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Abstract. Morpher is a novel morphological rule induction engine designed and
developed for agglutinative languages. The Morpher engine models inflection using
general string-based transformation rules and it can learn multiple arbitrary affix
types, too. In order to scale the engine to training sets containing millions of exam-
ples, we need an efficient management of the generated rule base. In this paper we
investigate and present several optimization techniques using rule elimination based
on context length, support and cardinality parameters. The performed evaluation
tests show that using the proposed optimization techniques, we can reduce the av-
erage inflection time to 0.52 %, the average lemmatization time to 2.59 % and the
number of rules to 2.25 % of the original values, while retaining a high correctness
ratio of 98 %. The optimized model can execute inflection and lemmatization in
acceptable time after training millions of items, unlike other existing methods like
Morfessor, MORSEL or MorphoChain.
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1 INTRODUCTION

Natural language processing is one of the actively researched scientific areas nowa-
days. One of the goals of these research projects is to create automated methods
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for processing free texts. Developing efficient NLP applications requires processing
modules on several abstraction layers, among which the lowest layer is morphology.

Morphology deals with the inner components of words called morphemes, that
are the smallest units of the language with meaning [1]. The grammatically correct
root form of a word is called a lemma, whose base meaning can be modified by adding
affixes to it. These affixes can appear before the lemma (prefix), after the lemma
(suffix) or even inside the word (infix). The complexity of automated morphological
processing of words comes from the fact that in some cases adding affixes can modify
the root form as well, e.g. (try, tried). Inflection is the operation that produces the
inflected form from the lemma, while lemmatization determines the lemma and the
list of affix types in an arbitrary word.

Historically the first successfully applied, popular model for inducing inflection
rules of agglutinative languages was the two-level morphology model [6]. The name
of the model comes from the fact that the inflected word forms are represented on
two levels: the surface level stores the written form, and the lexical level stores the
morphological structure. Dictionaries were used to collect the valid lemmas and affix
types of the target language, while FSTs (finite-state transducers) were trained to
apply the required transformations on the input words. The FST model appears in
several other publications as well, because this model fits the need of transforming
one word to another based on some pre-learnt rules. One of the most widely used
FST category is the subsequential transducer model [9, 10] that can be trained using
the OSTIA algorithm [4, 12].

A very simple transformation engine called the tree of aligned suffix rules (TASR)
is proposed in [15]. It is a supervised model that generates elementary rules from the
training word pairs and stores them in a tree. Unfortunately the TASR model can
only handle suffix rules and not prefix or infix rules. According to the experiments
of [7], for languages that contain only suffix rules, the TASR model can be used very
efficiently.

A more recent unsupervised segmentation model is Morfessor [3, 20]. This model
uses a statistical training method to determine the morpheme boundaries inside the
words. One downside of the original Morfessor model is that it only uses global
frequencies and not local probabilities, so it does not take into account which mor-
pheme can come after which other morphemes. However, there are several other
methods that either use the Morfessor model or extend it.

The MorphoChain engine [11] is one such extension of Morfessor. The main
addition of this improved model is that it also uses orthographic and semantic views
of the input words, thus improving the segmentation correctness. Another improve-
ment was presented in [2] that adapts the MorphoChain segmentation system in
a way that it can identify identical morphemes with spelling differences. Based
on the results, this model outperforms both the original MorphoChain system and
MORSEL [8].

The target language of our research is Hungarian, that is highly agglutinative
and morphologically complex language. It has many affix types and each word can
contain multiple affixes. Most of the affix types are suffixes, but there are a couple
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of prefix and prefix-suffix affix types as well, like comparative and superlative1. In
many cases, adding an affix to a word also changes some characters in the base
form.

As an example, meg |szent |ség |telen |́ıt |hetetlen |ség |es |ked |és |eitek |ért is one
of the longest Hungarian artificial words that means “for your [plural] continued
behaviour as if you could not be desecrated”. It contains 11 affixes. On the other
hand, one lemma might have several inflected forms: in our data set, the word
konfigurál (configure) has 86 different forms in our data set, including átkonfigurálom
(I reconfigure it), konfigurálásukkal (with their configuration), etc. Such examples
show the complexity of the target language.

