-imprinted rotation is of the op-

68
Vortex analysis of chaotic, two-dimensional superfluid simulations for

few-vortex systems

Figure 4.2: Histograms of the positions of each vortex in the transversal plane for
20 seconds in the co-rotating frame. The lower left vortex has been annihilated and
re-imprinted with (a) the same and (b) the opposite direction of rotation, exactly on
the location of the previous vortex. The area of each plot is 400µ(m) × 400µm, and
the white circles correspond to iso-lines at 40% of the maximum density to highlight
the extent of the vortex motion. In (a), if all four vortices are co-rotating, regular
trajectories appear, but in (b), flipping the rotation direction of a single vortex creates
disordered trajectories.

posite direction, the vortex dynamics become more disordered, with vortices traversing
a larger width of the condensate. It is worth mentioning that similar histograms can
be constructed experimentally with available imaging techniques [173, 174].

Even though the introduction of the anti-vortex creates disordered trajectories, it
could be entirely possible that these trajectories are still stable. To uniquely identify
chaotic behavior, one needs to show that any small perturbation in the vortex location
will also provide a significantly different trajectory. To check this, two sets of vortex
trajectories are compared with slightly different shifts in the initial position of the anti-
vortex, r0 and r′0, where r0−r′0 = ξ/3 and ξ is the healing length. In Figure 4.3, I show
the differences in trajectories, defined as ∆ri(t) = ri(t) − r′i(t), where ri refers to the
position of the ith vortex from the center of the condensate and i ∈ {1, 2, 3} corresponds
to the vortex number. The unique index for each vortex is shown in Figure 4.2. Here,
one sees that the difference in trajectories is initially small, but diverges significantly
at around t ≈ 10 seconds, which is a strong indication of chaotic behavior.

After closely inspecting the vortex dynamics (see the supplementary movie [182]),
one sees that this strong divergence in vortex trajectories seems to be accelerated when
all four vortices come in close proximity. Because the velocity fields of each vortex de-
cays as 1/r, where r is the distance from the vortex’s core, the vortices experience
stronger velocity fields when they are closer; therefore, the point of minimal separa-
tion can be seen as a highly nonlinear multi-vortex scattering event that accelerates
the divergence shown in Figure 4.3. In Figure 4.4 this is studied further by showing
snapshots of the condensate density before (t = 6s), at (t = 10s), and after (t = 15s)

4.2 Regular and irregular vortex dynamics 69

Figure 4.3: Evolution of the difference in trajectories 4ri = ri − r′i with r cor-
responding to the position of the ith vortex from the center of the condensate and
i ∈ {0, 1, 2, 3} labelling each individual vortex for the four-vortex system as shown in
Fig. 4.2. A small change in the initial position of the anti-vortex arises from a phase-
imprint at (x0, y0) and (x0− ξ/3, y0) where (x0, y0) denotes the pre-existing co-rotating
vortex core position. The curves show that even though the onset of disorder is imme-
diate, a strong divergence of trajectories is observed at about t ≈ 10s (see projections
onto the x-t and y-t planes). The difference in trajectory of the anti-vortex, ∆r0,
is shown in blue, while yellow, orange, and purple lines depict the three co-rotating
vortices.

70
Vortex analysis of chaotic, two-dimensional superfluid simulations for

few-vortex systems

the scattering event in (a) and (b) for the non-shifted and shifted initial anti-vortex
locations. The differences between position of each vortex and the anti-vortex is also
shown (c) for the case where the anti-vortex is shifted by ξ/3. Here, there is a clear
minimum at t ≈ 10 seconds, which is the same time at which the trajectories begin to
diverge in Figure 4.3. In order to characterize this divergence in trajectory, one must
analyze the vortex dynamics in more detail by calculating (for example) the Lyapunov
exponent.

4.3 Characterizing chaotic vortex dynamics

To characterize the degree of chaos for the shown vortex dynamics, a variation on
Lyapunov exponents will be used. These exponents give the rates of divergence for
nearby orbits in phase space [183], and with this measure, one can track two trajec-
tories in phase space to see if the divergence between the two trajectories will either
exponentially converge or diverge, which can be modeled with

|δZ(t)| ≈ eΛt|δZ0|. (4.2)

Here, δZ0 is the initial separation between the trajectories and Λ is a quantity known as
the Lyapunov exponent. If the exponent is negative, this means that the trajectories
tend to converge, but if it is positive, the trajectories will diverge, thus indicating
chaotic motion. The rate of divergence is determined by the value of the exponent.

For this simulation, trajectories are modeled in four-dimensional phase-space with
P(t) = (x(t), y(t), vx(t), vy(t)) and P′(t) = (x′(t), y′(t), v′x(t), v

′
y(t)). The separation is

then defined to be δP(t) = (δx(t), δy(t), δvx(t), δvy(t)) where δx(t) = x(t)− x′(t), etc.
The exponent can then be calculated as

Λ = lim
t→∞

1

t
ln
||δP(t)||
||δP(0)|| (4.3)

where || · || denotes the Euclidean norm.
Because this system is finite, the value of the Lyapunov exponent from Equa-

tion (4.3) will tend to 0. For this reason, rather than performing the full calculation
of the Lyapunov exponent, Λ, I will instead show the exponent as a function of time,
here notated as

λ(t) =
1

t
ln
||δP(t)||
||δP(0)|| . (4.4)

This value can characterize chaotic dynamics in finite-sized systems, and will be referred
to as the time-dependent Lyapunov exponent for the remainder of this work.

In this case, each vortex is tracked with the methods outlined in Chapter 3, which
use both the position and velocity of the vortex. To determine whether the total system
is chaotic, beyond its constituent vortices, I use a center of mass (COM) variable,
defined as RM = 1

n+1

∑n
i=0 ri, where n + 1 is the number of vortices. Similarly, the

center of velocity is defined as vM = 1
n+1

∑n
i=0 vi. These values are then used with

Equation (4.4), and the results are shown in Figure 4.5. The insets in Figure 4.5 show

4.3 Characterizing chaotic vortex dynamics 71

t (s)
<latexit sha1_base64="fA3EkoA1X0KekweHf1N1xAdKges=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKoMegF48RzAOSGGYnvcmQmd1lplcNS/wOLx4U8eq/ePNvnCR70MSChqKqm+4uP5bCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEa66TMDUoRQQ4ESmrEGpnwJDX94NfEb96CNiMJbHMXQUawfikBwhla6w6c2wiNqlZbMybhbKLpldwq6SLyMFEmGarfw1e5FPFEQIpfMmJbnxthJmUbBJYzz7cRAzPiQ9aFlacgUmE46vXpMj63So0GkbYVIp+rviZQpY0bKt52K4cDMexPxP6+VYHDRSUUYJwghny0KEkkxopMIaE9o4ChHljCuhb2V8gHTjKMNKm9D8OZfXiT107Lnlr2bs2LlMosjRw7JESkRj5yTCrkmVVIjnGjyTF7Jm/PgvDjvzsesdcnJZg7IHzifP9PYkrQ=</latexit><latexit sha1_base64="fA3EkoA1X0KekweHf1N1xAdKges=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKoMegF48RzAOSGGYnvcmQmd1lplcNS/wOLx4U8eq/ePNvnCR70MSChqKqm+4uP5bCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEa66TMDUoRQQ4ESmrEGpnwJDX94NfEb96CNiMJbHMXQUawfikBwhla6w6c2wiNqlZbMybhbKLpldwq6SLyMFEmGarfw1e5FPFEQIpfMmJbnxthJmUbBJYzz7cRAzPiQ9aFlacgUmE46vXpMj63So0GkbYVIp+rviZQpY0bKt52K4cDMexPxP6+VYHDRSUUYJwghny0KEkkxopMIaE9o4ChHljCuhb2V8gHTjKMNKm9D8OZfXiT107Lnlr2bs2LlMosjRw7JESkRj5yTCrkmVVIjnGjyTF7Jm/PgvDjvzsesdcnJZg7IHzifP9PYkrQ=</latexit><latexit sha1_base64="fA3EkoA1X0KekweHf1N1xAdKges=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKoMegF48RzAOSGGYnvcmQmd1lplcNS/wOLx4U8eq/ePNvnCR70MSChqKqm+4uP5bCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEa66TMDUoRQQ4ESmrEGpnwJDX94NfEb96CNiMJbHMXQUawfikBwhla6w6c2wiNqlZbMybhbKLpldwq6SLyMFEmGarfw1e5FPFEQIpfMmJbnxthJmUbBJYzz7cRAzPiQ9aFlacgUmE46vXpMj63So0GkbYVIp+rviZQpY0bKt52K4cDMexPxP6+VYHDRSUUYJwghny0KEkkxopMIaE9o4ChHljCuhb2V8gHTjKMNKm9D8OZfXiT107Lnlr2bs2LlMosjRw7JESkRj5yTCrkmVVIjnGjyTF7Jm/PgvDjvzsesdcnJZg7IHzifP9PYkrQ=</latexit><latexit sha1_base64="fA3EkoA1X0KekweHf1N1xAdKges=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKoMegF48RzAOSGGYnvcmQmd1lplcNS/wOLx4U8eq/ePNvnCR70MSChqKqm+4uP5bCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEa66TMDUoRQQ4ESmrEGpnwJDX94NfEb96CNiMJbHMXQUawfikBwhla6w6c2wiNqlZbMybhbKLpldwq6SLyMFEmGarfw1e5FPFEQIpfMmJbnxthJmUbBJYzz7cRAzPiQ9aFlacgUmE46vXpMj63So0GkbYVIp+rviZQpY0bKt52K4cDMexPxP6+VYHDRSUUYJwghny0KEkkxopMIaE9o4ChHljCuhb2V8gHTjKMNKm9D8OZfXiT107Lnlr2bs2LlMosjRw7JESkRj5yTCrkmVVIjnGjyTF7Jm/PgvDjvzsesdcnJZg7IHzifP9PYkrQ=</latexit>

t = 6 s
<latexit sha1_base64="gpElLYFOE1xeiDEKqDg8V5qjP1s=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9SIEvXiMYB6QrGF2MpsMmZldZnrVsMTv8OJBEa/+izf/xsnjoIkFDUVVN91dYSK4Qc/7dhYWl5ZXVnNr+fWNza3tws5uzcSppqxKYxHrRkgME1yxKnIUrJFoRmQoWD3sX438+j3ThsfqFgcJCyTpKh5xStBKd3hx+tRC9ohaZmbYLhS9kjeGO0/8KSnCFJV24avViWkqmUIqiDFN30swyIhGTgUb5lupYQmhfdJlTUsVkcwE2fjqoXtolY4bxdqWQnes/p7IiDRmIEPbKQn2zKw3Ev/zmilG50HGVZIiU3SyKEqFi7E7isDtcM0oioElhGpub3Vpj2hC0QaVtyH4sy/Pk9pxyfdK/s1JsXw5jSMH+3AAR+DDGZThGipQBQoanuEV3pwH58V5dz4mrQvOdGYP/sD5/AEDl5LW</latexit><latexit sha1_base64="gpElLYFOE1xeiDEKqDg8V5qjP1s=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9SIEvXiMYB6QrGF2MpsMmZldZnrVsMTv8OJBEa/+izf/xsnjoIkFDUVVN91dYSK4Qc/7dhYWl5ZXVnNr+fWNza3tws5uzcSppqxKYxHrRkgME1yxKnIUrJFoRmQoWD3sX438+j3ThsfqFgcJCyTpKh5xStBKd3hx+tRC9ohaZmbYLhS9kjeGO0/8KSnCFJV24avViWkqmUIqiDFN30swyIhGTgUb5lupYQmhfdJlTUsVkcwE2fjqoXtolY4bxdqWQnes/p7IiDRmIEPbKQn2zKw3Ev/zmilG50HGVZIiU3SyKEqFi7E7isDtcM0oioElhGpub3Vpj2hC0QaVtyH4sy/Pk9pxyfdK/s1JsXw5jSMH+3AAR+DDGZThGipQBQoanuEV3pwH58V5dz4mrQvOdGYP/sD5/AEDl5LW</latexit><latexit sha1_base64="gpElLYFOE1xeiDEKqDg8V5qjP1s=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9SIEvXiMYB6QrGF2MpsMmZldZnrVsMTv8OJBEa/+izf/xsnjoIkFDUVVN91dYSK4Qc/7dhYWl5ZXVnNr+fWNza3tws5uzcSppqxKYxHrRkgME1yxKnIUrJFoRmQoWD3sX438+j3ThsfqFgcJCyTpKh5xStBKd3hx+tRC9ohaZmbYLhS9kjeGO0/8KSnCFJV24avViWkqmUIqiDFN30swyIhGTgUb5lupYQmhfdJlTUsVkcwE2fjqoXtolY4bxdqWQnes/p7IiDRmIEPbKQn2zKw3Ev/zmilG50HGVZIiU3SyKEqFi7E7isDtcM0oioElhGpub3Vpj2hC0QaVtyH4sy/Pk9pxyfdK/s1JsXw5jSMH+3AAR+DDGZThGipQBQoanuEV3pwH58V5dz4mrQvOdGYP/sD5/AEDl5LW</latexit><latexit sha1_base64="gpElLYFOE1xeiDEKqDg8V5qjP1s=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9SIEvXiMYB6QrGF2MpsMmZldZnrVsMTv8OJBEa/+izf/xsnjoIkFDUVVN91dYSK4Qc/7dhYWl5ZXVnNr+fWNza3tws5uzcSppqxKYxHrRkgME1yxKnIUrJFoRmQoWD3sX438+j3ThsfqFgcJCyTpKh5xStBKd3hx+tRC9ohaZmbYLhS9kjeGO0/8KSnCFJV24avViWkqmUIqiDFN30swyIhGTgUb5lupYQmhfdJlTUsVkcwE2fjqoXtolY4bxdqWQnes/p7IiDRmIEPbKQn2zKw3Ev/zmilG50HGVZIiU3SyKEqFi7E7isDtcM0oioElhGpub3Vpj2hC0QaVtyH4sy/Pk9pxyfdK/s1JsXw5jSMH+3AAR+DDGZThGipQBQoanuEV3pwH58V5dz4mrQvOdGYP/sD5/AEDl5LW</latexit>

t = 10 s
<latexit sha1_base64="yvvwcphcajyrK6sloJcjVA2DIA4=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquCHoRil48VrAf0C4lm2bb0CS7JLNiXeof8eJBEa/+FG/+G9N2D9r6YODx3gwz88JEcAOe9+0UVlbX1jeKm6Wt7Z3dsru33zRxqilr0FjEuh0SwwRXrAEcBGsnmhEZCtYKR9dTv3XPtOGxuoNxwgJJBopHnBKwUs8tw6XvPXWBPYCWmZn03IpX9WbAy8TPSQXlqPfcr24/pqlkCqggxnR8L4EgIxo4FWxS6qaGJYSOyIB1LFVEMhNks8Mn+NgqfRzF2pYCPFN/T2REGjOWoe2UBIZm0ZuK/3mdFKKLIOMqSYEpOl8UpQJDjKcp4D7XjIIYW0Ko5vZWTIdEEwo2q5INwV98eZk0T6u+V/Vvzyq1qzyOIjpER+gE+egc1dANqqMGoihFz+gVvTmPzovz7nzMWwtOPnOA/sD5/AHkMZM8</latexit><latexit sha1_base64="yvvwcphcajyrK6sloJcjVA2DIA4=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquCHoRil48VrAf0C4lm2bb0CS7JLNiXeof8eJBEa/+FG/+G9N2D9r6YODx3gwz88JEcAOe9+0UVlbX1jeKm6Wt7Z3dsru33zRxqilr0FjEuh0SwwRXrAEcBGsnmhEZCtYKR9dTv3XPtOGxuoNxwgJJBopHnBKwUs8tw6XvPXWBPYCWmZn03IpX9WbAy8TPSQXlqPfcr24/pqlkCqggxnR8L4EgIxo4FWxS6qaGJYSOyIB1LFVEMhNks8Mn+NgqfRzF2pYCPFN/T2REGjOWoe2UBIZm0ZuK/3mdFKKLIOMqSYEpOl8UpQJDjKcp4D7XjIIYW0Ko5vZWTIdEEwo2q5INwV98eZk0T6u+V/Vvzyq1qzyOIjpER+gE+egc1dANqqMGoihFz+gVvTmPzovz7nzMWwtOPnOA/sD5/AHkMZM8</latexit><latexit sha1_base64="yvvwcphcajyrK6sloJcjVA2DIA4=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquCHoRil48VrAf0C4lm2bb0CS7JLNiXeof8eJBEa/+FG/+G9N2D9r6YODx3gwz88JEcAOe9+0UVlbX1jeKm6Wt7Z3dsru33zRxqilr0FjEuh0SwwRXrAEcBGsnmhEZCtYKR9dTv3XPtOGxuoNxwgJJBopHnBKwUs8tw6XvPXWBPYCWmZn03IpX9WbAy8TPSQXlqPfcr24/pqlkCqggxnR8L4EgIxo4FWxS6qaGJYSOyIB1LFVEMhNks8Mn+NgqfRzF2pYCPFN/T2REGjOWoe2UBIZm0ZuK/3mdFKKLIOMqSYEpOl8UpQJDjKcp4D7XjIIYW0Ko5vZWTIdEEwo2q5INwV98eZk0T6u+V/Vvzyq1qzyOIjpER+gE+egc1dANqqMGoihFz+gVvTmPzovz7nzMWwtOPnOA/sD5/AHkMZM8</latexit><latexit sha1_base64="yvvwcphcajyrK6sloJcjVA2DIA4=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquCHoRil48VrAf0C4lm2bb0CS7JLNiXeof8eJBEa/+FG/+G9N2D9r6YODx3gwz88JEcAOe9+0UVlbX1jeKm6Wt7Z3dsru33zRxqilr0FjEuh0SwwRXrAEcBGsnmhEZCtYKR9dTv3XPtOGxuoNxwgJJBopHnBKwUs8tw6XvPXWBPYCWmZn03IpX9WbAy8TPSQXlqPfcr24/pqlkCqggxnR8L4EgIxo4FWxS6qaGJYSOyIB1LFVEMhNks8Mn+NgqfRzF2pYCPFN/T2REGjOWoe2UBIZm0ZuK/3mdFKKLIOMqSYEpOl8UpQJDjKcp4D7XjIIYW0Ko5vZWTIdEEwo2q5INwV98eZk0T6u+V/Vvzyq1qzyOIjpER+gE+egc1dANqqMGoihFz+gVvTmPzovz7nzMWwtOPnOA/sD5/AHkMZM8</latexit>

