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Criminological research is often based on time-series data showing some type of trend movement. Trending time-series may correlate strongly even in cases 
where no causal relationship exists (spurious causality). To avoid this problem researchers often apply some technique of detrending their data, such as by dif-
ferencing the series. This approach, however, may bring up another problem: that of spurious non-causality. Both problems can, in principle, be avoided if the 
series under investigation are “difference-stationary” (if the trend movements are stochastic) and “cointegrated” (if the stochastically changing trend-
movements in different variables correspond to each other). The article gives a brief introduction to key instruments and interpretative tools applied in cointe-
gration modelling.

Criminologists often use time-series data to describe long-
term developments of crime. Such data can also be used to 
identify and model assumed structural relationships 
between crime rates (treated as dependent variables) and 
factors like unemployment or divorce rates (treated as 
independent, explanatory variables). The adequacy of the 
specific analytical techniques and statistical models 
applied in such analyses has to be judged with regard to 
certain features – problems and possibilities – inherent in 
the given data. One of those features that need careful con-
sideration is the absence or presence of trend components. 
Two or more time-series, each of them exhibiting a persist-
ing upward or downward trend, will always correlate with 
each other (positively or negatively) even in cases where no 
causal relationship between them exists. On the other 
hand, if we eliminate the trend components the remaining 
series will likely be uncorrelated even in cases where their 
levels are structurally related to each other. Usually, how-
ever, there are more alternatives available than choosing 
between spurious causality and spurious non-causality. 
Often, level changes may proceed in a temporarily chang-

ing pattern, switching from upward to downward move-
ments, speeding up or slowing down in this or that 
direction, in other words they might be “stochastic” 
(rather than “deterministic”). If two (or more) series that 
show such unsteady, stochastic trend movements still cor-
relate with each other, then we can be quite confident that 
there is indeed a structural (causal) relationship between 
them; otherwise their unsteady trend movements would 
not be corresponsive across the series under inspection. 
This paper gives a brief introduction into certain statistical 
strategies and techniques that can be used (or should not 
be used) in testing and modelling structural relationships 
between time series exhibiting some type of trend devel-
opment.

1. Deterministic versus Stochastic Trend Components
A trend component is usually represented in one of the fol-
lowing two ways: either “deterministically” as a linear or 
non-linear function of time or “stochastically” as a 
so-called unit-root process. A simple example of the first 
variant would be:
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(1) zt = α + γt + εt, t = 0,1,2,3 …,

where t is a time-index, α the initial level of the time series 
Z(t), and ε symbolizes a random (“error”) input with con-
stant variance and an expected value E(εt) = 0. When the 
trend coefficient γ is known (estimated), the series can be 
detrended by calculating zt – γt = α + εt. However, if the 
trend is in fact not deterministic but has been generated by 
a random process, this procedure of modelling and det-
rending the series would be inappropriate.1 The simplest 
model of such a random process producing a trend is given 
by the following equation:

(2) zt = zt-1 + εt ↔ zt = z0 + Σεt

If the errors ε(t) are distributed normally with constant 
variance2 around the expected value E(εt) = 0, and if they 
are also uncorrelated with each other and with Zt-1, (if they 
are “white noise”), this process is called a simple random 
walk (RW). Figure 1 represents three realizations of this 
type of processes exhibiting temporary upward and down-
ward movements along the time axis.

All these RW realizations start with the value z0 = 0 and 
then successively add the accumulated random shocks 
Σεt (t = 1,2,3 … 200) according to equation (2). Note that 
even a simple random walk (without “drift,” see below) 
may, within a limited period of time, appear to produce an 
overall trend component and/or a cyclical movement.

Stochastic trend components of this kind can be elimin-
ated by calculating the first differences: ΔZt = Zt – Zt-1. 
Consequently such a process is called a difference-stationary 
process (DSP) and contrasted with the trend-stationary pro-
cess (TSP) given in equation (1). In some cases, the first-
order differencing may not be sufficient to produce a 
stationary process, which however might still be achieved 
by differencing the series of first differences, and possibly 
the second differences as well and so forth, thereby leading 
to second or higher order differences, ΔpZt. Difference-
stationary processes are also referred to as Integrated Pro-
cesses of order p: I(p)-processes. The more technical term 
“unit-root process” is derived from the mathematics of dif-
ference equations, which cannot be introduced here (a 
“unit-root” of 1 is the formal requirement of difference-
stationarity).

