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Abstract 

Prestressing is widely used technic all over the world for constructions of buildings, bridges, towers, offshore structures 

etc. due to its efficiency and economy for achieving requirements of long span with small depth. It is used for flexural 

strengthening of reinforced concrete structures for improving cracking loads and decreasing deflections due to service 

loads. There are two methods for prestressing (pre-tensioning and post-tensioning). In this paper, a three-dimensional 

nonlinear Finite Element (FE) method is used to determine the behaviour of Post-Tensioned (PT) concrete cantilever beams 

with different tendon profiles. Numerical analyses ANSYS package program is used for analysis of beams. The results 

from FE analysis is verified by experimental reference test result and good agreement is achieved. This paper is focused 

on the effect of different tendon profiles on the flexural behaviour of Bonded Post Tensioned (BPT) reinforced concrete 

cantilever beams. Six models with different tendon profiles are investigated. These models are without tendons, two 

tendons at the bottom, middle, top, parabolic tendons with one draped point and two draped points. Failure loads, 

deflections, and load versus deflection relationships for all models are examined and it is seen that the beam with one 

draped tendon profile shows a highest performance. 

Keywords: Nonlinear Finite Element Analysis; Bonded Post Tensioned; Cantilever Concrete Beams. 

 

1. Introduction 

Concrete is a widely used material, which is used in structural engineering constructions by different ways, it is very 

strong in compression but too weak in tension. Cracks appear in tension zones after application of loads due to weakness 

in tension zones. Some technics are presented to prevent or reduce such cracks from developing. Carrying out of huge 

compressive force longitudinally along or parallel to the structural element axis can prevent cracks growing by 

significantly removing or reducing the tensile stress. This longitudinal force increases shear, bending and torsional 

capacities of the beam element. After load applying, concrete has full capacity in compression which can be powerfully 

used in the entire depth of the concrete member sections, this moral technic is called prestressing technic [1]. Two 

different methods for prestressing concrete were developed: pre-tensioned and PT [2]. 

In the pre-tensioned method, stress are applied to tendons before concrete placing. Tendons are tensioned in a 

stressing bed. The formwork gathering placed with stressing beds and anchorages at the ends, then placing the concrete. 

After concrete reaches adequate strength, strands must be released at ends. This operation produces big internal forces, 

the forces produced by tendons are transmitted to the concrete member by bonds between tendon and concrete. This 

method is usually used in precast construction when many identical elements are required [2]. 
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The PT method is a widely used technic all over the world for structural members, to prevent cracks and to minimize 

deflections produced by externally applied loads. In this method, stress are applied after concrete placing and reach 

adequate hardening and strength. The tendons are covered with ducts before concrete casting, after concrete reach 

hardening, each tendons must be stressed by using stressing jacks to the desired load. To maintain the PT force, all 

tendons must be anchorage at the ends of the members. This tension stress counteracts with the external live and dead 

loads to reduce deflections and cracks. By PT method, greater loads, spans with the same member depth, crack controls, 

and smaller member sizes can be attained. Also PT method can be used in steel structures to improve seismic capacity. 

Furthermore, PT method can be used both internally and externally, as well as it is used for repair and strengthening of 

existing structures. Several structures are constructed by the PT method such as slabs, segmental bridges, continuous 

beams with long spans, parking, etc. The PT method can be constructed in precast and cast in place. Also by this method, 

a combination of both bonded and unbonded tendons can be used in the same structure, which increases clear spans 

without increasing the member depth. Such examples were constructed in the South Korea and in the US [3]. 

In BPT structures, bonds between surrounding concrete and tendons hold the stressing force in PT system. The 

adhesion between steel and concrete significantly affects the resistance of the PT members. The bond between the 

concrete and strands is mobilized by the transformed force from strands to the concrete [4]. In BPT system, there is a 

space between the tendons and ducts. Cement mortar is inserted in under pressure to fill this spaces, which significantly 

increases the bond and strain compatibility between the tendons and concrete, totally can protect the tendons against 

corrosion [2]. The tensile stress moves from nearby concrete to the reinforcements, due to the adequate bonds. The 

change in tendon strains at any section is equal to the change in strain in adjacent concrete section. Tendon strains 

depends on the strain changes in the concrete section. 