For Hungarian, Hunmorph-Ocamorph [18], Hunmorph-Foma [5], Humor [14] and
Hunspell [13] are four popular morphology tools. These analyzers can determine all
the possible morphological structures of input words, including their lemma and
the list of affix types found in the input word. According to the analysis of these
tools [16], Hunmorph-Ocamorph is the most advanced among them. Its engine
(Ocamorph) is language independent, and Morphdb.hu [19] is the language depen-
dent knowledge database that stores the set of affix types and their related trans-
formation rules. Hunmorph-Ocamorph can recognize more than 4 million words
using the lexical database of Morphdb.hu, but unfortunately this database has been
constructed by human experts, and not learnt by an automated learning algorithm.

The Morpher2 system [17] is a morphology model that can statistically learn
prefix, suffix and infix transformation rules from a training set containing (word,
lemma, part of speech, morphosyntactic tags) tuples. The model is suitable for
complex agglutinative languages like Hungarian, and it can handle multiple affix
types. According to the evaluation, Morpher can learn 100 000 training items in
about 4 seconds, then execute inflection and lemmatization in about 2.4 millisec-
onds and 2.4 seconds, respectively, reaching about 97 % of average correctness ratio
for previously unseen words. The known limitation of the model is that the lemma-
tization time increases exponentially as we increase the training data set.

The main goal of this paper is to perform space and time complexity analysis of
the baseline Morpher model and introduce several optimization techniques for rule
base reduction so that the engine can scale more easily to large training data sets
containing millions of items.

2 THE MORPHER MODEL

The training data of the Morpher model is a Dtrain set containing training items in

the form of
(
w, w̄, T̄0, 〈Ti〉ki=1

)
, where w ∈ W is the inflected form, w̄ ∈ W̄ is the

lemma of w, T̄0 ∈ T̄ is the part of speech, and 〈Ti〉ki=1 is the ordered list of k affix
types in w, Ti ∈ T.

1 Jó, jobb, legjobb means good, better, best.
2 https://github.com/szgabsz91/morpher

https://github.com/szgabsz91/morpher


966 G. Szabó, L. Kovács

From this training data, Morpher can learn string-based inflection and lemma-
tization rules, the conditional probabilities of the affix types, as well as the valid
lemmas and their parts of speech.

Figure 1 displays the overall structure of the model.

Manager: manages the inflection and lemmatization tasks by coordinating the
transformation engines generated for each affix type. Has a knowledge about
the valid lemmas of the target language and the conditional probabilities of the
affix type chains.

Transformation engines: one transformation engine can learn the transformation
rules of a single affix type. For every affix type, a separate transformation engine
is generated and trained.

Probabilities: during the training phase, all the possible affix type chains are an-
alyzed and the conditional probabilities are stored and updated so that the
manager knows which affix type can come after which other affix types and with
how much probability.

Lemmas: all the valid lemmas are stored, as well as their associated parts of speech
so that during lemmatization the engine knows when it can stop processing an
affix type chain candidate.

T R A N S F O R M A T I O N

E N G I N E S

MANAGER

PROBABILITIES LEMMAS

. . .

Figure 1. The main components of the Morpher model

2.1 Transformation Engine

The responsibility of the transformation engine model is to learn simple string-based
transformation rules from word pairs of an affix type induced by the manager. The
transformation engines can inflect and lemmatize input words based on the induced
transformation rules. We build a transformation engine for every affix type of the
target language.

During the training phase, after the word pairs for an affix type are induced
by the manager, we identify the changing parts of the base forms, and generate
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a number of atomic rewrite rules for them in the form of R = (α, σ, τ, ω), where
α is the prefix, σ is the changing part of the base form, τ is the replacement string
and ω is the suffix. The first atomic rule is called the core atomic rule R̂ for which
|α| = |ω| = 0. The other rules are extended from this core atomic rule by prepending
and appending one character at a time, from the words to the context, essentially
filling in α and ω.

For each atomic rule, we calculate different statistics, including the support value
and the word frequency. The support of a rule equals the number of training word
pairs that the rule matches, while the word frequency is the sum of frequencies of
the related training words. A word’s frequency is equal to its number of occurrences
in the input free text sources, from which the training data was generated.

During inflection and lemmatization, the task is to find the best matching atomic
rules for the input word. For this, we define a fitness function that returns the
goodness value of an atomic rule R for the input word w. This fitness function is

f (R | w) =
|γ (R)|
|w|

· δ (γ (R) , w)

where

• R is the atomic rewrite rule in question,

• w is the input word that needs to be inflected or lemmatized,

• γ (R) is the context of the atomic rewrite rule,

• δ is a function that either returns 0 if the context is not found in the input word,
or 1 otherwise. (In this sense, it is similar to the Kronecker delta, but could be
implemented differently.)

