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A B S T R A C T 

At present, many road authorities in the world face challenges in condition monitor-
ing diagnosis of distress and forecasting deterioration, strengthening and convales-

cence of aging bridge structures. The accurate prediction of the future condition is 

crucial for optimizing the maintenance activities. It is very tough to predict the actual 

performance scenario or actual in–situ structures without carrying out inspection. 

Limited availability of detailed inspection data is considered as one of the major 
drawbacks in developing deterioration models. In State Based Markov deterioration 

(SNMD) modelling, the main job is to estimate transition probability matrixes 

(TPMs). In this paper, Markov Chain Monte Carlo (MCMC) is used to estimate TPMs. 

In Markov Chain Model, future conditions depend on only present bridge inspection 

data. Multiple repair options are adopted in order to optimize life cycle cost. Repairs 

are needed when the critical chloride concentration exceeds 0.2. Three distinct types 

of cost corresponding to each repair option is considered. The objective of this paper 

is to minimize the life cycle cost considering appropriate repair timings of mixed re-

pair methods. Variation of life cycle cost of five different concretes (stronger to 

weaker) using three different repair option is shown in this paper. For specific nor-

malized condition of concrete’s failure probability (0.3) and specific type of concrete, 

variation of life cycle cost using multiple repair options is also shown in this paper. 
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1. Introduction 

Various random impact factors can initiate time de-
pendent deterioration in RCC Girder Bridge. They can 
vary in loading and environmental conditions. In Girder 
Bridge, girders are used to support the deck. Girders are 
made of concrete which is deteriorated by increasing 
chloride concentration. It is an important factor for 
bridge deterioration. Chloride can come into water from 
various wastes, which causes corrosion in reinforced 
concrete structure. The corrosion occurred when the ion 
chloride has reached the steel reinforcement and the 
corrosion has begun to spread which caused spalling on 
concrete cover. As a result chloride penetration often 
causes failure of structure before the lifetime service of 
structure. It also reduces the compressive strength and ac-
celerates the corrosion of reinforcement bars in recycled 

aggregate concrete. Nowadays, it is essential to establish 
an effective maintenance and repair strategy to keep 
bridges sufficiently safe and serviceable throughout 
their service lives. To prevent shortened structure life-
time the initiation time of chloride penetration must be 
delayed. 

2. Modelling of Bridge Deterioration 

Bridge deterioration is the process of declining in the 
condition of bridge resulting from normal operating con-
ditions. The deterioration process exhibits the complex 
phenomena of physical and chemical changes that occur 
in different bridge components. Generally, deterioration 
models can be categorized into three categories. They are: 
deterministic models, stochastic models, and artificial in-
telligence models. These categories are discussed below. 
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a) Deterministic Models  
 

These models calculate the predicted conditions de-
terministically by ignoring the random error in predic-
tion. These models can be used for analysis of networks 
with a large population. However, they are considered to 
have some drawbacks:  
 
i) The current condition and the condition history of in-
dividual facilities are not considered while predicting 
the average condition of a family of facilities (Shahin et 
al., 1987; Jiang and Sinha, 1989)  
 
ii) They estimate facility deterioration for the “no 
maintenance” strategy only because of the difficulty of 
estimating the impacts of various maintenance strate-
gies (Sanders and Zhang, 1994) 
 
iii) Updating these models with new data is very tough  
 
b) Stochastic Models  
 

The uncertainty and randomness of facility deteriora-
tion process are considered as one or more random var-
iables in stochastic models. Among the stochastic tech-
niques Markovian models has been used extensively in 
modelling the deterioration of infrastructure facilities 
(Butt et al., 1987; Jiang et al., 1988). These models use 
the Markov Decision Process (MDP) to determine the ex-
pected failure condition of facility based on previous 
condition. The uncertainty of the deterioration process 
and considering the current facility condition in predict-
ing future one, these two problems of deterministic mod-
els have been covered by Markovian models. In this 
study, stochastic models are used to predict future con-
dition. 
 
c) Artificial Intelligence (AI) Models  
 

These models make use of computer techniques that 
aim to automate intelligent behaviors. Artificial neural 
networks (ANN), genetic algorithm (GA), and case based 
monitoring (CBR) are used to optimize the future predic-
tion conditions. Sobanjo (1997) has performed detailed 
investigation to use the ANN in modelling bridge deteri-
oration. Even though ANN has automated the process of 
finding the polynomial that best fits a set of data points, 
it still shares the problems of the deterministic model. 