Equation (2) can be extended by adding further com-
ponents, in particular a constant term μ, a so-called drift 
parameter. This is a deterministic linear trend component 
(with μ as the slope coefficient), thus the time series moves 
more and more away from its original level, but since the 
trend component is embedded within a random walk pro-
cess the fluctuations around this long-term trend line 
increase with time. Figure 2 represents such a random walk 
with drift (RWD), contrasted with a TSP according to 
equation (1).

Figure 1: Three realizations of a random walk

1 See Nelson and Kang (1981, 1984), Banerjee et al. 
(1993), and Raffalovich (1994).

2 But note that the variance of the time series Z(t) is 
t × σ2, so it increases with time.
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Among the problems that arise when fitting a deterministic 
trend (according to equation 1) to a random walk process, 
we find the following (see Nelson and Kang 1981, 1984; 
Banerjee et al. 1983):

(1) If the series has been generated by a simple random 
walk (without drift), an OLS regression on the time index t 
produces a spurious coefficient of determination which 
does not decrease by increasing sample size. Standard tests 
of significance of the slope coefficient (based on Student’s 
t statistic) tend to be largely biased in an upward direction. 
The correct null hypothesis (stating that the slope coef-
ficient of the time index should be zero) will be rejected in 
a large majority of cases. (2) If the random walk contains a 
drift component, a coefficient of determination larger than 
zero (produced by an OLS regression on t) makes some 
sense, but it also tends to be overestimated. (3) The auto-
correlations of the residuals resulting from such “spuri-
ous” regressions tend to exhibit an artificially cyclical 
pattern, whose period length and standard deviation 
depend (positively) on sample size (the length of the series 
observed).

As the name suggests, calculating the first- or higher-order 
differences is the appropriate way of detrending a dif-

ference stationary process. However, two problems have to 
be considered before doing this. (1) The elimination of the 
respective trend components forestalls any possibility to 
identify and test the level relationship which might connect 
two or more series (“co-integration”, see below). (2) Since 
differencing eliminates or reduces the weight of low-
frequency components in general, it not only eliminates 
the trend, but also any cycles present in the series, no 
matter if they are deterministic or emanate from some 
stationary second- or higher-order autoregressive process.

With regard to causality, one has to be aware of additional 
problems. Imagine that we have two simple random walks, 
Yt and Xt, according to equation (2), which have been pro-
duced independently from each other (by way of simu-
lation experiments, for example). If we regress the Y-series 
on the X-series

(3) yt = α + βxt + εt

the theoretically expected slope coefficient is, of course, 
β = 0. But we are very likely to obtain a slope coefficient 
which departs significantly from zero, and this likelihood 
will increase with the length of the series (Banerjee et al. 
1993, 74 ff.). This is another instance of “spurious regres-
sion” (Granger and Newbold 1974). And again this prob-
lem cannot be solved by detrending the series with a 
polynomial function of time before running the regression 
or by including the time index t in the set of regressors.

These observations taken together suggest the following 
approach: If one wants to identify or test structural 
(causal) relationships between seemingly trending time 
series, one should not start by detrending the data at all. 
Instead, one should first test the assumption that the series 
to be analyzed are difference-stationary, that the trend in 
each series is stochastic (this can be done by unit-root test-
ing, as explained in section 3 below). A necessary (but not 
sufficient) condition for a structural relationship between 
such series is that they are integrated processes of the same 
order. If this turns out to be the case, an assumed structural 
relationship between the series can be identified and tested 
with the help of cointegration models (see section 2). When 
such a hypothesis has been confirmed, the temporal 

Figure 2: Realization of a random walk with drift (RWD) and of a 
trend-stationary process (TSP)



IJCV: Vol. 8 (2) 2014, pp. 199 – 208
Helmut Thome: Cointegration and Error Correction Modelling in Time-Series Analysis  203

dynamics in which the level of one series is adjusted to the 
changing level of the other series can be identified with the 
help of error correction models. Before illustrating the appli-
cation of this strategy in section 3, the key concept of 
“cointegration” is briefly outlined in the next section.

