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Abstract 

Today, the back analysis methods are known as reliable and effective approaches for estimating the soil strength parameters 

in the site of project. The back analysis can be performed by genetic algorithm and particle swarm optimization in the form 

of an optimization process. In this paper, the back analysis is carried out using genetic algorithm and particle swarm 

optimization in order to determine the soil strength parameters in an excavation project in Tehran city. The process is 

automatically accomplished by linking between MATLAB and Abaqus software using Python programming language. To 

assess the results of numerical method, this method is initially compared with the results of numerical studies by Babu and 

Singh. After the verification of numerical results, the values of the three parameters of elastic modulus, cohesion and 

friction angle (parameters of the Mohr–Coulomb model) of the soil are determined and optimized for three soil layers of 

the project site using genetic algorithm and particle swarm optimization. The results optimized by genetic algorithm and 

particle swarm optimization show a decrease of 72.1% and 62.4% in displacement differences in the results of project 

monitoring and numerical analysis, respectively. This research shows the better performance of genetic algorithm than 

particle swarm optimization in minimization of error and faster success in achieving termination conditions. 
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1. Introduction 

Excavation operations increase the probability of occurring problems like collapse of the buildings, large 

deformations at the ground level and especially unpredicted damages. This importance is due to the concerns related to 

ground movements around deep excavations. Therefore, precise identification of the soil strength parameters are 

essential for predicting lateral soil movements. But, there are limitations associated with the results of experimental 

models and also in-situ tests for determining the soil strength parameters. So, for determination of the soil strength 

parameters one could take advantage of various the back analysis methods.    

The back analysis method was first used by Peck in 1980 to estimate the soil parameters based on project monitoring. 

Afterwards, the technique was used in geotechnical structures such as rock tunneling, soil structures, identification of 

soil parameters in laboratory or in situ tests and operational data of excavation systems. Over time, optimization methods 

including metaheuristic algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), were used 

to accelerate the achievement of ultimate target and increase the accuracy of predictions in the back analysis [1].  

 In fact, the back analysis methods are based on the measured deformations after construction of the structure and 

their interpretation. In the back analysis, strength parameters of the soil can be determined by minimizing the difference 
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between the measured results after construction of the projects and numerical analysis. The back analysis provides the 

conditions for establishing a relationship between measured and predicted results [2, 3]. Given that the back analysis 

methods are named by measuring many quantities, one of the most important of these is displacement. Displacement 

back analysis methods are divided into two direct and indirect categories. The direct method is based on optimization 

and the indirect method is based on mathematical formulation [2]. 

1.1. Direct and Indirect Displacement Back Analysis 

Direct displacement back analysis method is based on reducing the difference between the field measurements and 

results calculated by numerical analysis. So, at first, the error (objective) function can be used to describe the difference. 

The performance of optimization methods, such as the genetic algorithm and particle swarm optimization algorithm, is 

in a way that minimize the difference within an automated process without human intervention. A disadvantage of direct 

method is associated with time consuming repetitive calculations [4]. But the indirect displacement back analysis method 

is based on mathematical formulation. This method has a lot of complexities which limit its use, but its main advantage 

is elimination of repetitive calculations that greatly reduces the time of computation [2]. 

2. Genetic Algorithm (GA) 

Genetic algorithm is one of the most powerful metaheuristic algorithm by which complex problems can be optimized. 

This algorithm is created based on the theory of evolution of organisms in nature. This algorithm was first introduced 

by John Holland at University of Michigan in 1975 and its basic principles were then developed by Professor Goldberg 

in 1989 and Renders in 1994. In fact, the genetic algorithm is a computer search method based on the structure of genes 

and chromosomes that uses operators such as selection, crossover and mutation for reproduction and survival of the best 

children of parents. Based on such method, this optimization program is developed in FORTRAN for geotechnical 

studies by 3S-R laboratory [5-7]. Four important stages in the genetic algorithm are as follows: 

 Defining the research space. 

 Encoding individuals and populations. 

 Generating an initial population. 

 Selection, crossover and mutation. 

