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Return-Oriented Programming Detection and Prevention Utilizing a Hardware and 

Software Adaptation 

 

Abstract: 

This publication describes techniques aimed at detecting and preventing return-oriented 

programming (ROP) attacks.  The techniques consist of a software adaptation which enables 

supplemental hardware, specifically a system on a chip (SoC), to chronologically log return (ret) 

addresses of pushed stack frames and compare those logged ret addresses to ret commands 

executed by a central processing unit (CPU) of a computing system.  When the SoC determines 

that ret commands executed by the CPU have deviated from the logged ret addresses, then the SoC 

can take action to thwart a ROP attack. 
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Background: 

Computing systems (e.g., smartphones, computers, tablets) store and process data 

according to executable machine instructions provided by software (e.g., programs, applications 

operating systems (OS)), referred to as program control flow.  When software on a computing 

system invokes a callable unit (e.g., a function, a procedure, a subroutine), a processor (e.g., 

Central Processing Unit (CPU)) in the system allocates space in its memory (e.g., the random-
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access memory (RAM), read-only memory (ROM)) for that callable unit to operate.  This allocated 

space is often referred to as a stack frame. 

Each stack frame corresponds to an invocation of a callable unit which has not yet 

terminated with a return.  In other words, a stack frame is produced when a function, for example, 

is invoked, but has not yet executed.  For instance, take the factorial of the number five as a 

function.  In order to generate the factorial of five, the factorial of four must be computed, and so 

on unto the number one.  For this process to occur, the factorial of five function was put on hold 

and the factorial of four function was invoked; this was continued unto the first executable 

function, specifically the factorial of the number one.  The number one would be multiplied by 

itself, resulting in one.  The preceding function, specifically the factorial of the number two, would 

then multiply the result by two.  This method of returning to the previous function would continue 

unto the factorial of five function and produce a result of 120.  In summary, the factorial of five 

function instigated the generation of many functions to produce a result.  The production of 

multiple callable units that need dedicated space in memory (stack frames) to operate—seemingly 

stacking on top of each other—is referred to as a call stack.  A call stack is a dynamic data-structure 

maintained inside the memory management unit, specifically the RAM, of the computing system 

by the OS.  The purpose of a call stack is to control the way callable units call and pass parameters 

to each other. 

Figure 1 illustrates an example call stack.  
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Figure 1 

 The call stack illustrated in Figure 1 is composed of three x86 stack frames (Main ( ), 

Function 1 ( ), and Function 2 ( )).  A call stack can contain many stack frames, depending on the 

callable unit and the memory of the computing system.  As illustrated, stack frames may be 

comprised of local variables, registers, arguments, and return (ret) addresses.  Ret addresses are 

virtual addresses that originate from a computing system’s CPU program counter.  Ret addresses 

are later used to return back to and execute the preceding callable unit. 

When a callable unit (e.g., Function 1 ( )) invokes another callable unit (e.g., Function 2 ( 

)), the parameters, local variables, etc. are pushed on the call stack in a single stack frame.  When 
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the callable unit associated with the stack frame at the top of the call stack has fully executed, then 

the stack frame is eliminated (popped off) from the call stack.  

 Call stacks are integral to the operations of a computing system.  A modern method of 

attack on the processes of computing systems is centered around the call stack.  Return-oriented 

programming (ROP) attacks are a combination of stack overflow and reverse engineering existing 

machine instruction sequences/segments (gadgets) inside of call stacks; effectively creating new, 

malicious software flows that enable the attacker to execute malicious code on a computing 

system.  Generally, these gadgets are instruction groups that end with a ret address.  In short, a 

ROP attack would entail an attacker collecting and executing a string of reverse engineered gadgets 

(e.g., arguments to pass). 

It is desirable to detect and prevent ROP attacks.  To this end, the process of comparing 

executed ret commands (e.g., a code instruction to return to a certain address) to logged ret 

addresses as the stack frames were pushed onto the call stack can aid in thwarting ROP attacks.  

 

Description: 

 This publication describes techniques aimed at detecting and preventing return-oriented 

programming (ROP) attacks.  The techniques incorporate the addition of computing hardware, 

specifically a system on a chip (SoC), and a software adaptation to computing systems.   