t = 15 s
<latexit sha1_base64="gJPw80jvDDjmkHZT1L8olWk6U5M=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9kVRS9C0YvHCvYD2qVk02wbmmSXZFasS/0jXjwo4tWf4s1/Y9ruQVsfDDzem2FmXpgIbsDzvp2l5ZXVtfXCRnFza3un5O7uNUycasrqNBaxboXEMMEVqwMHwVqJZkSGgjXD4fXEb94zbXis7mCUsECSvuIRpwSs1HVLcOmfPXWAPYCWmRl33bJX8abAi8TPSRnlqHXdr04vpqlkCqggxrR9L4EgIxo4FWxc7KSGJYQOSZ+1LVVEMhNk08PH+MgqPRzF2pYCPFV/T2REGjOSoe2UBAZm3puI/3ntFKKLIOMqSYEpOlsUpQJDjCcp4B7XjIIYWUKo5vZWTAdEEwo2q6INwZ9/eZE0Tiq+V/FvT8vVqzyOAjpAh+gY+egcVdENqqE6oihFz+gVvTmPzovz7nzMWpecfGYf/YHz+QPr/JNB</latexit><latexit sha1_base64="gJPw80jvDDjmkHZT1L8olWk6U5M=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9kVRS9C0YvHCvYD2qVk02wbmmSXZFasS/0jXjwo4tWf4s1/Y9ruQVsfDDzem2FmXpgIbsDzvp2l5ZXVtfXCRnFza3un5O7uNUycasrqNBaxboXEMMEVqwMHwVqJZkSGgjXD4fXEb94zbXis7mCUsECSvuIRpwSs1HVLcOmfPXWAPYCWmRl33bJX8abAi8TPSRnlqHXdr04vpqlkCqggxrR9L4EgIxo4FWxc7KSGJYQOSZ+1LVVEMhNk08PH+MgqPRzF2pYCPFV/T2REGjOSoe2UBAZm3puI/3ntFKKLIOMqSYEpOlsUpQJDjCcp4B7XjIIYWUKo5vZWTAdEEwo2q6INwZ9/eZE0Tiq+V/FvT8vVqzyOAjpAh+gY+egcVdENqqE6oihFz+gVvTmPzovz7nzMWpecfGYf/YHz+QPr/JNB</latexit><latexit sha1_base64="gJPw80jvDDjmkHZT1L8olWk6U5M=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9kVRS9C0YvHCvYD2qVk02wbmmSXZFasS/0jXjwo4tWf4s1/Y9ruQVsfDDzem2FmXpgIbsDzvp2l5ZXVtfXCRnFza3un5O7uNUycasrqNBaxboXEMMEVqwMHwVqJZkSGgjXD4fXEb94zbXis7mCUsECSvuIRpwSs1HVLcOmfPXWAPYCWmRl33bJX8abAi8TPSRnlqHXdr04vpqlkCqggxrR9L4EgIxo4FWxc7KSGJYQOSZ+1LVVEMhNk08PH+MgqPRzF2pYCPFV/T2REGjOSoe2UBAZm3puI/3ntFKKLIOMqSYEpOlsUpQJDjCcp4B7XjIIYWUKo5vZWTAdEEwo2q6INwZ9/eZE0Tiq+V/FvT8vVqzyOAjpAh+gY+egcVdENqqE6oihFz+gVvTmPzovz7nzMWpecfGYf/YHz+QPr/JNB</latexit><latexit sha1_base64="gJPw80jvDDjmkHZT1L8olWk6U5M=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9kVRS9C0YvHCvYD2qVk02wbmmSXZFasS/0jXjwo4tWf4s1/Y9ruQVsfDDzem2FmXpgIbsDzvp2l5ZXVtfXCRnFza3un5O7uNUycasrqNBaxboXEMMEVqwMHwVqJZkSGgjXD4fXEb94zbXis7mCUsECSvuIRpwSs1HVLcOmfPXWAPYCWmRl33bJX8abAi8TPSRnlqHXdr04vpqlkCqggxrR9L4EgIxo4FWxc7KSGJYQOSZ+1LVVEMhNk08PH+MgqPRzF2pYCPFV/T2REGjOSoe2UBAZm3puI/3ntFKKLIOMqSYEpOlsUpQJDjCcp4B7XjIIYWUKo5vZWTAdEEwo2q6INwZ9/eZE0Tiq+V/FvT8vVqzyOAjpAh+gY+egcVdENqqE6oihFz+gVvTmPzovz7nzMWpecfGYf/YHz+QPr/JNB</latexit>

kr
i
�

r 0
k

(m
)

<latexit sha1_base64="mOni5utBEN2CtD2AUAI4b4qrLeU=">AAACinicbVHLTsMwEHTDu7wKHLlYFKQilSrpBRAXBBwQJ5AoILVR5bgOtfAjsjdIJcov8DVc4T/4G5yQAwVWsjye3dXOjqNEcAu+/1nzZmbn5hcWl+rLK6tr642NzTurU0NZj2qhzUNELBNcsR5wEOwhMYzISLD76Om8yN8/M2O5VrcwSVgoyaPiMacEHDVstHYHShuZDSSBcRRnJh9yfIB/PP18F7fk/rDR9Dt+GfgvCCrQRFVcDzdqV4ORpqlkCqgg1vYDP4EwIwY4FSyvD1LLEkKfyCPrO6iIZDbMypVyvOeYEY61cUcBLtmfHRmR1k5k5CoLqfZ3riD/y/VTiI/CjKskBabo96A4FRg0LvzBI24YBTFxgFDDnVZMx8QQCs7F/6a03V1otO1KUnHDWE4tmBWVoLWw0zTVslQ6JdHStrZxWPYk5EXn9bpzP/jt9V9w1+0Efie46TZPz6p/WETbaAe1UIAO0Sm6RNeohyh6RW/oHX14K17XO/ZOvku9WtWzhabCu/gC2BXI7w==</latexit><latexit sha1_base64="mOni5utBEN2CtD2AUAI4b4qrLeU=">AAACinicbVHLTsMwEHTDu7wKHLlYFKQilSrpBRAXBBwQJ5AoILVR5bgOtfAjsjdIJcov8DVc4T/4G5yQAwVWsjye3dXOjqNEcAu+/1nzZmbn5hcWl+rLK6tr642NzTurU0NZj2qhzUNELBNcsR5wEOwhMYzISLD76Om8yN8/M2O5VrcwSVgoyaPiMacEHDVstHYHShuZDSSBcRRnJh9yfIB/PP18F7fk/rDR9Dt+GfgvCCrQRFVcDzdqV4ORpqlkCqgg1vYDP4EwIwY4FSyvD1LLEkKfyCPrO6iIZDbMypVyvOeYEY61cUcBLtmfHRmR1k5k5CoLqfZ3riD/y/VTiI/CjKskBabo96A4FRg0LvzBI24YBTFxgFDDnVZMx8QQCs7F/6a03V1otO1KUnHDWE4tmBWVoLWw0zTVslQ6JdHStrZxWPYk5EXn9bpzP/jt9V9w1+0Efie46TZPz6p/WETbaAe1UIAO0Sm6RNeohyh6RW/oHX14K17XO/ZOvku9WtWzhabCu/gC2BXI7w==</latexit><latexit sha1_base64="mOni5utBEN2CtD2AUAI4b4qrLeU=">AAACinicbVHLTsMwEHTDu7wKHLlYFKQilSrpBRAXBBwQJ5AoILVR5bgOtfAjsjdIJcov8DVc4T/4G5yQAwVWsjye3dXOjqNEcAu+/1nzZmbn5hcWl+rLK6tr642NzTurU0NZj2qhzUNELBNcsR5wEOwhMYzISLD76Om8yN8/M2O5VrcwSVgoyaPiMacEHDVstHYHShuZDSSBcRRnJh9yfIB/PP18F7fk/rDR9Dt+GfgvCCrQRFVcDzdqV4ORpqlkCqgg1vYDP4EwIwY4FSyvD1LLEkKfyCPrO6iIZDbMypVyvOeYEY61cUcBLtmfHRmR1k5k5CoLqfZ3riD/y/VTiI/CjKskBabo96A4FRg0LvzBI24YBTFxgFDDnVZMx8QQCs7F/6a03V1otO1KUnHDWE4tmBWVoLWw0zTVslQ6JdHStrZxWPYk5EXn9bpzP/jt9V9w1+0Efie46TZPz6p/WETbaAe1UIAO0Sm6RNeohyh6RW/oHX14K17XO/ZOvku9WtWzhabCu/gC2BXI7w==</latexit><latexit sha1_base64="mOni5utBEN2CtD2AUAI4b4qrLeU=">AAACinicbVHLTsMwEHTDu7wKHLlYFKQilSrpBRAXBBwQJ5AoILVR5bgOtfAjsjdIJcov8DVc4T/4G5yQAwVWsjye3dXOjqNEcAu+/1nzZmbn5hcWl+rLK6tr642NzTurU0NZj2qhzUNELBNcsR5wEOwhMYzISLD76Om8yN8/M2O5VrcwSVgoyaPiMacEHDVstHYHShuZDSSBcRRnJh9yfIB/PP18F7fk/rDR9Dt+GfgvCCrQRFVcDzdqV4ORpqlkCqgg1vYDP4EwIwY4FSyvD1LLEkKfyCPrO6iIZDbMypVyvOeYEY61cUcBLtmfHRmR1k5k5CoLqfZ3riD/y/VTiI/CjKskBabo96A4FRg0LvzBI24YBTFxgFDDnVZMx8QQCs7F/6a03V1otO1KUnHDWE4tmBWVoLWw0zTVslQ6JdHStrZxWPYk5EXn9bpzP/jt9V9w1+0Efie46TZPz6p/WETbaAe1UIAO0Sm6RNeohyh6RW/oHX14K17XO/ZOvku9WtWzhabCu/gC2BXI7w==</latexit>

(a)

(b)

(c)

Figure 4.4: Density plots of condensate for (a) ∆x = 0 and (b)∆x = ξ/3 at times
t = {6, 10, 15} s. The densities before the scattering event differ only on small scales
(see t = 6s), whereas for times after the event, large deviations are visible (see t = 15s).
At t = 10 seconds the vortices make their closest approach. The area plotted is
500µm×500µm. (c) Distances between the vortices at positions ri with r corresponding
to the position of the ith vortex from the center of the condensate and i ∈ {1, 2, 3}
corresponding to the vortex number as shown in Fig. 4.2 and anti-vortex at r0 for
∆x = 0. A minimum around t = 10 seconds is clearly visible.

72
Vortex analysis of chaotic, two-dimensional superfluid simulations for

few-vortex systems

Figure 4.5: The insets show the histograms of the COM trajectories calculated over
20 seconds of evolution for the system of four vortices when the position of a single
vortex has been shifted by ∆x = 0ξ and ∆x = ξ/3. The upper two panels depict
the corresponding trajectories after the direction of rotation of a single vortex has
been reversed, whereas the lower row displays the trajectories for the case where all
vortices co-rotate. The main curve plots the corresponding time-dependent Lyapunov
exponents, calculated from the shown COM trajectories. The negative time-dependent
Lyapunov exponents (orange) indicate that shifting the vortex about the initial position
still ensures the stability of vortex trajectories. Reversing the direction of circulation
of a single vortex (blue) however leads to fluctuations about zero, eventually leading
to a fully positive exponent.

4.4 Outlook 73

the histograms of the COM trajectories for the case where an anti-vortex is and is not
present.

As expected, the exponent spectrum calculated in Figure 4.5 shows that the regular,
co-rotating system always shows a negative (converging) exponential value, but the
system with the anti-vortex is largely positive (diverging). During the scattering event
shown in Figures 4.4 and 4.3, the exponent becomes positive for the remaining duration
of the simulation. It is worth noting that other global measurements could be used
instead of the COM, such as the center of charge [162], but these were found to provide
similar qualitative results to those shown here.

4.4 Outlook

With this study, I have shown that it is possible to induce chaotic vortex dynamics in
a two-dimensional few-vortex systems by using phase imprinting to flip the rotational
direction of a vortex. I also show that a scattering event seems to be correlated to a
positive time-dependent Lyapunov exponent and an acceleration of chaotic behavior.
This behavior is radically different to the behavior of large scale vortex lattices, where
similar techniques have been shown to only cause local disturbances [69]. Further
exploration of the crossover from regular to turbulent dynamics, and the crossover
from chaotic to stable dynamics for large-scale vortex lattices remains an interesting
extension for future work.

This study shows that there is strong utility in simulating two-dimensional quantum
gases and highlights dynamic measures, such as the Lyapunov exponent. Here, it
is obvious that fast vortex tracking methods are essential to dynamical turbulence
and chaos modelling, and a major limitation to performing similar studies in three
dimensions is the computational hurdle of vortex tracking in this area. As such, most
three-dimensional studies of quantum chaos rely on other methods, such as vortex
filament methods which provide vortex skeletons during the simulation, itself. As
mentioned in Chapter 1, these methods cannot simulate the underlying dynamics of the
condensate, and are thus removed from experimental application. Further extensions
of this work in three dimensions would also allow for studies on the movement of the
vortex lines, themselves, which were projected onto two-dimensional point-vortices in
this model.

It is important to note the utility of the GPUE codebase in this study. Throughout
the process, highly-resolved (up to 2048× 2048) wavefunction densities were generated
in the ground state via imaginary time propagation and dynamics were determined
with real-time evolution. For a typical run of 1024 × 1024 with 1 × 106 steps, with
a time resolution of 1 × 10−5 and outputting every 1000 steps, the simulation can
be completed within an hour. This metric includes vortex tracking on every output
step, which is a computational intensive task, as discussed in Chapter 3. Because
of the computational speed of GPUE, this study performed hundreds of individual
runs with slightly varying initial conditions to provide a strong indication of chaotic
behavior. Because this study very heavily relied on post-processing metrics, such as
vortex tracking and the calculation of the Lyapunov exponent, it is apparent that it
is ideal to provide an interface to the GPUE codebase in a language that more easily

74
Vortex analysis of chaotic, two-dimensional superfluid simulations for

few-vortex systems

provides the functionality expected by researchers for data manipulation. Such an
interface is possible with GPUE.jl and further motivates this development.

For the next study, I will transition into a discussion of three-dimensional vortex
dynamics and show an experimentally realistic system to allow for the generation,
control, and detection of vortex ring-like systems with artificial magnetic fields.