2.1. Defining the Research Space 

The problem is solved as a minimization problem for Np parameters in the Np-dimension space. If each parameter is 

considered as P, restricted to authorized values of P between a minimum (Pmin) and a maximum (Pmax).  

2.2. Encoding Individuals and Populations 

A number of bytes (Nb) with each encoded binary parameter are forming a gene. The research space is meshed into 

(2Nb)Np elements, the choice of Nb is linked to the parameter values. Several genes form an individual (one point of the 

research space) and a set of Ni individuals forms a population. 

2.3. Generating an Initial Population 

Initial population is chosen in the research space. The objective function is evaluated by finite element method 

calculation. 

2.4. Selection, Crossover and Mutation 

Given the minimum value of objective function, only the best Ni/3 individuals is selected for the next population. In 

the next population, the best individuals will be considered as parents. The parents are randomly crossed over to generate 

new pairs of individuals. This process continues until 2 Ni/3 new individuals (children), are generated. When the parents 

and children generate a new population together with Ni children, some children are randomly mutated and modified to 

diversify the population [1, 9 and 10].  

3. Particle Swarm Optimization (PSO) 

Particle swarm optimization algorithm is one of the most powerful metaheuristic algorithms. This algorithm was 

created by James Kennedy (social psychologist) and Russell Eberhart (electrical engineer) in 1995. They aimed to 

produce a model of social collaboration and community based on mathematics that led to a kind of computational 

intelligence. In 1992, they initially began their work on the collective behavior of birds for finding food. Their efforts 

led to the creation of particle swarm optimization (PSO) algorithm which later became widely used in optimization 

problems. In this algorithm, each organism is seen as a particle spread in the research space, whose ultimate target is to 
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determine and minimize the value of objective (error) function [12, 13]. Five important stages in the particle swarm 

optimization are as follows: 

 Estimation and initial positioning to particles. 

 Updating the position and velocity of all particles. 

 Evaluation of new conditions and competition. 

 Satisfaction a termination criterion. 

 Introduction of the best results. 

3.1. Estimation and Initial Positioning to Particles 

At first, the particles form a population, then positions and velocities in the research space are allocated to each 

particle and the eligibility of particles is assessed. 

3.2. Updating the Position and Velocity of All Particles 

The next position of particles is estimated according to Equation 1 and particles update their velocity according to 

Equation 2. 

xj
i[t + 1] = xj

i[t] + vj
i[t + 1] (1) 

vj
i[t + 1] = w × vj

i[t] + c1r1(xj
ibest[t] − xj

i[t]) + c2r2 (xj
gbest[t] − xj

i[t]) (2) 

Where w is the inertia weight which prevents the algorithm being trapped into local optimum; V is the velocity vector 

in the iteration t; r1 and r2 are random numbers in the region 0 to 1; c1 and c2 are the local and global learning factors 

(positive constants); x is the position of each particle; ibest is a particle best position and gbest is a global best position.  

3.3. Evaluation of New Conditions and Competition 

After updating for all particles, the new conditions created for each particle are evaluated and the competition is done 

to compare the performance of particles. 

3.4. Satisfaction a Termination Criterion 

The process stops when the algorithm reaches a termination criterion, unless process is iterated from the updating 

stage. 

3.5. Introduction of the Best Results 

After reaching a termination criterion, the best results according to an assessment of the objective function (error) 

are introduced [14]. 

4. Error Function 

 In this paper, the error (objective) function determines the difference between measured and calculated values. 

Error =
∑ [ui − ui

∗]N
i=1

∑ [ui
∗]N

i=1

    (3) 

Where ui is displacement calculated by finite element method in point i; ui* is displacement measured by monitoring 

in point i; and N is the number of measuring points for a vertical section of wall [15]. 

5. Convergence Criterion 

The convergence used in this study is considered according to Equation (4). The back analysis ends when the criterion 

is satisfied.  

|f(xk+1) − f(xk)| ≤ εa              (εa = 0.01) (4) 

The convergence criterion (Equation 4) is based on the absolute value of change of the error function obtained between 

two successive iterations is less than the specified tolerance [16]. 
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6. Implementation of Genetic Algorithm and Particle Swarm Optimization in MATLAB 

In this paper, genetic algorithm and particle swarm optimization are implemented by coding in MATLAB. These 

algorithms can be applied in MATLAB for discrete and continuous problems [17, 18]. In continuous problems, the 

values of input data varies within a certain range and numerical values can be applied. Floating point numbers are used 

for codes in such problems. Uniform operators of the algorithms are often used for this type of coding. The advantages 

of this approach include less storage space and higher speed [19]. 