The rule context is α+σ+ω during inflection and α+τ+ω during lemmatization.
Using the fitness function, we can select the matching atomic rewrite rules for the
input word.

2.2 Conditional Probabilities

During the training phase, the Morpher model learns all the possible affix type
chains, and their conditional probabilities. M is the function that can return the
probability of an affix type chain:

M
(
T̄0, T1, . . . , Ti

)
=

P
(
T̄0
)
, if i = 0,

P
(
T̄0
)
·
∏i

j=1 P
(
Tj | T̄0, T1, . . . , Tj−1

)
, if i = 1, 2, . . .

We use the relative frequencies in the training data set Dtrain for probability
calculation.
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2.3 Manager

The manager submodule coordinates all the other submodules to learn the required
morphological features of the training word pair set, as well as perform inflection
and lemmatization, producing complex responses with multiple steps.

The input of the inflection operation is a lemma w̄0 and a set of affix types
{T1, T2, . . . , Tk}. The output is a set of n items in the form of(

T̄0, 〈(Ti, wi)〉mi=1 , ϑ
)

containing

• the T̄0 part of speech,

• the (Ti, wi) steps, where 〈Ti〉mi=1 is a valid permutation of the input affix types
according to M , and 〈wi〉mi=1 are the produced inflected forms, and

• the ϑ aggregated weight of the response.

The responses are sorted by ϑ, in a descending order.
Similarly, the input of the lemmatization operation is an arbitrary inflected word

form w, and the output is a set of n items in the form of(
〈(Ti, wi)〉1i=m , T̄0, ϑ

)
containing

• the (Ti, wi) steps (wm = w), where 〈Ti〉1i=m is a valid affix type chain, and 〈wi〉1i=m

are the produced base forms,

• the T̄0 part of speech, and

• the ϑ aggregated weight of the response.

The responses are sorted by ϑ, in a descending order. The ϑ aggregated weight
is calculated using the normalized affix type conditional probability, and the aggre-
gated fitness of the output words in the steps.

3 OPTIMIZATION TECHNIQUES

Morpher’s generalization ability seemed to be promising, reaching about 97 % of
average correctness ratio in case of a training data set containing 100 000 random
items and evaluating 10 000 previously unseen random words. On the other hand,
we can see a linear increase of average inflection time and an exponential increase
of lemmatization time, as shown in Figures 2 a) and 2 b).

This increase is due to the nature of the problems. For example the exponential
increase of the lemmatization process is caused by the fact that the manager needs
to try all the possible preceding affix type candidates at every affix type. This
cannot be changed, because we do not know the exact set of affix types found in the
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a) Average inflection time
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b) Average lemmatization time

Figure 2. Average inflection and lemmatization times of the baseline Morpher model

input word. However, we can extend the number of training items with which the
Morpher system can perform inflection and lemmatization in acceptable time.

In order to reduce the size of the knowledge base, we need to modify the training
phase of the individual transformation engines associated with the affix types of the
target language, since the other components of the Morpher model (the lemma
database and the conditional probability store) cannot lose information without
a significant loss of correctness ratio.

3.1 Eliminating the Redundant Atomic Rewrite Rules

The main idea behind this optimization technique is to drop the redundant atomic
rules that are covered by other rules in the rule base.

Definition 1 (Redundant atomic rule). The atomic rule Ri = (αi, σi, τi, ωi) is a re-
dundant rule if and only if there exists another Rj = (αj, σj, τj, ωj) atomic rule in
the rule base such that γ (Rj) ⊆ γ (Ri), σi = σj and τi = τj. In this case we say Ri

is covered by Rj.

As an example, the contexts of R1 = (alm, a, át,#)3 and R2 = (-, a, át,#) are
γ (R1) = alma# and γ (R2) = a#, respectively. If both rules are in the rule base,
we can say that R1 is redundant, since γ (R2) ⊆ γ (R1) and the transformation (σ
and τ components) are also the same, i.e. R1 is covered by R2.

