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Abstract. The distributed alternating direction method of multipliers (ADMM)
algorithm is one of the effective methods to solve the global consensus optimization
problem. Considering the differences between the communication of intra-nodes
and inter-nodes in multicore cluster, we propose a group-based asynchronous dis-
tributed ADMM (GAD-ADMM) algorithm: based on the traditional star topology
network, the grouping layer is added. The workers are grouped according to the
process allocation in nodes and model similarity of datasets, and the group local
variables are used to replace the local variables to compute the global variable.
The algorithm improves the communication efficiency of the system by reducing
communication between nodes and accelerates the convergence speed by relaxing
the global consistency constraint. Finally, the algorithm is used to solve the logis-
tic regression problem in a multicore cluster. The experiments on the Ziqiang 4000
showed that the GAD-ADMM reduces the system time cost by 35 % compared with
the AD-ADMM.
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1 INTRODUCTION

Machine learning has become an important method to extract structured informa-
tion from raw data and transform it into different automatic predictions and applied
hypotheses [1]. In the era of big data, sometimes not only is the number of sam-
ples large, but also the dimension of samples is high. Therefore, in the traditional
machine learning algorithm, it is difficult to implement the relevant processing and
calculation of the big data in a reasonable amount of time. It is necessary to consider
how to transform the traditional machine learning algorithms into distributed ones
using high-performance distributed computing. Most supervised machine learning
algorithms can be viewed as cost-function optimization methods [1], which can be
expressed as the following mathematical form:

min fx(x,D) (1)

where D ∈ Rm∗n is the sample dataset, x ∈ Rn represents the model parameter,
m is the number of samples and n is the dimension of the samples.

The alternating direction method of multipliers (ADMM) is an effective method
suitable for separable convex optimization, which has been used in distributed opti-
mization and statistical machine learning [2]. The ADMM algorithm can transform
the large global problem into several smaller, local sub-problems, and can derive the
solution of the global problem by coordinating the solutions of the sub-problems [2].
We can transform the original problem (1) into a global consensus optimization
problem, suitable for distributed environments, as shown below:

min
N∑
i=1

fi(xi, Di) + g(z), s.t. xi = z, i = 1, 2, . . . , N (2)

where Di ∈ Rmi∗n,
∑N

i=1mi = m, xi ∈ Rn is the local variable, z ∈ Rn is the global
consensus variable, fi : Rn → R is the cost function, and g : Rn → R

⋂
{∞} is the

regularization function.
In the formula (2), the objective function f(x,D) is divided into N sub-problems

fi(xi, Di), and the local variable xi is required to be consistent with the global vari-
able z, so it is very suitable for a parallel solution in the distributed environment.
The distributed ADMM algorithm is implemented by MapReduce in a study by
Lubell-Doughtie et al. [3] and by MPI in a study by Taylor et al. [4]. The dis-
tributed ADMM algorithms implemented in [3] and [4] are synchronous. Due to the
difference in computing and communication performance between different nodes,
the synchronization overhead becomes the bottleneck for shortening the running
time of the algorithm, and the asynchronous distributed ADMM algorithm becomes
a new research hotspot [5, 6, 7]. Compared with the synchronous ADMM algo-
rithm, the asynchronous ADMM algorithm can better solve the “slow node” prob-
lem caused by network delay and the difference between nodes in the synchronous
algorithm [7], as well as improve the convergence speed of the algorithm. How-
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ever, the asynchronous ADMM algorithm often needs more iterations to make it
converge. As the size of the distributed system increases, the algorithm makes con-
vergence more difficult to achieve. Moreover, the increase in the number of nodes
also makes the central node overloaded, affecting the overall performance of the
system. However, with the advances of computer hardware technology, it is very
common for a single machine to have multicore and multiprocessor in the modern
high-performance distributed system. Message Passing Interface (MPI), which is
one of the important means of parallel program development in multicore systems,
has different communication mechanisms between the intra-nodes and inter-nodes:
the processes in the same node transmit data through shared memory or cache,
while processes in different nodes transmit data through the network interface [8, 9].
Moreover, the different communication mechanisms cause the unbalanced arrival
problem [8].

In order to solve the problems such as the distributed ADMM algorithm has slow
convergence speed, the center node is overloaded, the unbalanced arrival problem
in the multicore cluster, and to improve the system communication efficiency and
speed up algorithm convergence, we propose a group-based asynchronous distributed
alternating direction method of multipliers (GAD-ADMM). In our proposal, every
process is viewed as a unit, and all the workers are grouped according to the process
allocation in the multicore cluster and the model similarity of datasets. One worker
is selected as the group leader in each group. Each worker is responsible for the
update of local variable and dual variable, and then sends the local variable to the
group leader to update the group variable. Finally, the master collects the group
variables to update the global variable. The master only communicates with the
group leaders, and the worker communicates with the master indirectly through
the group leader, thus reducing the communication between nodes and the load of
the master. In order to solve the unbalanced arrival problem, the GAD-ADMM
algorithm adopts an asynchronous protocol between groups.

The main contributions of this paper can be summarized as follows:

1. We propose a group-based asynchronous distributed ADMM, which improves
the communication efficiency by reducing the communication between nodes in
a multicore cluster, and accelerates the convergence of the algorithm by relaxing
the constraint conditions on global consistency.

2. The asynchronous communication protocol is used between groups to further
improve the convergence speed of the algorithm on the premise of ensuring the
convergence of the algorithm.

