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Minimal conductivity in graphene: interaction corrections and ul­
traviolet anomaly

E.G . M i s h c h e n k o

Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA

PACS 73.23 . -b  -  Electronic transport in mesoscopic systems 
PACS 73.25 . + i -  Surface conductivity and carrier phenom ena

A b stra ct. - Conductivity of a disorder-free intrinsic graphene is studied to  the first order in the 
long-range Coulomb interaction and is found to  be a  =  <r0 (1 +  0.01 <7) , where g is the dimensionless 
( “fine structure” ) coupling constant. The calculations are performed using three different methods: 
i) electron polarization function, ii) Kubo formula for the  conductivity, iii) quantum  transport 
equation. Surprisingly, these m ethods yield different results unless a proper ultraviolet cut-off 
procedure is implemented, which requires th a t the interaction potential in the effective Dirac 
Hamiltonian is cut-off a t small distances (large momenta).
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In tro d u c tio n . — Low-frequency optical conductivity 
of undoped (intrinsic) graphene free of disorder is known 
to have a universal value of <70 =  e2/Ah [1-13]. Experi­
mental measurements [14,15], which yielded a value some­
what bigger than the theoretical predictions, motivated 
the studies of the possible role played by electron-electron 
interactions. The findings of Ref. [16] th a t the combined 
effect of self energy (velocity renormalization) and vertex 
corrections leads to a suppression of the optical conductiv­
ity at low frequencies have been questioned in Refs. [17,18] 
on the basis of scaling arguments. The latter indicate 
that the large logarithmic (momentum cut-off dependent) 
terms in the self-energy and vertex corrections cancel each 
other. We note th a t Ref. [16] and Refs. [17,18] agree on 
this cancellation in the lowest order in electron-electron 
interaction but differ on whether the higher order terms 
feature similar cancellation. It appears th a t the analysis 
of Ref. [16], though valid in the first order, fails for higher 
orders, and th a t the conclusion of the suppression of the 
conductivity at low frequencies is not valid.

The theory presented in Refs. [17,18] implies that the 
low-frequency dependence is properly described by the 
lowest order correction. Indeed, to the first order in in­
teraction the conductivity is expected to yield, ct/ gq — 
l  + Cg, where C  is some constant, g — e2/ kv is the interac­
tion strength; /% is the dielectric constant of a substrate and 
v is the electron velocity in graphene. Renormalization 
group approach for 2D Dirac fermions predicts that the 
interaction strength g is a running coupling constant that

depends on frequency g —► g(uj) [20,21], At low frequen­
cies g{u) flows to zero, so th a t higher order corrections to 
the electron velocity become progressively negligible and 
it is sufficient to consider only the first order renormal­
ization of velocity (electric charge is not renormalized): 
g(u) — g/[l  +  |  In (JCv/u>)], where /C is the momentum 
cut-off. Combining these expressions gives,

a / a 0 = 1 + Cg
1 + (1)

with the low-frequency behavior of the conductivity being 
determined by the constant C  alone. Calculation of this 
constant, therefore, becomes an im portant task. While 
Ref. [17] did not calculate C, Ref. [18] provided the fol­
lowing value

C = — (2)

This result predicts quite a considerable variation of a 
with the frequency for typical values of the bare graphene 
interaction constant g (which can exceed 1).

In the present Letter we test the above prediction (2) by 
performing a perturbative calculation of the minimal con­
ductivity to the first order in electron-electron interaction 
using three different methods, based on, a) electron po­
larization operator, b) Kubo formula for the conductivity, 
c) kinetic equation. We point out th a t crucial anomaly, 
which does not appear in a non-interacting case, occurs for 
the interaction correction. Three above mentioned meth­
ods would give essentially different values for the constant
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a) b) where the electron Green’s function in the subband repre­
sentation is

Gt
1

,3 = ± 1

1 +  ,3ap
e — [3(vp — irj) ’ (7)

Fig. 1: Self-energy, a), and vertex correction, b), to  the con­
ductivity (j(u>) and polarization operator II(w,(?) in the first 
order in electron-electron interaction (dashed line). The vertex 
(black dot) is equal to  1 in the case of the polarization operator 
and to  ever in case of the  conductivity. The two quantities are 
related to  each other by the particle conservation condition, 
Eq. (5).

