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Abstract
Information extraction (IE) systems are costly to 
build because they require development texts, pars­
ing tools, and specialized dictionaries for each ap­
plication domain and each natural language that 
needs to be processed. We present a novel 
method for rapidly creating IE systems for new lan­
guages by exploiting existing IE systems via cross­
language projection. Given an IE system for a 
source language (e.g., English), we can transfer its 
annotations to corresponding texts in a target lan­
guage (e.g., French) and learn information extrac­
tion rules for the new language automatically. In 
this paper, we explore several ways o f realizing both 
the transfer and learning processes using off-the- 
shelf machine translation systems, induced word 
alignment, attribute projection, and transformation- 
based learning. We present a variety o f experiments 
that show how an English IE system for a plane 
crash domain can be leveraged to automatically cre­
ate a French IE system for the same domain.

1 Introduction
Information extraction (IE) is an important appli­
cation for natural language processing, and recent 
research has made great strides toward making IE 
systems easily portable across domains. However, 
IE systems depend on parsing tools and specialized 
dictionaries that are language specific, so they are 
not easily portable across languages. In this re­
search, we explore the idea o f using an information 
extraction system designed for one language to au­
tomatically create a comparable information extrac­
tion system for a different language.

To achieve this goal, we rely on the idea o f cross­
language projection. The basic approach is the fol­
lowing. First, we create an artificial parallel cor­
pus by applying an off-the-shelf machine translation 
(MT) system to source language text (here, English) 
to produce target language text (here, French). Or

conversely, in some experiments we generate a par­
allel corpus by applying MT to a French corpus 
to produce artificial English. We then run a word 
alignment algorithm over the parallel corpus. Next, 
we apply an English IE system to the English texts 
and project the IE annotations over to the corre­
sponding French words via the induced word align­
ments. In effect, this produces an automatically an­
notated French corpus. We explore several strate­
gies for transferring the English IE annotations to 
the target language, including evaluation of the 
French annotations produced by the direct projec­
tion alone, as well as the use o f transformation- 
based learning to create French extraction rules 
from the French annotations.

2 Information Extraction
The goal o f information extraction systems is to 
identify and extract facts from natural language text. 
IE systems are usually designed for a specific do­
main, and the types o f facts to be extracted are de­
fined in advance. In this paper, we will focus on the 
domain o f plane crashes and will try to extract de­
scriptions o f the vehicle involved in the crash, vic­
tims of the crash, and the location o f the crash.

Most IE systems use some form o f extraction  
patterns to recognize and extract relevant informa­
tion. Many techniques have been developed to gen­
erate extraction patterns for a new domain automat­
ically, including PALKA (Kim & Moldovan, 1993), 
AutoSlog (Riloff, 1993), CRYSTAL (Soderland et 
al., 1995), RAPIER (Califf, 1998), SRV (Freitag, 
1998), meta-bootstrapping (Riloff & Jones, 1999), 
and ExDisco (Yangarber et al., 2000). For this 
work, we will use AutoSlog-TS (Riloff, 1996b) to 
generate IE patterns for the plane crash domain. 
AutoSlog-TS is a derivative o f AutoSlog that auto­
matically generates extraction patterns by gathering 
statistics from a corpus o f relevant texts (within the 
domain) and irrelevant texts (outside the domain). 
Each extraction pattern represents a linguistic ex­
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pression that can extract noun phrases from one of 
three syntactic positions: subject, direct object, or 
object o f a prepositional phrase. For example, the 
following patterns could extract vehicles involved 
in a plane crash: “< su bject>  crashed”, “hijacked  
< d irec t-o b jec t> ”, and “wreckage o f < n p > ”.