On the other hand, if R3 = (toll, -, at,#) and R4 = (l, -, t,#) are part of the same
rule base, they do not cover each other. Although l# = γ (R4) ⊆ γ (R3) = tollat#,

3 # is the special word-end symbol.
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R3 is not redundant, because the transformations are different: R3 appends ‘at’ at
the end of the word, while R4 only appends ‘t’.

The learning algorithm can detect the redundant rules during the rule generation
process, and it immediately blocks their generation. This means that the redundant
rules are not stored in the rule base, and we do not have to execute a second wave of
rule filtering after the original training phase. We introduce a new pmax optimization
parameter. If for an arbitrary word the atomic rules R̂1, R2, . . . , Rk were generated
(R̂1 being the core atomic rule), then using pmax only R̂1, R2, . . . , Rl will be retained,
where l = min (pmax, k). Those atomic rewrite rules that have a longer context than
Rl are simply omitted.

Proposition 1. Using pmax = 1, storing only R̂1 for each word pair and drop-
ping the other R2, . . . , Rk extended atomic rules is equivalent with generating every
possible atomic rule and then dropping all the redundant atomic rules.

Proof. According to Definition 1, an atomic rule Ri = (αi, σi, τi, ωi) is redundant if
and only if there exists another atomic rule Rj = (αj, σj, τj, ωj) such that γ (Rj) ⊆
γ (Ri), σi = σj and τi = τj.

We can assume indirectly that by executing the first part of the proposition,
there remains at least one redundant atomic rule R̃ = (α̃, σ̃, τ̃ , ω̃). This means that

there is at least one other atomic rule R = (α, σ, τ, ω) such that γ
(
R̃
)
⊆ γ (R) , σ̃ =

σ and τ̃ = τ .
From these formulae, we can see that γ

(
R̃
)

= α̃ + σ̃ + ω̃ ⊆ α + σ + ω = γ (R)

and since σ̃ = σ, we can see that α̃ + σ + ω̃ ⊆ α + σ + ω.
This means that |α̃ + σ + ω̃| ≤ |α + σ + ω|. There are two cases to check:

• If |α̃ + σ + ω̃| = |α + σ + ω|, then R̃ = R (as all the components are equal due
to both rules being core atomic rules due to pmax = 1), so R̃ is a non-redundant
item in the rule database.

• If |α̃ + σ + ω̃| < |α + σ + ω|, then |α̃| = |ω̃| = |α| = |ω| = 0 since both R̃ and R
are core atomic rules. This means that |σ| < |σ|, which is a contradiction.

From both cases we get a contradiction, which means that the proposition is
true. �

3.2 Limiting the Generalization Factor

The potential problem with pmax optimization, especially using pmax = 1 is that
we only retain atomic rewrite rules with very short contexts. This means that the
matching rules for the input word might have very different σ ⇒ τ transformations,
increasing the number of outputs at each affix type step, making the inflection and
lemmatization processes extremely slow. This effect is called overgeneralization and
can be prevented by also retaining some redundant rules to increase the information
in the system.
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In order to avoid this overgeneralization effect, we introduce another parameter
called pgen, that identifies the minimum context length of the generated atomic
rewrite rules. This means that for all the retained atomic rules, γ (R) ≥ pgen. Every
other atomic rule is dropped during the rule generation process.

This way we can limit the number of atomic rules from below, while pmax is
an upper limit on the atomic rule context length. We can also combine these two
parameters, retaining a slice of all the possible atomic rewrite rules. For example,
pmax = 2 and pgen = 3 will retain rules whose context contains at least two charac-
ters, but only 3 of these rules per each word pair. In this way, we drop the most
general rules (γ (R) = 1 and γ (R) = 2), and also drop the most specific rules where
γ (R) ≥ 2 + 3 = 5 in case of suffix rules.

3.3 Indirect Data Cleaning

While the pmax and pgen parameters drop the atomic rewrite rules based on their
contexts, we can also drop some rules based on the statistical attributes of the
training data set.

For each atomic rule, we calculate a support value and a word frequency value,
as described in Section 2. The support value is the number of training word pairs
that the rule matches, while the word frequency is the sum of frequencies of the
related training words. A word’s frequency is equal to the number of occurrences in
the input free text sources, from which the training data was generated.

For the support and word frequency based elimination method, we introduce the
psupp and pfreq parameters that drop every atomic rule whose support is less than
psupp, or whose word frequency is less than pfreq.