Nusrath et al. (2015) studied the effect of different tendon profiles and the cable curvature on the construction of a 

structure to achieve greater strength and more economic structures. Hussien et al. (2012) presented an experimental 

program to study the behavior of bonded and unbonded prestressed beams with high strength and normal strength. Yapar 

et al. (2015) simulated the FE method to find out the behavior of PT prestressed concrete beams. Their results have a 

satisfactory agreement between the FE predictions and the test results under collapse load. [8, 9 and 10] studied the 

flexural behavior models of unbonded prestressed reinforced concrete members under the service load behavior before 

and after cracking, yield state, and ultimate state. 

Most of the previous studies are focused on simply supported and continues PT reinforced concrete beams. In 

addition, modelling of bonded cantilever beams are needed more study especially the modelling of grouting the tendon 

after applied prestress load. This research presents a FE model using ANSYS software to model the bonded PT concrete 

cantilever beams. The proposed model was validated with previous available experimental study tested by Hussien et al. 

(2012) and was used to study the effects of the transverse and gravity loading on the flexural behavior of bonded PT 

concrete cantilever beams. A parametric study was conducted to investigate the effect of several selected parameters on 

the overall behaviour of PT concrete cantilever beam. These parameters include the effect of tendon profile and effect 

of loading type. 

2. Finite Element Modeling 

For modelling the concrete structural members several analytical and numerical methods are developed. FE analysis 

is a numerical modelling widely applied to the concrete structural members based on the use of the nonlinear behaviour 

of materials, FE analysis provides a tool that can simulate and predict the responses of reinforced and prestressed 

concrete structural members [11]. Complex geometries like PT reinforced concrete beams with tendons can be freely 

modelled by using the FE method. ANSYS package program is used for solid modelling and analysis, it is a highly 

acceptable and reliable commercial FE analysis program.  

SOLID65 in ANSYS used for modelling concrete, this element has eight nodes and three degrees of freedom at each 

node, nodes in the x, y and z-directions are translated, it means concrete can crack in three orthogonal directions, plastic 

deformation and creep. The behaviour of this element works as a nonlinear isotropic material properties [12]. Figure 1 

shows the geometry, node locations, and the coordinate system for this element. 
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Figure 1. SOLID65 geometry [12] 

LINK8 is a discrete and spare element, used for many engineering applications, this element used for model the 

trusses, links, sagging cables, and springs. This element is a 3-D spare and uniaxial tension-compression element. Link8 

has three degrees of freedoms at each node, nodes in the x, y and z-directions are translated, and no bending of the 

element is considered [12]. Figure 2. shows the geometry, node locations, and the coordinate system for this element.  

 

 

Figure 2. LINK8 geometry [12] 

SHELL181 is suitable for analysing thin to moderately thick shell structures. Used to anchorage at both ends of the 

beam members to maintain the internal forces. It is four node elements with six degrees of freedom at each node, 

translations in the x, y, and z directions, and rotations about the x, y, and z-axes [12]. 

To avoid crushing at the point loads the bearing plates are used. SOLID45 is used for the 3-D modeling of solid 

structures. This element is defined by the eight nodes having three degrees of freedom at each node, translations in the 

nodal x, y, and z directions. This element has plasticity, creep, swelling, stress stiffening, large deflection, and large 

strain capabilities [12]. 

The contact between concrete and tendon is modelled by the contact elements in ANSYS (CONTACT PAIR 

MANAGER). The method requires the definition of two surfaces that are target and contact surfaces. TARGE170 is 

used to represent various 3-D "target" surfaces for the associated contact elements CONTA175. This target surface is 

discretized by a set of target segment elements TARGE170 and is paired with its associated contact surface via a shared 

real constant set. It can impose any translational or rotational displacement, temperature, and magnetic potential on the 

target segment element. CONTA175 is used to represent contact and sliding between two surfaces (between a node and 

a surface, or between a line and a surface). This element is located on the surfaces of solid, beam, and shell elements. 

Figure 3. shows the node locations and the coordinate system for these elements [12]. 

