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Abstract 

Stochastic models (time series models) have been proposed as one technique to generate scenarios of future climate 
change. Precipitation, temperature and evaporation are among the main indicators in climate study. The goal of this study 
is the simulation and modeling of climatic parameters such as annual precipitation, temperature and evaporation using 
stochastic methods (time series analysis). The 40-year data of precipitation and 37-year data of temperature and 

evaporation at Jelogir Majin station (upstream of Karkheh dam reservoir) in western of Iran has been used in this study 
and based on ARIMA model, The auto-correlation and partial auto-correlation methods, assessment of parameters and 
types of model, the suitable models to forecast annual precipitation, temperature and evaporation were obtained. After 
model validation and evaluation, the Predicting was made for the ten future years (2006 to 2015). In view of the 
Predicting made, the precipitation amounts will be decreased than recent years. As regards the mean of annual 
temperature and evaporation, the findings of the Predicting show an increase in temperature and evaporation. 
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1. Introduction 

The study of meteorological parameters is very important in hydrology problems, since the same parameters 

generally from the climate of a region and is due to variations caused by water, wind, rain, etc. that issues problems, 

such as flood and drought. Therefore, accuracy in data collection of such parameters is of particular importance. The 

study of long statistical term of the behavior and changes in climate parameters and analysis of the results obtained as 

well as the study of the behavior of a phenomenon in the past can analyze its probable trend in the future, too. 

Therefore, one can study the climatic variations using predicting and estimation of parameters, such as precipitation, 

temperature and evaporation and studying their behavior in the past [1]. There are, basically, two approaches to predict 

the natural climatic variations such as streamflow, precipitation and etc.: physical and statistical models, where the 

first one includes the rainfall-runoff hydrological model and the second covers data-driven methods such as time 

series. This type of model adjusts the series using the estimated parameters of the historical data, and does not 

consider any exogenous information that could affect the hydrological regimes and, consequently, the electricity 

generation. Statistical methods include two objectives: 1-understanding of random processes, 2- forecasting 

(predicting) of series in future [2]. The time series analysis of the statistical region in hydrology from climate variables 

data at river basines, which is wide domain, statistics has significant as a powerful method for analyze hydrology in 

time series to predict the non-seasonal periods in hydrologic data using time series analysis (ARIMA model). The time 
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series analysis is used for building arithmetical models to computation of statistics from climate variables data using 

ARIMA model. Time series analysis has quickly developed in theory and practice since 1970s to predict and control 

the types of climate parameters such precipitation, temperature and etc. This type of analysis is generally related to 

data which are not independent and are consecutively dependent to each another. Shamsnia et al (2009) used 

stochastic methods in modeling of the monthly precipitation and the mean monthly of Temperature in Shiraz station at 

Iran. They implied that the suitable models for predicting of monthly precipitation and the mean monthly of 

temperature are ARIMA (0,0,0)(2,1,0) and ARIMA (2,1,0)(2,1,0) respectively [3]. In a study, Gurudeo and Mahbub 

(2010) applied time series analysis for rainfall and temperature interactions in coastal catchments of Queensland, 

Australian. They implied that ARIMA model is suitable for prediction of this series [4]. Eni and Adeyeye (2015) 

applied seasonal ARIMA modeling for predict of rainfall in Warri town, Nigeria. The ARIMA (1,1,1)(0,1,1) fitted to 

this series with AIC value of 281. Model adequacy checks showed that the model was appropriate. Coefficient of the 

fitted model was finalized by the residual tests [5]. Sarraf et al. (2011) used ITSM software for modeling and 

predicting relative humidity and the mean monthly of temperature in Ahvaz synoptic station at Iran. The ARIMA 

(0,0,1)(0,1,1) and ARIMA (0,0,1)(2,1,2) models fitted to predict mean monthly temperature and relative humidity 

series respectively [6]. In a study, Jahanbakhsh and Babapour-Basser (2003) used the ARIMA model for mean of 

monthly temperature of Tabriz station in Iran. In this study, the monthly temperature of Tabriz for a forty year 

statistical period (1959-1998) was examined based on auto-correlation and partial auto-correlation methods as well as 

controlling the normality of residues [7]. 