3. Instead of directly transmitting the group local variable and dual variable, the
group leader first performs related operations on the group local variable and
dual variable before transmitting the result to the master, further reducing the
communication between nodes and reducing the calculation load of the master.

4. The GAD-ADMM algorithm is implemented in a high performance multicore
distributed cluster. The benchmark experiments show that the GAD-ADMM
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algorithm can reduce the number of external iterations, improve communication
efficiency, and reduce the total time cost of the system by 35 % compared with
the AD-ADMM algorithm.

The remainder of the paper is organized as follows. The background and related
work of ADMM are introduced in Section 2. Section 3 introduces the GAD-ADMM.
The theoretical analysis of the GAD-ADMM is presented in Section 4. In Section 5,
experiments on logistic regression (LR) solved by the GAD-ADMM are presented.
Finally, we present the conclusion of this paper in Section 6.

2 BACKGROUND AND RELATED WORK

Many machine learning problems can be transformed into global consensus opti-
mization problems. The distributed ADMM algorithm based on global consistency
is used to solve the SVM problem by Zhang et al. [10] and solve the logistic regres-
sion problem by Lubell-Doughtie et al. [3]. The ADMM algorithm is introduced by
Boyd et al. [2] to solve the global consensus optimization problem. The iterative
formula is shown as follows:

xk+1
i := argmin

xi

(
fi(xi, Di) +

ρ

2

∥∥∥∥xi +
1

ρ
yki − zk

∥∥∥∥2
2

)
, (3)

zk+1 := argmin
z

(
g(z) +

ρ

2

N∑
i=1

∥∥∥∥xk+1
i +

1

ρ
yki − z

∥∥∥∥2
2

)
, (4)

yk+1
i := yki + ρ

(
xk+1
i − zk+1

)
(5)

where yi ∈ RN is the dual variable, ρ is the penalty parameter, and
∥∥∥x+ 1

ρ
y − z

∥∥∥
is the penalty term. It is shown in Equations (3), (4) and (5) that the updates of
local variables and dual variables can be executed parallel in different nodes, while
the aggregation of all local variables and dual variables is desired to solve the global
variable. Generally, one master can be used to update the global variable, and
N workers can be used to update local variables and dual variables independently.
Due to the fault tolerance of the machine learning algorithm and the decomposable
characteristics of the algorithm, moderate relaxation of the accuracy requirements
of the iterative process can make the algorithm converge faster.

According to different communication topologies, distributed ADMM algorithms
can be classified into point-to-point mode [11] and master-slave mode [3, 12]. The
global consensus optimization problems are usually solved using a master-slave
mode. According to different communication protocols, distributed ADMM algo-
rithms can be classified into synchronous and asynchronous distributed ADMM. In
the synchronous distributed ADMM algorithm, the master must wait to receive the
parameters of all workers before updating the global variable [2, 3, 4, 10], so the
speed of the algorithm is limited by the slowest node. To solve this problem, Zhang
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et al. [7] proposed an asynchronous distributed ADMM (async-ADMM). A new asyn-
chronous distributed ADMM (AD-ADMM) proposed by Chang et al. [12], which
does not need the loss function, must be a convex function. Chang et al. [13] fur-
ther proved that the AD-ADMM had linear convergence. Unlike the synchronous
distributed ADMM algorithm, the AD-ADMM master only needs to receive the
local variables from a partial list of workers to update the global variable z. As
the number of workers increases, the convergence of the distributed ADMM algo-
rithm becomes more difficult. To solve this problem, Wang et al. [14] proposed
a group-based distributed ADMM (GADMM): all the workers are grouped into sev-
eral groups by model similarity in the GADMM algorithm, and then the group
variables are used to replace local variables and update the global variable. The
convergence speed of the algorithm is improved by relaxing the constraint on global
consistency.

The distributed ADMM algorithms introduced above optimize the iterative for-
mat and transmission process of the distributed ADMM algorithm from different
angles, but do not consider the difference of data communication between intra-
nodes and inter-nodes. This kind of communication variability often leads to the
unbalanced arrival problem, which slows down the convergence speed of the algo-
rithm. However, as the number of distributed system nodes increases, the distributed
ADMM algorithm converges slowly. The GAD-ADMM algorithm proposed in this
paper adds a layer of grouping on the basis of the AD-ADMM algorithm framework,
where the workers are grouped according to the distribution of processes in the dis-
tributed system and the model similarity of datasets. In addition, it uses group
variables instead of local variables to update the global variable. To improve the al-
gorithm efficiency and solve the unbalanced arrival problem in the multicore cluster,
a reasonable grouping of the workers was adopted for the GAD-ADMM. Besides, the
convergence speed of the GAD-ADMM algorithm was accelerated by relaxing the
constraints of global consistency. This paper bridges the structural characteristics of
distributed systems with the characteristics of distributed algorithms and proposes
an efficient grouping asynchronous distributed ADMM (GAD-ADMM) algorithm.
The GAD-ADMM is also different from the GADMM in two ways:

1. the GAD-ADMM fully considers the communication differences between pro-
cesses in a multicore cluster, and takes these differences as the main factor of
process grouping;

2. instead of a synchronous protocol, the asynchronous protocol is used between
groups.