We trained AutoSlog-TS using AP news stories 
about plane crashes as the relevant text, and AP 
news stories that do not mention plane crashes as 
the irrelevant texts. AutoSlog-TS generates a list 
o f extraction patterns, ranked according to their as­
sociation with the domain. A human must review 
this list to decide which patterns are useful for the 
IE task and which ones are not. We manually re­
viewed the top patterns and used the accepted pat­
terns for the experiments described in this paper. To 
apply the extraction patterns to new text, we used a 
shallow parser called Sundance that also performs 
information extraction.

3 Cross-Language Projection
3.1 Motivation and Previous Projection Work

Not all languages have received equal investment 
in linguistic resources and tool development. For 
a select few, resource-rich languages such as En­
glish, annotated corpora and text analysis tools are 
readily available. However, for the large majority 
o f the world’s languages, resources such as tree- 
banks, part-of-speech taggers, and parsers do not 
exist. And even for many o f the better-supported 
languages, cutting edge analysis tools in areas such 
as information extraction are not readily available.

One solution to this NLP-resource disparity is 
to transfer linguistic resources, tools, and do­
main knowledge from resource-rich languages to 
resource-impoverished ones. In recent years, there 
has been a burst of projects based on this paradigm. 
Yarowsky et al. (2001) developed cross-language 
projection models for part-of-speech tags, base 
noun phrases, named-entity tags, and morpholog­
ical analysis (lemmatization) for four languages. 
Resnik et al. (2001) developed related models for 
projecting dependency parsers from English to Chi­
nese. There has also been extensive work on the 
cross-language transfer and development o f ontolo­
gies and WordNets (e.g., (Atserias et al., 1997)).

3.2 Mechanics of Projection

The cross-language projection methodology em­
ployed in this paper is based on Yarowsky et al. 
(2001), with one important exception. Given the 
absence o f available naturally occurring bilingual

1A two-motor aircraft Beechcraft of the Air-Saint-Martin company 
\ i i i 

i Un avion bi-moteur Beechcraft de la compagnie Air-Saint-Martin |

was crushed Thursday evening in 1 the south-east of Haiti , 

s’ est ecrase jeudi soir dans le Isud-est d’ Haiti 1 , j  

killing 1 its 20 occupants ! \  ^LOCATION)
I ] r \ _ _ \ ___ (victim)

tuant ses |20 occupants ! .
(vehicle)

Figure 1: French text word aligned with its English 
machine translation (extractions highlighted)

corpora in our target domain, we employ commer­
cial, off-the-shelf machine translation to generate 
an artificial parallel corpus. While machine transla­
tion errors present substantial problems, MT offers 
great opportunities because it frees cross-language 
projection research from the relatively few large 
existing bilingual corpora (such as the Canadian 
Hansards). MT allows projection to be performed 
on any corpus, such as the domain-specific plane- 
crash news stories employed here. Section 5 gives 
the details of the MT system and corpora that we 
used.

Once the artificial parallel corpus has been cre­
ated, we apply an English IE system to the English 
texts and transfer the IE annotations to the target 
language as follows:

1. Sentence align the parallel corpus.1

2. Word-align the parallel corpus using the 
Giza++ system (Och and Ney, 2000).

3. Transfer English IE annotations and noun­
phrase boundaries to French via the mecha­
nism described in Yarowsky et al. (2001), 
yielding annotated sentence pairs as illustrated 
in Figure 1.

4. Train a stand-alone IE tagger on these pro­
jected annotations (described in Section 4).

4 Transformation-Based Learning
We used transform ation-based learning (TBL) 
(Brill, 1995) to learn information extraction rules 
for French. TBL is well-suited for this task because 
it uses rule templates as the basis for learning, which 
can be easily modeled after English extraction pat­
terns. However, information extraction systems typ­
ically rely on a shallow parser to identify syntactic 
elements (e.g., subjects and direct objects) and verb

1 This is trivial because each sentence has a numbered an­
chor preserved by the MT system.



constructions (e.g., passive vs. active voice). Our 
hope was that the rules learned by TBL would be ap­
plicable to new French texts without the need for a 
French parser. One o f our challenges was to design 
rule templates that could approximate the recogni­
tion o f syntactic structures well enough to duplicate 
most o f the functionality o f a French shallow parser.