Wang et al. (2014) used the improved ARIMA model to predict the monthly precipitation at the Lanzhou station in 

Lanzhou, China. The results showed that the accuracy of the improved model is significantly higher than the seasonal 

model, with the mean residual achieving 9.41 mm and the predict accuracy increasing by 21% [8]. Dodangeh et al 

(2012) employed time series modeling to predict climatic parameters such as evaporation, temperature, relative 

humidity. The selected ARIMA models were ARIMA(0,0,1)(0,0,1), ARIMA(2,0,4)(1,1,0), ARIMA(4,0,0)(0,1,1), 

ARIMA (1,0,1)(0,1,1), ARIMA (1,0,0)(0,1,1) for relative humidity, evaporation, air temperature, wind speed and 

sunshine, respectively [9]. Also Frausto et al. (2003) showed that AR and ARMA models could be used to describe the 

inside air temperature of an unheated [10]. Hamidi machekposhti et al. (2017) studied the stochastic model to inflow 

of Karkheh dam at Iran and suggested ARIMA (4,1,1) is the best stochastic model for annual mean streamflow [11]. 

Sathish and Khadar Babu (2017) predicted hydrology time series for water resources (such as flood) using stochastic 

time series analysis (Thomas-Fiering model) from the river basins In India [12]. Ayare and Dhekale (2015) studied 

multiplicative seasonal ARIMA models for monthly stream flows of Choriti River at at Natuwadi dam site of Konkan 

region, Maharashtra based on 20 years data. They found that ARIMA(0,0,1)(0,1,1) model indicated closer agreement 

between forecasted and historical monthly inflow series [13]. Akpanta et al. (2015) made Seasonal ARIMA 

(SARIMA) models SARIMA Modeling for Monthly Rainfall in Umuahia, Abia State of Nigeria. They suggested that 

SARIMA (0,0,0)(0,1,1) model can be used for monthly forecasting [14]. Etuk, et al. (2014) identified and established 

the adequacy of a Seasonal ARIMA (5,1,0)(0,1,1) for modeling and forecasting the amount of monthly rainfall in 

Portharcourt, Nigeria [15]. Bari et al. (2015) Forecasted monthly precipitation in Sylhet city at Bangladesh using 

ARIMA Model. They found that the ARIMA(0,0,1)(1,1,1) was found to be the most effective to predict future 

precipitation with a 95% confidence interval [16]. Therefore, considering the importance of climatic parameters of 

precipitation, temperature and evaporation and the importance they have in determining the roles of other climatic 

elements, their modeling and predicting using advanced statistical methods is a necessity and could be a basic pillar in 

hydrology, agriculture and water resource management. 

The goal of the present study is to analyze the behavior of climatic parameters of precipitation, temperature and 

evaporation, simulation and providing a model to predict parameters under study using the statistical models of time 

series analysis (ARIMA models) in the Jelogir Majin station (upstream of Karkheh dam reservoir) of the Karkheh 

Basin at western of Iran. The purpose of this study is: 

(1) To generate or develop stochastic time series model (ARIMA model) for prediction of climatic parameters of 

precipitation, temperature and evaporation in Karkheh river basin 

(2) To estimate parameters of ARIMA model for annual precipitation, temperature and evaporation and 

(3) To test the validity of the annual predicted precipitation, temperature and evaporation with measured and 

evaluated the performance of the best selected model. 