2. The Concept of Cointegration
Two or more time series are said to be co-integrated if two 
conditions prevail: first, each of the series must be inte-
grated to the same order; second, there must exist at least 
one linear combination among the series which is station-
ary. If there is only one such linear combination, it can 
easily be obtained by regressing one series upon the 
other(s):

(4) yt = β0 + β1xt + εt

The residuals of this (static) regression are a linear com-
bination of the Y- and X-series. Generally, linear com-
binations of two or more first-order integrated series are 
again integrated to the first order. But under specific con-
ditions – if the stochastic trend components in each series 
evolve correspondingly (in “co-integration” with each 
other) – they will be stationary. Consequently, if the resid-
uals of the estimated equation (4) prove to be stationary, 
we have a strong indicator for a causal relationship between 
the variables involved. Without engaging in formal deri-
vations the following line of reasoning can be developed:

Imagine two time series, each dominated by stochastic 
trend components. If they are integrated to different orders 
they cannot be structurally related to each other in their 
long-term development.3 If they are integrated to the same 
order, their stochastically evolving trend components 
might be (causally) related to each other – or not. If we 
find a close correspondence between the trending up and 
down movements in different series, either positively or 
negatively, we can be quite confident that there is indeed a 

structural, causal relationship between these series, pre-
cisely because of their stochastic nature. Without being 
causally connected, stochastic up and down movements 
could not be expected to move on in close correspondence 
across different series. And if we observe such a cor-
respondence in stochastic movements, we can be quite 
confident that a causal relationship exists. This cor-
respondence – or the lack of it – is revealed in the residuals 
of the (static) cointegration regression. If they are station-
ary, a moving equilibrium relationship must exist between 
the series under investigation. Externally induced depar-
tures from the equilibrium spawn more or less rapid read-
justments. Differencing the series to level stationarity 
before performing the regression analysis would eliminate 
this long term co-movement, preventing it from being 
detected. One would thus fall victim not to spurious 
causality (or regression) but to spurious non-causality.

3. Modelling Cointegration: Two Examples
In our first example we look at the homicide and divorce 
rates of the United States from 1950 to 2005 (see Figure 3).4

3 However, a variable Y (such as confidence in the 
future) may remain level-stationary as long as there 
is a persistent upward or downward trend in another 
variable X, such as a steadily growing gross national 
product. In such a case, the structural relationship 
might be tested by regressing Y on the first dif-

ferences of X or the growth rates derived from X. 
Though a “co-integration” model can be formally 
specified only for two or more series integrated to 
the same order, a specific series might be differenced 
in advance, based on theoretical argument, before 
being included in the cointegration equation.

4 I am grateful to Steve Messner, who made these 
data available to me

Figure 3: U.S. homicide and divorce rates
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In criminological research, divorce rates have repeatedly 
been treated as indicators of certain aspects of social dis-
organisation or institutional anomie considered to be con-
ducive to criminal violence (Beaulieu and Messner 2010; 
Land et al. 1990; Pratt and Cullen 2005). Neither the 
homicide nor the divorce rates seem to follow a deter-
ministic trend. So, we first check if they can be modelled 
as integrated processes of the same order. The unit-root 
tests we apply here is the augmented Dickey-Fuller Test 
(ADF Test), which takes into account the auto-correlation 
of residuals (Dickey and Fuller 1979, 1981).5 In its sim-
plest form the equation to be estimated for testing-pur-
poses is

(5) yt = ρayt-1 + εt

The null hypothesis (that the Y-series is a first order inte-
grated [difference-stationary] process) implies a coefficient 
ρ = 1, the alternative hypothesis (level stationarity) implies 
ρ < 1. The alternative of a stationary autoregressive process 
would usually need to be modelled with the inclusion of a 
constant term. So, in order to be “fair” against the alter-
native, in praxis equation (5) is usually expanded into 
equation (6):

(6) yt = αb + ρbyt-1 + εt

To be on the safe side, it is often recommended to also 
include the time index among the regressor variables, par-
ticularly if the series shows (or seems to show) a prevailing 
upward or downward movement within the observation 
period:

(7) yt = αc + γt + ρcyt-1 + εt

In this way one can check if there is sufficient evidence for 
the presence of a stochastic trend component even though 
a deterministic trend component is given a chance to be 

identified as well. If one wants to rule out the possibility 
that there is also a deterministic trend component (besides 
the stochastic trend component), one would have to test 
the combined hypothesis ρ=1 and γ=0.