3 THE GROUP-BASED ASYNCHRONOUS DISTRIBUTED
ADMM (GAD-ADMM)

We define the notations included in the rest of this paper as follows.
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Definition 1. P represents the number of nodes in the system and Qi represents
the number of working processes in node Pi. Pij represents the jth process in the
ith node. All the processes in the node Pi are divided into Mi groups, and M is
the total number of groups. M1 is the number of groups of the processes of the
node where the master is located. N is the total number of workers. Wij represents
the jth worker in the Gth

i group. Dij represents the dataset processed by Pij or
Wij, and Cij is the number of samples of Dij. The data transfer rate in the node
is Vin B/s while between nodes is Vout B/s. The number of bytes occupied by the
parameter x is Fdim (the number of bytes occupied by the parameter y or z is also
Fdim).

As the size of the data increases, the algorithm becomes more and more dif-
ficult to converge. The main purpose of the GAD-ADMM is to improve commu-
nication efficiency and speed up the convergence of the algorithm by grouping the
processes. Based on the traditional master-slave mode, the GAD-ADMM adds a
grouping layer to form a two-layer master-slave mode. After grouping, there are
three different types of processes in the system: the master, the group leader and
the worker. The entire algorithm framework of GAD-ADMM consists of four steps.
First, the processes of workers are classified into several groups according to the
process allocation of the system and model similarity of datasets. Each group se-
lects one process as the group leader. Second, the worker updates local variable
and dual variable, then sends the local variable to the group leader, and finally
waits to receive the group variable and global variable from the group leader for the
next update. Third, the group leader gathers all the local variables of the group
to produce the group local variable and dual variable, then the group leader must
send the group variable to the master and wait to receive the global variable from
the master, and finally broadcast the group local variable and global variable to
the workers. Finally, the master gathers the group variables from group leaders to
update the global variable and then sends the updated global variable to the group
leaders. Due to the differences between groups and network delay, we adopt an
asynchronous communication protocol between groups. The master does not wait
for the parameters of all groups to arrive, but only waits for the parameters of some
groups (the number of groups can be set by the user) to arrive to update the global
variable. All these steps, with the exception of the first one, are iterated until the
algorithm converges.

3.1 The Decomposition of the Calculation
and the Grouping Method of the Process

In a multicore cluster, each node may be assigned multiple processes, and each
process processes an independent dataset, and updates the local variable and dual
variable in parallel. In the iterative process, formulae (3), (4) and (5) can be further
modified as follows:
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xk+1
ij := argmin

xij

(
fi(xij, Dij) +

ρ

2

∥∥∥∥xij +
1

ρ
ykij − zk

∥∥∥∥2
2

)
, (6)

zk+1 := argmin
z

(
g(z) +

ρ

2

P∑
i=1

Qi∑
j=1

∥∥∥∥xk+1
ij +

1

ρ
ykij − z

∥∥∥∥2
2

)
, (7)

yk+1
ij := ykij + ρ

(
xk+1
ij − zk+1

)
(8)

where Dij represents the dataset processed by the process Pij, and xij and yij repre-
sent the local variable and dual variable updated by Pij, respectively. According to
formula (7), the solution of the global variable needs to aggregate all local variables
and dual variables. As the number of processes increases, the load on the master
increases. This algorithm first performs group aggregation on local variables, and
then uses the aggregate value of the group to update the global variable in order to
reduce the load on the master. So how to divide the working processes into groups
appropriately is considered in this phase. Considering the high cost of data com-
munication between nodes, we first assign processes in the same node to the same
group by default. Then, we analyze the impact of different groups on system time
cost.

In each iteration, the master needs to aggregate the group variables of all groups,
and then broadcast the global variable to each group. Therefore, the total system
time (Ttotal) of the master includes the waiting time (Twait), the calculation time
(Tcal) and the sending time (Tsend). The waiting time is determined by the update
time of each group and the transfer time of model parameters. The calculation time
is the time when the master calculates the global variable. The sending time is the
time required for the master to transfer the global variable to the group leaders.
The waiting time of each iteration can be expressed as follows:

Twait = Tupdate + Ttrans (9)

where Tupdate represents the average update time of all groups, and Tupdate is mainly
determined by the update time of local variables in the workers, so the change of
the number of groups does not have a great influence on it. Ttrans is the transfer
time, which can be computed as formula (10), and includes the time of the model
parameters transferred between the master and the group leaders, and between the
group leader and the workers:

Ttrans = 3N
Fdim
Vin

+ 3
P∑
i=2

Mi

(
Fdim
Vout

− Fdim
Vin

)
. (10)

The sending time can be computed as formula (11) and the calculation time can
be computed as formula (12) in each iteration, in which Tadd represents the time of
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an accumulation operation:

Tsend = (M −M1)
Fdim
Vout

+M1
Fdim
Vin

, (11)

Tcal =
M∑
i=1

Tadd. (12)

Usually, Vin > Vout. It can be induced from (9), (10), (11) and (12) that when
the dataset and the number of processes are constant, as the number of groups M
increases, Ttrans, Tcal and Tsend increase, and Tupdate is basically unchanged. So
the total time of the system in one iteration increases. That is to say, in each
iteration, the fewer the number of groups, the higher the system communication
efficiency. So we first divide the processes in the same node into a group by de-
fault.