2. Materials and Methods 

In this study, the annual data on the precipitation, temperature and evaporation of Jelogir Majin station was used 

and the required information was collected from the tables and the databases available of Iran Water Resources 

Management Company (IWRMC). Jelogir Majin station in Karkheh river basin in Khuzestan province in western part 

of Iran is located at 46˚ 57′ and 49˚ 10′ E Longitude and 31˚ 48′ and 34˚ 58′ N Latitude with its elevation ranging 1216 

m and with the area of 50000 km2. The mean annual precipitation 510 mm and mean annual temperature for the study 
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area about 13.5c and also evaporation more than 2000 mm in year. The geographical location of the study region is 

shown in Figure 1 (station number 9 in Figure 1). This station is located at the upper reaches of the reservoir of 

Karkheh dam and is the supplier of the most water entering the dam reservoir and has the greatest impact on reservoir 

water dam. The statistical period under study is the crop years 1966 to 1967 through 2015 to 2016 for precipitation 

series and the crop years 1969 to 1970 through 2015 to 2016 for temperature and evaporation series. The statistics 

related to the crop years 2005 to 2006 were used to train the models and last ten years were used to predict. Initially, 

the homogeneity of data was confirmed using the run test statistical method. Essentially, homogeneous test before 

statistical analysis on data should be taken to ensure the stochastic data. Homogeneous data was done using SAS and 

SPSS softwares. Then, based on the results obtained and studying the sequence of observations and the past behavior 

of the phenomenon, the appropriate model was devised to predict using time series analysis and stochastic methods. In 

order to model the data, they were fixed after preparing the time series of observations of annual precipitation, 

temperature and evaporation separately. 

 

Figure 1. Study area location (Iran Water Resources Management Company (IWRMC)) 

For fitting ARIMA model to the time series of the new data sequences, the basis of the approach consists of three 

phases: model identification, parameter estimation and diagnostic checking [17]. Identification stage is proposed to 

determine the differencing required to produce stationary and also the order of Auto Regressive (AR) and Moving 

Average (MA) operators for a given series. Stationary is a necessary condition in building an ARIMA model that is 

useful for predicting. A stationary time series has the property that its statistical characteristics such as the mean and 

the auto-correlation structure are constant over time. When the observed time series presents trend and 

heteroscedasticity, differencing and power transformation are often applied to the data to remove the trend and 

stabilize variance before an ARIMA model can be fitted. Estimation stage consists of using the data to estimate and to 

make inferences about values of the parameters conditional on the tentatively identified model. The parameters are 

estimated such that an overall measure of residuals is minimized. This can be done with a nonlinear optimization 

procedure. Several methods are available for estimating parameters including Maximum Likelihood (ML), 

Conditional Least Squares (CLS) and Unconditional Least Squares (ULS). Among these methods, maximum 

likelihood seems to be the best. The parameters should be statistically significant α = p% and satisfy two conditions, 

namely stationary and invertibility for auto-regressive and moving average models, respectively. The diagnostic 

checking of model adequacy is the last stage of model building. This stage determines whether residuals are 

independent, homoscedastic and normally distributed. Several diagnostic statistics and plots of the residuals can be 

used to examine the goodness of fit; the tentative model should be identified, which is again followed by the stage of 

parameter estimation and model verification. Diagnostic information may help to suggest alternative model(s). The 

most common tests applied to test time-independence and normality is the Portmanteau lack of fit test, the 

nonparametric Kolmogorov–Smirnov and Anderson–Darling tests. This three step model building process is typically 

repeated several times until a satisfactory model is finally selected. The final selected model can then be used for 

prediction purpose. By plotting original series trend in the mean and variance may be revealed [18]. The ARIMA 
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model is essentially an approach to forecasting time series data. However, the ARIMA model requires the use of 

stationary time series data [19]. 

2.1. The Modeling Procedures 

Modeling is made using time series analysis by several methods. One of which is the ARIMA or Box-Jenkins 

method being called the (p,d,q) model [18]. In the (p,d,q) model, p denotes the number of auto-regressive values (AR), 

q denotes the number of moving average (MA) values and d is the order of differencing (I), representing the number of 

times required to bring the series to a kind of statistical equilibrium. In an ARIMA model (p,d,q) is called the non-

seasonal part of the model, p denotes the order of connection of the time series with its past and q denotes the 

connection of the series with factors effective in its construction. The mathematical formulation of ARIMA models 

Shown by Equation 1. Analysis of a time series is made in several stages. At the first stage, the primary values of p, d 

and q are determined using the Auto-correlation Function (ACF) and Partial Auto-correlation Function (PACF). A 

careful study of the ACF and PACF diagrams and their elements will provide a general view on the existence of the 

time series, its trend and characteristics. 