Under the null hypotheses, the OLS estimates of the ρ par-
ameters are not normally distributed. Dickey and Fuller 
(1981) have applied Monte Carlo simulations in order to 
establish the distribution of these estimates under various 
conditions: does the equation tested include a constant or a 
time index, does the true process include or not include a 
drift parameter, a deterministic trend component etc.? The 
ratio of the difference between observed and expected 
ρ-coefficient divided by the standard deviation is usually 
symbolized by the letter τ (to differentiate it from Stu-
dent’s t). The critical values of this test statistic and the sig-
nificance level α associated with them, each specified for 
the varied conditions just mentioned, are available in the 
literature (see, for example, Hamilton 1994) and computer 
programs like STATA.

When we apply this testing strategy to our series of homi-
cide and divorce rates, the assumption that both series are 
difference-stationary (integrated) processes of order 1 is 
confirmed.6 When estimating the ρ-coefficient on the basis 
of equation (7) we get ρ̂c = 0.95 for homicide rates and ρ̂c = 
0.98 for divorce rates. These observed coefficients depart 
only τ = 1.21 and τ = 1.19 standard deviations from their 
expected value of ρ = 1.0; consequently, the error risk for 
rejecting the null hypothesis would be α ≥ 10 percent.7 In 
addition, we tested the combined hypothesis ρ=1 and γ=0; 
it was confirmed for both series.

Since the two series are apparently integrated processes of 
the same order, they are also candidates for co-integration. 
We thus regress the homicide series on the divorce series 
according to equation (3). The estimated slope coefficient 
is highly significant, the coefficient of determination is 

5 There is quite some discussion in the literature 
about the appropriateness of unit-root testing in 
general and of specific drawbacks or advantages of 
alternative testing strategies (for example DeJong et 
al. 1992; Hamilton 1994). Generally, one can say that 
these tests get more problematic the shorter the 

length of the inspected time series is (some authors 
even argue that they are useless with less than 100 
observations).

6 I am grateful to Christoph Birkel, who carried out 
these tests with the help of the STATA computer 
program.

7 The critical value chosen to accept or reject the null 
hypothesis depends on whether one would like to reject 
the null hypothesis (which is made more convincing the 
lower the α-value) or rather not reject it (which is made 
more convincing the higher the α-value; commonly rec-
ommended in this case are values of α ≥10 percent).
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R2 = 0.80. However, the estimated residuals do not repre-
sent a stationary process. As shown in Figure 4, there is a 
clear upward trend between 1950 and the mid-1970s, and a 
slight and fuzzy decline afterwards. The results of the ADF 
Tests applied to the residual series confirm this impression. 
The conclusion thus is that the changing level of homicide 
rates is not causally related to the changing level of divorce 
rates. Apparently, what we have here is an example of spuri-
ous regression.

Also, the bivariate cointegration model might be under-
specified in our example: there might be additional input 
factors (apart from divorce rates) that should be included 
in the model (see Messner et al. 2011). In such cases, not all 
of the input factors included in a cointegration model need 
to be integrated processes of the same order. Greenberg 
(2001) even finds a cointegrating relationship between US 
homicide and divorce rates using yearly data for the period 
between 1946 and 1997. He notes, however, that “the paral-
lel movement may have weakened some in recent years” 
(ibid., 302). This weakening apparently continued in the 
following years until the end of our observation period 
(2005), thus tilting the results toward “spurious regression” 
(for the bivariate relationship).