Chapter 5

Generation, control and detection of
3D vortex structures in superfluid
systems

In this chapter, I will discuss another application of the GPUE codebase, this time to
the controlled creation of vortex structures in three dimensions with artificial magnetic
fields generated by an optical nanofiber. To the best of my knowledge, this is the first
time an experimentally realizable protocol to generate vortex ring-like structures with
a dielectric system has been suggested and investigated, and I also provide a method
to detect whether a vortex ring is present in an elliptic-toroidal condensate. This
project encompasses three-dimensional vortices and coupled light-matter systems, so
to begin, I will briefly discuss vortices in three-dimensional systems, followed by the
model used for this project, where I will describe how the light from an optical nanofiber
can generate and control vortex structures in BEC systems. As a note, even though
vortex dynamics are not shown in this study, GPUE is also capable of simulating
the evolution in three-dimensions, and potential applications of vortex ring dynamics
will be discussed in this chapter. The contents of this chapter have recently been
submitted to Phys. Rev. Fluids (arXiv:1910.02364) [5]. In this study, I performed all
simulations, with exception of vortex states generated in Figures 5.4 and 5.5, which
were performed under my supervision by Peter Barnett. Figure 5.2 was generated
by multiple sources [9, 10]. I also designed the GPUE codebase to allow for these
simulations and visualized all data. This project was supervised overall by Thomas
Busch and Rashi Sachdeva.

5.1 Three-dimensional vortex structures

As mentioned in Chapter 1, in BEC systems with large amounts of angular momentum
and a single axis of rotation, the vortices will create a triangular, Abrikosov lattice [62,
70]. This regular structure is a direct consequence of the quantization of angular
momentum in quantum mechanics, and in Chapter 4, I discussed a small vortex lattice
in two-dimensions by integrating out the ẑ direction. In this chapter, I will discuss
fully three-dimensional vortex structures in BEC systems. In three dimensions, BEC

75

76
Generation, control and detection of 3D vortex structures in superfluid

systems

systems have been shown to support a large variety of flow-related excitations, such
as vortex lines and rings [47, 64, 70, 184–188]. There are many interesting features
to superfluid vortices in three dimensions, some of which follow from classical fluid
dynamic theory [54], which is a well-studied field and covered in many texts [189–192].

By modifying the axis of rotation or inducing vorticity with either artificial magnetic
fields or phase imprinting, one may create three-dimensional structures, like vortex
rings. Such structures are common when modelling large, three-dimensional superfluid
systems and are a direct consequence of the required connections of vortex lines. The
stability of vortex rings is ensured by Kelvin’s theorem [193], which means that unstable
excitations may decay into vortex rings or objects with ring-like topology [185].

In the case of multiple, interacting vortex rings, one can expect to find many similar
features in superfluids to what has been found previously in classical, viscous fluids.
If two vortex rings are generated in the same plane and in close proximity, it could
be possible for the two velocity fields to interact, causing one ring to expand and slow
down while the other contracts and speeds up. Under the right conditions, the lagging
ring can pass the forward ring through a process known as leapfrogging [194, 195]. This
behavior can be extended to vortex ring bundles, in such systems the entire bundle
will turn in on itself while moving in its self-induced velocity field [184].

In addition to leapfrogging, vortex rings can interact through direct collisions [196].
In superfluid 4He, some of the earliest experiments on vortex collisions with vortex
rings were performed by Schwarz in 1968 [197]. In the case of a head-on collision, two
identical, moving vortex rings will first grow in size before dispersing into a series of
smaller vortex rings around their common circumference [198]. These smaller rings
are created by vortex reconnections, which can occur any time vortex lines are facing
anti-parallel directions and it is energetically favorable to do so.

Finally, I will briefly discuss vortex reconnections, themselves. As predicted by
Feynman in 1955, vortex reconnections in a dissipative superfluid systems lead to
larger vortices continually reconnecting into smaller ones until the loops become small
enough to decay from dissipation or from interactions with boundaries [67]. These
reconnections produce sound waves when vortices directly interact and Kelvin waves
when vortices indirectly interact [199]. When a vortex ring structure is not pinned
by either gauge fields or rotation, it will evolve naturally by reconnecting into smaller
and smaller vortex rings when in a turbulent system [200]. This means that one would
expect to see vortex reconnections in any sufficiently complicated vortex tangle [66].

Though these dynamics are expected in superfluid systems, it is difficult to devise
experimental systems that systematically generate the desired behavior. In practice,
complex three-dimensional structures cannot be easily created by stirring or rotating a
BEC because vortex lines generated in this way must follow the axis of rotation, thus
even simple vortex rings can be a challenge to create, control, and detect experimen-
tally. In most cases, including in most theoretical proposals, vortex ring generation in
BEC systems relies on dynamic processes that do not create eigenstates of the system,
such as the decay of dark solitons in multicomponent condensates [185] with the snake
instability [201], the collision of symmetric defects [202], or direct density engineer-
ing [203, 204]. There are other theoretical proposals that consider interfering two BEC
systems [200], using Feschbach resonances [205], or phase imprinting methods [201].
As a note, in inhomogeniously trapped BEC systems, vortex ring structures are known

5.2 Controlled creation of three-dimensional vortex structures in
Bose–Einstein condensates using artificial magnetic fields 77

to be unstable, which has led to difficulties in their experimental observation [206]. In
addition, imaging techniques employed for BECs are not suited to identify whether
three-dimensional vortex structures are present.

To consistently control and generate more complex three-dimensional structures,
methods beyond rotation must be used, and there are only a few known experimental
systems that can do so [185, 188]. There is also a large amount of interest in generating
more complicated vortex structures, such as vortex knots [88, 207, 208]. Artificial
magnetic fields seem to be a promising method for the generation of complex three-
dimensional vortex structures in BEC systems [209], and in this chapter, I will present
a method to generate vortex rings, ring-lattices, and other vortex structures in three
dimensions by using the artificial magnetic field generated by an optical nanofiber.

5.2 Controlled creation of three-dimensional vortex
structures in Bose–Einstein condensates using ar-
tificial magnetic fields

One method to create artificial magnetic fields involves the interaction between an
atomic system in a dressed state and an electric field that is tuned near an atomic
resonance frequency [210]. In practice, this means that one can create a configurable
artificial magnetic field with an appropriately tuned electric field that varies strongly
over short distances, such as those found in the near-field regime on the surface of a
dielectric system when light undergoes total internal reflection [211]. One such system
that suits this purpose and can be used to generate vortex ring structures in BEC
systems is the optical nanofiber, which has several propagation modes to facilitate the
generation of configurable artificial magnetic fields.

Optical nanofiber systems can be created by heating and stretching optical fibers
until their thinnest region is roughly hundreds of nanometers in diameter [212, 213].
At this scale, the wavelength of light is larger than the diameter of the fiber and
the strength of the evanescent field is significantly enhanced [214]. The form of the
evanescent field varies greatly depending on the optical modes propagating through the
nanofiber, and I will show that this can be used to generate interesting and tunable
artificial magnetic fields.

Optical nanofibers are already used in many different experiments with ultracold
atoms [9, 10, 215–218], and trapping potentials around 200nm from the fiber surface
can be created with two differently detuned input fields [124, 219]. Our proposed device
will allow for the creation of vortex rings in BEC systems that are trapped toroidally
around the nanofiber by coupling the BEC to the evanescent field created by different
modes propagating through the nanofiber [220]. A schematic of this system is depicted
in Figure 5.1

In this setup, it is also possible to detect whether a vortex ring is present in the
system by exciting the scissors mode using an elliptic-toroidal trapping geometry [221–
223]. This can be done by tilting the trap radially from the center of the torus, which
will cause the BEC to oscillate in and out in the new potential, similar to the oscillation
shown in Chapter 1 for a simple harmonic oscillator. Without a vortex present, this

78
Generation, control and detection of 3D vortex structures in superfluid

systems

light

light

na
no

fib
er

BEC

artificial

magnetic

field

Figure 5.1: Schematic of the system. Blue or red-detuned light is sent into the
nanofiber (yellow), creating an evanescent field and artificial magnetic field (blue) that
influences the BEC (maroon) held by a toroidal trapping potential. If the artificial
magnetic field strength is greater than a threshold value, vortex rings (white) will
appear and begin to arrange themselves into a triangular lattice.

oscillation possesses a single frequency, whereas in the presence of a vortex ring, it will
contain two frequencies that average to the vortex-less oscillation frequency, similar to
scissors mode oscillations in a two-dimensional, elliptically-trapped BEC [224–226].

5.2.1 Bose–Einstein condensate dynamics in the presence of an
optical nanofiber

As discussed in Chapter 1, in the presence of an artificial magnetic field, the GPE
becomes,

i~
∂Ψ

∂t
=

[
(p−mA(r))2

2m
+ Vtrap(r) + g|Ψ|2

]
Ψ. (5.1)

Here, all values are defined as before. The artificial vector potential can take many
forms, but for here, I will again choose a description based on Berry’s connection [210],

A = i~ 〈Ψl|∇Ψl〉 , (5.2)

where Ψl is the atomic wavefunction in some dressed state l.

5.2 Controlled creation of three-dimensional vortex structures in
Bose–Einstein condensates using artificial magnetic fields 79

Considering a dressed, two-state atoms in the presence of an optical field, its states
can be written within the rotating wave approximation as [211],

|Ψ1(r)〉 =

(
cos[Φ(r)/2]

sin[Φ(r)/2]eiφ(z)

)
, (5.3)

|Ψ2(r)〉 =

(
− sin[Φ(r)/2]e−iφ(z)

cos[Φ(r)/2]

)
, (5.4)

where φ(z) is the phase of the optical field and Φ(r) = arctan(|κ(r)|/∆), with ∆ =
ω0 − ω being the detuning and κ(r) = d · E(r)/~ being the Rabi frequency. The
atomic dipole moment is given by d and E(r) is the electric field. Here the form of
A follows the form of the optical fields, and the artificial magnetic field is given by
B = ∇×A; therefore, it is possible to influence the magnetic field and vortex structures
generated with this system by modifying the optical profile around the nanofiber. As
an important note, the fields typically used for fiber trapping have very large detunings,
as small detunings lead to higher scattering rates and losses [227]. These values will
lead to insignificant gauge fields [220].

For optical nanofibers, one can determine which modes will propagate in the system
by calculating the V -number, with V = k0a

√
n2

1 − n2
2, where a is the fiber radius, n1 is

the refractive index of the fiber, n2 is the refractive index of the cladding, and k0 = ω/c
with ω being the frequency of the input light beam. The V number can be controlled
by modifying the radius of the fiber. The way in which light propagates through the
fiber for each mode is characterized by the modal propagation constant, β, the effective
refractive index of the fiber is neff = β/κ0. In Figure 5.2, a plot of neff vs V number
is shown in (a) and it can be seen that certain modes cannot propagate until certain
threshold values are reached. In (b) and (c), the simulated and experimental images of
the fiber output are shown for the LP11 group, which is a combination of the HE21even,
HE21odd, TE01 and the TM01 modes. For the system considered in this chapter, the fiber
has been tapered such that the cladding is the vacuum, itself, with n2 = 1; therefore,
higher order modes can only be sustained if V > Vc ' 2.405. Below this value, only
the fundamental mode can propagate in the system.

Using cylindrical coordinates, the evanescent field of the HE`m mode with circular
polarization is [228],

Er = iC[(1− s)K`−1(qr) + (1 + s)K`+1(qr)]ei(ωt−βz), (5.5)

Eφ = −C[(1− s)K`−1(qr)− (1 + s)K`+1(qr)]ei(ωt−βz), (5.6)

Ez = 2C(q/β)K`(qr)e
i(ωt−βz), (5.7)

where

s =
1/h2a2 + 1/q2a2

J ′`(ha)/[haJ`(ha)] +K ′`(qa)/[qaK`(qa)]
, (5.8)

C =
β

2q

J`(ha)/K`(qa)√
2πa2(n2

1N1 + n2
2N2)

, (5.9)

80
Generation, control and detection of 3D vortex structures in superfluid

systems

Figure 5.2: (a) Plot of effective refractive index and V number of an optical fiber.
The circle indicates the LP11 group, which is the first higher-order group composed of
the HE21even, HE21odd, TE01 and the TM01 modes. (b) Simulated and (c) experimental
images of the output from the LP11 group are also shown. Reproduced from [9, 10].

and

N1 =
β2

4h2

[
(1− s)2

[
J2
`−1(ha) + J2

` (ha)
]

+ (1 + s)2
[
J2
`+1(ha)− J`(ha)J`+2(ha)

]]
+

1

2

[
J2
` (ha)− J`−1(ha)J`+1(ha)

]
, (5.10)

N2 =
J2
` (ha)

2K2
` (qa)

(
β2

4q2

[
(1− s)2

[
K2
`−1(qa)−K2

` (qa)
]

− (1 + s)2
[
K2
`+1(qa)−K`(qa)K`+2(qa)

]]
[
K2
` (qa) +K`−1(qa)K`+1(qa)

])
. (5.11)

The mode geometry is given by Jn(x), the Bessel function of the first kind, Kn(x),
the modified Bessel function of the second kind, and β, the propagation constant of
the fiber. The scaling factors are given by q =

√
β2 − n2

2k
2
0 and h =

√
n2

1k
2
0 − β2, the

normalization constant is C and s is a dimensionless parameter.
When the input light field is linearly polarized, it is convenient to write the Cartesian

components of the evanescent electric field as

Ex =
√

2C
[
(1− s)K`−1(qr) cos(φ0) + (1 + s)K`+1(qr) cos(2φ− φ0)

]
ei(ωt−βz), (5.12)

Ey =
√

2C
[
(1− s)K`−1(qr) sin(φ0) + (1 + s)K`+1(qr) sin(2φ− φ0)

]
ei(ωt−βz), (5.13)

Ez =2
√

2iC(q/β)K`(qr) cos(φ− φ0)ei(ωt−βz). (5.14)

5.2 Controlled creation of three-dimensional vortex structures in
Bose–Einstein condensates using artificial magnetic fields 81

Figure 5.3: Images of electric and artificial magnetic field profiles for [(a) and (b)]
the fundamental HE11 mode with circular polarization, [(c) and (d)] the HE11 mode
with linear polarization, and [(e) and (f)] the HE21 mode with linear polarization. For
these calculations, the input power is 372 nW in (a) and (b) , 16 nW in (c) and (d),
and 418 nW in (e) and (f). For the HE11 mode, the nanofiber radius is 200 nm with
blue-detuned light of 700 nm, and for the HE21 mode, the nanofiber radius is 400 nm
with red-detuned light of 980 nm

Here φ0 determines the orientation of polarization, with φ0 = 0 being along the x
axis and π/2 being along the y axis. The artificial vector potential produced by such
evanescent fields around an optical nanofiber is then given by [220]

A = ẑ~κ0(n1 + 1)s̃

[|drEr + dφEφ + dzEz|2
1 + s̃2|drEr + dφEφ + dzEz|2

]
, (5.15)

where s̃ = |d·E|
~|∆| and the corresponding magnetic field B = ∇×A can be calculated to

be

B =
~κ0s

2(n1 + 1)

(1 + s̃2|drEr + dφEφ + dzEz|2)2

×
[
φ̂
∂

∂r
|drEr + dφEφ + dzEz|2

− r̂1

r

∂

∂φ
|drEr + dφEφ + dzEz|2

]
. (5.16)

82
Generation, control and detection of 3D vortex structures in superfluid

systems

Figure 5.4: Vortex configurations for different magnetic field profiles from the
nanofiber for the fundamental HE11 mode with (a) circular polarization, (b) elliptical
polarization, and (c) linear polarization along the ŷ direction. The vortex distributions
have been found via an isosurface on the Sobel filtered wavefunction density for a 87Rb
BEC and all optical fiber fields are normalized and for a nanofiber of 200 nm in radius
with blue-detuned light of 700nm. The magnetic field profiles shown in the shaded
region beneath wavefunction density are similar to those in Figure 5.3(b) and (d).

This shows that the B field has only components in the φ̂ and r̂ directions, which
means that all field lines lie in the horizontal plane if the fiber is aligned along the
vertical ẑ direction.

This also means that a BEC trapped toroidally around the nanofiber would facilitate
vortex structures that wrap around the nanofiber and potentially close on themselves
in the form of vortex rings; however, other vortex structures are possible as well. In
addition, the value of s̃ governs the amplitude and range of the magnetic field, and as
such, it is possible to manipulate the size and shape of the generated vortex rings by
changing the detuning and intensity of the electric field [220].