)()()3()2()1()( tZntXtXtXtXtX    (1) 

In Equation 1, X(t) is the variable parameter in instant t and Z(t) is the remaining parameter in the model is the 

white noise variance [20]. This general view is usually a basis for selection of the suitable model. Also, the diagrams 

are used to confirm the degree of fitness and accuracy of selection of the model. At the second stage, it is examined 

whether p and q could remain in the model or must exit it. At the third stage, it is evaluated whether the residue (the 

residue error) values are stochastic with normal distribution or not. It is then, that one can say the model has a good 

fitness and is appropriate. 

2.2. Model Selection Criteria 

Several appropriate models may to be used to select a model to analyze time series or generally data analysis to 

present a given set of data. Sometimes, selection is easy, whereas, it may be much difficult in other times. Therefore, 

numerous criteria are introduced to compare models which are different from methods for model recognition. Some of 

these models are based on statistics summarized from residues (that are computed from a fitted scheme) such as the 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Schwartz Bayesian Criterion (SBC) 

and others are determined based on the predicting error (that is computed from predicting outside the sample) such as 

the Mean Percent Error (MPE) method, the Mean Square Error (MSE), The Mean Absolute Value Error (MAE), and 

the Mean Absolute value Percent Error (MAPE). The model in which the above statistics are the lowest will be 

selected as the suitable model. Akaike (1979) suggests a mathematical formulation of the parsimony criterion of model 

bulding as Akaike Information Criterion (AIC) for the purpose of selecting an optimal model fits to a given data. 

Mathematical formulation of AIC is defined as [21]: 

MnLNMAIC a 2)()( 2    (2) 

Where “M” is the number of AR and MA parameters to estimate, σ2a is residual variance and “n” is the number of 

observation. The model that gives the minimum AIC is selected as a parsimonious model. The summarized steps of 

time series modeling (ARMA and ARIMA model) are shown in Figure 2. 
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Figure 2. Steps of time series modeling (ARMA and ARIMA model) 

In the present study, ARIMA model, SPSS and SAS softwares, AIC Criterion were used for modeling and 

predicting some climatic parameters include the precipitation, temperature and evaporation. The SPSS and SAS 

softwares determine the best model with minimum AIC. Also, the best model validated using model efficency. So, in 

order to evaluate the best model, the correlation coefficient was used in crop years 2006 to 2007 through 2015 to 2016 

for studied series. 

3. Results and Discussion 

Time series of precipitation, temperature and evaporation in Jelogir Majin station were showed in Figures 3 to 5. In 

this figures, we have showed trend line in order to checking of stationarity of series. Figure 4 showed that there is little 

increase trend for temperature. Figures 3 and 5 showed little decrease trend for precipitation and evaporation too. The 

natural series are not stationary, for this reason we have first differencing (d=1) of natural data to achieving stationary 

series. An analysis of significant ACF and PACF plots (Figures 6 to 8) implies the peaks in 4, 6, 7 and 8 lag times for 

stationary series because in this lag times coefficient of ACF and PACF are out of confidence limit. 

 

Figure 3. Time series annual precipitation in Jelogir Majin station 
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Figure 4. Time series of the mean of annual tempreature in Jelogir Majin station 

 

Figure 5. Time series of the mean of annual evaporation in Jelogir Majin station 

 

Figure 6. ACF/PACF of the annual precipitation in Jelogir Majin station 
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Figure 7. ACF/PACF of the annual temperature in Jelogir majin station 

 

Figure 8. ACF/PACF of the annual evaporation in Jelogir Majin station 

The maximum likelihood (ML), conditional least square (CLS) and unconditional least square (ULS) methods are 

used to estimate the model parameters. The result of values for the parameters of three models (1,1,0), (1,1,1) and 