We now take a look at two other series: (a) the total 
number of prison inmates (TPI) who, in their great major-
ity, serve short-term sentences, and (b) the (smaller) 
number of perpetrators sentenced to relatively long periods 
of imprisonment between two and five years (CONV2-5) 
in the German state of Hesse between 1971 and 2013 (see 
Figure 5).8

Figure 4: Residuals of cointegration model with homicide and divorce rates

A word of caution however is in order at this point. If there 
are strong theoretical arguments in support of a structural 
relationship between the two variables (against the detected 
spuriousness), one might consider alternative testing pro-
cedures before giving up the hypothesis. For example, one 
might apply models that combine stochastic and deter-
ministic trend conceptions by assuming that deterministic 
trends change their functional form stochastically over time 
(see Perron 1989; Perron and Vogelsang 1992). Alternative 
testing procedures have also been used by Christoph Birkel 
in his article published in our present issue. A very helpful 
overview on various testing and modelling strategies con-
cerning cointegration is presented by Enders (2010).

8 I am grateful to Rainer Metz (GESIS-Leibniz Insti-
tute, Cologne) who made these data available to me 
and also carried out the statistical analyses (selec-

tively) reported below. For an extended analysis and 
theoretical discussion of law enforcement and incar-
ceration practices see Metz (2013)

Figure 5: Total number of prisoners (left scale) and number serving two to 
five years (right scale)
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Law-making as well as law enforcement and sentencing prac-
tices are influenced by public opinion and political oppor-
tunities following short- and long-term fluctuations. Public 
discussions often focus on more severe and cruel criminal 
acts, but such discussions may also increase the readiness and 
determination to prosecute and incarcerate people for minor 
crimes as well. On the other hand, they may lead to a redirec-
tion of policing and prosecution resources to concentrate on 
more serious crimes. In Germany we have no detailed and 
comprehensive statistics on length of imprisonment actually 
served compared to original sentence. So one might ask 
(among other things) if the (relatively small) number of con-
victions covering some limited range of severity (like, as in 
our example, two to five years of incarceration) will in the 
long run closely correspond (or not correspond) to the devel-
opment of the total number of prison inmates. How indica-
tive or representative are these convictions for the long-term 
development of the total number of imprisoned persons? As 
it turns out in our particular example, eliminating the seem-
ingly linear trend component in both series before doing any 
kind of regression analysis does not lead to zero-correlations 
between the two residual series. Nonetheless, it is advisable 
not to eliminate the trend or drift component right at the 
beginning of the analysis, but to check if the two series are in 
fact cointegrated, whether they have a long term equilibrium 
relationship with regard to their (stochastic trend) levels.

Thus, we first apply ADF Tests to both series according to 
equation (7). Their results support the assumption that 
they incorporate first-order integrated (difference-
stationary) processes.

In the next step we run the co-integration regression (see 
equation 3 above) with the following result:

(8) TPIt = 1437.7 + 3.033(CONV2to5)t + et

The slope coefficient of 3.033 implies that an increase in 
the number of people sentenced to (relatively) long-term 

imprisonment will uplift the total number of prisoners by 
a factor of 3.03 (with a coefficient of determination 
R2 = 0.86). For example, an addition of ten more persons 
convicted in this category will be followed by an increase of 
thirty in the total number of prisoners (whatever the 
mechanism in this process might be). But before we accept 
this hypothesis, we must check whether or not the residuals 
of this regression are stationary (see Figure 6)

Figure 6: Residuals of cointegration model with total numbers of 
prisoners and those serving two to five years

The results show that they are; the unit-root test confirms 
the impression received from visual inspection of the resid-
uals: the null hypothesis of a unit-root can be rejected with 
a risk of α < 0.001.

So far, we have produced evidence that these two series are 
cointegrated, but the static regression says nothing about 
the dynamics of the re-equilibration processes. Engle and 
Granger (1987) have suggested that this process can be 
specified in a so-called error correction model, which we 
present here in the form adapted to our example9 and with 
parameter estimates obtained by OLS regression:10

9 In other cases, lagged terms of the dependent and/
or the independent variable might need to be 
included as well.

10 We skip here any discussion about diagnostic 
statistical tests concerning the adequacy of the 
model specification and the estimation procedure 
(for example Greene 1993, 216 ff.). The long-term 

effect parameters of equation (8) and the short-term 
effect parameters of equation (9) can also be esti-
mated simultaneously in one equation (see Wolters 
1995, p. 153; Wagner and Hlouskova 2007).
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(9) ΔTPIt = 0.876 × Δ(CONV2to5)t – 0.314 × Zt-1 + et