After grouping processes, the group variables are used instead of local variables
to update the global variable to speed up the convergence of the algorithm. There-
fore, we use the similarity of the dataset as another criterion for grouping, that is,
the model similarity of the dataset of the processes in the same group after group-
ing is higher. To achieve this purpose, the processes in the same node are further
grouped according to model similarity. In this algorithm, we use Euclidean distance
as the measure of similarity: the smaller the Euclidean distance, the larger the sim-
ilarity of datasets. Measuring model similarity of datasets also requires expensive
computing and communication overhead, so we use the similarity of the local vari-
able x to replace the model similarity of the dataset as the measurement indicator.
The Euclidean distance (Ed) between the process Pij and the process Pik can be
calculated by formula (13):

Ed(Pij, Pik) = ‖x1ij − x1ik‖2 (13)

where x1ij, x
1
ik ∈ Rn represent the first updated values of the local variables of Pij

and Pik, respectively. After calculating the similarity between processes, the L al-
gorithm [15] is used to determine the number of internal groups, and the DIANA
algorithm [18] is used to perform regrouping operations on each default group. The
DIANA algorithm is a top-down hierarchical clustering algorithm, which needs to
determine the number of groups in advance, while the L algorithm can automatically
determine the number of groups in the hierarchical clustering algorithm [15]. Other
clustering algorithms can also be used to regroup the processes. Local variables
are used instead of datasets as indicators for similarity measurement. Although it
is necessary to perform an update operation on the local variables in advance, the
updated values can be used as the initial value of subsequent iteration updates, so
it will not increase the total system time cost.
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3.2 Group-Based Parallel Iterative Update Strategy

The workers are responsible for updating local variables and dual variables, which
can be executed in parallel. Each worker first updates local variable and dual vari-
able, then sends the local variable to the group leader, waits to receive the group
variable and global variable from the group leader, and then updates the local vari-
able again with the group variable. xij represents the local variable and yij represents
dual variable of the jth worker in the group Gi. Using formulae (14) and (15), each
worker updates local variable and dual variable, respectively,

xki+1
ij := argmin

xij

(fi

(
xij, Dij) +

ρ

2

∥∥∥∥xij +
1

ρ
ykiij − z̃Gi

∥∥∥∥2
2

)
, (14)

yki+1
ij := ykiij + ρ

(
xki+1
ij − z̃Gi

)
(15)

where Dij ∈ Rmij∗n, xij ∈ Rn, yij ∈ Rn,
∑P

i=1

∑Qi

j=1mij = m, and z̃Gi
represents the

latest z-value received by the group Gi. In the GAD-ADMM, the workers in the
same group are synchronous, while in different groups they are asynchronous, so the
workers in the same group have the same z̃Gi

while workers in different group may
have different z̃Gi

. The procedure for the worker is described in Algorithm 1.

Because the datasets are grouped according to model similarity, the local variable
is set to the same as the group local variable. It is worth noting that since the local
variable is updated at the time of grouping, the first update of the local variable is
directly set equal to the initial value, which is the updated value of the local variable
in the process grouping. Update of the local variable is the optimal value for solving
the sub-problem (14). In this paper, we use the Trust Region Newton method
(TRON) [16] to solve the sub-problem. Of course, other optimization methods are
also applicable to this algorithm.

Algorithm 1: Group-based Asynchronous Distributed ADMM (GAD-
ADMM): Processing by worker j in the group Gi

Initialize x0ij, y
0
ij and set ki=0.

set x1ij = x0ij and update yki+1
ij using (15)

send x1ij to the group leader

repeat
wait until receiving z̃Gi

and xGi
from the group leader.

set ki = ki + 1
xij = xGi

(16)

update xki+1
ij , yki+1

ij using (14), (15)

send xki+1
ij to the group leader.

until the stopping conditions are satisfied ;
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3.3 Group-Based Parameter Aggregation Communication

After grouping the processes, the process with the minimum process number is
selected as the group leader of the group. The group leader gathers all local variables
from the workers in the group, then updates the group variable xGi

and the group
dual variable yGi

. After the group leader updates the values of xki+1
Gi

and yki+1
Gi

, the
updated values can be directly sent to master. It can be seen from Equation (7)
that, when solving the global variable, we need to sum up yi/ρ + xi. Therefore,
the calculation can be performed prior to the transmission, leading the calculation
result wGi

(wGi
should be computed as formula (17)) transferred to the master

directly instead of xGi
and yGi

. In this case, the transfer time can be calculated by
formula (18), it can be induced by formulae (10) and (18) that T

′
trans < Ttrans:

wki+1
Gi

= yki+1
Gi

/ρ+ xki+1
Gi

, (17)

T
′

trans = 3N
Fdim
Vin

+ 2
P∑
i=2

Mi

(
Fdim
Vout

− Fdim
Vin

)
. (18)

According to the grouping method, the model similarity of a dataset between
workers in the same group is relatively high, and workers in the same group are
in the same node, so the synchronous communication protocol is adopted between
workers in the group. Considering that the number of samples on each worker may
be different, the group variable is calculated from the weighted average of local
variables of all the workers in each group. We define ηij as the ratio of dataset Dij

in the group Gi, and ηij can be computed by formula (19). Then, the group variable
xGi

can be updated as shown in formula (20), and the group dual variable yGi
can

be updated using formula (21):

ηij = Cij/
∑

Wij∈Gi

Cij, (19)

xki+1
Gi

:=
∑

Wij∈Gi

ηijx
ki+1
ij , (20)

yki+1
Gi

:= ykiGi
+ ρ

(
xki+1
Gi
− z̃Gi

)
(21)

where z̃Gi
represents the latest z-value received by the group leader of group Gi.