When our TBL training begins, the initial state is 
that no words are annotated. We experimented with 
two sets o f “truth” values: Sundance’s annotations 
and human annotations. We defined 56 language- 
independent rule templates, which can be broken 
down into four sets designed to produce different 
types of behavior. Lexical N-gram rule tem plates 
change the annotation o f a word if  the word(s) im­
mediately surrounding it exactly match the rule. We 
defined rule templates for 1, 2, and 3-grams. In 
Table 1, Rules 1-3 are examples of learned Lexi­
cal N-gram rules. Lexical+PO S N -gram  rule tem­
p la tes  can match exact words or part-of-speech tags. 
Rules 4-5 are Lexical+POS N-gram rules. Rule 5 
will match verb phrases such as “went down in”, 
“shot down in”, and “came down in”.

One of the most important functions of a parser is 
to identify the subject o f a sentence, which may be 
several words away from the main verb phrase. This 
is one of the trickest behaviors to duplicate without 
the benefit o f syntactic parsing. We designed Sub­
je c t  Capture rule tem plates to identify words that 
are likely to be a syntactic subject. As an example, 
Rule 6 looks for an article at the beginning o f a sen­
tence and the word “crashed” a few words ahead2, 
and infers that the article belongs to a vehicle noun 
phrase. (The NP Chaining rules described next will 
extend the annotation to include the rest of the noun 
phrase.) Rule 7 attempts relative pronoun disam­
biguation when it finds the three tokens “COMMA 
which crashed” and infers that the word preceding 
the comma is a vehicle.

Without the benefit o f a parser, another challenge 
is identifying noun phrase boundaries. We designed 
N P Chaining rule tem plates to look at words that 
have already been labelled and extend the bound­
aries of the annotation to cover a complete noun 
phrase. As examples, Rules 8 and 9 extend loca­
tion and victim annotations to the right, and Rule 10 
extends a vehicle annotation to the left.

24> is a start-of-sentence token. W4 -7  means that the item 
occurs in the range of word* through wordj.

Rule Condition Rule Effect
1 . wi=crashed W2=in W3 is LOC.
2 . wi=wreckage W2=of W3 is VEH.
3. wi=injuring VJ2 is VIC.
4. wi=NOUN W2=crashed Wl is VEH.
5. wi=VERB w2=down W3=in W4 is LOC.
6 . wi=^ W2=ART w4_7=crashed W2 is VEH.
7. W2=COMMA w3=which W4=crashed wi is veh.
8. wi=in w2=location w3=NOUN W3 is LOC.
9. w i=VERB w2=VICTIM w3=NOUN w3 is VIC.
10. wi=ART w2=VEHICLE Wl is VEH.

Table 1: Examples of Learned TBL Rules 
(LOC.=location, VEH.=vehicle, Vic.=victim)

5 Resources
The corpora used in these experiments were ex­
tracted from English and French AP news stories. 
We created the corpora automatically by searching 
for articles that contain plane crash keywords. The 
news streams for the two languages came from dif­
ferent years, so the specific plane crash events de­
scribed in the two corpora are disjoint. The En­
glish corpus contains roughly 420,000 words, and 
the French corpus contains about 150,000 words.

For each language, we hired 3 fluent university 
students to do annotation. We instructed the anno­
tators to read each story and mark relevant entities 
with SGML-style tags. Possible labels were loca­
tion of a plane crash, vehicle  involved in a crash, 
and victim  (any persons killed, injured, or surviv­
ing a crash). We asked the annotators to align their 
annotations with noun phrase boundaries. The an­
notators marked up 1/3 o f the English corpus and 
about 1/2 o f the French corpus.