As already mentioned, the symbol Δ indicates differencing, 
ΔTPIt = TPIt – TPIt-1. Consequently, the dependent variable 
and the regressor variables in this model are stationary. The 
variable Zt-1 is given by the estimated Residuals TPIt – 
1437.7 – 3.0333(CONV2to5)t derived from equation (8). 
These residuals represent departures from the equilibrium 
relationship. The negative coefficient of -0.314 thus gives 
the rate of readjustment, year by year, towards the new 
equilibrium level (re-equilibration), no matter whether the 
disequilibrium has been induced by a change in the inde-
pendent variable or by a change in the dependent variable 
caused by some (non-specified) intervention impacting 
directly the dependent variable. The system is in a state of 
equilibrium if Zt = 0, i.e., TPIt – 3.03(CONV2to5)t = 
1437.7. Let us suppose that at some year t the number of 
people sentenced to between two and five years will 
increase from 200 to 220. Then, according to equation (8), 
the equilibrium level in TPI would change from 3.03 × 200 
+ 1437.7 = 2044 to 3.03 × 220 + 1437.7 = 2104, an increase 
of 60. The level change in the number of convicted persons 
(in this category) is immediately (in the same year) 
answered (according to equation 9) by an expected increase 
of 0.876 × 20 = 17.5 in the total number of prisoners 
(TPI),11 thus reducing the dis-equilibrium from 60 to (60 – 
17.5) = 42.5. This remaining disequilibrium will (according 
to equation 9) in the next year be reduced to (42.5 – 0.314 
× 42.5) = 29.15, in the subsequent year to (29.15 – 0.314 × 
29.15) = 20 and so forth.

4. Concluding Remarks
Within criminological research, time series data are often 
used to depict the long-term development of crime and to 
test hypotheses seeking to explain such developments. In 
order to identify and test structural relationships that may 
exist among two or more theoretically relevant time-series, 
one has to take into account the specific components and 
features inherent in such data. The point of departure in 
this paper has been the distinction between deterministic 
and stochastic trend-components and the danger (related 
to these components) of falling victim to either spurious 
regression or spurious non-causality. Subsequently, some 
of the basic features and practical steps in cointegration 
modelling have been outlined as a strategy which helps to 
identify and test structural relationships between trending 
time series without getting entrapped into spurious causal-
ity or non-causality. The practical application of this strat-
egy has been illustrated by analysing American homicide 
and divorce rates given for the years 1950 to 2005, and Ger-
man data on the number of sentenced and imprisoned 
people in the years 1971 to 2013. The purpose of this paper 
has been to outline the basic ideas behind the concepts of 
unit-root testing and cointegration modelling, which are 
useful instruments in analysing time-series data relevant to 
criminological research. The analyses presented here could 
have been extended both with regard to substantive as well 
as methodological and technical issues. This however 
would have gone beyond the (didactically defined) scope of 
the article.

11 Note that the interpretation of the regression 
coefficient (here: 0.876) does not change when the 
two variables have been transformed by the same 
filter, here by taking first differences.



IJCV: Vol. 8 (2) 2014, pp. 199 – 208
Helmut Thome: Cointegration and Error Correction Modelling in Time-Series Analysis  208

References
Banerjee, Anindya, Juan J. Dolado, John W. Galbraith, and David F. Hendry. 

1993. Co-Integration, Error Correction, and the Econometric Analysis of Non-
stationary Data. Oxford: Oxford University Press.

Beaulieu, Mark, and Steven F. Messner. 2010. Assessing Changes in the Effect of 
Divorce Rates on Homicide Rates across Large U. S. Cities, 1960–2000: Re-
visiting the Chicago School. Homicide Studies 14:24–51.

DeJong, David N., John C. Nakervis, Nathan E. Savins, and Charles H. White-
man. 1992. The Power Problems of Unit Root Tests in Time Series with 
Autoregressive Errors. Journal of Econometrics 53:31–50.

Dickey, David A., and Wayne A. Fuller. 1979. Distribution of Estimators for 
Autoregressive Time Series with a Unit Root. Journal of the American Statis-
tical Association 74:427–31.

Dickey, David A., and Wayne A. Fuller. 1981. Likelihood Ratio Statistics for 
Autoregressive Time Series with a Unit Root. Econometrica 49:1057–72.