This optimization method is based on the widely used frequency based reduction
concept that can be found in other research areas as well, such as association rule
mining, where only frequent item sets are considered during rule generation. This
also means that we perform an indirect data cleaning, since rare rules apply to
fewer words. As the training data is generated automatically, it can contain words
with typos or otherwise meaningless words that can be omitted using these two
parameters.

4 SPACE AND TIME COMPLEXITY ANALYSIS

4.1 Space Complexity

The number of transformation engines is equal to the number of affix types, so the
space complexity is Ω (|T|).

The number of conditional probability values for inflection is equal to the number
of valid affix type orders: Ω

(∣∣{(T̄i0 , Ti1 , . . . , Tik) |M (
T̄i0 , Ti1 , . . . , Tik

)
> 0
}∣∣).

The upper size limit of the lemma database can be approximated with the
number of training items. In the worst case, every word in the training data set has
different lemmas, and as such, the size complexity is O(|Dtrain|).
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The number of generated rules depends on the number of word pairs for the
related affix type from Dtrain. In the worst case, it equals the number of training
items where the last affix type is the associated affix type of the transformation
engine. Therefore the number of word pairs generated to train the transformation

engine of the affix type T can be approximated with O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈

Dtrain | Tk = T
}∣∣∣).

For every deduced word pair we generate a number of atomic rules. The approx-
imation of the number of generated atomic rewrite rules for the word pair (w1, w2)
is max (|w1| , |w2|) − |σ| without any optimizations. For the whole transformation
engine related to the affix type T , the approximation of the generated atomic rewrite
rules is

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣ · (max (|wj1| , |wj2|)− |σj|)
)

(1)

where the j index refers to the word pair for which the right component is maximal.
The optimization techniques introduced in Section 3 optimize the right compo-

nent of the above formula. The pmax optimization parameter (Subsection 3.1) makes
sure that the right component is at most pmax:

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣ ·min (pmax,max (|wj1 | , |wj2|)− |σj|)
)
.

(2)
Using pmax = 1, this formula will be as simple as

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣) .
The pgen optimization parameter (Subsection 3.2) will result in a space complex-

ity of

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣ · (max (|wj1 | , |wj2|)− |σj| −Υgen)
)
(3)

where Υgen denotes the minimum number of generated atomic rules that have a con-
text shorter than pgen among the training word pairs.

Asymptotically this means that in the worst case, no reduction occurs, if all
the generated atomic rules have at least as long context as pgen. Additionally the
redundant rules are eliminated after processing each word pair or after each training
iteration. However, this cannot be estimated, since the final number of retained
atomic rules depends on the quality of Dtrain.

The space complexity of the psupp and pfreq optimization parameters, i.e. how
many atomic rewrite rules are retained by them, depends greatly on the training
data set Dtrain. While the support value only refers the number of words for which
the given atomic rule is generated, the word frequency also contains information
about the free text sources from which the training items in Dtrain were constructed.
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4.2 Time Complexity

The training phase consists of three main parts:

• Steps with O(1) time complexity like storing the lemmas or updating the con-
ditional probability values for each training item.

• Generating word pairs from the training items for each affix type.

• Generating atomic rewrite rules from the training word pairs for each affix type.

The generation of word pairs can be done in O(|Dtrain|2) time, since we need to
find all the possible item pairs that are adjacent in the affix type chains. However,
we can improve the pairing algorithm by only going through the items with the
same lemma as the item under processing. This way the majority of the search
space remains untouched. Also, for the set of items that have only one affix type,
we can generate a word pair using the lemma and the word of the same item without
any searching, in O(1) time.

For every training word pair, we first have to find the core. This can be
done in O(max (|w1| , |w2|)) time for the word pair (w1, w2). Then we need to
generate the required atomic rewrite rules. Every rule can be generated in O(1)
time, so the approximation depends on the number of generated atomic rewrite
rules, see Formulae (1), (2) and (3). Without any optimization, the whole gener-
ation process can be done in O(max (|wj1| , |wj2 |) − |σj|) time per word pair. This
can be reduced to O(pmax) using pmax optimization that will result in O(1) time
complexity using pmax = 1. Using pgen optimization, the generation time of the
atomic rules will also be O(max (|wj1| , |wj2|) − |σj| − Υgen). The time complexity
of the psupp and pfreq optimization parameters cannot be approximated accurately,
since the number of retained atomic rules depends on the quality of the training
data.