To investigate the fundamental properties of this system, I will consider the funda-
mental HE11 mode with circular polarization, the HE11 mode with linear polarization,
and the HE21 mode with linear polarization. Though even higher-order modes may be
generated by the optical nanofiber, increasing the V -number to facilitate these modes
also requires increasing the fiber radius and therefore introducing instabilities and more
coupling processes. It is also possible to create even more complex field configurations
by interfering different modes. The electric field configurations and their corresponding
magnetic field profiles can be seen in Figure 5.3. Here, the circularly polarized HE11

mode will create a cyllindrically symmetric electric (a) and magnetic (b) field profiles;
however, linearly polarized light will create a lobed structure for both (c and d). When
using the linearly-polarized HE21 mode, four petals appear in the electric and magnetic
field profiles, which suggest unusual vortex structures. Now I will discuss what types
of vortex structures can be generated with this system, including the possibility of
generating vortex ring lattices.

5.2.2 Ground state vortex configurations

We will use GPUE [4] to describe a 87Rb condensate with 1×105 atoms with a scattering
length of as = 4.76× 10−9 m on a three-dimensional grid of 2563 points with a spatial
resolution of 50 nm. We assume a toroidal trapping potential around the fiber given

5.2 Controlled creation of three-dimensional vortex structures in
Bose–Einstein condensates using artificial magnetic fields 83

Figure 5.5: Vortex configuration for the HE21 mode with linear polarization along
the ŷ direction. The magnetic field profile is similar to the one shown in Figure 5.3(f),
and has been calculated for a nanofiber of 400 nm in radius with red-detuned light of
980 nm.

by,
Vtrap = m(ω2

r(r − η)2 + ω2
zz

2), (5.17)

where the frequencies in the r̂ and ẑ directions are chosen to be ωr = ωz = 7071Hz to
match typical experimental conditions in fiber trapping [215] and is roughly consistent
with the known trapping frequencies for toroidal traps [229, 230]. Here, η describes
the distance of the center of the torus from the center of the fiber and is chosen such
that the atoms are trapped beyond the van-der-Waals potential of the fiber. For the
HE11 mode, the fiber radius is 200 nm and η = 3.20µm, creating a toroidal BEC with
an inner radius of roughly 300 nm from the fiber surface. For the HE21 mode, the fiber
radius is increased to 400 nm, but all other parameters are kept the same, creating a
toroidal BEC with an inner radius of roughly 150 nm.

As shown in Figure 5.4(a), when simulating the HE11 mode with these parameters,
a single vortex line appears that wraps around the fiber and reconnects in the form
of a single vortex ring as the ground state solution. In contrast, the linearly polarized
HE11 mode in Figure 5.4(c) shows a ground state where the vortex line bends toward
the center of the torus, creating two vortex lobes. As a note, the vortex lines do not
follow the magnetic field lines exactly, but instead reconnect to the neighboring lobe
when approaching each other within a healing length. If elliptically polarized light
is considered, one can see a hybrid ground state between the circularly and linearly
polarized modes, shown in Figure 5.4(b). Finally, I show a four-petal ground-state
solution when using the HE21 linearly polarized mode in Figure 5.5. Here, I also show
that it is possible to generate multiple vortex structures in-line with themselves by
increasing the intensity of the artificial magnetic field.

This indicates that it is possible to generate interesting vortex ring lattice struc-
tures in three-dimensions by sufficiently increasing the complexity of the artificial mag-
netic field. To study the control of multiple vortex structures with this system, I first
simulated a system with low artificial magnetic field strength and showed that this
simulation will cause all vortex rings to line up at peaks in the magnetic field in Fig-

84
Generation, control and detection of 3D vortex structures in superfluid

systems

Figure 5.6: (a) The magnetic field profile along the x-direction for the fundamental
HE11 mode with circular polarization outside a fiber of 200 nm radius. Note that for
this mode and polarization the whole system is azimuthally symmetric. For weak fields
(see (b)) this leads to a small number of vortices that align along the line at which the
magnetic field is maximal and for larger fields (see (c)) more vortex rings appear that
form the beginning of an Abrikosov lattice. The optical fiber field and wavefunction
density have been normalized and are for a nanofiber of 200 nm in diameter with
blue-detuned light of 700nm and a 87Rb BEC respectively.

5.2 Controlled creation of three-dimensional vortex structures in
Bose–Einstein condensates using artificial magnetic fields 85

ure 5.6(a and b). As the magnetic field is increased from this point, the vortex rings
begin to pack together and form an Abrikosov-like lattice in-line with peaks in the
artificial magnetic field, shown in Figure 5.6(a and c). If other magnetic field profiles
are used, it could be possible to generate different Abrikosov-like ring lattice configura-
tions. This system could also allow for studies of bulk vortex-ring movement, thereby
potentially creating a vortex ring lattice that moves in a leapfrogging manner based on
the individual vortex ring’s self-induced velocity profiles.

The optical nanofiber seems to provide unprecedented control over the vortex ge-
ometries generated in a toroidally-trapped BEC system, and one can control the shape
of each vortex structure by manipulating the optical modes into the nanofiber. In addi-
tion, because the optical fields could be time-dependent, this system can be used in the
future to probe dynamical behavior. In this case, one must consider the effects of high
artificial magnetic fields on the distribution of atoms, themselves, because (as described
in Chapter 1), the external potential Vtrap will be modified by a term proportional to
A2. This can be seen by the change in the BEC profile in Figure 5.6(c).

5.2.3 Dynamic vortex detection and scissor modes

Observing the presence of vortex rings in a three dimensional BEC is a difficult prob-
lem, as absorption spectroscopy usually only provides a picture of an integrated two-
dimensional density. However, due to the unique geometry of this system, one can
identify whether vortex rings are present by exciting the scissors mode of the conden-
sate [221–223]. For an elliptic-toroidal geometry (ωz < ωr), the scissors mode can be
excited by modifying the external potential with a rotation in the r − z plane,

V = Vtrap(r, θ, z)−mω2
0αrz, (5.18)

where α = 2εθ is a coefficient related to the tilting angle, ε is the deformation of the
trap in the r− z plane and θ is the angle at which the original trap was aligned at. For
a small initial angle of θ0 this change in the potential causes a BEC without rotation
to oscillate back and forth in the trap with a frequency given by [226]

ωscissors =
√
ω2
r + ω2

z . (5.19)

If, however, this mode is excited for a BEC that contains a vortex line, the oscillation
will be strongly influenced by the currents inside the condensate and two different fre-
quencies (ω+ and ω−) appear in the oscillation [224–226]. When the splitting frequency
is small compared to the scissors mode frequency, it can be written as [225]

ω+ − ω− =
〈lz〉

m〈r2 + z2〉 , (5.20)

where 〈lz〉 is the average angular momentum per particle. Calculating these values
for the system for ωr = 4242Hz, and ωz = 2828Hz then leads to ωscissors = 5090Hz,
ω− = 3765Hz, and ω+ = 6415Hz, which are very close to the values observed in
the numerical simulations shown in Fig. 5.7. However, one can also see from this
figure that the oscillation is not perfect and seems to decay over time. This is due

86
Generation, control and detection of 3D vortex structures in superfluid

systems

Figure 5.7: Angle of the condensate axis after excitation of the toroidal scissors
mode for an elliptic-toroidal BEC with a single vortex ring (purple, solid) and without
a vortex present (cyan, dashed). Depictions of two dimensional slices for the scissors
mode without a vortex are shown in the insets. Here, the scissors mode causes oscilla-
tion in and out towards the center of the system, and that two distinct frequencies are
present in the curve for the condensate carrying a vortex ring.

5.3 Outlook 87

to the above mentioned modification of the trapping potential by the artificial vector
potential, which leads to a deviation from the perfect elliptical toroidal shape used in
the derivation of Equation (5.20).

It is worth noting that this method cannot be used to detect a vortex ring inside a
simply connected condensate, as in this situation the flow around the vortex line has
no preferred direction. However, in the toroidal shape, each radial slice can be seen as
a two-dimensional elliptical BEC with a single vortex, and the system will therefore
exhibit the scissors mode frequency as expected. While in principle the excitation of
the scissors mode can also be used to detect Abrikosov vortex-ring lattice, the fact
that the inhomogeneous artificial magnetic field leads to an inhomogeneous vortex ring
distribution will have an effect on the expected oscillation frequencies.

5.3 Outlook

In this application of the GPUE codebase, I have shown that it is possible to create and
control vortex rings and ring-like vortex structures by using the artificial magnetic field
generated by the optical nanofiber. There is currently no other known method to gen-
erate the structures created by the linearly polarized modes, shown in Figure 5.4(b,c)
and 5.5. I have also shown that the scissors mode can be used to detect whether
a vortex ring is present in an elliptic toroidal trap. These fiber-generated structures
could allow for experimental systems to study superfluid mechanisms, like the kelvin-
mode cascade, superfluid turbulence, or reconnection events between superfluid vortex
lines. This might also be the first step in creating knotted vortex lines around an
optical nanofiber; however, to generate these structures, the magnetic field must have
a dependence on ẑ, which is not present in this model.

This project leaves several open fields of study for future work and future simula-
tions with GPUE, including the study of dynamic field effects on vortex structures, the
generation of vortex knots in superfluid systems with this device, and studies of vortex
ring lattice movement in BEC systems. For both of these cases, significant work must
be performed both theoretically and computationally.

To generate vortex knots with this system, a magnetic field with ẑ must be created.
Such fields might be possible with fiber Bragg gratings [231] or other methods to
change the evanescent profile of the fiber. Such simulations would require FEM or
FDTD simulations of the optical fiber, itself, which makes the problem an intricate
engineering process of generating the right field with an optical nanofiber. In addition,
a z-dependent gauge field requires analysis of the other gauge field term, pzAz

2
, which

is not considered in this work because the derivative along the ẑ direction for the fiber
field is 0. This leads to interesting questions about how BEC systems behave in the
presence of such artificial magnetic fields.

For the movement of dynamic vortex ring tangles generated with this system, vortex
tracking methods in three-dimensions should be employed. As described in Chapter 3,
this is not a trivial task and I will discuss methods that could be used to do this in
the outlook of this work, Chapter 6. It is also interesting to see what happens if the
HE21 vortex structures are evolved in real-time and whether scissors modes can be used
to detect such vortex structures as well. With a sharp magnetic field, it might also

88
Generation, control and detection of 3D vortex structures in superfluid

systems

possible to create a phase separation along a vortex line for multicomponent condensate
simulations, which could be an interesting area for future work.

Chapter 6

Conclusion

This thesis has presented my efforts to create a massively parallel SSFM codebase for
the simulation of superfluid vortex dynamics in Bose–Einstein Condensates (BECs).
Starting from the SSFM and a discussion on the dynamics of ultracold atomic systems,
I motivated the idea of dynamic quantum state engineering by introducing quantum
optimal control and shortcuts to adiabaticity. Both of these methods were used to show
that it is possible to generate macroscopic superposition states in a Tonks–Girardeau
gas on a ring with a barrier to break rotational symmetry. From there, I introduced
GPGPU and the GPUE codebase, emphasizing existing challenges in the field and the
methods I used to overcome them. In the process, I also briefly mentioned the challeng-
ing problem of memory coalescence when using spectral methods on GPU hardware
and proposed an additional software package as method to further optimize the FFT
operations with a distributed, multi-GPU transpose. After this, I introduced an exam-
ple physical system that showed it is possible to generate chaotic vortex dynamics in
few-vortex systems and emphasized the need for vortex tracking and post-processing
methods, by calculating the Lyapunov exponent on the vortex trajectories. Finally, I
introduced a three-dimensional example system that generates, controls, and detects
vortex ring-like geometries in a toroidally-trapped BEC coupled to the artificial mag-
netic field generated by an optical nanofiber.

Throughout this work, I have attempted to highlight all future directions when
relevant to the chapter. I will continue the discussion on future research pursuits here,
while also presenting new directions not yet considered in this work.

6.1 Further development of GPUE

Though the GPUE codebase is roughly feature complete, there are several directions
for future development, many of which were described in Chapter 3. In particular, a
re-write of GPUE in Julia along with developing an n-dimensional, distributed, GPU
transpose are currently being worked on. The former will allow for GPUE to be more
maintainable and require less development time in the future. The latter is applicable
to a wide range of spectral methods and might allow for several methods to become
relevant on new HPC environment. As both of these were discussed at length in
Chapter 3, I will not discuss them further here; however, there are future directions

89

90 Conclusion

where proper development has not begun, such as new vortex tracking methods and
potentially using expression trees for general-purpose Hamiltonian solutions.

6.1.1 Vortex tracking in two and three dimensions

The GPUE codebase currently has the capability of tracking vortices in two dimensions
and highlighting vortices in three; however, vortex tracking has yet to be implemented
in three dimensions as there are no reliable and general methods for tracking three
dimensional vortex structures in some superfluid simulations performed with GPUE. In
addition, the vortex tracking method in GPUE is currently unstable for non-harmonic
traps in two dimensions, and in many cases, the user does not know the precise geometry
of the trapping system and thus cannot mask out the phase outside of the condensate
surface. Though it is possible to mask out areas without a vortex by multiplying the
phase by the condensate density, this has not yet been implemented in GPUE. As
such, generalized vortex tracking methods for two and three-dimensional simulations
is desirable.

In 2016, a method for three dimensional vortex tracking was proposed by Villois
et al. [148]; however, this method has no computational complexity bound, assumes
periodic boundary conditions, and required a large amount of communication between
the device and host. This method begins to search for vortex locations by creating a
Boolean domain of locations to search through by locating where the density is below
a threshold. After the Boolean matrix is defined, the search is refined by locating
phase plaquettes within this domain and iteratively locating a vortex skeleton. For the
case where the condensate does not extend to the edges of the simulated domain, this
method needs further refinement, and I have considered developing a similar method
that leverages GPUE’s vortex highlighting scheme to create three-dimensional vortex
skeletons for vortex tracking in two and three dimensions. In this case, rather than
simply searching for locations where the density is low, a search would be performed in
locations between peaks in the Sobel-filtered density, which correspond to likely vortex
locations. This method could be easily re-worked for two-dimensional simulations as
well, creating a dynamic mask every timestep for vortex tracking, thereby eliminated
the current, unstable masking procedure.

6.1.2 General purpose Hamiltonian solver

As GPUE can perform multi-component simulations and can also parse expression
trees, it is possible to simulate a wide variety of physical systems beyond the GPE.
One such extension involves using the expression tree parser to solve arbitrarily pro-
vided Hamiltonians. In this case, the user would simply provide a string with the
Hamiltonian they would like solved, and an expression tree would be generated and
reduced for GPU computation. This might be an interesting application to machine
learning, which has been extended to quantum many body problems [232]. Machine
learning has recently been applied to many other theoretical [233] and experimen-
tal [234] problems and is a promising future direction or research [235]. This project
would require significant software engineering time apart from GPUE-specific develop-
ment, as the SSFM is not always the most optimal choice for solving certain quantum

91

systems. In addition, expression trees can be much more easily created and used in
other software frameworks, such as Julia. Ultimately, other general-purpose libraries
already exist for general-purpose simulations of this kind, such as XMDS [154], and if
GPUE were to evolve into similar software, several lessons learned in the development
of other software suites could be used.

6.1.3 Octree grid

Though the CSSFM method [24] does not provide adequate compression for vortex-
based simulations, there is still an interesting open question about whether any grid
compression schemes might work with the SSFM. One such method that has been
suggested is an octree-based grid, where each grid element is determined in a finite-
volume fashion based on the Sobel filter of the density. This would allow for higher
resolution in areas that have the greatest change in condensate density, which would be
around the condensate edges, vortices, and perturbations, such as sound waves. One
advantage of using an octree for this purpose is that FFTs may be performed with small
modifications on the grid, thereby allowing for the SSFM with dynamic grids; however,
the regridding operation is still computationally intensive and even though it is entirely
possible to perform an FFT on this system, such functionality is beyond the scope of
CuFFT. Therefore, significant engineering time must be devoted to either developing
a CuFFT competitor for this case or for finding some method to allow CuFFT to be
used in this way. Because the primary advantage of SSFM over other methods is the
speed of FFT-based operations, there is likely little reason to use this method over
FEM solutions.