 

3. Prediction of Performance by Markov Chain 
Models 

3.1. Markov chain 

A Markov chain is a mathematical model of a random 
phenomenon evolving with time in a way that the past 
affects the future only through the present. The “time” 
can be discrete (i.e. the integers), continuous (i.e. the real 
numbers), or, more generally, a totally ordered set. Mar-
kov chain is the distinctive case of the Markov process 

whose development can be treated as a series of transi-
tions between certain states. Markov process describes 
the probability of attaining a future state in the process 
which is dependent only on the present state not on the 
previous state.  

 

3.2. Transition probability matrix formation 

A Markov transition matrix is a square matrix describ-
ing the probabilities of moving from one state to another 
in a dynamic system. The rows of Markov transition ma-
trix are valued as one. Transition probability matrix is 
also the matrix form of probabilities where each element 
denotes the transition probabilities of system having in 
the same state or to the higher states with time. While 
developing performance prediction models for bridge 
components Markov chains are used, which includes de-
fining discrete condition states and accumulating the 
probability of transition from one condition state to an-
other over multiple discrete time intervals. Transition 
probabilities are represented by a matrix of order n×n 
called the transition probability matrix (P), where n is 
the number of possible condition states. Each element 
(Pij) in this matrix represents the probability that the 
condition of a bridge component will change from state 
(i) to state (j) during a certain time interval called the 
transition period, where the following relation is valid 
0≤ Pij ≤1.  

It is assumed that the transition probabilities are not 
time dependent (tn, tn+1). Two more conditions apply to 
the process when it is used to predict deterioration. 
Firstly, Pij=0 for i>j, signifying the belief that bridges can-
not improve in condition without first receiving treat-
ment. Secondly, Pnn=1, signifying a holding state where 
by bridges that have reached their worst condition can-
not deteriorate further. If the initial condition vector 
P(0) that describes the present condition of a bridge 
component is known, the future condition vector P(t) at 
any number of transition periods (t) can be obtained as 
follows (Collins, 1975):  

𝑃(𝑡) = 𝑃(0) ∙ 𝑃(𝑡) (1) 

where 

𝑃 =

[
 
 
 
 
 
𝑝11 𝑝12 ⋯ 𝑝1𝑛

𝑝21 𝑝22 ⋯ 𝑝2𝑛

⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
𝑝𝑛1 𝑝𝑛2 ⋯ 𝑝𝑛𝑛]

 
 
 
 
 

 (2) 

The values composing the TPM matrix must be non-
negative and lie between 0 and 1. The addition of the en-
trance of each line must be equal to 1. The probabilities 
of the initial state of the system P(0) may be represented 
by a line matrix. 

𝑃(0) = [𝑃1 (0), 𝑃2 (0), … , 𝑃𝑛 (0)] (3) 
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4. Methodology 

4.1. Condition rating 

The decision to employ Markov chains to predict ser-
vice life, together with reliability theory, aims to con-
sider uncertainties of degradation process until the 
structure reach the durability limit state. The condition 
rate may be classified based on the critical chloride con-
centration (Ccr) on the surface of the steel bar to define 
durability limit state. 

4.2. Transition probability matrix 

Markov process can be described through the follow-
ing formula (Ross, 2000).  

𝑆𝑡 = 𝑟(𝑃)𝑡 (4) 

St = State vector at time step t. 
P = Transition probability matrix, Pij represents the 
probability of process going from state i to state j. 
r = Initial state vector. 

The random variable vectors x = [Ccr, Co, x, Dc], where 
Ccr is the critical chloride concentration to initiate corro-
sion, Co is the surface chloride concentration, x is the 
cover depth to reinforcement, and Dc is the diffusion co-
efficient of chloride ion, Fick's second law can be written 
in the simple form:  

𝜕𝑐

𝜕𝑡
= 𝐷0

𝜕2

𝜕𝑥2 (5) 

in which D0  is the constant coefficient of diffusion. The 
solution of the differential equation is presented above, 
for a semi-infinite domain with a uniform concentration 
at the structural surface, is given by: 

𝐶(𝑥, 𝑡)  =  𝐶0 𝑒𝑟𝑓𝑐 [𝑥/(2√𝐷0𝑡] (6) 

where C0 is the chloride concentration at the structural 
surface supposed constant in the time; erfc is the com-
plementary error function. Here, Eq. (6) is used to eval-
uate the chloride concentration, C(x, t), at a given depth 
and time into reinforced concrete structures. 