C unless some appropriate high-momentum cut-off proce­
dure is implemented. We argue that expression (2) over­
estimates the interaction correction by almost two orders 
of magnitude and show that the numerical value of C  is

C
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with <Tp =  <t ■ n p being the projection of the pseudo-spin 
operator onto the direction of the electron momentum 
n P =  P/P- Factor 4 in Eq. (6) accounts for the (true) 
spin and valley degeneracy. Taking energy integrals and 
performing pseudospin trace operation we obtain for the 
first term  in Eq. (6),

n a (o;!(?) = 2 ^  Vp-p> eos0F
pp '0

1 COS0pp_|_q
( lj  +  2 p v p  — i p r j ) 2 (8)

(3)

In the expression (8) we kept only terms that lead to 
the lowest order contribution in the external momentum, 
IIa (a;.(j() oc q2, which are necessary for the calculation of 
the homogeneous conductivity. Using Eq. (5) we obtain 
the corresponding contribution,

We will now proceed to demonstrate that the difference 
between Eqs. (2) and (3) originate from handling of sin­
gular integrals at large electron momenta.

The first method to be presented is based on the calcu­
lation of electron polarization operator and has an advan­
tage of being free from any such singular integrals.

P o la r iz a tio n  o p e ra to r .  — Single intrinsic 2D 
graphene layer is described by the chiral Hamiltonian,

cra(uS) =  ie2u> j  ^  Vp_p/cos0 
pp '

p,p p2(u>2 — 4v2p2)2
(9)

where the frequency is presumed to have a positive in­
finitesimal imaginary part. The second term in Eq. (6) is 
evaluated similarly,

(  w 2 ( n p  -  U p . , , )  ■ ( l ip -  -  l ip -t t  / , ,7)  _  _9  ^  vIAp “ p+q/ ‘ vIip/ n p'
bK̂ ,q )  _  4v2p 2)(lo2 -  4v2p'2

r p <ir k • > l ' k 'p '  (^ ) 4 v2pp' sin gp<p+ qsin 0P',P'+ q“  r r  ........  P  P  - q  ......... P  P  - y  / 1 a \

(lj2 — 4v2p 2)(uj2 — 4v2p'2) )  p p -

where “hats’' denote operators in a pseudo-spin space (<x 
represents the usual set of Pauli matrices), the sum over 
Latin indices is taken over two nodal points and two (true) 
spin directions. The interaction potential is Vq =  2we1 jnq\ 
we also denote, J2P = J  d2p/(2w)2, and set f i=  1.

First-order interaction corrections to the conductivity 
are given by the two diagrams shown in Fig. 1, with the 
vertices denoting the operators of electric current, ev&. 
Another possible method to derive the homogeneous opti­
cal conductivity is to calculate the corresponding diagrams 
for the electron polarization operator II(u>, q) and then uti­
lize the particle conservation condition,

Expanding to the quadratic order in q we obtain the vertex 
correction,

ab(u>) E ' i
PP'

PP' ■ 4v2 cos 9,p,p'
p - p ' (lj2 — 4v2p>2)(lj2 — 4 v2p>2)

(11)

To the first order in interaction the conductivity is given 
by the sum a  =  Oo +Oa +  0&. The second term here, given 
by Eq. (9), contains a strong divergence at p  =  ui/2v. This 
divergence, however, is simply a consequence of the renor­
malization of the electron velocity by electron-electron in­
teractions. To make the integrals regular we note that 
both the zeroth-order term [19] and aa can be written as

cj(lj) =  lim —— H(lj. q).q^O qz (5) <70 2ie2u
' p  (lj2 — 4v2p 2) '

(12)
The calculation of the polarization operator to the first 
order in g requires two diagrams [19],

n(u>, q) =  4Tr  ^  J _ \ 2 ' p p' p(/,-p-(/, p
p p '

‘ - . . \p  - <1 p ^ 'i  - p '^ ' i  ' - ..\p" - - ..'.p - <1 ; (6)

with vp =  v 2f> 5Zp- ^ P - P ' C0S$p,p ' u[l +  f i n  (AZ/pj] 
being the renormalized velocity (where JC is the upper mo­
mentum cut-off). Indeed, expanding the integrand to the 
first order in the interaction one recovers Eq. (9). Note 
that the value of vp coincides with the electron velocity 
found from the perturbation expansion for the electron

p-2



Minimal conductivity in graphene: interaction corrections and ultraviolet anomaly

Green’s function [20]. The integral in Eq. (12) is regular. 
Calculating the real part of Eq. (12) we obtain

(TO +  (j'a  =  CTO ( l  +  | )  • (13)

Note th a t the interaction correction in Eq. (13) is due to 
the curvature of electron spectrum.