After this, the group leader sends wGi
to the master, then waits to receive the

global variable from the master, and finally broadcasts the group local variable and
global variable to the workers. The whole procedure for the group leader is shown
in Algorithm 2.
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Algorithm 2: Group-based Asynchronous Distributed ADMM (GAD-
ADMM): Processing by the group leader of the group Gi

Initialize xGi
, yGi

, zGi
and set ki=0.

repeat
wait xij from all workers in the group Gi

update {xki+1
Gi

, yki+1
Gi

, wki+1
Gi
} using (20), (21), (17)

send {wki+1
Gi
} to the master

wait until receiving z̃Gi
from the master.

broadcast z̃Gi
and xGi

to all workers in the group Gi.
set ki = ki + 1

until the stopping conditions are satisfied ;

3.4 Global Variable Data Synchronization and Update
Based on Bounded Delay

The master waits to receive the group variables from the group leaders, updates the
global variable z with the group variables, and then sends the new global variable
to the corresponding group leaders. Only a partial synchronization is required for
each iteration of the master, not full synchronization for all groups. The master
only broadcasts the global variable to the corresponding groups in each iteration.
However, since the number of processes in each group may be different, we use the
weighted value of the grouped variables to solve the global variable. Assuming that
there are NGi

processes in the group Gi, the global variable can be updated using
formulae (22) and (23).

wk+1
Gi

=

w̃Gi
, ∀Gi ∈ Ak,

wkGi
, ∀Gi ∈ Ack,

(22)

zk+1 := argmin
z

(
g(z) +

ρ

2

M∑
i=1

MNGi

N

∥∥wk+1
Gi
− z
∥∥2
2

+
θ

2

∥∥z − zk∥∥2
2

)
(23)

where Ak represents the index subset of group leaders received by the master in
iteration k, Ack represents the complementary set of Ak, and ρ and θ are the penalty

parameters. The penalty term
∥∥z − zk∥∥2

2
is added to further ensure the convergence

of the algorithm. The whole procedure for the master is shown in Algorithm 3.
In the GAD-ADMM, the bulk synchronous parallel (BSP) mode is adopted

between workers in the same group, while the stale synchronous parallel (SSP) [17]
mode is adopted between groups. The workers in the same group have the same
iteration cycles and between groups may have different iteration cycles. The SSP
mode achievement involves several steps. First, the minimum synchronized block
size is set to A (M ≥ A ≥ 1), indicating that the global variable z will not be
updated until the master has successfully received the group variables from A group
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Algorithm 3: Group-based Asynchronous Distributed ADMM (GAD-
ADMM): Processing by the master

Initialize z and set k = 0, dGi
= . . . = dGM

= 0.
repeat

wait until receiving a minimum of A updated variables from the group
leaders and dGi

≤ d for all i ∈ {1, . . . ,M}
update

dGi
=

{
0 : ∀Gi ∈ Ak
dGi+1 : ∀Gi ∈ Ack

(24)

update zk+1 using (23).
broadcast zk+1 to the group leaders in Ak.
set k = k + 1

until the stopping conditions are satisfied ;

leaders. Second, the maximum delay cycle is set to d (d ≥ 1), and every group must
update at least once in this cycle. Every group leader has its own delay counter
dGi

, which is stored on the master. When the wGi
from the group Gi arrives at the

master, the corresponding dGi
is set to 0, otherwise, dGi

is increased by one as the
master’s counter k increments. The dGi

for each group must be less than d. The
GAD-ADMM reduces to synchronous when A is equal to M or d is set to 1. Figure 1
shows the timing diagram of the GAD-ADMM when the threshold A is set to 2 and
cycle d is set to 3.
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Figure 1. The timing diagram of the GAD-ADMM (A = 2, d = 3): P0 represents the
master, and Pij represents the jth worker in the group Gi. In this figure, there are
8 workers grouped into 3 groups, in which P11, P21 and P31 are the group leaders of the
corresponding groups. The number in the upper right corner of the variable represents
the number of iterations.
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4 THEORETICAL ANALYSIS

In this section, we analyze the convergence of the GAD-ADMM and further compare
the convergence speed of the GAD-ADMM with the AD-ADMM.

4.1 Convergence Analysis

In this section, we analyze the convergence of the GAD-ADMM, in which the aug-
mented Lagrangian for (2) can be modified to the following formula:

Lρ(x, y, z) =
M∑
i=1

fi(xGi
) + g(z) +

M∑
i=1

MNGi

N

(
〈yGi

, xGi
− z〉+

ρ

2
‖xGi

− z‖22
)
. (25)

First, we make the assumption as follows to simplify analysis.

Assumption 1. The function g is proper, closed and convex; Each function fi
is a convex function, and there is a constant L ≥ 0 such that the gradient of fi
satisfies the Lipschitz continuous condition; Moreover, problem (2) has an optimal
solution f ?, which is bounded; Set d ≥ 1 as the maximum bounded delay; For all
i ∈ {1, . . . ,M} and k ≥ 0, it must be that i ∈ Ak

⋃
Ak−1

⋃
. . .
⋃
Amax(k−d+1,−1), and

there exists a constant B ∈ [1,M ] such that |Ak| ≤ B for all k (|Ak| represents the
number of Ak).

Theorem 1. If Assumption 1 is true, then the sequence of
(
{xki }Ni=1, {yki }Ni=1, z

k
)

generated by the GAD-ADMM is bounded and has limit points, which satisfy the
KKT conditions of problem (2) under the condition that formulae (26), (27), (28)
are established:

∞ > Lρ
(
x0, z0, y0

)
− f ? ≥ 0, (26)

ρ ≥
((

1 + L2
)

+

√
(1 + L2)2 + 8L2

)
/2, (27)

θ >
(
B
(
1 + ρ2

)
(d− 1)2 −Mρ

)
/2. (28)

The proof of Theorem 1 is similar to that of Corollary 1 in [12]. It is implied
by Theorem 1 that the GAD-ADMM is guaranteed to converge to the set of KKT
points so long as ρ and θ are large enough. The reciprocal of θ can be considered as
the step size of z.