 

Figure 3. CONTA175 and TARGE170 geometry [12] 
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3. Material Properties 

 Material plays a significant role in ANSYS modelling. Real values of material properties should be given as an input 

in ANSYS. The stress-strain relationship for concrete in tension is almost linearly elastic up to the maximum tensile 

strength. Then, the concretes start cracking and the strength decreases continuously to zero. The multi-linear stress-

strain relationship is considered for concrete in compression in this study. The adopted stress-strain relation is based on 

work done by Desayi and Krishnan (1964); as shown in Figure 4. The bilinear stress-strain relationship indicated in 

Figure 5. is considered for reinforcing steel bars in this study. Since the steel bars are slender, it could be assumed that 

bars transmit only axial force. On the other hand, the strands are considered as multilinear isotropic material in this 

study. 

In the present study, the model to be used is capable of predicting failure of concrete materials. Both cracking and 

crushing failure modes are accounted. For the two input strength parameters (i.e. ultimate uniaxial tensile strength 𝑓𝑡 and 

compressive strength 𝑓𝑐
′
) are needed to define a failure surface for the concrete. Consequently, criterion for failure of the 

concrete due to a multiaxial stress state can be calculated by Willam and Warnke (1975).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Stress- strain curve for concrete [13] 

 

Figure 5. Stress- strain curve  steel bars [15] 

4. Analyses of Simply Supported Post-Tensioned Concrete Beam  

The behaviour of bonded PT concrete beams is more complicated by reason the presence of ducts, the bond between 

concretes and ducts, the bond between ducts and grout, and the bond between grout and tendons. Two stages of analysis 

are needed for bonded beams. At the first stage the beam is analysed as unbonded PT beam under prestress loading and 

gravity loading only. Next the beam is analysed as bonded post tensioned beam. The two stages are needed because the 

grout is added after the prestressing of the strands. 

The numerical results are verified by experimental results. To validate the proposed nonlinear models that explained in 

the Section 3, one of the experimentally simply supported prestressed concrete beam tested by Hussien et al (2012) is 

chosen. Beam B2-70-P-B has one strand with 12 mm diameter and two 10 mm diameter non-prestressed bars, overall 

dimensions are shown in Figure 6. The steel stirrups and non-prestressed steel bars are made of deformed high tensile 

steel with a yield stress of 470 MPa and ultimate strength of 610 MPa. The yield and ultimate stress of the prestressing 

steel strands are 1674 and 1860 MPa, respectively. The tendon is bonded and grouted with 36 MPa compressive strength. 

Figure 7. shows the meshing of reinforcements and tendons. 
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Figure 6. Reinforcement and dimension details of prestressed beam B2-70-P-B tested by [6] 

 

Figure 7. Meshing of reinforcements and tendons for half of beam 

The experimental results by Hussien et al (2012) have good agreement with ANSYS computational FE method 

results as shown in Figure 8.  

 

Figure 8. Load- deflection curves of experimental and numerical modelling 

5. Parametric Study Related with Post Tensioned Cantilever Concrete Beam 

The verified finite element model was used to investigate the effect of several selected parameters on the overall 

behaviour of PT bonded concrete cantilever beam. These parameters include the effect of tendon profile and the effect 

the loading type. The loading, geometry and boundary conditions considered for the proposed study for cantilever beam 

are shown in Figure 9. The prestressed tendons, beam dimensions, anchorages, load plates and supports are modelled in 

ANSYS by keypoints, lines, areas, and volumes. The modelled beam has 6300 mm long, with a 250 mm width and 450 
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mm height as illustrated in Figure 9. Two longitudinal reinforcements with diameter of 16 mm are used at the bottom 

and top of the beam, stirrups are arranged as 10 mm diameter of with 300 mm spacing. 

 

Figure 9. Proposed model with dimensions and cross-section details. 

All material properties illustrated in Table 1. 

Table 1. Material properties of concrete, reinforcement and strand. 

Descriptions Concrete Steel Strand 

Ultimate compressive strength (MPa) (f ′c) 30 ـــــــــ ـــــــــ 

Ultimate tensile strength (MPa) (ft) 3.8 ـــــــــ ـــــــــ 

Modulus of elasticity (MPa) 30000 200000 206290 

Poisson′s ratio (υ) 0.2 0.3 0.3 

Yield strength (MPa) 1741 400 ـــــــــ 

As an initial step of the FE analysis, the PT reinforced concrete beams are divided into a number of small elements 

[16]. This can be done by the meshing of concrete beams with appropriate mesh density in Z, Y, and X directions with 

mesh dimensions of 150, 25, 25 mm respectively, tendons have mesh with constant dimension of 150 mm in the Z-

direction. The mesh density and boundary conditions are illustrated in Figure 10. 