GPUE.jl

In Chapter 3, I discussed the advantages of re-writing GPUE in Julia, and in Chapters 4
and 5, I discussed applications of GPUE and suggested areas where Julia could improve
the software. In these chapters, I mentioned that post-processing operations, such
as vortex tracking, calculating of the Lyapunov exponent spectrum, and calculation
of the scissors mode oscillation angle, require processing output data from GPUE,
and though vortex tracking and highlighting is already in-built to GPUE, it is still
computationally complex operation. For this reason, it would be useful for both the
timestepping method and all necessary post-processing tools to be available in the same
language, and in Julia, this is possible with little, if any, performance loss. This would
also allow for modular development and maintenance of GPUE in the future, where
the timestepping methods remain unchanged as users develop post-processing methods
when required.

In addition to these, there are many computer science researchers who are using
Julia as a testing-bed for new ideas for software engineering and certain operations,
such as GPU-enabled automatic differentiation [236] could be a useful tool for fu-
ture quantum simulations like those presented in this work. At the current data, the
GPUE.jl package competes with GPUE (CUDA) in GPU performance; however, ex-
pression trees have not been completely implemented. Even so, as the development of
the DistributedTranspose.jl package is in Julia, future development of GPUE.jl should

92 Conclusion

quickly surpass the functionality of its CUDA-based variant.

6.2 Future simulations of quantum systems
In addition to further developments of GPUE and related software packages, there
are also several new simulations that can be performed now on GPU hardware, such
are multicomponent simulations with gauge fields and dynamic studies of the system
introduced in Chapter 5. Because GPUE allows for the simulation of dynamic control
processes through expression trees, further three-dimensional STA studies can also be
performed. Several physical applications of GPUE software have been suggested, such
as dynamic turbulence studies, multicomponent heat engines, and three-dimensional
vortex studies. All of these will be discussed further in the near future.

Ultimately, this work has provided a toolbox for the simulation of various quantum
phenomenon that were computationally intractable before now, including the three-
dimensional simulations of superfluid turbulence without relying on vortex-filament
methods, and simulations of multicomponent systems with gauge fields. It has also
developed novel methods for maximizing the size of the simulated domain with the
SSFM, along with tools like the DistributedTranspose.jl that allow for spectral methods
to be more widely used in HPC environments.

Appendix A

Simple vector additions in CUDA,
OpenCL, and JuliaGPU

This is a compilation of an introductory GPGPU example in three languages (CUDA,
OpenCL, and Julia) to show the differences in different approaches to GPGPU compu-
tation and the necessary abstractions required by users in order to perform basic tasks
using GPGPU

A.1 Vector addition with C++
Firstly, a simple vector addition without GPGPU as a baseline:
1 #include <iostream >
2
3 int main(){
4
5 int n = 1024;
6
7 // Initializing host vectors
8 double *a, *b, *c;
9 a = (double *) malloc(sizeof(double)*n);

10 b = (double *) malloc(sizeof(double)*n);
11 c = (double *) malloc(sizeof(double)*n);
12
13 // Initializing a and b
14 for (size_t i = 0; i < n; ++i){
15 a[i] = i;
16 b[i] = i;
17 c[i] = 0;
18 }
19
20 // Vector Addition
21 for (size_t i = 0; i < n; ++i){
22 c[i] = a[i] + b[i];
23 }
24
25 // Check to make sure everything works
26 for (size_t i = 0; i < n; ++i){
27 if (c[i] != a[i] + b[i]){

93

94 Simple vector additions in CUDA, OpenCL, and JuliaGPU

28 std::cout << "Yo. You failed. What a loser! Ha\n";
29 exit (1);
30 }
31 }
32
33 std::cout << "You passed the test , congratulations !\n";
34
35 free(a);
36 free(b);
37 free(c);
38 }

A.2 Vector addition with CUDA

Now for vector addition with CUDA. Here, it is important to note that it is not
practical to ask users to write CUDA kernels, as they are not skilled in GPGPU. In
addition, direct kernel manipulation would require a recompilation every run, which is
cumbersome for most users along with dedicated directories for differently built binaries
if running multiple GPUE simulations simultaneously. As such additional techniques
are used in GPUE to allow users to write their own functions without recompiling the
GPUE codebase every run, and these methods are discussed in Chapter 3

1 #include <iostream >
2 #include <math.h>
3 #include <chrono >
4
5 __global__ void vecAdd(double *a, double *b, double *c, int n){
6
7 // Global Thread ID
8 int id = blockIdx.x*blockDim.x + threadIdx.x;
9

10 // Check to make sure we are in range
11 if (id < n){
12 c[id] = a[id] + b[id];
13 }
14 }
15
16 int main(){
17
18 int n = 1024;
19
20 // Initializing host vectors
21 double *a, *b, *c;
22 a = (double *) malloc(sizeof(double)*n);
23 b = (double *) malloc(sizeof(double)*n);
24 c = (double *) malloc(sizeof(double)*n);
25
26 // Initializing all device vectors
27 double *d_a , *d_b , *d_c;
28
29 cudaMalloc (&d_a , sizeof(double)*n);
30 cudaMalloc (&d_b , sizeof(double)*n);

A.3 Vector addition with OpenCL 95

31 cudaMalloc (&d_c , sizeof(double)*n);
32
33 // Initializing a and b
34 for (size_t i = 0; i < n; ++i){
35 a[i] = i;
36 b[i] = i;
37 c[i] = 0;
38 }
39
40 cudaMemcpy(d_a , a, sizeof(double)*n, cudaMemcpyHostToDevice);
41 cudaMemcpy(d_b , b, sizeof(double)*n, cudaMemcpyHostToDevice);
42
43 dim3 threads , grid;
44
45 // threads are arbitrarily chosen
46 threads = {100, 1, 1};
47 grid = {(unsigned int)ceil((float)n/threads.x), 1, 1};
48 vecAdd <<<grid , threads >>>(d_a , d_b , d_c , n);
49
50 // Copying back to host
51 cudaMemcpy(c, d_c , sizeof(double)*n, cudaMemcpyDeviceToHost);
52
53 // Check to make sure everything works
54 for (size_t i = 0; i < n; ++i){
55 if (c[i] != a[i] + b[i]){
56 std::cout << "Yo. You failed. What a loser! Ha\n";
57 exit (1);
58 }
59 }
60
61 std::cout << "You passed the test , congratulations !\n";
62
63 free(a);
64 free(b);
65 free(c);
66
67 cudaFree(d_a);
68 cudaFree(d_b);
69 cudaFree(d_c);
70 }

A.3 Vector addition with OpenCL
Vector addition with OpenCL has notable advantages to CUDA, namely that users can
update the kernels without recompilation. Though it is tempting to use OpenCL due
to this, it is notably more cumbersome to write OpenCL code than CUDA, and it we
lack the engineering resources to develop an OpenCL variant of GPUE. In addition,
Julia provides similar benefits to OpenCL with much higher maintainability.
1 #define __CL_ENABLE_EXCEPTIONS
2
3 #include <CL/cl.hpp >
4 #include <iostream >

96 Simple vector additions in CUDA, OpenCL, and JuliaGPU

5 #include <vector >
6 #include <math.h>
7
8 // OpenCL kernel
9 const char *kernelSource = "\n" \

10 "#pragma OPENCL EXTENSION cl_khr_fp64 : enable \n" \
11 "__kernel void vecAdd(__global double *a, \n" \
12 " __global double *b, \n" \
13 " __global double *c, \n" \
14 " const unsigned int n){ \n" \
15 " \n" \
16 " // Global Tread ID \n" \
17 " int id = get_global_id (0); \n" \
18 " \n" \
19 " // Remain in boundaries \n" \
20 " if (id < n){ \n" \
21 " c[id] = a[id] + b[id]; \n" \
22 " } \n" \
23 "} \n";
24
25 int main(){
26 unsigned int n = 1024;
27
28 double *h_a , *h_b , *h_c;
29
30 h_a = new double[n];
31 h_b = new double[n];
32 h_c = new double[n];
33
34 for (size_t i = 0; i < n; ++i){
35 h_a[i] = 1;
36 h_b[i] = 1;
37 }
38
39 cl:: Buffer d_a , d_b , d_c;
40
41 cl_int err = CL_SUCCESS;
42 try{
43 std::vector <cl::Platform > platforms;
44 cl:: Platform ::get(& platforms);
45 if(platforms.size() == 0){
46 std::cout << "Platforms size is 0\n";
47 return -1;
48 }
49
50 cl_context_properties properties [] =
51 { CL_CONTEXT_PLATFORM , (cl_context_properties)(

platforms [0])(), 0 };
52
53 cl:: Context context(CL_DEVICE_TYPE_GPU , properties);
54 std::vector <cl::Device > devices = context.getInfo <

CL_CONTEXT_DEVICES >();
55
56 cl:: CommandQueue queue(context , devices [0], 0, &err);
57

A.3 Vector addition with OpenCL 97

58 d_a = cl:: Buffer(context , CL_MEM_READ_ONLY , n*sizeof(double
));

59 d_b = cl:: Buffer(context , CL_MEM_READ_ONLY , n*sizeof(double
));

60 d_c = cl:: Buffer(context , CL_MEM_WRITE_ONLY , n*sizeof(
double));

61
62 queue.enqueueWriteBuffer(d_a , CL_TRUE , 0, n*sizeof(double),

h_a);
63 queue.enqueueWriteBuffer(d_b , CL_TRUE , 0, n*sizeof(double),

h_b);
64
65 cl:: Program :: Sources source(1,
66 std:: make_pair(kernelSource ,strlen(kernelSource)));
67 cl:: Program program_ = cl:: Program(context , source);
68 program_.build(devices);
69
70 cl:: Kernel kernel(program_ , "vecAdd", &err);
71
72 kernel.setArg(0, d_a);
73 kernel.setArg(1, d_b);
74 kernel.setArg(2, d_c);
75 kernel.setArg(3, n);
76
77 cl:: NDRange localSize (64);
78
79 cl:: NDRange globalSize ((int)(ceil(n/(float)64) *64));
80
81 cl::Event event;
82 queue.enqueueNDRangeKernel(
83 kernel ,
84 cl::NullRange ,
85 globalSize ,
86 localSize ,
87 NULL ,
88 &event
89);
90
91 event.wait();
92 queue.enqueueReadBuffer(d_c , CL_TRUE , 0, n*sizeof(double),

h_c);
93 }
94 catch(cl:: Error err){
95 std::cerr << "ERROR: " << err.what() << "(" << err.err() <<

")\n";
96 }
97
98 // Check to make sure everything works
99 for (size_t i = 0; i < n; ++i){

100 if (h_c[i] != h_a[i] + h_b[i]){
101 std::cout << "Yo. You failed. What a loser! Ha\n";
102 exit (1);
103 }
104 }
105

98 Simple vector additions in CUDA, OpenCL, and JuliaGPU

106 std::cout << "You passed the test , congratulations !\n";
107
108 delete(h_a);
109 delete(h_b);
110 delete(h_c);
111 }

A.4 Julia
Julia is a relatively new language, but boasts the performance of CUDA without as
much bulk. In addition, Julia allows users to more easily look at the AST for com-
pilation, thus rendering GPUE’s AST process obsolete. Here is vector addition in
Julia.
1 using CUDAnative , CUDAdrv , CuArrays , Test
2
3 function kernel_vadd(a, b, c)
4 i = (blockIdx ().x-1) * blockDim ().x + threadIdx ().x
5 j = (blockIdx ().y-1) * blockDim ().y + threadIdx ().y
6 @inbounds c[i,j] = a[i,j] + b[i,j]
7 return nothing
8 end
9

10 function main()
11
12 res =1024
13
14 # CUDAdrv functionality: generate and upload data
15 a = round .(rand(Float32 , (1024, 1024)) * 100)
16 b = round .(rand(Float32 , (1024, 1024)) * 100)
17 d_a = CuArray(a)
18 d_b = CuArray(b)
19 d_c = similar(d_a) # output array
20
21 # run the kernel and fetch results
22 # syntax: @cuda [kwargs ...] kernel(args ...)
23 @cuda threads = (128, 1, 1) blocks = (div(res ,128),res ,1)

kernel_vadd(d_a , d_b , d_c)
24
25 # CUDAdrv functionality: download data
26 # this synchronizes the device
27 c = Array(d_c)
28 a = Array(d_a)
29 b = Array(d_b)
30
31 @test isapprox(a+b, c)
32 end

Bibliography

[1] J. Schloss. https://www.algorithm-archive.org/.

[2] J. Schloss, A. Benseny, J. Gillet, J. Swain, and Th. Busch. Non-adiabatic gen-
eration of NOON states in a Tonks–Girardeau gas. New Journal of Physics, 18
(3):035012, 2016.

[3] T. Zhang, J. Schloss, A. Thomasen, L. J. O’Riordan, Th. Busch, and A. White.
Chaotic few-body vortex dynamics in rotating Bose-Einstein condensates. Phys-
ical Review Fluids, 4(5):054701, 2019.

[4] J. R Schloss and L. J. Riordan. GPUE: Graphics processing unit Gross-Pitaevskii
equation solver. J. Open Source Software, 3(32):1037, 2018.

[5] J. Schloss, P. Barnett, R. Sachdeva, and Th. Busch. Controlled creation of
three-dimensional vortex structures in Bose–Einstein condensates using artificial
magnetic fields, 2019.

[6] J. Schloss and L. O’riordan, 2019. URL https://gpue-group.github.io/.

[7] P. Wittek. Comparing three numerical solvers of the Gross-Pitaevskii equa-
tion, 2016. URL https://web.archive.org/web/20171120181431/https://
peterwittek.com/gpe-comparison.html.

[8] R. Slaw, 2013. URL https://gist.github.com/realazthat/
1eba733ab5cf3ae5fe2a#file-memory-access-coalescing-tex.

[9] T. Nieddu, V. Gokhroo, and S. Nic Chormaic. Optical nanofibres and neutral
atoms. Journal of Optics, 18(5):053001, 2016.

[10] R. Kumar, V. Gokhroo, K. Deasy, A. Maimaiti, M C. Frawley, C Phelan, and
S. Nic Chormaic. Interaction of laser-cooled 87rb atoms with higher order modes
of an optical nanofibre. New Journal of Physics, 17(1):013026, 2015.

[11] J. A. Kahle, J. Moreno, and D. Dreps. 2.1 summit and sierra: Designing AI/HPC
supercomputers. In 2019 IEEE International Solid- State Circuits Conference -
(ISSCC), pages 42–43, Feb 2019. doi: 10.1109/ISSCC.2019.8662426.

[12] R. Reyes, I. López-Rodríguez, J. J. Fumero, and F. De Sande. accull: an Ope-
nACC implementation with CUDA and OpenCL support. In European Confer-
ence on Parallel Processing, pages 871–882. Springer, 2012.

99

https://gpue-group.github.io/
https://web.archive.org/web/20171120181431/https://peterwittek.com/gpe-comparison.html
https://web.archive.org/web/20171120181431/https://peterwittek.com/gpe-comparison.html
https://gist.github.com/realazthat/1eba733ab5cf3ae5fe2a#file-memory-access-coalescing-tex
https://gist.github.com/realazthat/1eba733ab5cf3ae5fe2a#file-memory-access-coalescing-tex

100 Bibliography

[13] M. Fatica, P. LeGresley, I. Buck, J. Stone, J. Phillips, S. Morton, and P. Micike-
vicius. High performance computing with CUDA. SC08, 2008.

[14] T. Besard, P. Verstraete, and B. De Sutter. High-level gpu programming in julia.
arXiv preprint arXiv:1604.03410, 2016.

[15] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL programming
guide. Pearson Education, 2011.

[16] J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming.
John Wiley & Sons, 2014.

[17] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for
the FFT. In Proceedings of the 1998 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), volume 3,
pages 1381–1384. IEEE, 1998.

[18] D. T. Popovici, T. M. Low, and F. Franchetti. Large bandwidth-efficient FFTs
on multicore and multi-socket systems. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 379–388. IEEE, 2018.

[19] H. Merz. CUFFT 1.1/2.0 vs FFTW 3.1. 2 (x86_64) vs FFTW 3.2 (cell) com-
parison, 2016.

[20] G. P. Agrawal. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the
21st Century, pages 195–211. Springer, 2000.

[21] O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk. Optimization of
the split-step Fourier method in modeling optical-fiber communications systems.
Journal of Lightwave Technology, 21(1):61–68, Jan 2003. ISSN 0733-8724. doi:
10.1109/JLT.2003.808628.