4.2 Convergence Speed Analysis

We further analyze the convergence speed of the GAD-ADMM and the AD-ADMM
in this section. First, we analyze the update speed of the local variable for each
worker. We define the objective function of the sub-problem as follows:

F (xi) = f(xi) + h(xi) (29)
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where h(xi) = ρ
2
‖xi − z + 1

ρ
yi‖2, f(xi) is the loss function and f(xi) is convex. We

also denote xkii as the optimal value of the worker i in iteration ki.

Lemma 1. Assuming that the AD-ADMM and the GAD-ADMM have the same
method for updating the global variable z, all N workers in the GAD-ADMM are
classified into M groups. For any ki ≥ 1, the local variable xkii sequence satisfies the
formula (30):

N∑
i=1

F (xkii ) ≥
M∑
i=1

NiF

 ∑
Wij∈Gi

ηi,jx
ki
ij

 (30)

where Ni represents the number of the workers in the group Gi, and ηi,j is the weight
of Wij in the group Gi.

Proof. We first analyze the situation that there are only two workers (Wa and Wb)
in the group, and we define xc is the average of the local variables xa and xb. In the
GAD-ADMM, the workers in the same group are synchronous, so the workers in the
same group have the same ki and z̃Gi

. Because f(x) is convex, we can induce that

f(xa) + f(xb) ≥ 2f(xc) (31)

when ki = 2, it can be deduced from (14), (15) and (31) that

F (x2a) + f(x2b)− 2f(x2c) ≥ (ρ/2)
∥∥x2a − z̃1Gi

+ (1/ρ)y1a
∥∥2

+ (ρ/2)
∥∥x2b − z̃1Gi

+ (1/ρ)y1b
∥∥2 − ρ∥∥x2c − z̃1Gi

+ (1/ρ)y1c
∥∥2 ≥ (ρ/2)

∥∥x2a + x1a − z̃1Gi

∥∥2
+ (ρ/2)

∥∥x2b + x1b − z̃1Gi

∥∥2 − (ρ/4)
∥∥x2a + x1a + x2b + x1b − 2z̃1Gi

∥∥2 .
(32)

Similar, when ki > 2,

F (xkia ) + f
(
xkib
)
− 2f

(
xkic
)
≥ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xia −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

+ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xib −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

− ρ

∥∥∥∥∥∥
ki∑
i=1

xic −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

≥ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xia −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

+ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xib −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

− (ρ/4)

∥∥∥∥∥∥
ki∑
i=1

xib +
ki∑
i=1

xib − 2
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

≥ 0. (33)
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If there are p workers in a group, then in the kthi iteration, it can be deduced
that

p∑
i=1

F
(
xkii
)
− pF

(
1

p

p∑
i=1

xkii

)
≥ (ρ/2)

p∑
j=1

∥∥∥∥∥
ki∑
i=1

xij −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2

− ρ

2p

∥∥∥∥∥
ki∑
i=1

p∑
j=1

xij − p
ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2

≥ 0. (34)

When all workers are divided intoM groups, and the number of workers in theGi

group is Ni, the difference between the original function F (xi) and the function F (xi)
after grouping is:

N∑
i=1

F
(
xkii
)
−

M∑
i=1

NiF

 ∑
Wij∈Gi

ηi,jx
ki
ij

 =
N∑
i=1

F
(
xkii
)
−

M∑
i=1

NiF

(
1

Ni

Ni∑
j=1

xkiij

)

≥
M∑
i=1


Ni∑
j=1

∥∥∥∥∥
ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2

− ρ

2Ni

∥∥∥∥∥
ki∑
i=1

Ni∑
j=1

xiij −Ni

ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2
 ≥ 0.

(35)

2

The main difference between the GAD-ADMM and the AD-ADMM is based
on the sum of the local variable xkii sequence, so F (ηxi) is going down faster than
F (xi).

Moreover, we define the objective function of the AD-ADMM and the GAD-
ADMM as follows:

G(xk, zk) =
N∑
i=1

fi(x
k
i ) + g(zk), (36)

Ḡ
(
x̄k, z̄k

)
=

N∑
i=1

fi
(
x̄ki
)

+ g
(
z̄k
)
. (37)

Theorem 2. If g(z) = β‖z‖2and the synchronous communication protocol is used
both in the GAD-ADMM and the AD-ADMM, then

G(xk, zk)− Ḡ(x̄k, z̄k) ≥ ρ2M(N −M)

N2(2β +Mρ)2(2β +Nρ)

∥∥vk+1
i

∥∥2 (38)

where vk+1
i =

∑N
i=1

(
xk+1
i + 1

ρ
yk+1
i

)
.
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Proof. Since g(z) = β‖z‖2, then it can be induced by (16),(20) and (23) that

x̄i
k =

∑
Wij∈Gi

ηi,jx
k
ij, (39)

z̄k =
Mρ

N(2β +Mρ)

M∑
i=1

Ni

(
xkGi

+ (1/ρ)ykGi

)
. (40)

Since f(x) is a convex function and non-negative, when the N workers are
grouped into M groups, the loss function of sub-problem satisfies:

N∑
i=1

fi(x
k
i ) ≥

M∑
i=1

Nifi

 1

Ni

∑
Wij∈Gi

xkij

 ≥ M∑
i=1

Nifi

 ∑
Wij∈Gi

ηi,jx
k
ij

 . (41)