The first task during inflection is to generate all the valid orders of the given
k affix types. This can be done in at most O(k!) steps. In the worst case, all
the possible permutations are valid, and for each permutation we have to check
if the chain’s conditional probability is positive, which can be done in O(1). For
every possible valid order, we need to go through the affix type chain and perform
local inflection based on the atomic rewrite rules of the appropriate affix types one
by one. We assume that applying an atomic rule on a word and checking if an
atomic rule matches a word can be done in constant time, so at every affix type the
generation of the inflected forms can be approximated with O(|{R}|), which will be
either Formula (1), (2) or (3) as we saw earlier, based on the applied optimization
techniques.

As for lemmatization, the provided input does not contain any information about
how many and which affix types will appear in the word to lemmatize. In the worst
case, there may be O(|T|). At every step, the number of atomic rules to process and
potentially apply can be approximated with Equation (1), (2) or (3) based on the
optimization technique we used during training. The number of previous affix types



974 G. Szabó, L. Kovács

that need to be checked is O(|T| − 1). This means that all in all lemmatization can

be done in exponential time, roughly in O(|Dtrain||Dtrain|) time at most.
Although the size of the knowledge base might seem to be the biggest reason

of the increase of average inflection and lemmatization costs, there are also other
factors to be considered. For example if we eliminate too many redundant atomic
rules with longer contexts, only atomic rules with shorter contexts will remain in
the rule base. This can cause many rules to match the input words, resulting in
many inflection and lemmatization responses for each affix type. Having long affix
type chains, the execution time can increase combinatorically.

5 TEST SYSTEM

For the evaluation of the baseline Morpher model and the optimization techniques,
we implemented a test system using the Java 11 programming language. With the
modern language features we could introduce clean interfaces among the different
submodules, using the modularization techniques introduced by Java 9. Moreover
parallel streams were used for processing large amounts of data in parallel, in a func-
tional manner. These features make the implemented system more maintainable and
efficient.

Figure 3 presents the data pipeline of the evaluation test system.

• Initially, a large number of Hungarian words were collected from the web using
the site of the National Széchenyi Library4.

• Hunmorph-Ocamorph [18] was used to analyze these words, creating a pre-
annotated corpus.

• The corpus was fed to the data generator that emitted both training data and
evaluation data.

• The training data was given to the trainer submodule that returned a trained
instance of the model.

• The evaluator submodule received the trained model and the evaluation data,
and performed several tests to evaluate the model against different metrics.

The number of sample word pairs generated by this data pipeline was 3 612 494.

6 EVALUATION

We examine several metrics during evaluation so that we can compare the baseline
Morpher method with other existing models, and evaluate the optimization param-
eters. These metrics include

• the average training, inflection and lemmatization time,

4 http://mek.oszk.hu

http://mek.oszk.hu
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Figure 3. Test system pipeline

• the average number of responses and the average index of the expected response,

• the average correctness ratio,

• the average number of atomic rewrite rules and the average size of the knowledge
base.

All of these metrics should be minimized except for the average correctness ratio.
The performed tests are performed using the following steps:

1. Generate n1 training items and train the model.

2. Generate n2 evaluation items and evaluate the model using the previously men-
tioned metrics.

3. Repeat the test n3 times and calculate the average of the examined metrics.

The n1 parameter is increased from 10 000 to 100 000 with 10 000 increments in
Subsections 6.1 and 6.2, while it is increased from 500 000 to 3 million with 500 000
increments in Subsection 6.3. The n2 parameter is 10 000 in all cases, and n3 is
chosen to be 10. Every training and evaluation item is chosen randomly for each
test scenario, but the training and evaluation item sets are always disjoint.

The test machine is a Macbook Pro with 3.1 GHz Intel Core i7 processor and
16 GB memory.

6.1 Comparing the Baseline Morpher Model
with Other Morphology Engines

To compare the baseline Morpher model with existing methods, we executed the
same evaluation tests on the baseline Morpher model, Morfessor, MORSEL, Mor-
phoChain and Hunmorph-Ocamorph. Since the interface and functionality of these
tools differ in some points, we could not perform all the tests on every existing
methods:

• MorphoChain failed with an OutOfMemoryError using 50 000 training items, so
we dropped this tool, since we could not compare its final metric values.

• Morfessor and MORSEL are segmentation tools, so they could not perform
inflection.
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• Since we used Hunmorph-Ocamorph for training data preprocessing, it did not
make sense to include it in the comparisons other than the database size.