 Figure 2 illustrates the SoC added to a computing system. 
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Figure 2 

 As illustrated in Figure 2, the computing system is a smartphone.  However, other 

computing systems (e.g., tablets, computers) can also support the techniques described in this 

publication.  The computing system includes a native central processing unit (CPU) and a memory 

management unit (MMU).  The MMU may be located within the native CPU or as a separate 

integrated chip.  Regardless of location, the MMU translates addresses between the native CPU 

and physical memory, such as random-access memory (RAM).  This translation process will be 

referred to herein as the Virtual to Physical addresses translation.   

The computing system also includes a SoC.  The SoC may include one or more processors 

(e.g., a CPU) and a memory device such as RAM, static RAM (SRAM), dynamic RAM (DRAM), 

non-volatile RAM (NVRAM), read-only memory (ROM), flash memory, or the like.  As 

illustrated, bussing connects the SoC to the CPU of the computing system.  The SoC can have 

connectivity to the MMU either through direct or indirect bussing depending on the location of the 

MMU.  This connectivity permits the SoC to monitor the Virtual to Physical addresses translation. 
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The software adaptation utilized with the SoC entails a modification to the implementation 

of the branch/jump command, such that when new callable units (e.g., functions, procedures, 

subroutines) are invoked and new stack frames are pushed on top of the call stack, a ticket or a 

descriptor is posted to the SoC with the return address being jumped from (i.e., current program 

counter), enabling the SoC to keep a data-structure (e.g., a stack) of these addresses per process.  

In addition, the software adaptation permits the SoC to monitor the callable units or gadgets 

(existing machine instruction segments) executed by the CPU and the units’ or gadgets’ associated 

stack frame return address (ret command).  In other words, with a change to the implementation 

to ret commands, each ret command will post the return address of the return register (e.g., EBP 

for x86) to the SoC and the SoC can then compare the executed ret commands to the return 

addresses logged in the data-structure.   

 Figure 3 illustrates the techniques utilized to detect and prevent ROP attacks. 

 

Figure 3 
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As illustrated in Figure 3, the MMU contains a call stack.  The call stack contains two stack 

frames (Function 1 ( ) and Function 2 ( )), each with their respective return address: return address 

1 and return address 2.  For illustrative purposes, this example call stack at one time contained five 

stack frames.  As the stack frames were pushed on top of the call stack, a ticket or descriptor with 

the return address of the stack frame jumped from was logged in the data-structure.  As illustrated, 

the CPU returned to return address 2 and then returned to return address 5.  In other words, the 

CPU executed Function 1 ( )—the stack frame with return address 2—and then executed a gadget 

with a return address identifying it as originating from the fifth stack frame; whereas the data-

structure on the SoC indicates that the CPU should have executed the Main ( ) function 

immediately after Function 1 ( ). Since the SoC monitors the executions of the native CPU and 

compares the executed ret commands to the logged return addresses, it identified this event as a 

ROP attack. 

These transactions can be implemented in one of two ways: a posted wait or a non-posted 

wait.  The posted wait option avoids latency but detects a ROP attack with a slight delay.  In other 

words, the ROP attack may execute a few gadgets, but the completion of the ROP attack is 

prevented.  Alternatively, the non-posted wait permits the SoC to immediately check every ret 

command executed against the logged return addresses and thwart a ROP attack instantly after 

detecting deviation from the data-structure; this method, however, sacrifices computing 

performance.  In both ways, though, ROP attacks can be successfully detected.   

Additional benefits provided by these techniques can be manifest in the addition of single 

root input/output virtualization (SR-IOV) capabilities.  For instance, adding SR-IOV capabilities 

to the SoC make it usable by virtual machines running on a server, allowing the same benefit to 

cloud-based virtual machines. 
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In conclusion, a software adaptation that enables a supplemental SoC to log return 

addresses of pushed stack frames and compare those logged return addresses to ret commands 

executed by the CPU of the computing system, affords computing systems a method of detecting 

and preventing ROP attacks. 
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