It can be induced that

zk+1 =
ρ

2β +Nρ

N∑
i=1

(
xk+1
i + (1/ρ)yk+1

i

)
, (42)

z̄k =
Mρ

N(2β +Mρ)

M∑
i=1

Ni

(
xkGi

+ (1/ρ)ykGi

)

≤ Mρ

N(2β +Mρ)

M∑
i=1

∑
Wij∈Gi

(
xk+1
ij + (1/ρ)yk+1

ij

)

≤ Mρ

N(2β +Mρ)

N∑
i=1

(
xk+1
i + (1/ρ)yk+1

i

)
≤ zk+1, (43)

g
(
zk+1

)
− g

(
z̄k+1

)
≥ g

(
ρvk+1

i

2β +Nρ

)
− g

(
Mρvk+1

i

N(2β +Mρ)

)

≥ M(ρvk+1
i )T

N(2β +Mρ)

(
ρvk+1

i

2β +Nρ
− Mρvk+1

i

N(2β +Mρ)

)
=

ρ2M(N −M)

N2(2β +Mρ)2(2β +Nρ)

∥∥vk+1
i

∥∥2 . (44)

Therefore, it can be induced by (41) and (44) that

G
(
xk, zk

)
− Ḡ

(
x̄k, z̄k

)
≥ g

(
zk+1

)
− g

(
z̄k+1

)
≥ ρ2M(N −M)

N2(2β +Mρ)2(2β +Nρ)

∥∥vk+1
i

∥∥2 .
(45)
2
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Theorem 2 indicates that when M < N , the difference between the object
function of the AD-ADMM and the GAD-ADMM is greater than 0, and the smaller
the M , the greater the difference. It also indicates that when M is equal to N , the
GAD-ADMM is equal to the AD-ADMM.

5 EXPERIMENTS AND DISCUSSION

In this section, we solve the logistic regression problem with L2 regularization by
the GAD-ADMM and the AD-ADMM [12]. The problem is described as follows:

min
1

N

N∑
i=1

li
(
DT
i xi − bi

)
+ β‖z‖2, s.t. xi = z, i = 1, 2, . . . , N. (46)

where D ∈ Rm∗n is the sample dataset, m represents the number of samples, n rep-
resents the number of features of samples, bi ∈ {0, 1} is the label of the sample, and
β > 0 is the scalar regularization parameter.

5.1 Experimental Environment and Parallel Implementation

The experimental platform of this paper is the Ziqiang 4000 high-performance clus-
ter of Shanghai University. Each node of the cluster has an Intel E5-2690 CPU
(2.9 GHz/8-core) processor and 64 GB memory (RDIMM DDR3 1 600 MHz), the net-
work is gigabit Ethernet. We use the kdd2010 (bridge to algebra)1 as the datasets,
which contains 19 264 097 training samples and 1 163 024 features. All datasets are
divided into training/testing datasets at a ratio of 3:1 for experimental testing.
We implement the algorithm using the MPI implementation MPICH v3.2.12 as the
inter-processor communication and C++ as the programming language.

The parallel implementation of GAD-ADMM and AD-ADMM uses eight com-
pute nodes, and each node in the system is allocated with eight processes. We select
one process as the master and other processes as the workers. The scalar regulariza-
tion parameter β is set to 2. In the GAD-ADMM algorithm, we use the L algorithm
to obtain the total number of groups M, which is eight.

The TRON [16] method is used to solve the local variables. The parameter ρ is
set to 6 and the super parameter C is set to 1. We use the primal residual r and
dual residual s as the stop conditions, which should satisfy the conditions shown
in (47) and (48) to stop the iteration.

‖rk‖2 ≤ ABS ∗
√
Mn+ REL ∗max

{
‖xkGi
‖2, ‖zk‖2

}
, (47)

‖sk‖2 ≤ ABS ∗
√
Mn+ REL ∗

∥∥ρykGi

∥∥
2

(48)

1 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2 http://www.mpich.org/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.mpich.org/
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where
∥∥rk∥∥2

2
=
∑M

i=1

∥∥xkGi
− zk

∥∥2
2
,
∥∥sk∥∥2

2
= Mρ2

∥∥zk − zk−1∥∥2
2
. The absolute error

ABS and relative error REL are both set to 0.001.

5.2 Experiment Test and Analysis

In this section, the performance of the GAD-ADMM is compared with the AD-
ADMM in terms of the convergence speed, the system cost and the accuracy. Fur-
thermore, the influences caused by the different parameters and different groups are
also analyzed for the GAD-ADMM.

5.2.1 Convergence and Convergence Speed Test

In this section, the convergence of the GAD-ADMM and the AD-ADMM will be
tested. The convergence of these two algorithms is compared when different values
of threshold A are taken. We set d = 5, θ = 0 in both of the algorithms. The results
are shown in Figures 2 and 3.