(8,1,1) for precipitation, three models (1,1,0), (1,1,1) and (6,1,1) for temperature and three models (1,1,0), (1,1,1) and 

(7,1,1) for evaporation showed in Tables 1 to 3. These tables showed that all models are suitable for modeling this set 

data because values of p and q parameters in ARIMA(p,1,q) model are less than 1 therefore their have stationarity and 
invertibility conditions. Then we enter the next stage that is diagnostic check stage. After estimating the model 

parameters, the diagnostic checking is applied to see if the model is adequate or not. Therefore Portmanteau lack of fit 

test and residual auto-correlation function test are used for diagnostic checking. The results of Portmanteau and 

residual auto-correlation function test indicate in Tables 4 to 6 and Figures 9 to 11 Showed that all selected model are 

adequate for studied series data. In Tables 4 to 6 probability values of selected models are bigger than our probabilistic 

level that is 0.05 therefore selected models are suitable. Figures 9 to 11 showed auto-correlogram of residual series 

parameter for annual precipitation temperature and evaporation respectively. In this figures all values of residual series 

parameters are in of confidence limit therefore selected models are suitable. Also the goodness of fit statistic is shown 

in Table 7. This table shows Akaike's Statistic values for all selected model. Model with lowest AIC value is the best 

model. Therefore, the ARIMA(8,1,1) models in CLS estimation parameter method for precipitation and 

ARIMA(6,1,1) and ARIMA(7,1,1) models in ML estimation parameter method for temperature and evaporation 
respectively are the best model. According to the results, predicted data for the agriculture years 2006 to 2015 was 

shown in Table 8 and Figures 12 to 14. Figures 15 to 17 showed the correlation between observed (x) and predicted 

(y) data from ARIMA models in crop year 2006 to 2015 in order to model validation. In this figures coefficient of 

determination (R2) for precipitation, temperature and evaporation obtained 0.69, 0.63 and 0.84 respectively. Therefore, 

because of the strong correlation of data, the selected model is suitable for simulating and predicting of the 

precipitation, temperature and evaporation. At the end, the models were designed to predict the years 2006-15, the 

results are consistent with the reality that occurred in that area. 
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Table 1. Values of non-seasonal ARIMA model parameters for annual precipitation 

Estimation 

Method 

Type (Order) and Values of 

parameters ARIMA(p,1,q) 

Std. Error 

Coefficient 

Absolute 

Value of t 

Probability 

of t 

Stationary 

Condition 

Invertibility 

Condition 

ML p(1) = -0.45831 0.14281 -3.21 0.0013 Satisfy 
 q(0) 

CLS 
p(1) = -0.45857 

0.14418 -3.18 0.0029 Satisfy 
 q(0) 

ULS 
p(1) = -0.47025 

0.14318 -3.28 0.0022 Satisfy 
 q(0) 

ML p(1) = 0.21071 0.18855 1.12 0.2638 
Satisfy  

q(1) = 0.99971 

p(1) = 0.19615 

28.2487 0.04 0. 9718 Not Satisfy 

CLS 
0.21063 0.93 0.3578 

Satisfy  
q(1) = 0.83593 0.11764 7.11 0.0001< Satisfy 

ULS 
p(1) = 0.22697 0.16853 1.35 0.1863 

Satisfy 
 

q(1) = 0.99998 0.33052 3.03 0.0045 Not Satisfy 

ML p(8) = -0.25552 0.16684 -1.53 0.1257 
Satisfy  

q(1) = 0.99976 28.6089 0.03 0.9721 Not Satisfy 

CLS 
p(8) = -0.21750 0.18156 -1.2 0.2385 

Satisfy  
q(1) = 0.70035 0.11755 5.96 0.0001< Satisfy 

ULS 
p(8) = -0.33925 0.17363 -1.95 0.0583 

Satisfy 
 

q(1) = 0.99998 0.32887 3.04 0.0043 Not Satisfy 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 