In discrete problems, variables do not have continuous changes in these problems and all values cannot be aligned to 

them. In discrete problems, the set of variables being optimized are coded as binary strings and then attached to each 

other [17]. 

7. Verification 

The numerical results of the studies by Babu and Singh are chosen for verification. They analyzed a soil nailed wall 

in five stages by the excavation of 2 m via Plaxis software [20]. In this paper, the modeling and analysis were done by 

Abaqus software. The results showed that the use of the Mohr-Coulomb model could affect the lateral displacement of 

the soil nailed wall; because the soil elasticity modulus in the reloading situation is equal to the loading condition in 

Abaqus, which may lead to overestimation of uplift in the excavation bottom. Hajialilue Bonab and Razavi studied 

several confirmed researches in relation to this problem. They modeled and analyzed a 3D model based on experimental 

data to find a solution against excessive uplift. According to their research, the geometry should slightly change in order 

to achieve a more reasonable lateral displacement of the soil nailed wall. They discussed about modification of the height 

of excavation bottom to the model bottom about 5 m [21]. In this paper, after modification of the geometry, the results 

of modeling and analysis of the soil nailed wall by Abaqus indicate a good agreement with the results of the studies by 

Babu and Singh in Figure 1 (error less than 5%). 

 

Figure 1. Comparison of numerical results 

8. Introduction of Case Study 

The west side of the project consists of three layers of homogeneous CL-type gravel-clay as well as SC- and GC-

type clayey gravel and sand, classified by according to USCS; as well as, the groundwater level is not considered in 

geometry of the soil. The selected type of soil was excavated in 7 lifts to a depth of 15 m. To stabilize the wall, a nailing 

system is implemented with an angle of 15 degrees and 2 m distances between boreholes. The load of behind the wall 

is estimated about 10 𝐾𝑁/𝑚2 and the monitoring data of reflector no.23 located on the top of west side indicates 8mm 

lateral displacement. 

Three parameters of the soil such as soil friction angle (), elastic modulus (E) and cohesion (C) are selected for the 

back analysis and the other parameters that do not have much effect are ignored. 

 Poisson ratio  v=0.3 

 Dilation angle  Ψ=∅-30° 

Jacky’s formula is also used to calculate the coefficient of lateral earth pressure. 

Ko = 1 − sin (∅) (5) 

Table 1 represents the mechanical parameters used for stability design and calculations. 
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Table 1. Summary of soil physical and mechanical parameters 

Depth(m) Angle of friction (°) Cohesion (KPa) Elastic modulus(MPa) Specific weight (KN/m3) 

0-2 Backfill 30 15 60 16.2 

2-8 30 30 60 15.6 

8-15 30 50 60 19.6 

9. Analysis of Case Study and Implementation of Python Programming Language 

After modeling and analyzing the project, the Python programming language provides a basis for establishing a link 

between the algorithms (GA and PSO) in environment of MATLAB computing software and Abaqus software. This 

fully automated cycle is able to perform the back analysis without human intervention, e.g. performing the process of 

searching by the algorithms, modeling and analyzing the project by finite element method, determining the soil strength 

parameters, calculating the objective (error) function, introducing the best soil strength parameters as optimal 

parameters, satisfy the convergence criterion and introducing the minimum error. Lateral displacement of the soil nailed 

wall (ux), read from reflector no.23, is used as a criterion for determining soil strength parameters in the back analysis. 

10. Effective Parameters of Genetic Algorithm and Particle Swarm Optimization 

The results may be improved by increasing and selecting the correct values for parameters such as the population 

size (npop) and maximum number of iterations (maxiter) in the genetic algorithm and the number of particles (npar) and 

maximum number of iterations (maxiter) in the particle swarm optimization [11]. 