Enders, Walter. 2010. Applied Econometric Time Series (3d ed.). New York: Wiley.
Engle, Robert F., and Clive W. J. Granger. 1987. Co-integration and Error Correc-

tion: Representation, Estimation, and Testing. Econometrica 55:251–76.
Granger, Clive W.J., and Paul Newbold. 1974. Spurious Regressions in Economet-

rics. Journal of Econometrics 2:111–20.
Greenberg, David F. 2001. Time Series Analyses of Crime Rates. Journal of 

Quantitative Criminology 17:291–327.
Greene, William H. 1993. Econometric Analysis, 2d. ed. New York et al.: Macmil-

lan.
Hamilton, James D. 1994. Time Series Analysis. Princeton: New University Press.
Land, Kenneth C., Patricia L. McCall, and Lawrence E. Cohen. 1990. Structural 

Covariates of Homicide Rates: Are There Any Invariances across Time and 
Social Space? American Journal of Sociology 95:922–63.

Messner, Steven F., Benjamin Pearson-Nelson, Lawrence E. Raffalovich, and Za-
chary Miner. 2011. Cross-National Homicide Trends in the Latter Decades of 
the Twentieth Century: Losses and Gains in Institutional Control? In Control 
of Violence: Historical and International Perspectives on Violence in Modern 
Societies, ed. W. Heitmeyer, H.-G. Haupt, S. Malthaner, and A. Kirschner, 
65–89. New York: Springer.

Metz, Rainer. 2013. Zeitreihen und Strafvollzugsprognosen. In Rechtspsychologie, 
Kriminologie und Praxis. Festschrift für Rudolf Egg zum 65. Geburtstag, ed. A. 
Dessecker and W. Sohn, 399–434. Wiesbaden: Eigenverlag Kriminologische 
Zentralstelle.

Nelson, Charles R., and Heejoon Kang. 1981. Spurious Periodicity in Inappropri-
ately Detrended Time Series. Econometrica 49:741–51.

Nelson, Charles R., and Heejoon Kang. 1984. Pitfalls in the Use of Time as an Ex-
planatory Variable in Regression. Journal of Business & Economic Statistics 
2:73–82.

Perron, Pierre. 1989. The Great Crash, The Oil Prices Shock, and the Unit Root 
Hypothesis. Econometrica 57:1361–1401.

Perron, Pierre, and Timothy J. Vogelsang. 1992. Testing for a Unit Root in a Time 
Series with a Changing Mean: Corrections and Extensions. Journal of Busi-
ness and Economic Statistics 10:467–70.

Pratt, Travis C., and Francis T. Cullen. 2005. Assessing Macro-level Predictors of 
Crime: A Meta-analysis. In Crime and Justice: A Review of Research, ed. M. 
Tonry, 373–450. Chicago: Chicago University Press.

Raffalovich, Lawrence E. 1994. Detrending Time Series: A Cautionary Note. So-
ciological Methods and Research 22:492–519.

Thome, Helmut. 1996. Trends, Cycles, and Co-integration: Some Issues in Mod-
elling Long-term Development in Time Series Analysis. Historical Social Re-
search/Historische Sozialforschung 21:3–23.

Thome, Helmut. 2005. Zeitreihenanalyse: Eine Einführung für Sozialwissen-
schaftler und Historiker. Munich and Vienna: Oldenbourg.

Wagner, Martin, and Jaroslava Hlouskova. 2009. The Performance of Panel Coin-
tegration Methods: Results from a Large Scale Simulation Study. Economic 
Reviews 29:182–223.

Wolters, Jürgen. 1995. Kointegration und Zinsentwicklung im ESW: Eine Ein-
führung in die Kointegrationsmethodologie und deren Anwendung. All-
gemeines Statistisches Archiv 79:146–69.

Helmut Thome
helmut.thome@soziologie.uni-halle.de

mailto:helmut.thome@soziologie.uni-halle.de

	Cointegration and Error Correction Modelling in Time-Series Analysis: A Brief Introduction
	Abstract
	1. Deterministic versus Stochastic Trend Components
	2. The Concept of Cointegration
	3. Modelling Cointegration: Two Examples
	4. Concluding Remarks
	References