Table 2. Values of non-seasonal ARIMA model parameters for annual temperature 

Estimation 

Method 

Type (Order) and Values of 

parameters ARIMA(p,1,q) 

Std. Error 

Coefficient 

Absolute 

Value of t 

Probability 

of t 

Stationary 

Condition 

Invertibility 

Condition 

ML p(1) = -0.52827 0.14372 -3.68 0.0002 Satisfy 
 q(0) 

CLS 
p(1) = -0.42839 

0.15515 -2.76 0.0091 Satisfy 
 q(0) 

ULS 
p(1) = -0.54873 

0.14369 -3.82 0.0005 Satisfy 
 q(0) 

ML p(1) = -0.0547 0.24092 -0.23 0.8204 
Satisfy  

q(1) = 0.71769 0.16927 4.24 0.0001< Satisfy 

CLS 
p(1) = 0.01664 0.33976 0.05 0.9612 

Satisfy  
q(1) = 0.52307 0.28795 1.82 0.0781 Satisfy 

ULS 
p(1) = -0.06232 0.23785 -0.26 0.7949 

Satisfy 
 

q(1) = 0.73701 0.15667 4.7 0.0001< Satisfy 

ML p(6) = -0.15630 0.17081 -0.92 0.3602 
Satisfy  

q(1) = 0.7134 0.13386 5.33 0.0001< Satisfy 

CLS 
p(6) = -0.14173 0.17379 -0.82 0.4204 

Satisfy  
q(1) = 0.51146 0.14874 3.44 0.0016 Satisfy 

ULS 
p(6) = -0.19250 0.17295 -1.11 0.2735 

Satisfy 
 

q(1) = 0.72837 0.12864 5.66 0.0001< Satisfy 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 

Table 3. Values of non-seasonal ARIMA model parameters for annual evaporation 

Estimation 

Method 

Type (Order) and Values of 

parameters ARIMA(p,1,q) 

Std. Error 

Coefficient 

Absolute 

Value of t 

Probability 

of t 

Stationary 

Condition 

Invertibility 

Condition 

ML p(1) = -0.49325 0.14522 -3.4 0.0007 Satisfy 
 q(0) 

CLS 
p(1) = -0.48525 

0.14782 -3.28 0.0023 Satisfy 
 q(0) 

ULS 
p(1) = -0.50750 

0.14567 -3.48 0.0013 Satisfy 
 q(0) 

ML p(1) = -0.58973 0.28108 -2.1 0.0359 
Satisfy  

q(1) = -0.12801 0.35151 -0.36 0.7157 Satisfy 
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CLS 
p(1) = -0.55231 0.3019 -1.83 0.0761 

Satisfy  
q(1) = -0.8804 0.36382 -0.24 0.8102 Satisfy 

ULS 
p(1) = -0.61037 0.27051 -2.26 0.0306 

Satisfy 
 

q(1) = -0.13647 0.34103 -0.4 0.6915 Satisfy 

ML p(7) = -0.58646 0.15244 -3.85 0.0001 
Satisfy  

q(1) = 0.50001 0.14878 3.36 0.0008 Satisfy 

CLS 
p(7) = -0.50187 0.17912 -2.8 0.0083 

Satisfy  
q(1) = 0.41505 0.15939 2.6 0.0136 Satisfy 

ULS 
p(7) = -0.90898 0.10678 -8.51 0.0001< 

Satisfy 
 

q(1) = 0.66123 0.14047 4.71 0.0001< Satisfy 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 

Table 4. Result of auto-correlation check of residuals annual precipitation 

ARIMA 

Model 

Estimation 

Method 
To Lag Df 

Chi-

Square 

Pr>chi 

Square 

Adequacy for 

Modelling 

ARIMA(1,1,0) 