11. Feasibility of Back Analysis 

The results of project monitoring and finite element analysis show a 73.7% difference in lateral displacement. The 

back analysis should be implemented to reduce the difference. 

 

Figure 2. Comparison of the results of ateral displacement  

12. Back Analysis of Case Study by Genetic Algorithm and Particle Swarm Optimization 

According to Table 2, 9 soil strength parameters (E1, E2, E3), (C1, C2, C3) and (1, , ) are considered for the first 

to third soil layers of the project site in certain ranges in order to implement the displacement back analysis. In this 

paper, effective parameters (npop, npar, maxiter) and the soil strength parameters ranges are considered in similar 

conditions and the case study considered as a continuous problem for genetic algorithm and particle swarm optimization 

to implement the back analysis in MATLAB software.  

Table 2. Ranges of soil strength parameters  

Emin < E < Emax 
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The back analysis by GA and PSO is demonstrated in Figures 3 and 4. 

 

Figure 3. Back analysis by genetic algorithm 

 

Figure 4. Back analysis by particle swarm optimization algorithm 
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13. Back Analysis Results 

In this paper, acceptable results are based on reduction of the value of error function (the difference between 

numerical and monitoring results (observation measurements)) to less than 5% and to satisfaction of the convergence 

criterion. After the back analysis using GA and PSO under similar conditions (maxiter GA = maxiter PSO, npop = npar, 

identical numerical ranges for the soil strength parameters), the genetic algorithm satisfies the convergence criterion and 

reduces the error to less than 5% by 254 iterations of finite element analysis and checking objective function. The back 

analysis using GA stops after reaching the termination condition and 9 soil strength parameters (parameters of Mohr–

Coulomb model) are simultaneously introduced and determined for the three soil layers. However, the PSO algorithm 

cannot reduce the amount of error function to less than 5% by 254 iterations, unlike GA; the back analysis should 

continue by PSO algorithm or the ranges must be more limited. Finally, it can be concluded that the genetic algorithm 

has been more successful in this research. The results of last 5 evaluations of each algorithm are listed In Tables 3 and 

4. 

Table 3. Estimation process of the soil strength parameters by GA 

No. of 

analysis 

Error % 

(F%) 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

C1 

(KPa) 

C2 

(KPa) 

C3 

(KPa) 



(Degree) 



(Degree) 

 

(Degree)

250 2.36 89.5 95.4 97.6 18.4 36.3 39.8 29.9 29.7 35.5 

251 3.46 88.6 95.4 96.6 18.4 35.5 38.4 29.9 29.5 35.5 

252 1.88 98.6 97.4 98.8 18.6 36.6 40.3 30.5 31.2 34.2 

253 1.68 90.7 98.5 98.8 18 36.2 39.9 28.4 30.3 34.1 

254 1.61 89.7 97 98.6 18.8 32.8 39.9 30.5 31.4 35.2 

The convergence criterion is determined using Equation (4), according to the value of error function in the last two 

analyses. 

Table 4. Estimation process of soil strength parameters by PSO 

No. of 

analysis 

Error % 

(F%) 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

C1 

(KPa) 

C2 

(KPa) 

C3 

(KPa) 



(Degree)



(Degree) 

 

(Degree) 

250 11.38 93.2 96.7 90.1 20.5 40.1 36.3 32.6 28.7 29.9 

251 27.9 63 91.2 82.7 20.3 27.5 25.2 26.5 37.9 31.9 

252 29.8 73.4 72.4 84.1 22.9 28.3 38.1 27.9 32.7 29.2 

253 42.8 87.6 63.3 66.1 19.5 43.3 35.8 35.5 28.8 36.5 

254 16.2 99.8 64.3 90.9 19.4 25.1 42.4 25.2 36.7 34.8 

Given the estimated error percentage and satisfaction of the convergence criterion by genetic algorithm, the results of 

genetic algorithm are considered as acceptable parameters and the results of particle swarm optimization algorithm are 

rejected. Acceptable parameters are considered as equivalent soil parameters because the lateral displacement of soil 

nailed wall is affected by many factors such as previous stresses, depth and area of excavation, overheads, consolidation, 

drainage operations and etc. In Figures (5) to (7), the initial values of soil strength parameters used in the design are 

compared with the estimated values by GA and PSO for the project. 