[22] T. T. Meirelles, A. A. Rieznik, and H. L. Fragnito. Study on a new split-step
Fourier algorithm for optical fiber transmission systems simulations. In SB-
MO/IEEE MTT-S International Conference on Microwave and Optoelectronics,
2005., pages 100–102, July 2005. doi: 10.1109/IMOC.2005.1580091.

[23] Rao M., Sun X., and Zhang M. A modified split-step Fourier method for optical
pulse propagation with polarization mode dispersion. Chinese Physics, 12(5):
502–506, apr 2003. doi: 10.1088/1009-1963/12/5/307. URL https://doi.org/
10.1088%2F1009-1963%2F12%2F5%2F307.

[24] C. Bayindir. Compressive split-step Fourier method. arXiv preprint
arXiv:1512.03932, 2015.

[25] J. A. C. Weideman and B. M. Herbst. Split-step methods for the solution of the
nonlinear Schrödinger equation. SIAM Journal on Numerical Analysis, 23(3):
485–507, 1986.

https://doi.org/10.1088%2F1009-1963%2F12%2F5%2F307
https://doi.org/10.1088%2F1009-1963%2F12%2F5%2F307

101

[26] H. Wang. Numerical studies on the split-step finite difference method for nonlin-
ear Schrödinger equations. Applied Mathematics and Computation, 170(1):17–35,
2005.

[27] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley
& Sons, 2016.

[28] J. Crank and P. Nicolson. A practical method for numerical evaluation of solu-
tions of partial differential equations of the heat-conduction type. In Mathemat-
ical Proceedings of the Cambridge Philosophical Society, volume 43, pages 50–67.
Cambridge University Press, 1947.

[29] Lawrence Murray. Gpu acceleration of runge-kutta integrators. IEEE transac-
tions on parallel and distributed systems, 23(1):94–101, 2011.

[30] S. D. Conte and C. De Boor. Elementary numerical analysis: an algorithmic
approach, volume 78. SIAM, 2017.

[31] L. Thomas. Elliptic problems in linear differential equations over a network:
Watson scientific computing laboratory. Columbia Univ., NY, 1949.

[32] D. Goddeke and R. Strzodka. Cyclic reduction tridiagonal solvers on GPUs
applied to mixed-precision multigrid. IEEE Transactions on Parallel and Dis-
tributed Systems, 22(1):22–32, 2010.

[33] H. H. Wang. A parallel method for tridiagonal equations. ACM Transactions on
Mathematical Software (TOMS), 7(2):170–183, 1981.

[34] R. A. Sweet. A cyclic reduction algorithm for solving block tridiagonal systems
of arbitrary dimension. SIAM Journal on Numerical Analysis, 14(4):706–720,
1977.

[35] M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich. A gpu-accelerated
fourth-order runge–kutta in the interaction picture method for the simulation of
nonlinear signal propagation in multimode fibers. Journal of Lightwave Technol-
ogy, 35(17):3622–3628, 2017.

[36] R. Benzi, M. Colella, M. Briscolini, and P. Santangelo. A simple point vor-
tex model for two-dimensional decaying turbulence. Physics of Fluids A: Fluid
Dynamics, 4(5):1036–1039, 1992.

[37] K. W. Schwarz. Three-dimensional vortex dynamics in superfluid he 4: Homo-
geneous superfluid turbulence. Physical Review B, 38(4):2398, 1988.

[38] G. Strang. On the construction and comparison of difference schemes. SIAM
journal on numerical analysis, 5(3):506–517, 1968.

[39] S. MacNamara and G. Strang. Operator splitting. In Splitting Methods in Com-
munication, Imaging, Science, and Engineering, pages 95–114. Springer, 2016.

102 Bibliography

[40] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[41] G. C. Wick. Properties of Bethe–Salpeter wave functions. Physical Review, 96
(4):1124, 1954.

[42] M. Harris et al. Optimizing parallel reduction in CUDA. Nvidia developer tech-
nology, 2(4):70, 2007.

[43] A. B. Migdal. Quantum theory of the monatomic ideal gas, part II. Physikalisch-
mathematische Klasse, 1:3, 1925.

[44] A. L. Fetter and J. D. Walecka. Quantum Theory of Many-Particle Systems.
Dover Publications, 2003.

[45] M. Girardeau. Relationship between systems of impenetrable bosons and
fermions in one dimension. Journal of Mathematical Physics, 1(6):516–523, 1960.

[46] P. Nozières and S. Schmitt-Rink. Bose condensation in an attractive fermion gas:
From weak to strong coupling superconductivity. Journal of Low Temperature
Physics, 59(3):195–211, 1985. ISSN 1573-7357. doi: 10.1007/BF00683774. URL
http://dx.doi.org/10.1007/BF00683774.

[47] A. Bulgac, M. M. Forbes, M. M. Kelley, K. J. Roche, and G. Wlazłowski. Quan-
tized superfluid vortex rings in the unitary Fermi gas. Physical review letters,
112(2):025301, 2014.

[48] A. Aversa. The Gross-Pitaevskii equation: A non-linear Schrödinger equation,
2008.

[49] N. N. Bogoliubov. On the theory of superfluidity. J. Phys.(USSR), 11:23–32,
1947.

[50] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-
Einstein condensation in trapped gases. Rev. Mod. Phys., 71:463–512, Apr 1999.
doi: 10.1103/RevModPhys.71.463. URL http://link.aps.org/doi/10.1103/
RevModPhys.71.463.

[51] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento
(1955-1965), 20(3):454–477, 1961. ISSN 1827-6121. doi: 10.1007/BF02731494.
URL http://dx.doi.org/10.1007/BF02731494.

[52] L. Pitaevskii. Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz, 40:646,
1961.

[53] C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute Gases. Cam-
bridge University Press, 2002.

[54] A. L. Fetter. Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys., 81:
647–691, May 2009. doi: 10.1103/RevModPhys.81.647. URL http://link.aps.
org/doi/10.1103/RevModPhys.81.647.

http://dx.doi.org/10.1007/BF00683774
http://link.aps.org/doi/10.1103/RevModPhys.71.463
http://link.aps.org/doi/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1007/BF02731494
http://link.aps.org/doi/10.1103/RevModPhys.81.647
http://link.aps.org/doi/10.1103/RevModPhys.81.647

103

[55] M. Ueda. Fundamentals and new frontiers of Bose–Einstein condensation. World
Scientific, 2010.

[56] J. Allen and A. Misener. Flow of liquid Helium II. Nature, 142:643, 1938.
doi: 10.1038/141075a0. URL http://www.nature.com/nature/journal/v141/
n3558/abs/141075a0.html.

[57] A. B. Migdal. A phenomenological approach to the theory of the nucleus. Soviet
Physics JETP, 10:176, 1960. doi: 10.1016/0029-5582(64)90294-9. URL http:
//www.sciencedirect.com/science/article/pii/0029558264902949.

[58] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269
(5221):198–201, 1995. ISSN 0036-8075. doi: 10.1126/science.269.5221.198. URL
http://science.sciencemag.org/content/269/5221/198.

[59] S. J. Rooney, P. B. Blakie, and A. S. Bradley. Stochastic projected gross-
pitaevskii equation. Physical Review A, 86(5):053634, 2012.

[60] E. Zaremba, T. Nikuni, and A. Griffin. Dynamics of trapped bose gases at finite
temperatures. Journal of Low Temperature Physics, 116(3-4):277–345, 1999.

[61] C. M. Savage, N. P. Robins, and J. J. Hope. Bose-einstein condensate collapse:
A comparison between theory and experiment. Physical Review A, 67(1):014304,
2003.

[62] A. A. Abrikosov. The magnetic properties of superconducting alloys. Journal of
Physics and Chemistry of Solids, 2(3):199–208, 1957.

[63] A. L. Fetter and A. A. Svidzinsky. Vortices in a trapped dilute Bose-Einstein
condensate. Journal of Physics: Condensed Matter, 13(12):R135, 2001. URL
http://stacks.iop.org/0953-8984/13/i=12/a=201.

[64] K. W. Madison, F. Chevy, W. Wohlleben, and Jl. Dalibard. Vortex formation in
a stirred Bose–Einstein condensate. Physical review letters, 84(5):806, 2000.

[65] M. D. Reichl and E. J. Mueller. Vortex ring dynamics in trapped Bose–Einstein
condensates. Phys. Rev. A, 88:053626, Nov 2013. doi: 10.1103/PhysRevA.88.
053626. URL http://link.aps.org/doi/10.1103/PhysRevA.88.053626.

[66] C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan. Introduction to quantum
turbulence. PNAS, 111:4647, 2014.

[67] R. P. Feynman. Progress in Low Temperature Physics: Chapter II, Application
of Quantum Mechanics to Liquid Helium, volume 1. Interscience Publishers Inc,
1955.

[68] L. J. O’Riordan, A. C. White, and Th. Busch. Moiré superlattice structures in
kicked Bose–Einstein condensates. Physical Review A, 93(2):023609, 2016.

http://www.nature.com/nature/journal/v141/n3558/abs/141075a0.html
http://www.nature.com/nature/journal/v141/n3558/abs/141075a0.html
http://www.sciencedirect.com/science/article/pii/0029558264902949
http://www.sciencedirect.com/science/article/pii/0029558264902949
http://science.sciencemag.org/content/269/5221/198
http://stacks.iop.org/0953-8984/13/i=12/a=201
http://link.aps.org/doi/10.1103/PhysRevA.88.053626

104 Bibliography

[69] L. J. O’Riordan and Th. Busch. Topological defect dynamics of vortex lattices
in Bose–Einstein condensates. Physical Review A, 94(5):053603, 2016.

[70] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of
vortex lattices in Bose-Einstein condensates. Science, 292(5516):476–479, 2001.

[71] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell.
Rapidly rotating Bose–Einstein condensates in and near the lowest landau level.
Phys. Rev. Lett., 92:040404, Jan 2004. doi: 10.1103/PhysRevLett.92.040404.
URL http://link.aps.org/doi/10.1103/PhysRevLett.92.040404.

[72] F. Chevy and J. Dalibard. Rotating Bose–Einstein condensates. Europhysics
News, 37(1):12–16, 2006.

[73] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Marago, and C. J. Foot.
Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic
potential. Physical review letters, 88(1):010405, 2001.

[74] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell. Driving Bose–Einstein-
condensate vorticity with a rotating normal cloud. Physical review letters, 87(21):
210403, 2001.

[75] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard. Fast rotation of a Bose–Einstein
condensate. Physical review letters, 92(5):050403, 2004.

[76] P. Engels, I Coddington, P. C. Haljan, V. Schweikhard, and E. A. Cornell. Ob-
servation of long-lived vortex aggregates in rapidly rotating Bose–Einstein con-
densates. Physical review letters, 90(17):170405, 2003.

[77] Y. Guo, R. Dubessy, M. G. de Herve, A. Kumar, T. Badr, A. Perrin,
L. Longchambon, and H. Perrin. Supersonic rotation of a superfluid: a long-
lived dynamical ring. arXiv preprint arXiv:1907.01795, 2019.

[78] A. Kumar, R. Dubessy, T. Badr, C. De Rossi, M.G. de Herve, L Longchambon,
and H. Perrin. Producing superfluid circulation states using phase imprinting.
Physical Review A, 97(4):043615, 2018.

[79] S. Moulder, S. Beattie, R. P. Smith, N. Tammuz, and Z. Hadzibabic. Quantized
supercurrent decay in an annular Bose-Einstein condensate. Phys. Rev. A, 86:
013629, Jul 2012. doi: 10.1103/PhysRevA.86.013629. URL https://link.aps.
org/doi/10.1103/PhysRevA.86.013629.

[80] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V.
Shlyapnikov, and M. Lewenstein. Dark solitons in Bose-Einstein condensates.
Phys. Rev. Lett., 83:5198–5201, Dec 1999. doi: 10.1103/PhysRevLett.83.5198.
URL https://link.aps.org/doi/10.1103/PhysRevLett.83.5198.

[81] J. Denschlag, Je. E. Simsarian, Dl. L. Feder, C. W. Clark, La. A. Collins, J. Cubi-
zolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, et al. Generating
solitons by phase engineering of a Bose-Einstein condensate. Science, 287(5450):
97–101, 2000.

http://link.aps.org/doi/10.1103/PhysRevLett.92.040404
https://link.aps.org/doi/10.1103/PhysRevA.86.013629
https://link.aps.org/doi/10.1103/PhysRevA.86.013629
https://link.aps.org/doi/10.1103/PhysRevLett.83.5198

105

[82] B. Wu, J. Liu, and Q. Niu. Controlled generation of dark solitons with phase
imprinting. Physical review letters, 88(3):034101, 2002.

[83] C. Ryu, M. F. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson, and W. D.
Phillips. Observation of persistent flow of a Bose-Einstein condensate in a toroidal
trap. Phys. Rev. Lett., 99:260401, Dec 2007. doi: 10.1103/PhysRevLett.99.
260401. URL https://link.aps.org/doi/10.1103/PhysRevLett.99.260401.

[84] M. Kasevich and S. Chu. Atomic interferometry using stimulated Raman transi-
tions. Phys. Rev. Lett., 67:181–184, Jul 1991. doi: 10.1103/PhysRevLett.67.181.
URL https://link.aps.org/doi/10.1103/PhysRevLett.67.181.

[85] M. Gajda, M. Lewenstein, K. Sengstock, G. Birkl, W. Ertmer, et al. Optical
generation of vortices in trapped Bose–Einstein condensates. Physical Review A,
60(5):R3381, 1999.

[86] Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt,
M. Prentiss, D. E. Pritchard, and W. Ketterle. Dynamical instability of a doubly
quantized vortex in a Bose–Einstein condensate. Physical review letters, 93(16):
160406, 2004.

[87] A. C. White, B. P. Anderson, and V. S. Bagnato. Vortices and turbulence in
trapped atomic condensates. Proceedings of the National Academy of Sciences,
111(Supplement 1):4719–4726, 2014.

[88] .F Maucher, S. A. Gardiner, and I. G. Hughes. Excitation of knotted vortex lines
in matter waves. New Journal of Physics, 18(6):063016, 2016.

[89] Y. J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. B. Spielman.
Synthetic magnetic fields for ultracold neutral atoms. Nature, 462(7273):628–632,
Dec 2009. ISSN 0028-0836. doi: 10.1038/nature08609. URL http://dx.doi.
org/10.1038/nature08609.

[90] J. Dalibard. Introduction to the physics of artificial gauge fields. ArXiv e-prints,
April 2015.

[91] R. Bhat. Bosons in rotating optical lattices. PhD thesis, Indian Institute of
Technology Kanpur, 2001.

[92] A. Tonomura M. Peshkin. The Aharonov–Bohm Effect, volume 340. Springer-
Verlag, 1989.

[93] Q. Niu, M. Chang, B. Wu, D. Xiao, and R. Cheng. Physical Effects of Geometric
Phases. World Scientific, 2017.

[94] B. Wu, J. Liu, and Q. Niu. Geometric phase for adiabatic evolutions of general
quantum states. Physical review letters, 94(14):140402, 2005.

[95] J. Werschnik and E. K. U. Gross. Quantum optimal control theory. Journal of
Physics B: Atomic, Molecular and Optical Physics, 40(18):R175, 2007.

https://link.aps.org/doi/10.1103/PhysRevLett.99.260401
https://link.aps.org/doi/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609

106 Bibliography

[96] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot,
and J. G. Muga. Shortcuts to adiabaticity: concepts, methods, and applications.
arXiv preprint arXiv:1904.08448, 2019.

[97] F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley & Sons,
2012.

[98] S. Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[99] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, 01 1965. ISSN 0010-4620. doi: 10.1093/comjnl/
7.4.308. URL https://doi.org/10.1093/comjnl/7.4.308.

[100] J. R. Koza. Genetic programming. 1997.

[101] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM review, 45(3):385–
482, 2003.

[102] R. M. Lewis, A. Shepherd, and V. Torczon. Implementing generating set search
methods for linearly constrained minimization. SIAM Journal on Scientific Com-
puting, 29(6):2507–2530, 2007.

[103] H. Pohlheim. Examples of objective functions. Retrieved, 4(10):2012, 2007.

[104] E. Torrontegui, S. Ibánez, S. Martínez-Garaot, M. Modugno, A. del Campo,
D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga. Shortcuts to adia-
baticity. In Advances in atomic, molecular, and optical physics, volume 62, pages
117–169. Elsevier, 2013.

[105] H. R. Lewis Jr and W. B. Riesenfeld. An exact quantum theory of the time-
dependent harmonic oscillator and of a charged particle in a time-dependent
electromagnetic field. Journal of Mathematical Physics, 10(8):1458–1473, 1969.