ML 

6 5 7.57 0.1819 

Satisfy 
12 11 10.49 0.4871 

18 17 12.02 0.7991 

24 23 17.23 0.798 

CLS 

6 5 7.57 0.1814 

Satisfy 
12 11 10.44 0.4912 

18 17 12.01 0.7998 

24 23 17.27 0.7956 

ULS 

6 5 7.64 0.1771 

Satisfy 
12 11 10.58 0.4792 

18 17 12.12 0.7926 

24 23 17.26 0.7963 

ARIMA(1,1,1) CLS 

6 4 2.43 0.6568 

Satisfy 
12 10 4.41 0.9269 

18 16 6.57 0.9807 

24 22 12.71 0.9411 

ARIMA(8,1,1) CLS 

6 4 4.25 0.3729 

Satisfy 
12 10 4.9 0.898 

18 16 7.03 0.9727 

24 22 11.73 0.9626 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 

  

 

Figure 9. Auto-correlogram of residual series parameter for annual precipitation  
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Table 5. Result of auto-correlation check of residuals annual temperature 

ARIMA 

Model 

Estimation 

Method 
To Lag Df 

Chi-

Square 

Pr>chi 

Square 

Adequacy for 

Modelling 

ARIMA(1,1,0) 

ML 

6 5 5.01 0.4141 

Satisfy 
12 11 6.2 0.8597 

18 17 8.69 0.9496 

24 23 26.22 0.2904 

CLS 

6 5 3.88 0.5664 

Satisfy 
12 11 5.02 0.9303 

18 17 7.02 0.9833 

24 23 22.8 0.4726 

ULS 

6 5 5.29 0.3815 

Satisfy 
12 11 6.5 0.8382 

18 17 9.08 0.9377 

24 23 26.98 0.257 

ARIMA(1,1,1) 

ML 

6 4 2.76 0.5994 

Satisfy 
12 10 4.62 0.9153 

18 16 5.574 0.9921 

24 22 19.84 0.593 

CLS 

6 4 2.5 0.6454 

Satisfy 
12 10 4.06 0.9447 

18 16 5.35 0.9937 

24 22 18.14 0.6975 

ULS 

6 4 3.02 0.5541 

Satisfy 
12 10 4.87 0.8999 

18 16 5.77 0.9904 

24 22 20.07 0.5789 

ARIMA(6,1,1) 

ML 

6 4 2.44 0.6553 

Satisfy 
12 10 4.35 0.9302 

18 16 5.11 0.9952 

24 22 17.65 0.7267 

CLS 

6 4 2.09 0.7193 

Satisfy 
12 10 3.58 0.9643 

18 16 4.56 0.9976 

24 22 17.39 0.7417 

ULS 

6 4 2.91 0.5723 

Satisfy 
12 10 4.87 0.8995 

18 16 5.61 0.9918 

24 22 17.77 0.7196 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 

 

Figure 10. Auto-correlogram of residual series parameter for annual temperature 
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Table 6. Result of auto-correlation check of residuals annual evaporation 

ARIMA Model 
Estimation 

Method 
To Lag Df 

Chi-

Square 

Pr>chi 

Square 

Adequacy for 

Modelling 

ARIMA(1,1,0) 

ML 

6 5 0.86 0.9728 

Satisfy 
12 11 8.48 0.6699 

18 17 9.66 0.9174 

24 23 13.98 0.9274 

CLS 

6 5 0.94 0.9672 

Satisfy 
12 11 8.15 0.7 

18 17 9.21 0.9335 

24 23 13.38 0.9433 

ULS 

6 5 0.85 0.9738 

Satisfy 
12 11 8.53 0.6652 

18 17 9.74 0.9143 

24 23 13.96 0.928 

ARIMA(1,1,1) 

ML 

6 4 1.27 0.8671 

Satisfy 
12 10 8.68 0.5628 

18 16 9.92 0.8706 

24 22 14.19 0.8947 

CLS 

6 4 1.12 0.8913 

Satisfy 
12 10 8.2 0.6097 

18 16 9.29 0.9012 

24 22 13.43 0.9205 

ULS 

6 4 1.34 0.855 

Satisfy 
12 10 8.81 0.5506 

18 16 10.09 0.862 

24 22 14.26 0.8922 

ARIMA(7,1,1) 