 

Figure 10. Meshing and boundary conditions 

The boundary conditions include loads and supports are applied to constrain the model to get a unique solution. In 

hinge supports, all the nodes that lie on the middle line of the support are given a constraint value of zero in the Y, and 

X directions, in roller all the nodes that lie on the middle line of the support are given a constraint value of zero in the 

Y directions. The external load are applied incrementally up to failure by nodal forces on the steel plates on the top face 

of the beam. Six different tendon profile and three load cases are chosen as parameters of PT beam. These profiles are 

without tendons, straight tendons at bottom, middle, top, two draped points, and one draped point. Figure 11. shows the 

tendon profiles. These position and profile of tendons have been adopted in the present study because they are critical. 
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Figure 11. The proposed tendon profiles 

Three different load cases are applied on the beams up to failure, Figure 12. illustrates the load cases. 

 

Figure 12. Load cases of parametric study 

Applied loads are increased incrementally up to failure. Figure 13. shows the load-deflection curves at end point of 

cantilever beam for all load cases that was obtained from FE analysis, the curves showed that, the parabolic tendon 

profiles give maximum load capacity to failure and it has stiffer response compared to the beams with a straight tendon 

profile. Eccentricity is a distance between tendons and neutral axis of the member, which produces internal moments 

that act in opposition to moments induced by external loading. Increasing eccentricity will increase the tendon stress 

and decrease tensile stresses of the concrete. Parabolic profiles have the specified values of eccentricities, and this 

profile is similar to the beams bending moment. The use of parabolic tendons introduces transverse effects to carry more 

counteract the external loads, with both axial, bending and shear effects. 

Figures 13, 14. and 15. shows the load-displacement curves at end of cantilever beams for all load cases that was obtained 

from FEA, showed that the parabolic tendon profiles give maximum load capacity to failure and it has stiffer response 

compared to the beams with a straight tendon profile. 
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Figure 13 Load- displacement curves at the end for load case 1 

 

Figure 14. Load- displacement curves at the end for load case 2 
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Figure 15. Load- displacement curves at the end for load case 3 

Figures 16, 17 and 18 illustrates the load- displacement curves at the middle point of the simply supported parts of 

beams for all load cases. It shows that the ultimate load capacity increased with draped tendon profiles as compared with 

other undraped profiles. Straight profiles produced the lowest nominal resistance, before yielding no change occur in 

stiffness. Beam failures of all models were sudden failure above supports due to cantilever effect. After yielding point 

the draped tendon profiles was stiffer and more ductile than straight tendon profiles. 

Figures 19, 20, and 21 illustrates the deformed shapes for all load cases with constant applied loads. When loads are 

applied and increases incrementally on the beam models, the member responses occur in the form of deformation. The 

initial beam conditions are attainable when the models undergo elastic deformation. Each material follows the 

constitutive properties considered by their stress-strain relationships. Each material provides the strain energy form to 

corresponding the deformation response of the members. 

The parabolic tendon profile can undergo more deform without failure. The tendons with one draped point profile 

gives maximum deform and displacements with higher load caring capacity for all load cases because of the profile 

shapes which it is similar with its bending moments as compared with another profiles. 

 

Figure 16. Load-displacement curves at middle of simply supported part for load case 1 
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Figure 17. Load-displacement curves at middle of simply supported part for load case 2 

 

Figure 18. Load-displacement curves at middle of simply supported part for load case 3 
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Figure 29. Deformed and deflection shapes for load case 1 with constant load 17 kN 

 

Figure 20. Deformed and deflection shapes for load case 2 with constant load 32 kN 
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Figure 21. Deformed and deflection shapes for load case 3 with constant load 14 kN 

Table 2. indicates the failure loads and deflections at end and middle points of PT concrete cantilever beams for the 

three types of loadings. The total deflections calculated supersite of the upward displacement due to PT force and 

downward displacement due to the gravity and applied loads. 