[106] H. R. Lewis and P. G. L. Leach. A direct approach to finding exact invariants for
one-dimensional time-dependent classical hamiltonians. Journal of Mathematical
Physics, 23(12):2371–2374, 1982.

[107] M. D. Girardeau, E. M. Wright, and J. M. Triscari. Ground-state properties of
a one-dimensional system of hard-core bosons in a harmonic trap. Phys. Rev. A,
63:033601, Feb 2001. doi: 10.1103/PhysRevA.63.033601. URL https://link.
aps.org/doi/10.1103/PhysRevA.63.033601.

[108] M. D. Girardeau and E. M. Wright. Measurement of one-particle correlations
and momentum distributions for trapped 1d gases. Phys. Rev. Lett., 87:050403,
Jul 2001. doi: 10.1103/PhysRevLett.87.050403. URL https://link.aps.org/
doi/10.1103/PhysRevLett.87.050403.

[109] J. C. Slater. The theory of complex spectra. Physical Review, 34(10):1293, 1929.

https://doi.org/10.1093/comjnl/7.4.308
https://link.aps.org/doi/10.1103/PhysRevA.63.033601
https://link.aps.org/doi/10.1103/PhysRevA.63.033601
https://link.aps.org/doi/10.1103/PhysRevLett.87.050403
https://link.aps.org/doi/10.1103/PhysRevLett.87.050403

107

[110] K. K. Das, M. D. Girardeau, and E. M. Wright. Interference of a ther-
mal Tonks gas on a ring. Phys. Rev. Lett., 89:170404, Oct 2002. doi:
10.1103/PhysRevLett.89.170404. URL https://link.aps.org/doi/10.1103/
PhysRevLett.89.170404.

[111] M. D. Girardeau and A. Minguzzi. Motion of an impurity particle in an ultracold
quasi-one-dimensional gas of hard-core bosons. Phys. Rev. A, 79:033610, Mar
2009. doi: 10.1103/PhysRevA.79.033610. URL https://link.aps.org/doi/
10.1103/PhysRevA.79.033610.

[112] D. W. Hallwood, T. Ernst, and J. Brand. Robust mesoscopic superposition
of strongly correlated ultracold atoms. Phys. Rev. A, 82:063623, Dec 2010.
doi: 10.1103/PhysRevA.82.063623. URL http://link.aps.org/doi/10.1103/
PhysRevA.82.063623.

[113] C. Schenke, A. Minguzzi, and F. W. J. Hekking. Probing superfluidity of a
mesoscopic Tonks–Girardeau gas. Physical Review A, 85(5):053627, 2012.

[114] A. Nunnenkamp, A. M. Rey, and K. Burnett. Generation of macroscopic
superposition states in ring superlattices. Phys. Rev. A, 77:023622, Feb
2008. doi: 10.1103/PhysRevA.77.023622. URL https://link.aps.org/doi/
10.1103/PhysRevA.77.023622.

[115] D. W. Hallwood, K. Burnett, and J. Dunningham. The barriers to producing
multiparticle superposition states in rotating Bose–Einstein condensates. Journal
of Modern Optics, 54(13-15):2129–2148, 2007.

[116] S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga. Fast
quasiadiabatic dynamics. Phys. Rev. A, 92:043406, Oct 2015. doi: 10.1103/
PhysRevA.92.043406. URL https://link.aps.org/doi/10.1103/PhysRevA.
92.043406.

[117] A. del Campo. Long-time behavior of many-particle quantum decay. Phys.
Rev. A, 84:012113, Jul 2011. doi: 10.1103/PhysRevA.84.012113. URL https:
//link.aps.org/doi/10.1103/PhysRevA.84.012113.

[118] K. Lelas, T. Ševa, and H. Buljan. Loschmidt echo in one-dimensional interacting
Bose gases. Phys. Rev. A, 84:063601, Dec 2011. doi: 10.1103/PhysRevA.84.
063601. URL https://link.aps.org/doi/10.1103/PhysRevA.84.063601.

[119] Xi Chen and J. G. Muga. Transient energy excitation in shortcuts to adiabatic-
ity for the time-dependent harmonic oscillator. Phys. Rev. A, 82:053403, Nov
2010. doi: 10.1103/PhysRevA.82.053403. URL https://link.aps.org/doi/
10.1103/PhysRevA.82.053403.

[120] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G.
Muga. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to
adiabaticity. Phys. Rev. Lett., 104:063002, Feb 2010. doi: 10.1103/PhysRevLett.
104.063002. URL https://link.aps.org/doi/10.1103/PhysRevLett.104.
063002.

https://link.aps.org/doi/10.1103/PhysRevLett.89.170404
https://link.aps.org/doi/10.1103/PhysRevLett.89.170404
https://link.aps.org/doi/10.1103/PhysRevA.79.033610
https://link.aps.org/doi/10.1103/PhysRevA.79.033610
http://link.aps.org/doi/10.1103/PhysRevA.82.063623
http://link.aps.org/doi/10.1103/PhysRevA.82.063623
https://link.aps.org/doi/10.1103/PhysRevA.77.023622
https://link.aps.org/doi/10.1103/PhysRevA.77.023622
https://link.aps.org/doi/10.1103/PhysRevA.92.043406
https://link.aps.org/doi/10.1103/PhysRevA.92.043406
https://link.aps.org/doi/10.1103/PhysRevA.84.012113
https://link.aps.org/doi/10.1103/PhysRevA.84.012113
https://link.aps.org/doi/10.1103/PhysRevA.84.063601
https://link.aps.org/doi/10.1103/PhysRevA.82.053403
https://link.aps.org/doi/10.1103/PhysRevA.82.053403
https://link.aps.org/doi/10.1103/PhysRevLett.104.063002
https://link.aps.org/doi/10.1103/PhysRevLett.104.063002

108 Bibliography

[121] S. Masuda and K. Nakamura. Fast-forward of adiabatic dynamics in quantum
mechanics. Proceedings of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 466(2116):1135–1154, 2009.

[122] E. Torrontegui, S. Ibáñez, Xi Chen, A. Ruschhaupt, D. Guéry-Odelin, and J. G.
Muga. Fast atomic transport without vibrational heating. Phys. Rev. A, 83:
013415, Jan 2011. doi: 10.1103/PhysRevA.83.013415. URL https://link.aps.
org/doi/10.1103/PhysRevA.83.013415.

[123] S. Masuda. Acceleration of adiabatic transport of interacting particles and rapid
manipulations of a dilute Bose gas in the ground state. Phys. Rev. A, 86:063624,
Dec 2012. doi: 10.1103/PhysRevA.86.063624. URL https://link.aps.org/
doi/10.1103/PhysRevA.86.063624.

[124] C.F. Phelan, T. Hennessy, and Th. Busch. Shaping the evanescent field of optical
nanofibers for cold atom trapping. Opt. Express, 21(22):27093–27101, Nov 2013.
doi: 10.1364/OE.21.027093. URL http://www.opticsexpress.org/abstract.
cfm?URI=oe-21-22-27093.

[125] S. Masuda, K. Nakamura, and A. del Campo. High-fidelity rapid ground-state
loading of an ultracold gas into an optical lattice. Phys. Rev. Lett., 113:063003,
Aug 2014. doi: 10.1103/PhysRevLett.113.063003. URL https://link.aps.
org/doi/10.1103/PhysRevLett.113.063003.

[126] J. R. Gurd. A taxonomy of parallel computer architectures. In 1988 International
Specialist Seminar on the Design and Application of Parallel Digital Processors,
pages 57–61. IET, 1988.

[127] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P. Yeung, and R. Vuduc.
On the communication complexity of 3d FFTs and its implications for exascale.
In Proceedings of the 26th ACM international conference on Supercomputing,
pages 205–214. ACM, 2012.

[128] X. Antoine and R. Duboscq. GPELab, a matlab toolbox to solve Gross–Pitaevskii
equations i: Computation of stationary solutions. Computer Physics Communi-
cations, 185(11):2969–2991, 2014.

[129] P. Wittek and F. M. Cucchietti. A second-order distributed Trotter–Suzuki
solver with a hybrid cpu–gpu kernel. Computer Physics Communications, 184
(4):1165–1171, 2013.

[130] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov. Parallel computing experiences with
CUDA. IEEE micro, 28(4):13–27, 2008.

[131] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al. Debunking the 100x
GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU.
ACM SIGARCH computer architecture news, 38(3):451–460, 2010.

https://link.aps.org/doi/10.1103/PhysRevA.83.013415
https://link.aps.org/doi/10.1103/PhysRevA.83.013415
https://link.aps.org/doi/10.1103/PhysRevA.86.063624
https://link.aps.org/doi/10.1103/PhysRevA.86.063624
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-22-27093
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-22-27093
https://link.aps.org/doi/10.1103/PhysRevLett.113.063003
https://link.aps.org/doi/10.1103/PhysRevLett.113.063003

109

[132] J. Nickolls and W. J. Dally. The GPU computing era. IEEE micro, 30(2):56–69,
2010.

[133] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC—first experi-
ences with real-world applications. In European Conference on Parallel Process-
ing, pages 859–870. Springer, 2012.

[134] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald.
Parallel programming in OpenMP. Morgan kaufmann, 2001.

[135] L. J. O’Riordan. Non-equilibrium vortex dynamics in rapidly rotating Bose-
Einstein condensates. PhD thesis, Okinawa Institute of Science and Technology
Graduate University, 2017.

[136] M. Harris. An efficient matrix transpose in CUDA C/C++. Retrieved July, 26:
2018, 2013.

[137] D. Foley and J. Danskin. Ultra-performance pascal GPU and NVLink intercon-
nect. IEEE Micro, 37(2):7–17, 2017.

[138] V. Lončar, L. E. Young-S, S. Škrbić, P. Muruganandam, S. K. Adhikari, and
A. Balaž. OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the
time-dependent dipolar Gross–Pitaevskii equation. Computer Physics Commu-
nications, 209:190–196, 2016.

[139] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda. GPU-aware
MPI on RDMA-enabled clusters: Design, implementation and evaluation. IEEE
Transactions on Parallel and Distributed Systems, 25(10):2595–2605, 2013.

[140] J. Fang, A. L. Varbanescu, and H. Sips. A comprehensive performance compari-
son of cuda and opencl. In 2011 International Conference on Parallel Processing,
pages 216–225. IEEE, 2011.

[141] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi. Eval-
uating performance and portability of opencl programs. In The fifth international
workshop on automatic performance tuning, volume 66, page 1, 2010.

[142] T. Besard, V. Churavy, A. Edelman, and B. De Sutter. Rapid software pro-
totyping for heterogeneous and distributed platforms. Advances in Engineering
Software, 132:29–46, 2019.

[143] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1):65–98, 2017.

[144] T. Besard, C. Foket, and B. De Sutter. Effective extensible programming: un-
leashing julia on gpus. IEEE Transactions on Parallel and Distributed Systems,
30(4):827–841, 2018.

[145] R. F. Cohen and R. Tamassia. Dynamic expression trees and their applications.
In SODA, pages 52–61, 1991.

110 Bibliography

[146] R. Reyes and F. de Sande. Automatic code generation for GPUs in llc. The
Journal of Supercomputing, 58(3):349–356, 2011.

[147] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to
compressed sensing. Compressed sensing: theory and applications, 105:106, 2012.

[148] A. Villois, G. Krstulovic, D. Proment, and H. Salman. A vortex filament tracking
method for the Gross–Pitaevskii model of a superfluid. Journal of Physics A:
Mathematical and Theoretical, 49(41):415502, 2016.

[149] Y. Guo, X. Liu, C. Xiong, X. Xu, and C. Fu. Towards high-quality visualization
of superfluid vortices. IEEE transactions on visualization and computer graphics,
24(8):2440–2455, 2018.

[150] J. Canny. A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, 6:679–698, 1986.

[151] J. L. Jodra, I. Gurrutxaga, and J. Muguerza. Efficient 3d transpositions in
graphics processing units. International Journal of Parallel Programming, 43(5):
876–891, 2015.

[152] A. El-Moursy, A. El-Mahdy, and H. El-Shishiny. An efficient in-place 3d trans-
pose for multicore processors with software managed memory hierarchy. In Pro-
ceedings of the 1st international forum on Next-generation multicore/manycore
technologies, page 10. ACM, 2008.

[153] G. Ruetsch and M. Fatica. CUDA Fortran for scientists and engineers: best
practices for efficient CUDA Fortran programming. Elsevier, 2013.

[154] G. R. Dennis, J. J. Hope, and M. T. Johnsson. Xmds2: Fast, scalable simulation
of coupled stochastic partial differential equations. Computer Physics Commu-
nications, 184(1):201–208, 2013.

[155] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. CRC Press, 2018.

[156] J. K. Eastman, J. J. Hope, and A. R. R. Carvalho. Tuning quantum measure-
ments to control chaos. Scientific reports, 7:44684, 2017.

[157] J. K. Eastman, S. S. Szigeti, J. J. Hope, and A. R. R. Carvalho. Controlling
chaos in the quantum regime using adaptive measurements. Physical Review A,
99(1):012111, 2019.

[158] E. A. Spiegel. Chaos: a mixed metaphor for turbulence. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 413(1844):87–
95, 1987.

[159] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi. La-
grangian statistics of particle pairs in homogeneous isotropic turbulence. Physics
of Fluids, 17(11):115101, 2005.

111

[160] A. Berera and R. D. J. G. Ho. Chaotic properties of a turbulent isotropic fluid.
Physical review letters, 120(2):024101, 2018.

[161] S. K. Nemirovskii and W. Fiszdon. Chaotic quantized vortices and hydrodynamic
processes in superfluid helium. Reviews of Modern Physics, 67(1):37, 1995.

[162] N. Kyriakopoulos, V. Koukouloyannis, C. Skokos, and P. G. Kevrekidis. Chaotic
behavior of three interacting vortices in a confined Bose–Einstein condensate.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(2):024410, 2014.

[163] V. Koukouloyannis, G. Voyatzis, and P. G. Kevrekidis. Dynamics of three non-
corotating vortices in Bose–Einstein condensates. Physical Review E, 89(4):
042905, 2014.

[164] R. Navarro, R. Carretero-González, P. J. Torres, P. G. Kevrekidis, D. J.
Frantzeskakis, M. W. Ray, E. Altuntaş, and D. S. Hall. Dynamics of a few
corotating vortices in Bose–Einstein condensates. Physical review letters, 110
(22):225301, 2013.

[165] C. Nore, M. Abid, and M. E. Brachet. Kolmogorov turbulence in low-temperature
superflows. Physical review letters, 78(20):3896, 1997.

[166] S. R. Stalp, L. Skrbek, and R. J. Donnelly. Decay of grid turbulence in a finite
channel. Physical review letters, 82(24):4831, 1999.

[167] T. Araki, M. Tsubota, and S. K. Nemirovskii. Energy spectrum of superfluid tur-
bulence with no normal-fluid component. Physical review letters, 89(14):145301,
2002.

[168] J. Salort, C. Baudet, B. Castaing, B. Chabaud, F. Daviaud, T. Didelot, P. Dirib-
arne, B. Dubrulle, Y. Gagne, F. Gauthier, et al. Turbulent velocity spectra in
superfluid flows. Physics of Fluids, 22(12):125102, 2010.

[169] H. Aref and N. Pomphrey. Integrable and chaotic motions of four vortices. i.
the case of identical vortices. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 380(1779):359–387, 1982.

[170] H. Aref and N. Pomphrey. Integrable and chaotic motions of four vortices. Physics
Letters A, 78(4):297–300, 1980.

[171] H. Aref. Integrable, chaotic, and turbulent vortex motion in two-dimensional
flows. Annual Review of Fluid Mechanics, 15(1):345–389, 1983.

[172] S. W. Seo, B. Ko, J. H. Kim, and Y. Shin. Observation of vortex-antivortex
pairing in decaying 2d turbulence of a superfluid gas. Scientific reports, 7(1):
4587, 2017.

[173] K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson. In situ imaging
of vortices in Bose–Einstein condensates. Physical Review A, 91(2):023621, 2015.

112 Bibliography

[174] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall.
Real-time dynamics of single vortex lines and vortex dipoles in a Bose–Einstein
condensate. Science, 329(5996):1182–1185, 2010.

[175] S. Serafini, L. Galantucci, E. Iseni, T. Bienaimé, R. N. Bisset, C. F. Barenghi,
F. Dalfovo, G. Lamporesi, and G. Ferrari. Vortex reconnections and rebounds
in trapped atomic Bose–Einstein condensates. Physical Review X, 7(2):021031,
2017.