Calculation of the real part of Eq. (11) can be reduced 
to  the following dimensionless integral (x = 2vp/u>),

f
-(To g

de dx cos0(x  +  cos 9)
T̂.J (1 -  x 2)V x 2 +  1 -  2a; cos 9' 

0 0
(14)

where the integral is taken in the principal value sense. 
Using the identity

dx(x  +  cos 9) \ 9 / 2)
(1 — x?)\Jx? +  1 — 2;ccos0 cos (9/2)

and integrating over the angle 9 we obtain,

, 8 - 3 tt
(Tb (To Q~

In [tan(0/4)]

6

(15)

(16)

a(oj)
K ( lj) -  K { 0)

O’
(IT)

via the current-current correlation function, which is given
in the zeroth order by

/
de
^  CTa.GtpCTa.Gt+u,:p, (18)

and in the first order by

K a(co) =  8ie2v 2T i J 2  f  W  
pp'

K b{to) =  4ie2v 2T i J 2 j  ^2 Vp

(19)X CT x G fc p G e ’ p ’ CT x G fc p G e -j- ̂ . p, 
dede'

V p -p ', j  i ■£•/< r
pp

X(TxGepGefpf&xGeF-\-u>,pFGe-̂ u>_p. (20)

here the subscripts a, b denote the contributions from the 
self energy and vertex diagrams, Fig. 1. Note, however, 
tha t the corresponding contributions into the conductiv­
ity, which we denote here by a a and ab, do not satisfy 
the condition (5) term by term. However their sum has to 
obey it, o a + a b = o a +  a b.

Calculation of Eqs. (18-20) is similar to  the above 
derivation for the polarization operator.

i(w) ie2u>
2„212 v 2p - LJ"

pp ' p 2(to2 — 4v2p2)‘1
(21)

ab(u>) ie2u>
pp'

-±r (or -  8v p ) cos 9 -  4v
i p p  x___________ __________________

(u!2 — 4v2p2)(uj2 — 4v2p'2) ’ 

( 2 2 )

where we omit the subscripts in cos0p.p'. The expres­
sions (21,22) are to be contrasted with Eqs. (9) and (11). 
The obvious distinction arises from the fact tha t the in­
tegrals in Eqs. (21) and (22) are logarithmically divergent 
though these divergencies ultimately cancel in their sum, 
(f(ui) = a a(io) +  ab(uj). However, a more striking obser­
vation can be made if one calculates the difference of the 
two expressions,

Combining Eqs. (13) and (16) we finally arrive at Eq. (3). 
The vertex correction is negative and nearly cancels the 
self energy correction. The frequency independence of 
Eqs. (13) and (16) is analogous to  the independence of 
the non-interacting conductivity CTq.

K ubo form ula for conductivity. — An advantage of 
deriving minimal conductivity from the polarization oper­
ator originates from the fact tha t large logarithmic contri­
butions do not appear in different term s in this formalism. 
On the other hand one could begin with a straightforward 
application of the Kubo formula, which as we will see, 
does not offer such a simplification. As a result one has 
to deal with logarithmic contributions which ultimately 
cancel. The starting expression is the expression for the 
optical conductivity

where

ct( u>) — a(u>) =  I,

p' — p cos 9
I  — 2 ie to ^   ̂X p — p / cos 9 ~ ~ \ •

^  p p p 2p'{oj2 -  4v2p2) 
pp

(23)

(24)

Before addressing the issue of a numerical value of I  let 
us briefly describe the third method for the calculation of 
the conductivity.