The random variables Ccr, C0, x, Dc can be generated by 
Monte Carlo Simulation and thus reliability index and 
probability of failure are calculated according to the fol-
lowing formulas. 

𝛽 =
𝜇𝐶𝑐𝑟−𝜇𝐶(𝑥,𝑡)

√𝑆𝐷𝐶𝑐𝑟
2 +𝑆𝐷𝐶(𝑥,𝑡)

2
  (7) 

𝑃(𝑓) = 𝜑(−𝛽) (8) 

φ = Standard normal distribution, β = Reliability index. 
 
The probability of failure for a particular damage level 

will indicate the condition rating for a specific age of 
structure while the inspection is done. This probability 
of failure is used in transition probability matrix (TPM). 

If five states of transition is considered, TPM matrix 
takes the following form: 

𝑃 =

[
 
 
 
 
𝑝11 𝑝12 0 0 0
0 𝑝22 𝑝23 0 0
0 0 𝑝33 𝑝34 0
0 0 0 𝑝44 𝑝45

0 0 0 0 1 ]
 
 
 
 

 (9) 

where P11, P22, P33, P44 probability that the process will 
remain in the existing condition state. P12, P23, P34, P45 
probability that the process will pass into a higher con-
dition state P55=1 because the element cannot pass from 
condition state 5 to any other condition state.

Table 1. Condition rating of concrete. 

Failure Extent Condition Rating Damage Level Action Required 

Safe 0 Ccr <0.2 No Maintenance 

Fair 1 0.3 > Ccr ≥ 0.2 Repair 

Poor 2 0.4 > Ccr ≥ 0.3 Repair 

Critical 3 0.8 > Ccr ≥ 0.4 Repair 

Failure 4 Ccr ≥ 0.8 Replacement 

4.3. Repairing option 

The maintenance policy can be described as “when 
the system hits state i, recovers it back to state j”. 

𝑆𝑡 = 𝑟(𝑅𝑃)𝑡 (10) 

R=Repair matrix. 
 
Repair action against deterioration of bridge can be 

represented by matrix form. However, the repair matrix 
is also a square matrix like TPM with same number of 

rows and columns as number of condition states are con-
sidered. In case of repair matrix, the elements above the 
diagonal are zero because repair action means the im-
provement of condition from deteriorating condition to 
good condition e.g. improvement from  

 

3       1, 3      2, 2      1 

So, in repair matrix, there will be elements correspond-
ing to those state transition only and other value will be 
equal to zero. Three types of repair matrix are used for im-
provement of bridge deterioration which are shown below: 
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Repair Matrix 3: 
 

 1 2 3 4 5 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 1 0 0 

5 0 0 1 0 0 

 

In this matrix, the value of elements 1-1, 2-2, 3-3 is 1 
which means there will not be any change in this repair. 
Bridge element condition in state 4, 5 will be improved 
to state 3. 

 
Repair Matrix 5: 

 

 1 2 3 4 5 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0.95 0.05 0 0 

4 0 1 0 0 0 

5 0 1 0 0 0 

 

In this matrix, probability of elements 1-1 and 2-2 is 1 
which means there will be no change in state. There is a 
probability that the 95% of bridge will be improved to 
state 2 from state 3 and all the bridges from states 4 and 

5 will be improved to state 2. It is costlier than the previ-
ous repair matrix. 

 
Repair Matrix 7: 

 

 1 2 3 4 5 

1 1 0 0 0 0 

2 0.95 0.05 0 0 0 

3 0.9 0.05 0.05 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

 

In this matrix, bridges in state 1 will remain in the 
same state as the probability is 1. 95% of bridges in state 
2 will be improved to state 1. Bridges in state 3, there are 
5% of bridges remain in the same state, 5% will be im-
proved to state 2 and the remaining 90% will be im-
proved to state 1. Bridges in state 4 and 5 will directly 
improve to state 1 as the probability is 1. It is costlier 
than the other two repair options. 

If there is no maintenance, then system will deterio-
rate towards the “fail” state eventually. However, with 
appropriate maintenance interventions the system be-
haves periodically in the long run. Following is an exam-
ple of maintenance policy (Fig. 1). 

There are various state improvements of the structure 
in the above chart according to the consideration of differ-
ent types of repairing. The structure has to be replaced when 
only it reaches to state 4 to come back to state 0 (Fig. 2).

 
Fig. 1. Improvement capacity of RM 3, RM 5, RM 7 repair options.