Table 2. Failure loads and deflections at the end and middle points 

Loading cases Tendon profile 
Failure loads 

(kN) 

Mid deflections 

(mm) 

End deflections 

(mm) 

Case 1 
 

Without tendons 17.0 0.171 -1.835 

Tendons at bottom 4.7 0.078 -0.396 

Tendons at middle 28.6 0.304 -3.256 

Tendons at top 57.0 0.601 -7.039 

Tendons with two draped points 29.7 0.163 -1.899 

Tendons with one draped point 70.6 0.650 -7.501 

Case 2 
 

Without tendons 32.0 -0.161 -1.305 

Tendons at bottom 9.0 -0.016 -0.342 

Tendons at middle 55.0 -0.272 -2.354 

Tendons at top 45.0 -0.22 -1.784 

Tendons with two draped points 60.0 -0.175 -1.417 

Tendons with one draped point 138.0 -0.942 -4.534 

Case 3 
(Failure loads are 

in kN/m) 

 

Without tendons 14.5 -0.208 -1.039 

Tendons at bottom 4.0 -0.029 -0.263 

Tendons at middle 26.0 -0.353 -1.868 

Tendons at top 23.7 -0.309 -1.546 

Tendons with two draped points 28.4 -0.243 -1.064 

Tendons with one draped point 74.0 -1.742 -3.535 

Table 2. shows that the maximum failure loads will be gained when one draped tendon profile is used, the maximum 

failure loads are 70.6 kN, 138.0 kN, and 74.0 kN/m for load cases 1, 2, and 3 respectively. 

Minimum failure loads occur when bottom tendon profile is used, the failure loads are 4.7 kN, 9.0 kN, and 4.0 kN/m 

for load cases 1, 2, and 3 respectively. From Table 2, can be obsreved that the failure load in beams with one draped 
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point of tendon profile increases about 315 % , 331 % and 410 % as compared with beams without tendons profile for 

the load case1, case2 and case3 respectively.  

The uniaxial tensile stress of concrete is 3.8 MPa, during the analysis process the cracks began when the uniaxial 

tensile stress of concrete was over 3.8 MPa. Figures 22, 23, and 24. shows the stress distributions in z-direction for one 

draped point profile for all load cases at failure. Beam failures for all models were sudden failure above the supports 

due to cantilever part. Figures 25, 26 and 27. shows cracks pattern at failure of the beams with one draped point of 

tendon profile for all load cases. 

 

 

Figure 22. Longitudinal stress of concrete in z-direction for the beams with one draped point of tendon profile for load 

cases 1 at failure 
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Figure 23. Longitudinal stress of concrete in z-direction for the beams with one draped point of tendon profile for load 

cases 2 at failure 

 

 

Figure 24. Longitudinal stress of concrete in z-direction for the beams with one draped point of tendon profile for load 

cases 3 at failure 
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Figure 25. Cracks pattern at failure in concrete for the beams with one draped point of tendon profile for load cases 1 

 

 

Figure 26. Cracks pattern at failure in concrete for the beams with one draped point of tendon profile for load cases 2 
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Figure 27. Cracks pattern at failure in concrete for the beams with one draped point of tendon profile for load cases 3 

6. Conclusion 

In this paper, a 3D thermo-mechanical nonlinear finite element model is developed to study the behavior of bonded 

PT concrete beams. The contact between the concrete and the tendon is modelled by contact elements. Contact elements 

allowing the post-tensioned tendon to retain its profile during the deformation of the slab and modelling the bond 

behaviour between the grout and tendon. Experimental bonded PT concrete beam from literature were chosen for 

numerical analyses verification, and good agreement was achieved between numerical and test results.    

This study investigates the effect of several factors on the load-deflection response throughout the entire range of 

behavior using the nonlinear analysis of the ANSYS finite element program. The verified finite element model was used 

to investigate the effect of several selected parameters on the overall behavior of PT concrete cantilever beam. These 

parameters include the effect of tendon profile and the effect of loading type. It was observed that the beams with tendon 

profile have a great effect on the ultimate load capacity. The ultimate load capacity increases by using parabolic tendon 

profiles. The beams with one draped tendon profile shows a higher ultimate load capacity and a stiffer response as 

compared to the beams with straight tendon profiles for all load cases. Because parabolic profiles have the specified 

values of eccentricities, and this profile is similar with the beams bending moment. 