K inetic equation. — The kinetic equation to the low­
est order in electron-electron interaction and in the pres­
ence of electric filed has the form [161

e E -
P'

[fp’J p l ,  (25)

where / p is the 2 x 2  matrix distribution function. The sec­
ond term  in the left-hand side represents the rate of change 
of the electron distribution function during its preces­
sion in the momentum-dependent “pseudo-Zeeman” field. 
The third term  is the usual drift in the momentum space 
caused by external electric field. Finally, the right-hand 
side account for the exchange electron-electron interac­
tion (Hartree contribution being zero by virtue of electric 
neutrality and spatial homogeneity). Given the solution 
of kinetic equation (25) one can find electric current and 
optical conductivity from j =  ct(w)E =  If <'Tr V () / p<r. 
The detailed solution of Eq. (25) to the first order in E 
and Vp-p' was found in Ref. [16]. For the conductivity it 
yields.

(T h in  (k -0 8 ^ 6  U)  ̂ V p —p '  COS 9  ^  

P P '
(u!2 — 4 v2p2)2
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v2p cos2 0 +  v2p' cos 0. 2 ^  '  -t r  ^  J r  LUo U  “i Is J J  LUo U

16 W Z_/ P P p '^ '2  _  4t,2p2^w2 _  4v2pl2y (26)

This expression is different from both u (uj) and a(uj). In­
terestingly.

d(uj) -  (Tkin(v) = 1/2. (27)

D iscussion . — Three different values obtained from 
the polarization operator. Kubo formula. and
kinetic equation. akin(uj), respectively, indicate an incon­
sistency of the theory of interacting two-dimensional Dirac 
fermions unless 1 = 0. We will now demonstrate tha t the 
conclusion of whether I  = 0 or I  ^  0 depends on the way 
the ultraviolet cut-off is imposed in the calculation of a 
singular integral over p' in Eq. (24).

(i) Hard cut-off. Let us first assume tha t the divergent 
momentum integral is extended only to p’ < 1C. By noting 
tha t interaction potential depends only on s = (p  — p ')2 
and tha t p’ — pcos0 = \d s j d p ’ we then obtain for the 
latter integral in case when V(s) =  27re2/ i /s .

2tt K
p — p  cos 0 e2 f  d6 . f  dp' ds 
--------------=  — I —  cos 6 I —= - —

p'
 ̂  ̂ cos t , _ ^ ,

2 J  2tt J  \ f s  dp'
0 0 
2 7T

e2 [  cos0y/s(fC,p). (28) 
J 27T

Expanding \/s(lC.p) ~  )C—pcos0  for large values of KL, we 
observe tha t the integral here is cut-off independent and 
equals —e2p / 2. It is now straightforward to verify that 
equation (24) gives I  = —crQg/2. Such value of I  yields 
Eq. (2) reproducing the result of Ref. [18], and precisely 
accounts for the difference between Eq. (2) and our result
(3). However, as shown above, such an ultraviolet cut-off 
yields three different values of the conductivity depending 
on which method is being used and is therefore unphysical.

(ii) Soft cut-off. The anomaly encountered in the ex­
pression (24) is specific for Vq oc q ^ 1 behavior of the in­
teraction potential. For any faster decay of interaction at 
large momenta the integral I  vanishes. Let us demonstrate 
this point by assuming

V(q) = ‘2̂ - e- q/K, /C —> oc. 

Calculation similar to the preceding one gives.

(29)

methods are used, it is time now to discuss the origin of 
this inconsistency. Terminating momentum integrals at 
some value p  =  K. means in fact an essential modification 
of electron spectrum at large momenta tha t effectively ex­
cludes these states from possible virtual processes. Such a 
procedure, though not necessarily incorrect, can be made 
self-consistent only if it is accompanied by the appropri­
ate change in the operators of electric current. Otherwise, 
the Ward identity, which ensures particle conservation, is 
violated. This is why the polarization function method, 
which does not involve current vertices in the course of 
calculations, gives results (in the form of convergent inte­
grals) independent of the cut-off procedure. On the other 
hand both the Kubo formalism and kinetic equation do in­
volve current operators explicitly and thus fail if the hard 
cut-off is implemented without a proper modification of 
current vertices.

To the contrary, the soft cut-off procedure presented 
in this Letter does not require modifications of the elec­
tron spectra (Green’s functions) nor of the electric cur­
rent vertices. It is thus self-consistent and quite naturally 
yields identical values for the conductivity irrespective of 
the method used.