Figure 4 displays the average correctness ratio of the investigated methods. The
baseline Morpher method’s correctness ratio increases from about 73 % to about
97 %, while Morfessor only reaches 62 %, and MORSEL produces the worst results
with 20 % at the 100 000 training item mark.
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Figure 4. Average correctness ratio of the baseline Morpher model and other morphology
engines

Figure 5 a) displays the average training time of the three methods in seconds,
using exponential scale on the y axis. Morfessor has the worst training time, since
it can learn the segmentation of 10 000 words in 35 seconds, while it takes 6 minutes
to learn the segmentation of 100 000 words. MORSEL has a slightly faster training
phase and similar characteristics to the baseline Morpher model. The baseline Mor-
pher model trains in 4.03 seconds, while MORSEL finishes learning in 1.94 seconds
at the 100 000 training item mark. However, since the baseline Morpher model has
a much higher correctness ratio, this is not a big problem.

In Figure 5 b) we can see the average inflection and lemmatization times of
the baseline Morpher model, as well as the average segmentation time of Morfes-
sor and MORSEL in milliseconds, using exponential scale on the y axis. Morfessor
and MORSEL (the bottom two lines) can perform the segmentation of a word in
an average of 70 and 16 microseconds, respectively. This is almost constant time,
which lets us draw the conclusion that they work with a map-like structure, iden-
tifying the pre-learnt segments in the input words without much searching. Since
both inflection and lemmatization are more complex problems, they have a slightly
steeper curve (the top two lines). While inflection increases from 0.4 milliseconds to
2.4 milliseconds, lemmatization takes an average of 19.1 milliseconds to 2.4 seconds.
This confirms that lemmatization has an exponential time complexity.
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Figure 5. Average training and evaluation times of the baseline Morpher model and other
morphology engines using exponential scale on the y axis

Table 1 contains the average knowledge base size of the baseline Morpher model,
Morfessor and Hunmorph-Ocamorph using 100 000 training items. MORSEL does
not have an option to export its knowledge base. Morfessor has the smallest database
with 3.5 megabytes, but it needs to store much less information. The baseline
Morpher model’s knowledge base is 6.4 megabytes, but it contains the possible affix
type chains, their conditional probabilities, the valid lemmas and more complex
transformation rules as well. Hunmorph-Ocamorph has the biggest database with
22.7 megabytes.

Model File Size [MB]

Baseline 6.4

Morfessor 3.5

Hunmorph-Ocamorph 22.7

Table 1. Average knowledge base size of the baseline Morpher model and other morphol-
ogy engines using 100 000 training items

6.2 Evaluation of the Optimization Techniques

For this evaluation we analyzed the four optimization parameters using a smaller
training data set of 100 000 random items to decide which one is worth using with
larger data sets.

Figure 6 shows the average correctness ratio on the y axis, and the number of
retained atomic rules on the x axis using exponential scale. From this graph we



978 G. Szabó, L. Kovács
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Figure 6. Average correctness ratio over the number of retained atomic rules after psupp
and pfreq optimization, using exponencial scale on the x axis

can see that if we drop atomic rewrite rules randomly, the correctness ratio drops
dramatically.
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Figure 7. Average number of responses and average index of the expected response over
the number of retained atomic rules after psupp and pfreq optimization

On the other hand, if we use one of the two optimization parameters, we can
reduce the rule base size to about 1.73 % of the original and still inflect and lemmatize
about 93 % of the previously unseen words correctly. We added a vertical line to the
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Figure 8. Histogram of atomic rules based on their support and word frequency

10 000 atomic rule mark, while the total number of atomic rules was 578 497. We
can also see that using psupp we can keep a slightly higher correctness ratio with the
same amount of atomic rules, but the two parameters result in very similar results
otherwise.

In Figure 7 a) we can see the average number of responses. Similarly to the
correctness ratio, psupp performs better, producing slightly fewer responses using the
same amount of retained atomic rules.

Figure 7 b) displays the average index of the expected response, i.e., which re-
sponse is the expected (correct) one. Although it is not guaranteed that the expected
response is the correct one due to the large volumes of evaluation data, this metric
is a good approximation. The psupp parameter performs better, and the worst value
with a small number of retained atomic rules does not increase above 3, meaning
that the first 3 responses always contain the expected one.

