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Identify Print quality or Sub‐system degradation issues for 3D Printers using 

Layer Time analysis 

1. Abstract 

 
 
One of the core concepts in additive manufacturing is to have accurate powder deposition on bed 
with uniform duration throughout the print job. The inaccuracy in job layer duration arising when 
some layers take more or lesser than the recommended value, often results in bad part quality issue 
or indicate issues with print hardware components.  
 
This disclosure describes a method for improving Print Quality (PQ) and reduce unplanned 
downtime (due to sub-system failure) by looking at layer time for the print cycles and figuring if 
they are running off the prescribed limits for the material used. Based on this information the 
erroneous machines can be inspected for diagnosing fault. Analysis by services and support (using 
the information from the cases flagged using this technique) suggests the dominating cause to be 
hard drive failures (replacing which solves the problem), though there can be other reasons as well. 
 

2. Problems Solved by Invention 

Some 3D printer use additive manufacturing as a digital technology to create objects by adding 
several deposits of layer stacked on top of each other. One of the biggest challenges with the 
additive manufacturing is how to control the manufacturing output quality and achieve consistent 
results. Another issue is the system reliability, keeping the manufacturing devices up and running, 
minimizing unplanned downtime. This work contributes to improving both by using analysis of 
the layer time and shows how the information is currently used (in ad hoc way) and plans to 
incorporate this into a shipped product. 
 
Analysis of the jobs from 3D Printers with unsatisfactory part quality or unplanned downtime 
suggests that one of the causes can be traced to hardware sub-system failure (HDD failure etc.). It 
turns out that checking for the consistency in print layers can unravel information about these 
failures prior to having potentially catastrophic impact (sub-system failure) and increase in 
systematic degradation of part quality (PQ).  
 
The duration of print layer depends upon multiple factors – HDD health, powder movement 
through the internal sub-component at the precise time and uniform layer deposition on the print 
bed across the job. An inconsistency in the layer timing can lead to (or could be affected by) bad 
HW health and / or undesired part properties. Existing system mechanism does not trigger any 
alert or system event when the layer duration goes exceedingly long and effects system’s health 
and hence the problem occurring due to layer duration anomaly largely goes unnoticed. This 
predictive model helps determine whether a significant proportion of layers deviate from the 
recommended threshold of the layer duration and thereby indicate that powder deposition was not 
uniform. An alert on this would help take corrective action by the customer (often replacing the 
faulty hard-drive) or to be able to associate bad part quality with the reason. 
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3. Prior Solution and Challenges 

Prior solution in place by Customer Assurance and R&D team has used simple descriptive 
statistics measures on Layer duration and used naïve heuristic constant (Kurtosis of layer duration 
> 3) as an indicator of bad HDD quality. However, this appears to be a crude solution as the 
Kurtosis value around 3 assumes the layer time to follow Normal distribution which is not always 
the case. Also, this was not a predictive solution and used to be performed as a post mortem 
analysis once HDD failure was reported.  
 

4. Description of Invention 

The objective of the analysis is to determine two things; firstly, do layer durations follow the same 
pattern throughout or how many distinct layer patterns are found and secondly, what percentage 
of layers take abnormally long or short time to finish. The proposal thus presents using Gaussian 
Mixture Model with Jensen-Shannon divergence criteria as a measure of component selection and 
uses a custom algorithm to detects outliers (abnormal layer duration) in the print job. 

 

a. Background 

In Statistics, a mixture model is a probabilistic model that defines presence of sub-population in 
an overall population. Gaussian Mixture Model (GMM) is a type of mixture model that assumes 
underlying sub-populations to follow Normal probability distribution. However, since no prior 
knowledge of sub-population is required, this algorithm is unsupervised in nature. Theoretically, 
for multimodal data (i.e. the histogram shows more than 1 peak), Gaussian Mixture Models are 
often the most suitable choices.  
 

 
Figure 1. Using GMM model to visualize Layer duration behavior 

 
 
The Gaussian Mixture Model has two parameters; the mixture component weights (i.e. the 
probability of a data element to belong to each of the sub population) and secondly, the component 
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means and variances (for each of the underlying sub population). A simple one – dimensional 
GMM with k components has following probability distribution function: 

𝑓 𝑥  ф 𝑁 𝑥 |𝜇 , 𝜎  

 
Where фi is component weight, telling the probability of a data row to belong to ith mixture and 
each mixture is normally distributed with mean µi and variance 𝜎2i as follows: 
 

𝑁 𝑥|𝜇, 𝜎  
1

𝜎√2𝜋
𝑒𝑥𝑝

𝑥  𝜇
2𝜎

 

 
The parameters are estimated by using expectation – minimization algorithm. 
 
As the model is unsupervised, the key is to choose the optimal value of k or number of mixture 
components present in the data. There are several methods available in theory such as: 
 Fit multiple models with varying values of k and estimate the BIC (Bayesian Information 

Criterion) score and choose the model with lowest BIC. 
 Fit multiple models and choose the one with lowest value of AIC (Akaike Information 

Criterion) 
 Use cluster performance indicators like Silhouette score and choose the model with highest 

silhouette score 
Different techniques could yield different value of k. However, the techniques mentioned above 
have their own merits and demerits and often do not save use from overfitting the data.  
 