Figure 5. Comparison of initial with optimized values of Young’s modulus 
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Figure 6. Comparison of initial and optimized values of cohesion 

Figure 7. Comparison of initial and optimized values of soil friction angle 

In Figure 8, the lateral displacement approximated by the algorithms (by estimating the soil strength parameters) is 

compared with the displacement read in project monitoring (observation measurements). 

Figure 8. Comparison of lateral displacement obtained by GA and PSO versus project monitoring operation 

The results show the highest increasing changes in optimized values of elastic modulus. Underestimated values are 

used in design because of limitations in field or laboratory tests to estimate the soil strength parameters, which declines 

cost-effectiveness of project. 

Figures 9 to 11 illustrate the estimation of the most effective parameter (Young’s modulus) for the first to third layers 

in accordance with final population or last 15 final results (npop=npar=15) until the analysis No.254, to investigate and 

compare the results of back analysis using GA and PSO. 
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PSO GA 

Figure 9. Comparison of Young’s modulus for first layer versus third layer in accordance with final population 

  

PSO GA 

Figure 10. Comparison of Young’s modulus for second layer versus third layer in accordance with final population 

  
PSO GA 

Figure 11. Comparison of Young’s modulus for first layer versus second layer in accordance with final population 

In Figures 9 to 11, the results of GA show a good convergence and concentration around the optimal point in 

comparison with the results of PSO. 

50

60

70

80

90

100

110

50 60 70 80 90 100 110

F
ir

st
 L

ay
er

 (
M

P
a)

 

Third Layer  (MPa) 

50

60

70

80

90

100

110

50 60 70 80 90 100 110

F
ir

st
 L

ay
er

 (
M

P
a)

 

Third Layer  (MPa)  

50

60

70

80

90

100

110

50 60 70 80 90 100 110

S
ec

o
n
d
 L

ay
er

  
(M

P
a)

  

Third Layer  (MPa)  

50

60

70

80

90

100

110

50 60 70 80 90 100 110

S
ec

o
n
d
 L

ay
er

  
(M

P
a)

  

Third Layer  (MPa)  

50

60

70

80

90

100

110

50 60 70 80 90 100 110

F
ir

st
 L

ay
er

 (
M

P
a)

 

Second Layer  (MPa)  

50

60

70

80

90

100

110

50 60 70 80 90 100 110

F
ir

st
 L

ay
er

 (
M

P
a)

 

Second Layer  (MPa)  



Civil Engineering Journal         Vol. 4, No. 9, September, 2018 

2195 

 

 

14. Conclusion 

In this paper, the back analysis was carried out automatically without human intervention to determine soil strength 

parameters in an excavation project in Tehran city using genetic algorithm and particle swarm optimization. This fully 

automated process was done by establishing a link between MATLAB and Abaqus software by Python programming 

language. When the soil strength parameters such as Young’s modulus, cohesion and soil friction angle were determined 

by genetic algorithm and particle swarm optimization under similar conditions, the genetic algorithm could satisfy the 

convergence criterion and reduce the error to less than 5% by 254 iterations of finite element analysis and check of error 

function. The back analysis using genetic algorithm stopped when reached the termination condition and 9 soil strength 

parameters (parameters of the Mohr–Coulomb model) were simultaneously introduced for the 3 soil layers of the project. 

However, the particle swarm optimization algorithm failed to reduce the value of error to less than 5% by 254 iterations 

of finite element analysis, unlike the genetic algorithm. The back analysis must continue by particle swarm optimization 

algorithm to achieve the termination condition, which involves time consuming calculations. The re-evaluation of the 

back analysis by PSO showed that it could achieve the convergence criterion and error less than 5% in smaller ranges 

of the soil strength parameters. 

This could indicate the superiority of GA versus PSO in such problems. The results of the back analysis by GA were 

selected as equivalent optimized results for the project. So, this method can be employed in professional problems for 

cost-effectiveness of the projects. However, the disadvantage of GA and PSO is the time-consuming process to achieve 

the termination condition. 
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