From the above figures, we can choose psupp = 10 as the optimization parameter.
The histogram of the atomic rules in Figure 8 shows that choosing a relatively low
threshold will drop a lot of rules from the rule base.

Table 2 displays the average number of retained atomic rules, correctness ratio,
number of responses and expected response index using different (pgen, pmax) com-
binations. The most responses are produced when we only keep the most general
rules, and the correctness ratio is one of the lowest values as well. With pgen = 3,
the correctness ratio dropped to about 80 %.
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pgen pmax Rules Correctness [%] Responses Response Index

– – 578 497 96.19 37.11 1.53

1 1 5 019 85.78 126.01 31.94
1 2 16 923 92.62 114.34 7.34
1 3 46 506 94.89 89.45 2.44
1 4 103 533 96.17 56.23 1.60
1 5 175 334 96.18 41.78 1.54

2 1 10 501 91.91 10.92 5.42
2 2 36 186 92.62 9.71 2.05
2 3 90 710 94.02 6.47 1.47
2 4 161 132 94.28 4.60 1.39
2 5 238 879 94.29 4.04 1.39

Table 2. Average number of retained atomic rules, correctness ratio, number of responses
and expected response index using different (pgen, pmax) combinations

6.3 Evaluating the Optimal Optimization Parameter
Using Large Training Data Sets

We wanted to evaluate (pgen = 1, pmax = 1), as well as psupp = 10 using big training
data sets containing up to 3 million training items, but we had to omit the first case,
as it could not even handle 500 000 training items due to the exponential growth
of responses. Figure 9 shows the average training time of the optimized Morpher
model using psupp = 10, increasing about linearly up to about 74.61 seconds.
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Figure 9. Average training time using big training data sets and psupp = 10

In Figures 10 a) and 10 b) we can see the average inflection and lemmatization
times: 3.31 seconds for inflection and 13.26 seconds for lemmatization using 3 million
training items.
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Figure 10. Average inflection and lemmatization times using big training data sets and
psupp = 10

Figure 11 a) displays the average number of responses. It is surprising that
inflection produces more responses in average (31.16 vs 7.81).
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Figure 11. Average number of responses and average index of the expected response using
big training data sets and psupp = 10
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The reason is that many lemmatization responses are filtered out due to not
ending in a valid lemma. However, Figure 11 b) proves that the index of the expected
response does not go above 1.3 and 2.58, respectively.

In Figure 12 we can see the average correctness ratio, that increases from about
96.22 % to about 98.11 % in average.
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Figure 12. Average correctness ratio using big training data sets and psupp = 10

Table 3 contains the summary of the examined metrics, including their baseline
values and the measured values for the optimized case (psupp = 10), as well as
their ratio, using 3 million training items. Just for comparison we executed this
test using the baseline Morpher model, but with less evaluation data to save time.
The table shows that there are huge improvements, except for the training time:
lemmatization of one word would take about 8.5 minutes in average without any
optimizations, compared to 13.26 seconds in case of psupp = 10, which means that
using this optimization parameter value, the lemmatization becomes 2.59 % of the
original value.

Baseline psupp = 10 Ratio

Training time [s] 53.41 74.61 139.69 %

Inflection time [s] 640 3.31 0.52 %

Lemmatization time [s] 511.83 13.26 2.59 %

Number of atomic rules 11 354 255 255 867 2.25 %

Knowledge base size [MB] 130.6 5.5 4.21 %

Table 3. Summary of the average values and improvements of the examined metrics using
a big training data set containing 3 million items and psupp = 10
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7 CONCLUSION

In this paper we performed the space and time complexity analysis of the Morpher
morphological rule induction model, and introduced several optimization techniques.

The four new optimization parameters aim to reduce the number of retained
transformation rules during the training phase. The first optimization parameter
(pmax) limits the number of generated rules per word pair, while another one (pgen)
sets a lower boundary on the context length of the retained rules. We can also
reduce the rule base size using statistics calculated from the training data: there is
a psupp and a pfreq optimization parameter with which we can drop rules that have
a support value or a word frequency value less than these threshold parameters.

The complexity analysis showed that these optimization parameters improve the
memory requirements and average runtime of the original Morpher model dramati-
cally. The winning configuration was psupp = 10 that managed to reduce the number
of rules to the 1.73 % of the original set, still keeping an average correctness ratio of
about 93 % and finished in acceptable time using up to 3 million training items.
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