[176] T. W. Neely, A. S. Bradley, E. C. Samson, S. J. Rooney, E. M. Wright, K. J. H.
Law, R. Carretero-González, P. G. Kevrekidis, M. J. Davis, and B. P. Ander-
son. Characteristics of two-dimensional quantum turbulence in a compressible
superfluid. Physical review letters, 111(23):235301, 2013.

[177] W. J. Kwon, G. Moon, J. Choi, S. W. Seo, and Y. Shin. Relaxation of superfluid
turbulence in highly oblate Bose–Einstein condensates. Physical Review A, 90
(6):063627, 2014.

[178] G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. Baker, T. A. Bell,
H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely. Negative-temperature
Onsager vortex clusters in a quantum fluid. arXiv preprint arXiv:1801.06951,
2018.

[179] S. P. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington, T. P. Simula, and
K. Helmerson. Order from chaos: Observation of large-scale flow from turbulence
in a two-dimensional superfluid. arXiv preprint arXiv:1801.06952, 2018.

[180] A. Aftalion and Q. Du. Vortices in a rotating Bose–Einstein condensate: Critical
angular velocities and energy diagrams in the Thomas–Fermi regime. Physical
Review A, 64(6):063603, 2001.

[181] A. V. Zampetaki, R. Carretero-González, P. G. Kevrekidis, F. K. Diakonos, and
D. J. Frantzeskakis. Exploring rigidly rotating vortex configurations and their
bifurcations in atomic Bose–Einstein condensates. Physical Review E, 88(4):
042914, 2013.

[182] T. Zhang, J. Schloss, A. Thomasen, L. J. O’Riordan, Th. Busch, and
A. White, 2019. URL https://journals.aps.org/prfluids/abstract/10.
1103/PhysRevFluids.4.054701#supplemental.

[183] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov
exponents from a time series. Physica D: Nonlinear Phenomena, 16(3):285–317,
1985.

[184] D. H. Wacks, A. W. Baggaley, and C. F. Barenghi. Large-scale superfluid vortex
rings at nonzero temperatures. Physical Review B, 90(22):224514, 2014.

[185] B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W.
Clark, and E. A. Cornell. Watching dark solitons decay into vortex rings

https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.4.054701#supplemental
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.4.054701#supplemental

113

in a Bose-Einstein condensate. Phys. Rev. Lett., 86:2926–2929, Apr 2001.
doi: 10.1103/PhysRevLett.86.2926. URL http://link.aps.org/doi/10.1103/
PhysRevLett.86.2926.

[186] M. J. H. Ku, B. Mukherjee, T. Yefsah, and Martin W. Zwierlein. Cascade of
solitonic excitations in a superfluid fermi gas: From planar solitons to vortex
rings and lines. Physical review letters, 116(4):045304, 2016.

[187] M. Robin Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman,
and E. A. Cornell. Vortices in a Bose–Einstein condensate. Physical Review
Letters, 83(13):2498, 1999.

[188] T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S. Bakr, and
M. W. Zwierlein. Heavy solitons in a fermionic superfluid. Nature, 499(7459):
426, 2013.

[189] T. E. Faber. Fluid Dynamics for Physicists. Cambridge University Press, 1995.

[190] I. M. Cohen D. R. Dowling, P. K. Kundu. Fluid Mechanics. Academic Press,
Boston, fifth edition edition, 2012. ISBN 978-0-12-382100-3. doi: http://dx.doi.
org/10.1016/B978-0-12-382100-3.10017-4. URL http://www.sciencedirect.
com/science/article/pii/B9780123821003100174.

[191] D. J. Tritton. Physical Fluid Dynamics. Oxford University Press, 1988.

[192] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Butterworth-Heinemann,
1987.

[193] R. Donnelly. Quantized Vortices in Helium II. Cambridge University Press, 1991.

[194] A. Sommerfield. Mechanics of Deformable Bodies: Lectures of Theoretical
Physics, volume 2. Academic Press, 1960.

[195] R. M. Caplan, J. D. Talley, and P. G. Carretero-González, R. a nd Kevrekidis.
Scattering and leapfrogging of vortex rings in a superfluid. Physics of Fluids,
26(9):097101, 2014. doi: http://dx.doi.org/10.1063/1.4894745. URL http://
scitation.aip.org/content/aip/journal/pof2/26/9/10.1063/1.4894745.

[196] K. Shariff and A. Leonard. Vortex rings. Annual Review of Fluid Mechanics, 24
(1):235–279, 1992. doi: 10.1146/annurev.fl.24.010192.001315.

[197] K. W. Schwarz. Interaction of quantized vortex rings with quantized vortex lines
in rotating he II. Phys. Rev., 165:323–334, Jan 1968. doi: 10.1103/PhysRev.165.
323. URL http://link.aps.org/doi/10.1103/PhysRev.165.323.

[198] T. T. Lim and T. B. Nickels. Fluid Vortices. Springer Netherlands, Dordrecht,
1995. ISBN 978-94-011-0249-0. doi: 10.1007/978-94-011-0249-0_4. URL http:
//dx.doi.org/10.1007/978-94-011-0249-0_4.

http://link.aps.org/doi/10.1103/PhysRevLett.86.2926
http://link.aps.org/doi/10.1103/PhysRevLett.86.2926
http://www.sciencedirect.com/science/article/pii/B9780123821003100174
http://www.sciencedirect.com/science/article/pii/B9780123821003100174
http://scitation.aip.org/content/aip/journal/pof2/26/9/10.1063/1.48947 45
http://scitation.aip.org/content/aip/journal/pof2/26/9/10.1063/1.48947 45
http://link.aps.org/doi/10.1103/PhysRev.165.323
http://dx.doi.org/10.1007/978-94-011-0249-0_4
http://dx.doi.org/10.1007/978-94-011-0249-0_4

114 Bibliography

[199] M. S. Paoletti and D. P. Lathrop. Quantum turbulence. Annual Re-
view of Condensed Matter Physics, 2(1):213–234, 2011. doi: 10.1146/
annurev-conmatphys-062910-140533. URL http://dx.doi.org/10.1146/
annurev-conmatphys-062910-140533.

[200] B. Jackson, J. F. McCann, and C. S. Adams. Vortex line and ring dynam-
ics in trapped Bose–Einstein condensates. Phys. Rev. A, 61:013604, Dec 1999.
doi: 10.1103/PhysRevA.61.013604. URL http://link.aps.org/doi/10.1103/
PhysRevA.61.013604.

[201] J. Ruostekoski and J. R. Anglin. Creating vortex rings and three-dimensional
skyrmions in Bose–Einstein condensates. Phys. Rev. Lett., 86:3934–3937, Apr
2001. doi: 10.1103/PhysRevLett.86.3934. URL http://link.aps.org/doi/10.
1103/PhysRevLett.86.3934.

[202] N. S. Ginsberg, J. Brand, and L. V. Hau. Observation of hybrid soliton vortex-
ring structures in Bose–Einstein condensates. Physical review letters, 94(4):
040403, 2005.

[203] I. Shomroni, E. Lahoud, S. Levy, and J. Steinhauer. Evidence for an oscillating
soliton/vortex ring by density engineering of a Bose–Einstein condensate. Nature
Physics, 5(3):193, 2009.

[204] J. Ruostekoski and Z. Dutton. Engineering vortex rings and systems for controlled
studies of vortex interactions in Bose–Einstein condensates. Physical Review A,
72(6):063626, 2005.

[205] F. Pinsker, N. G. Berloff, and V. M. Pérez-García. Nonlinear quantum piston
for the controlled generation of vortex rings and soliton trains. Physical Review
A, 87(5):053624, 2013.

[206] M. Abad, M. Guilleumas, R. Mayol, and M. Pi. Vortex rings in toroidal
Bose–Einstein condensates. Laser Physics, 18(5):648–652, 2008. ISSN 1555-
6611. doi: 10.1134/S1054660X08050162. URL http://dx.doi.org/10.1134/
S1054660X08050162.

[207] D. Kleckner, L. H. Kauffman, and W. T. M. Irvine. How superfluid vortex knots
untie. Nature Physics, 12(7):650, 2016.

[208] R. L. Ricca, D. C. Samuels, and C. F. Barenghi. Evolution of vortex knots.
Journal of Fluid Mechanics, 391:29–44, 1999.

[209] C. W. Duncan, C. Ross, N. Westerberg, M. Valiente, B. J. Schroers, and P. Öh-
berg. Linked and knotted synthetic magnetic fields. Physical Review A, 99(6):
063613, 2019.

[210] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg. Colloquium: Artificial
gauge potentials for neutral atoms. Reviews of Modern Physics, 83(4):1523, 2011.

http://dx.doi.org/10.1146/annurev-conmatphys-062910-140533
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140533
http://link.aps.org/doi/10.1103/PhysRevA.61.013604
http://link.aps.org/doi/10.1103/PhysRevA.61.013604
http://link.aps.org/doi/10.1103/PhysRevLett.86.3934
http://link.aps.org/doi/10.1103/PhysRevLett.86.3934
http://dx.doi.org/10.1134/S1054660X08050162
http://dx.doi.org/10.1134/S1054660X08050162

115

[211] M. Mochol and K. Sacha. Artificial magnetic field induced by an evanescent wave.
Scientific Reports, 5, Jan 2015. URL http://dx.doi.org/10.1038/srep07672.
Article.

[212] J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and
S. Nic Chormaic. Heat-and-pull rig for fiber taper fabrication. Review of scientific
instruments, 77(8):083105, 2006.

[213] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and
E. Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding.
Nature, 426(6968):816, 2003.

[214] A. Yariv et al. Optical electronics in modern communications, volume 1. Oxford
University Press, USA, 1997.

[215] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeu-
tel. Optical interface created by laser-cooled atoms trapped in the evanescent
field surrounding an optical nanofiber. Physical review letters, 104(20):203603,
2010.

[216] C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and
H. J. Kimble. A state-insensitive, compensated nanofiber trap. New Journal of
Physics, 14(2):023056, 2012.

[217] G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel. Cold-atom
physics using ultrathin optical fibers: Light-induced dipole forces and surface
interactions. Physical review letters, 99(16):163602, 2007.

[218] L. Russell, K. Deasy, M. J. Daly, M. J. Morrissey, and S. Nic Chormaic. Sub-
doppler temperature measurements of laser-cooled atoms using optical nanofi-
bres. Measurement Science and Technology, 23(1):015201, 2011.

[219] F. Le Kien, V. I. Balykin, and K. Hakuta. Atom trap and waveguide using a
two-color evanescent light field around a subwavelength-diameter optical fiber.
Phys. Rev. A, 70:063403, Dec 2004. doi: 10.1103/PhysRevA.70.063403. URL
http://link.aps.org/doi/10.1103/PhysRevA.70.063403.

[220] R. Sachdeva and Th. Busch. Creating superfluid vortex rings in artificial magnetic
fields. Physical Review A, 95(3):033615, 2017.

[221] M. Cozzini, S. Stringari, V. Bretin, P. Rosenbusch, and J. Dalibard. Scissors
mode of a rotating Bose–Einstein condensate. Physical Review A, 67(2):021602,
2003.

[222] D. Guéry-Odelin and S. Stringari. Scissors mode and superfluidity of a trapped
Bose–Einstein condensed gas. Physical review letters, 83(22):4452, 1999.

[223] O. M. Marago, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J.
Foot. Observation of the scissors mode and evidence for superfluidity of a trapped
Bose–Einstein condensed gas. Physical review letters, 84(10):2056, 2000.

http://dx.doi.org/10.1038/srep07672
http://link.aps.org/doi/10.1103/PhysRevA.70.063403

116 Bibliography

[224] N. L. Smith, W. H. Heathcote, J. M. Krueger, and C. J. Foot. Experimental
observation of the tilting mode of an array of vortices in a dilute Bose–Einstein
condensate. Physical review letters, 93(8):080406, 2004.

[225] F. Zambelli and S. Stringari. Quantized vortices and collective oscillations of a
trapped Bose–Einstein condensate. Physical review letters, 81(9):1754, 1998.

[226] S Stringari. Superfluid gyroscope with cold atomic gases. Physical review letters,
86(21):4725, 2001.

[227] J. P. Dowling and J. Gea-Banacloche. Evanescent light-wave atom mirrors, res-
onators, waveguides, and traps. In Advances in atomic, molecular, and optical
physics, volume 37, pages 1–94. Elsevier, 1996.

[228] V. G. Minogin and S. Nic Chormaic. Manifestation of the van der Waals surface
interaction in the spontaneous emission of atoms into an optical nanofiber. Laser
Physics, 20(1):32–37, 2010.

[229] A. Kumar, N. Anderson, W. D. Phillips, S. Eckel, G. K. Campbell, and
S. Stringari. Minimally destructive, doppler measurement of a quantized flow in
a ring-shaped bose–einstein condensate. New Journal of Physics, 18(2):025001,
2016.

[230] S. K. Schnelle, E. D. Van Ooijen, M. J. Davis, N. R. Heckenberg, and
H. Rubinsztein-Dunlop. Versatile two-dimensional potentials for ultra-cold
atoms. Optics Express, 16(3):1405–1412, 2008.

[231] K. O. Hill and G. Meltz. Fiber Bragg grating technology fundamentals and
overview. Journal of lightwave technology, 15(8):1263–1276, 1997.

[232] G. Carleo and M. Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

[233] J. Carrasquilla and R. G. Melko. Machine learning phases of matter. Nature
Physics, 13(5):431, 2017.

[234] P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian, M. A. Sooriya-
bandara, G. D. McDonald, K. S. Hardman, C. D. Quinlivan, P. Manju, C. C. N.
Kuhn, et al. Fast machine-learning online optimization of ultra-cold-atom exper-
iments. Scientific reports, 6:25890, 2016.

[235] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd.
Quantum machine learning. Nature, 549(7671):195, 2017.

[236] J Revels, T. Besard, V. Churavy, B. De Sutter, and J. P. Vielma. Dynamic auto-
matic differentiation of GPU broadcast kernels. arXiv preprint arXiv:1810.08297,
2018.

	Declaration of Original and Sole Authorship
	Abstract
	Acknowledgment
	Contents
	Introduction
	Introduction to the SSFM for simulating superfluid vortex systems
	The SSFM
	Introduction to ultracold quantum systems
	Bose–Einstein condensation and the Gross–Pitaevskii Equation

	Superfluid systems and vortex dynamics
	Rotation
	Phase imprinting
	Artificial magnetic fields

	Modifications to the SSFM for superfluid vortex simulations

	Engineering NOON states in one-dimensional quantum gases
	Optimization methods
	Nelder–Mead
	Chopped random basis optimal control

	Shortcuts to adiabaticity
	Non-adiabatic generation of NOON states in a Tonks–Girardeau gas
	Tonks–Girardeau gas
	NOON states in a TG gas
	Quantum optimal control protocols
	Results with STA protocols

	Outlook

	General Purpose computing with Graphics Processing Units and the GPUE codebase
	Types of parallelism
	General purpose computing with graphics processing units
	Limitations of GPU computing
	GPU hardware architecture
	Comparison between various languages for GPGPU computation

	Introduction to the GPUE codebase for n-dimensional simulations of quantum systems on the GPU
	FFT optimization
	Dynamic field input and output in GPUE with expression trees
	GPUE memory footprint
	Vortex tracking and highlighting
	Energy calculation for superfluid simulations
	Future direction and multi-GPU development

	DistributedTranspose.jl
	Outlook

	Vortex analysis of chaotic, two-dimensional superfluid simulations for few-vortex systems
	Model
	Regular and irregular vortex dynamics
	Characterizing chaotic vortex dynamics
	Outlook

	Generation, control and detection of 3D vortex structures in superfluid systems
	Three-dimensional vortex structures
	Controlled creation of three-dimensional vortex structures in Bose–Einstein condensates using artificial magnetic fields
	Bose–Einstein condensate dynamics in the presence of an optical nanofiber
	Ground state vortex configurations
	Dynamic vortex detection and scissor modes

	Outlook

	Conclusion
	Conclusion
	Further development of GPUE
	Vortex tracking in two and three dimensions
	General purpose Hamiltonian solver
	Octree grid

	Future simulations of quantum systems

	Simple vector additions in CUDA, OpenCL, and JuliaGPU
	Vector addition with C++
	Vector addition with CUDA
	Vector addition with OpenCL
	Julia

	Bibliography