ML 

6 4 1.58 0.8122 

Satisfy 
12 10 4.08 0.9436 

18 16 7.16 0.9701 

24 22 11.32 0.9698 

CLS 

6 4 2.38 0.6655 

Satisfy 
12 10 4.03 0.9459 

18 16 6.14 0.9865 

24 22 12.54 0.9451 

ULS 

6 4 2.17 0.7053 

Satisfy 
12 10 6.07 0.8094 

18 16 9.98 0.8676 

24 22 11.16 0.9734 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 
 

 

Figure 11. Auto-correlogram of residual series parameter for annual evaporation 
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Table 7. Goodness of fit statistic for precipitation, temperature and evaporation 

ARIMA 

Model 

Estimation 

Method 

Precipitation Temperature Evaporation 

Akaike's Statistic 

(1,1,0) 

ML 325.576 105.322 140.584 

CLS 325.599 107.3605 140.809 

ULS 325.583 105.337 140.594 

(1,1,1) 

ML - 103.233 142.479 

CLS 322.981 108.312 142.75 

ULS - 103.27 142.491 

(6,1,1) 

ML - 102.573 - 

CLS - 107.616 - 

ULS - 102.647 - 

(7,1,1) 

ML - - 133.742 

CLS - - 137.364 

ULS - - 142.312 

(8,1,1) CLS 321.128 - - 

Table 8. Forecasts (Predicts) precipitation, temperature and evaporation from period 2006/7 to 2015/16 

Period 
Precipitation Temperature Evaporation 

Forecast Observation Forecast Observation Forecast Observation 

2006-7 43 40 25 22 19 17 

2007-8 44 42 23 21 21 19 

2008-9 40 38 25 26 20 18 

2009-10 37 39 22 20 19 17 

2010-11 43 41 25 26 21 19 

2011-12 40 38 24 23 23 22 

2012-13 39 37 25 26 21 20 

2013-14 39 38 24 22 22 23 

2014-15 38 37 25 23 23 21 

2015-16 38 36 25 26 23 22 
 

 

Figure 12. Comparison of forecast and observed data for precipitation for years 2006/7 to 2015/16 

 

Figure 13. Comparison of forecast and observed data for temperature for years 2006/7 to 2015/16 
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Figure 14. Comparison of forecast and observed data for evaporation for years 2006/7 to 2015/16 

 

Figure 15. Correlation between actual values and predicted values of precipitation in Karkheh River 

 

Figure 16. Correlation between actual values and predicted values of temperature in Karkheh River 

 

Figure 17. Correlation between actual values and predicted values of evaporation in Karkheh River 
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4. Conclusions 

Time series analysis is an important tool in modeling and predicting climatic parameters such as precipitation, 

temperature and evaporation data. In this study we used the Box-Jenkins model (ARIMA model) to simulate and 

predict the annual mean of precipitation, temperature and evaporation parameters and the final model was tested using 

AIC criterion over the Karkheh river basin at Iran. The ARIMA model (8,1,1) in CLS estimation method was suitable 

model for annual precipitation. Also The ARIMA model (6,1,1) and (7,1,1) in ML estimation method were suitable for 

annual temperature and evaporation respectively. These models were developed considering step-wise analysis, non-

seasonal parameters, and various diagnostic checks. The predicting results for the upcoming ten years are considered 

to be excellent and accurate. This will certainly assist policy makers and decision makers in planning for any kind of 

disaster or extreme condition in every district town of the Karkheh river basin by generating scenarios for the next few 

years. For model validation, coefficient of determination (R2) for climate variables obtained 0.69, 0.63 and 0.84 

respectively. Consequently, the models can be used for predicting of studied variables. In view of the predicting made, 

it is likely that the precipitation will decrease. As regards the mean temperature and evaporation, the trend of 

increasing this two series, especially in recent years, has continued and the findings of the predicting showed an 

increase in temperature along with a narrowing of the range of variations. 
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