-20 0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

250

D
ua

l r
es

id
ua

l

iterations

 A=63
 A=47
 A=31
 A=15

-20 0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

250

P
rim

al
 r

es
id

ua
l

iterations

 A=63
 A=47
 A=31
 A=15

Figure 2. The convergence of the AD-ADMM

0 20 40 60 80 100

0

10

20

30

40

50

60

70

D
ua

l r
es

id
ua

l

iterations

 M=8,A=8
 M=8,A=6
 M=8,A=4
 M=8,A=2

-10 0 10 20 30 40 50 60 70 80 90 100
-10

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

P
rim

al
 r

es
id

ua
l

iterations

 M=8,A=8
 M=8,A=6
 M=8,A=4
 M=8,A=2

Figure 3. The convergence of the GAD-ADMM
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Figures 2 and 3 show that the GAD-ADMM algorithm requires fewer iterations
than that of the AD-ADMM to converge in a peer-to-peer situation. This is because
in the GAD-ADMM, we relax the constraint conditions on global consensus, and the
objective function is faster to converge as analyzed in Section 4. When M is fixed,
the bigger the value of threshold A, the fewer the iterations required to converge.
Because the more information the master receives from the leaders in each iteration,
the less the “old values” used to update z, and the faster the algorithm converges.
When A is larger, it may take longer for the master to wait for receiving, which
shown in the next section.

5.2.2 System Time Cost and Accuracy Test

This section tests the system time cost and accuracy of the AD-ADMM and the
GAD-ADMM. The system time cost includes the waiting time, the calculation time
and the sending time. The accuracy of the system (Accur) is computed as follows:

Accur = (Ntp +Ntz)/Ntotal (49)

where Ntp represents the number of “true positive”, Ntz represents the number of
“true zero” and Ntotal represents the total number of testing datasets. The param-
eters of this section are set in accordance with Section 5.2.1. Figure 4 shows the
system time cost of the master of the AD-ADMM and the GAD-ADMM in different
thresholds. Figure 5 shows the accuracy of these two algorithms.

Figure 4 shows that the GAD-ADMM algorithm requires less system time than
that of the AD-ADMM in a peer-to-peer situation. This is because only the group
leader communicates directly with the master in the GAD-ADMM, which reduces
the traffic between nodes. Thus, the waiting time and sending time for each iteration
are reduced. At the same time, according to Equation (12), the smaller the number
of groups, the less time each calculation takes. Furthermore, the smaller the number
of groups, the less the number of external iterations, so the total system time cost is
reduced. If M is constant, when the threshold value A decreases, the total number
of iterations increases, and the calculation time increases, but the waiting time and
sending time for each iteration decreases. So selecting appropriate A can minimize
the system total time.

Figure 5 shows that compared with the AD-ADMM, the accuracy of the GAD-
ADMM decreases, that is because the convergence conditions are relaxed. It also
shows that the accuracy decreases less than 0.2 % when the total time is reduced by
at least 35 % under peer conditions.

5.2.3 System Time Cost Test with Different Parameters

In Section 3.3, we mentioned that the leader can send parameters x and y to the
master respectively, or send parameter w to the master. Figure 6 shows the system
time allocation of the GAD-ADMM and the AD-ADMM in these two cases when
the threshold A is equal to the group number M .
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Figure 4. The system time cost of the AD-ADMM and the GAD-ADMM: A is the thresh-
old and M is the number of groups
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Figure 5. The accuracy of the AD-ADMM and the GAD-ADMM: A is the threshold and
M is the number of groups

Figure 6 shows that when the group leader sends w to the master, the wait-
ing time is reduced compared to sending x and y. This is because the parameters
that the group leader transmits to the master each time are reduced by nearly half.
Compared with the AD-ADMM, the GAD-ADMM does not have obvious advan-
tages when transferring w. That is because the number of processes communicating
directly with the master decreases after grouping, and the performance improvement
is not obvious when the system bandwidth is high.
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Figure 6. The system time allocation of the AD-ADMM and the GAD-ADMM when
sending different types of parameters

5.2.4 System Time Cost Test of GAD-ADMM with Different Groups

In order to analyze the effects of different groups on the system time cost of the
GAD-ADMM, the processes within the nodes are divided into groups 1, 2, 4 and 8
(the number of groups of the node where the master is located is 7), that is, M is
taken as 8, 16, 32, and 63. Figure 7 shows the allocation of system time cost of the
master under different groups and different thresholds. It shows that the system
time cost decreases as the number of groups decreases in peer to peer conditions.
The main reason is that the reduction of the number of groups makes the system
converge faster. Another reason is that the system communication efficiency is
improved by reducing the communication between nodes.

6 CONCLUSION

The GAD-GADMM algorithm is proposed in this paper for global consensus opti-
mization problem. A grouping layer is added to the star topology, and the processes
are grouped according to the process allocation in the multicore cluster and the
model similarity of datasets. The convergence speed of the algorithm is improved by
relaxing the global consistency constraint and reducing the communication between
nodes. In the GAD-ADMM, the workers in the same group are synchronous while
in different groups they are asynchronous, and we use partial barrier and bounded
delay to guarantee the convergence of the asynchronous algorithm. In order to re-
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Figure 7. The system time allocation of the GAD-ADMM with different groups (M) and
thresholds (A)

duce the master load, the parameter that the group leaders send to the master is w,
not x and y, thus further reducing the system time cost. The convergence of the
GAD-ADMM is proved both in theory and experiments. We also explained why
the GAD-ADMM has a faster convergence speed than the AD-ADMM. The experi-
ments on LR problem show that compared with the AD-ADMM, the GAD-ADMM
can reduce the total system time by at least 35 % when the accuracy is reduced less
than 0.2 % under peer conditions. Finally, the effects of different parameters and
different number of groups on the performance of the GAD-ADMM algorithm were
analyzed. The grouping method proposed in this paper first divides the processes in
the same node into a group by default, and then further groups the default groups.
The minimum number of groups is the number of nodes. It is not considered that
the number of groups is less than the number of nodes, which will be studied in the
future.
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