5. Results and Discussions  

In this paper, five types of concrete of different failure 
probabilities are used. The concrete of less failure prob-
ability is considered as stronger concrete. Repair options 
3, 5, 7 are used to satisfy the dynamic expected condi-
tion. 

Assuming, the costs for repair matrix 3, 5, 7 are 200 
units, 500 units & 800 units respectively.  
 
For C1 type concrete (0.98-0.02) 

 Here, 0.02 is the critical chloride concentration. The 
more the critical concentration, the less the stronger 
concrete. 

Fig 3. shows bridge deterioration probability for C1 
type concrete. It is stronger concrete and its remaining 
rate in its present state is 98%. Its rate going to next 
higher state is 2%. Fig. 3 shows that, C1 type concrete 
requires two of RM 3, one of RM 5 and one of RM 7 to 
satisfy the expected critical failure probability 0.3.    
 
For C2 type concrete (0.90-0.10) 

Here, 0.10 is the critical chloride concentration. As the 
value is small, so C2 type concrete is stronger concrete. 

Fig. 4 shows bridge deterioration probability for C2 
type concrete. It is stronger concrete and its remaining 
rate in its present state is 90%. Its rate going to next 
higher state is 10%. Fig. 4 shows that, C2 type concrete 

0 1 2 3 4 

RM 7 

RM  

RM 5 

RM 3 
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requires three of RM 3, two of RM 5 and one of RM 7 to 
satisfy the expected critical failure probability 0.3.  
 
For C3 type concrete (0.80-0.20)  

Here, 0.20 is the critical chloride concentration. As the 
value is average, so C3 type concrete is average concrete. 

Fig. 5 shows bridge deterioration probability for C3 
type concrete. It is average concrete and its remaining 
rate in its present state is 80%. Its rate going to next 
higher state is 20%. Fig. 5 shows that, C3 type concrete 
requires four of RM 3, four of RM 5 and two of RM 7 to 
satisfy the expected critical failure probability 0.3.  
 
For C4 type concrete (0.70-0.30)  

Here, 0.30 is the critical chloride concentration. As the 
value is large, so C4 type concrete is weakest concrete. 

Fig. 6 shows bridge deterioration probability for C4 
type concrete. It is weaker concrete and its remaining 
rate in its present state is 70%. Its rate going to next 
higher state is 30%. Fig. 6 shows that, C4 type concrete 
requires nine of RM 3, four of RM 5 and two of RM 7 to 
satisfy the expected critical failure probability 0.3.  
 
For C5 type concrete (0.60-0.40) 

Here, 0.40 is the critical chloride concentration. As the 
value is largest, so C5 type concrete is weakest concrete. 

Fig. 7 shows bridge deterioration probability for C5 
type concrete. It is weakest concrete and its remaining 
rate in its present state is 60%. Its rate going to next 
higher state is 40%. Fig. 7 shows that, C5 type concrete 
requires nine of RM 3, six of RM 5 and four of RM 7 to 
satisfy the expected critical failure probability.

  

Fig. 2. Work flow of Simulation process of degradation of concrete. 
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Fig. 3. Bridge deterioration probability for C1 type concrete. 

 

Fig. 4. Bridge deterioration probability for C2 type concrete. 

 

Fig. 5. Bridge deterioration probability for C3 type concrete. 
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Fig. 6. Bridge deterioration probability for C4 type concrete. 

 

Fig. 7. Bridge deterioration probability for C5 type concrete. 

 

Fig. 8. Variation of life cycle cost according to strength of concrete. 
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6. Conclusions  

The objective of this paper is to create multiple repair 
scenario from mix repair options and to optimize the life 
cycle cost. A deterministic prediction method will not be 
appropriate for deterioration modelling of bridge com-
ponent. The Markov chain approach appears to offer a 
superior solution by using the percentage prediction 
method to develop the transition matrix. Using the de-
veloped transition matrices, some preliminary conclu-
sions about deterioration of the bridge components can 
be made. 

Fig. 8 shows variation of life cycle cost of five types of 
concrete (stronger to weaker) with specific critical fail-
ure probability with combination of mix repair. Here, we 
can see the life cycle cost for strongest concrete is less 
comparatively weakest concrete. As a result, weakest 
concrete will need a huge amount of cost applying repair 
options to satisfy the dynamic expected critical failure 
probability 0.3. Also for weakest concrete, large num-
bers of repair options are required and for stronger con-
crete, small numbers of repair options are required to 
satisfy the critical failure probability. 
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