Beams with tendons at the bottom gives smaller failure loads and it is very weak. Because in parabolic profiles, the 

curvature of the cable exerts a force on the concrete to counterbalance the forces causing tension. The tendons are located 

with eccentricities to counteract the sagging bending moments due to transverse loads. Consequently, the prestressed 

beams deflect upwards on the application of prestress. Since the bending moment is the product of the prestressing force 

and eccentricity, the tendon profile itself will represent the shape of the bending moment diagram. For the effect of 

draped profile, it was observed that the ultimate load capacity increased with draped tendon profiles as compared with 

other undraped profiles. Straight profiles produced the lowest nominal resistance. The application of load types on each 

model greatly affects the load-deflection response and failure loads. When the applied loads are distributed uniformly, 

the load carried by beam will increase. The failure load in beams with one draped point profile about 315 %, 331 % 

and 410 % increases as compared with beams without tendon profile for the load case1, case2 and case3 respectively. 

7. References 

[1] Nawy, Edward G. Prestressed concrete. Pearson Education, 5th edition. New Jersey: Prentice Hall. 2011. 

[2] Allouche, E. N., Campbell, T. I., Green, M. F., and Soudki, K. A., Tendon stressed in continuous unbonded prestressed concrete 

members, PCI journal, 1999, 44(1), 60-73. 

[3] Ozkul, O., A new methodology for the analysis of concrete beams prestressed with unbonded tendons, (2007), ProQuest. 



Civil Engineering Journal         Vol. 3, No. 7, July, 2017 

479 

 

[4] Hoyer, E. a., Contribution towards the Question of Bond Strength, in Beton und Eisen, Berlin, 1939, 38(6), 107-110. 

[5] Nusrath F.RP, Satheesh V.SP, Manigandan.MP, and Suresh Babu.SP. An Overview on Tendon Layout for Prestressed Concrete, 
Journal of Innovative Science, Engineering and Technology, 2015, 2(9), 944-949. 

[6] Hussien, O. F., Elafandy, T. H. K., Abdelrahman, A. A., Baky, S. A., and Nasr, E. A., Behavior of bonded and unbonded 
prestressed normal and high strength concrete beams, HBRC Journal, (2015). 8(3), 239-251. 

[7] Yapar, O., Basu, P. K., and Nordendale, N. Accurate finite element modeling of pretensioned prestressed concrete beams, 
Engineering Structures, (2015).  101, 163-178. 

[8] Au, FTK, Du JS, and Cheung, YK. Service load behavior of unbonded partially prestressed concrete members, Magazine of 

Concrete Research, (2005).  57(4), 199-209. 

[9] Harajli, M. H., and Kanj, M. Y. Service load behavior of concrete members prestressed with unbonded tendons, Journal of 
structural engineering, 118(9), (1992).  2569-2589. 

[10] Ozkul, O., Nassif, H., Tanchan, P., and Harajli, M. Rational approach for predicting stress in beams with unbonded tendons, 
ACI Structural Journal, (2008).  105(3), 338. 

[11] Dahmani, L., Khennane, A., and Kaci, S. Crack identification in reinforced concrete beams using ANSYS software, Strength of 
materials, (2010).  42(2), 232-240. 

[12] ANSYS, (2011). ANSYS Help.  

[13] Desayi, P., and Krishnan, S., “Equation for the Stress-Strain Curve of Concrete”. Journal of the American Concrete Institute, 
(1964), 61, 345- 350. 

[14] Willam, K., and Warnke, E., Constitutive model for the triaxial behavior of concrete, International Association for Bridge and 
Structural Engineering, (1975). 19, ISMES. 

[15] European Committee for Standardization (CEB), Eurocode 3, “Design of Steel Structures”. Part 1.1: General Rules and Rules 
for Buildings, DD ENV, (1993), 1-1, EC3. 

[16] Izzet, A. F. Effect of High Temperature on the Strain Behavior in Post-Tensioning Concrete Beams by Using Finite Element 

Method (ANSYS Program), Journal of Civil Engineering Research, (2016). 6(2), 40-46. 