The invention proposes using Jensen-Shannon divergence criteria as a robust measure for 
component selection. Jensen-Shannon provides a smooth and symmetric version of Kullback–
Leibler divergence and computes a score to measure how two probabilistic models are deviating 
from each other. Lower the divergence score, higher is the agreement between the models to fit 
the data.  
In our case, each dataset of print layers, is equally and randomly split into two halves for training 
and testing purpose. Both train and test datasets are run with the same number of clusters and the 
divergence score is computed as follows: 
 

𝐽𝑆 𝑃||𝑄  0.5 ∗  𝐾𝐿 𝑃||𝑀 𝐾𝐿 𝑀||𝑄  
 
Where: 

KL(P||Q) is the KL divergence between the two probability distributions – P and Q over 
the same space and 

 
M = 0.5 (P + Q) to make the divergence symmetric. KL divergence between the two 

probabilistic distributions over the same space is defined as follow: 
 

KL(P||Q) = 𝑝 𝑥 ∗ log 𝑑𝑥  

The best cluster solution is the one where training and test data have lowest J-S divergence. 
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b. Proposal 

The job payload in 3D MJF printer provides several different measures of the layers that should 
be printed when a job completes successfully. A print job comprises of several types of layers, 
starting from warming-up phase with design and warming up layers and continues until the end of 
annealing phase. Figure 2 provides a schematic diagram of layer stack in a print job. 

 

 

Figure 2. Job Layer Distribution 

 

The proposed solution focuses only on the layers taking place during Print phase (Printed Job 
layers) as they largely govern the overall part quality as well as the printer subsystems’ heath 
during a job. 

The invention suggests involves following steps: 

 Extract layer duration in milli-seconds from Printer.log for each job. The job.xml payload 
currently parses layer duration in seconds precision and is not sufficient to carry out the 
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analysis and assess the layer health. A solution to this is to directly parse printer.log raw 
file and write to a table to analyze layer duration against its index. Once the data parsing is 
completed, a univariate GMM model is applied on this table that consists of layer index 
and duration captured in milli-seconds. Figure 3 represents a schematic diagram of the 
system architecture behind the parsing. 

 

 

Figure 3. System Architecture Diagram 

 Subject the data to GMM model with a grid of all possible models ranging from 1 to 10 
different components, for each possible covariance types – full, spherical, tied & diagonal 
and compute Jensen – Shannon distance for each model. 

 

Figure 4. Model selection based on J‐S distance 
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 Select the model with lowest J-S distance. This would provide different types of distinct 
layer behavior during print job. Layer behavior can also be plotted for visual analysis. 
Although, in reality, a unimodal distribution (ideal layer duration behavior) rarely occurs, 
however, an acceptable layer duration should be largely governed by single process with 
mean as defined in the baseline thresholds. There have been numerous occurrences of layer 
duration showing bimodal graph (i.e. having two distinct layer behavior, possibly a delay 
in recoater-scan axis movements) or even multimodal graph implying that layer durations 
are not uniform leading to part quality issues. Figure 5 shows an example of 3 different 
jobs run on the same customer machine at different time periods. 

 

 

 

 

 

 

 

 
 To determine the outliers, provide the baseline threshold of layer duration to the specific 

combination of print mode and material being used. To compute these baseline 
thresholds, the GMM model was run over 3000 different print jobs and estimates are as 
follows: 

 
 

Polyamide 
12 

Polyamide 
11 

Polyamide 
12(Glass 
beads) 

Polyamide 
12 (Other) 

TPU 
(open) 

TPU 
(Lubrizol) 

TPU(BASF) 

Balanced 11.00 sec 10.12 sec 14.00 sec 11.00 sec 14.44 sec 19.05 sec 14.23 sec
Cosmetic 11.00 sec 10.12 sec NA NA NA NA  NA
Fast 7.56 sec 7.56 sec NA NA NA 16.97 NA
Mechanical 11.00 sec 11.00 sec NA NA NA NA NA

 

 From the GMM model, compute the density of each mixture region and check the deviation 
(GMM Outlier percent) from the baseline threshold, for given print mode and material. 
 

 Layer duration health is to be assigned based on following criteria: 
o GMM Outlier Percent < 0.01    Ok 
o 0.01 ≤ GMM Outlier Percent ≤ 0.02   Moderate 
o 0.02 < GMM Outlier Percent ≤ 0.04   Bad 
o GMM Outlier Percent > 0.04    Needs Action 

Figure 5. Types of layer behavior
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Figure 6 shows an example of bad layer behavior as spotted in the outlier representation. 

 

Figure 6. Outlier representation 

 

c. Advantages 

Prior solution in place by R&D and Customer Assurance was based on simple heuristics and 
moreover was used as post-mortem analysis and hence was not a predictive solution, for Hard 
drive failures. The process and system described in this disclosure that uses Gaussian Mixture 
Model with Jensen-Shannon divergence criteria  

 

has used simple descriptive statistics of the layer duration and used naïve heuristic constant 
(kurtosis of layer duration > 3) as an indicator of the bad layer quality. However, this was not a 
predictive solution and was carried out as post reporting analysis on instances of hard-drive failure 
by the customer. 

The process and system described in this disclosure (that uses Gaussian mixture model with 
Jensen-Shannon Distance as a measure of component selection for outlier detection) is 

 more robust (across the install base and different time periods) 
 correctly predicts ahead (in many instances as much as several months before) instances of 

issues (stemming from hard-drive failures in several cases, based on data from the field), 
improving up-time for the machine and preventing issues that lead to poor PQ (part quality)  

The model is going to be deployed in internal predictive maintenance tool for our quality and 
support teams to preemptively engage with customers potentially saving warrant costs and 
unplanned downtime. Further, we are also working with the Productivity Monitoring Suite of 
applications to allow our customers to be aware of these issues and proactively seek support 
engagement to preempt PQ and subsystem failure risk, resulting in planned maintenance and 
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consistent PQ (part quality) by mitigating one cause for such issues. There is also a discussion 
about baking this into an alert generated on-device telemetry data, that would enable use cases for 
real-time action (canceling the job) as well as on-premises consumption. 

 

 

Disclosed by Karna Ashutosh and Syed Fahad Allam Shah, HP Inc. 
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