C onclusion. — We have calculated the first order 
interaction correction to the conductivity of intrinsic 
graphene. W ithin the Kubo and kinetic equation for­
malisms the self-energy and vertex corrections contain 
large logarithmic frequency-dependent terms which ulti­
mately cancel each other. W ithin the more convenient 
approach based on the calculation of the polarization op­
erator. such terms do not appear at all. Such a simplifi­
cation originates from a simpler scalar vertex in the case 
of a polarization operator.

Nevertheless, the three methods discussed in the present 
Letter result in different, and hence, unphysical values for 
the interaction correction unless the large-momentum cut­
off is imposed in the form of Eq. (29). or similar. In that 
case all methods yield the same value given by Eq. (3).

To summarize, the calculations presented above indi­
cate tha t the effects of electron-electron interactions lead 
to finite though numerically very small corrections to the 
minimal conductivity. Finally, the calculations of the 
present Letter are performed in the limit of zero temper­
ature and their validity implies tha t Tiuj 'S> UbT.

2tt
e2 f  d0 

Inn — —  cos 6
JĈ oo 2 J 2n 

o
dp

/e -y-s/K ds 

y/s dp’
0, (30)

so tha t 1 = 0 and all three methods yield the same value 
(3). Similar conclusion will be reached if one assumes 
V(q)  oc q ^ 1̂ ri and subsequently takes the limit i] —» 0.

Having established th a t the hard cut-off utilized in 
Ref. [18] in the course of Kubo calculations actually re­
sults in different and hence inconsistent results when other

Many useful discussions with S. Gangadharaiah. D. 
Maslov. M. Raikh, A. Shytov. J. Schmalian, P. Silvestrov 
and O. Starykh are gratefully acknowledged. This work 
was supported by DOE. Office of Basic Energy Sciences. 
Award No. DE-FG02-06ER46313.
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A p p en dix

After publication of our paper in Europhys. Lett. 83, 
17005 (2008), a preprint by I.F. Her but, V. Juricic, 
O. Vafek, and M.J. Case, ’’C om m ent on  ’’M inim al 
con d uctiv ity  in graphene: Interaction  corrections  
and u ltraviolet anom aly” by M ishchenko E. G .” , 
appeared in arXiv:0809.0725. It was previously under 
consideration for publication in the Europhysics Letters. 
Below we present our reply:

The Comment argues against the procedure imple­
mented above, which leads to  Eq. (3), and advocates di­
mensional regularization scheme in support of the value, 
Eq. (2), obtained in Ref. [18]. Yet, the Comment fails to 
offer a consistent resolution of the issue. Indeed, follow­
ing our suggestion to utilize the charge conservation law, 
Eq. (5), the authors of the Comment analyzed the deriva­
tion of the interaction corrections from the polarization 
operator and reported tha t the dimensional regularization 
yielded, C = (11 — 37r)/6 «  0.26, the value different from 
their Eq. (2). (Note tha t this value coincides with akin 
given by Eq. (27) of the present paper when I  is calcu­
lated with the help of the hard cut-off.) Addressing this 
discrepancy, the authors of the Comment conclude only 
that, ’'The origin of this non-uniqueness is unclear at the 
moment, but we suspect tha t it may be the non-gauge in­
variant contribution to the conductivity which is not prop­
erly treated within the density polarization approach.”

Citing some unidentified contribution does not add clar­
ity to the discussion. The equivalence between the Kubo 
and the density polarization approaches in the calculation 
of the homogeneous conductivity is ensured by the charge 
conservation law (the Ward identity). It is surprising that 
the authors end the discussion with the above statement 
and do not even attem pt to find out what happens to  the 
charge conservation in their calculations. It is thus diffi­
cult to  conclude th a t the authors of the Comment were 
able ”to  clarify and correct some of the statem ents made” 
in our paper. If anything, the credibility of their result, 
Eq. (2), is even more questionable as it is now clear that 
this result is based on the scheme tha t yields values which 
vary depending on the method used.

Interestingly, recent measurements of dynamic conduc­
tivity [22] show a  =  <t o (1.0 1 ± 0 .04) over visible frequencies 
range and thus point towards smaller values of interaction 
corrections.
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