We used a high-quality commercial machine 
translation (MT) program (Systran Professional 
Edition) to generate a translated parallel corpus for 
each o f our English and French corpora. These will 
henceforth be referred to as MT-French (the Systran 
translation o f the English text) and MT-English (the 
Systran translation o f our French text).

6 Experiments and Evaluation
6.1 Scoring and Annotator Agreement

We explored two ways of measuring annotator 
agreement and system performance. (1) The 
exact-word-m atch  measure considers annotations to 
match if  their start and end positions are exactly the 
same. (2) The exact-NP-match  measure is more for­
giving and considers annotations to match if  they 
both include the head noun of the same noun phrase. 
The exact-word-m atch  criterion is very conservative



because annotators may disagree about equally ac­
ceptable alternatives (e.g., “Boeing 727” vs. “new 
Boeing 727”). Using the exact-NP-match  measure, 
“Boeing 727” and “new Boeing 727” would con­
stitute a match. We used different tools to identify 
noun phrases in English and French. For English, 
we applied the base noun phrase chunker supplied 
with the fnTBL toolkit (Ngai & Florian, 2001). In 
French, we ran a part-of-speech tagger (Cucerzan 
& Yarowsky, 2000) and applied regular-expression 
heuristics to detect the heads of noun phrases.

We measured agreement rates among our human 
annotators to assess the difficulty of the IE task. We 
computed pairwise agreement scores among our 3 
English annotators and among our 3 French anno­
tators. The exact-word-m atch  scores ranged from 
16-31% for French and 24-27% for English. These 
relatively low numbers suggest that the exact-word- 
match criterion is too strict. The exact-NP-match  
agreement scores were much higher, ranging from 
43-54% for French and 51-59% for English3.

These agreement numbers are still relatively low, 
however, which partly reflects the fact that IE is a 
subjective and difficult task. Inspection of the data 
revealed some systematic differences o f approach 
among annotators. For example, one o f the French 
annotators marked 4.5 times as many locations as 
another. On the English side, the largest disparity 
was a factor o f 1.4 in the tagging o f victims.

6.2 M onolingual English & French Evaluation

As a key baseline for our cross-language projec­
tion studies, we first evaluated the AutoSlog-TS 
and TBL training approaches on monolingual En­
glish and French data. Figure 2 shows (1) English 
training by running AutoSlog-TS on unannotated 
texts and then applying its patterns to the human- 
annotated English test data, (2) English training and 
testing by applying TBL to the human-annotated 
English data with 5-fold cross-validation, (3) En­
glish training by applying TBL to annotations pro­
duced by Sundance (using AutoSlog-TS patterns) 
and then testing the TBL rules on the human- 
annotated English data, and (4) French training and 
testing by applying TBL to human annotated French 
data with 5-fold cross-validation.

Table 2 shows the performance in terms of Pre­
cision (P), Recall (R) and F-measure (F). Through­

3Agreement rates were computed on a subset of the data 
annotated by multiple people; systems were scored against the 
full corpus, of which each annotator provided the standard for 
one third.

out our experiments, AutoSlog-TS training achieves 
higher precision but lower recall than TBL training. 
This may be due to the exhaustive coverage pro­
vided by the human annotations used by TBL, com­
pared to the more labor-efficient but less-complete 
AutoSlog-TS training that used only unannotated 
data.

16K words

Figure 2: Monolingual IE Evaluation pathways4

Monolingual Training Route P R F
English

(1) Train AutoSlog-TS on English-plain ( aSe ) 
50: Apply ASe to English Test .44 .42 .43
(2) Train tbl on 4/5 of English-Test (tbLe) 
TO: Apply tbLe to 1/5 of English Test 

(perform in 5-fold cross-validation)
.35 .62 .45

(3) Train AutoSlog-TS on English-plain ( ASe ) 
51: Apply ASe to English-plain 
T51 Train tbl on Sundance annotations 
ESI: Apply TBLes to English Test

.31 .40 .35

French
(4) Train tbl on 4/5 of French-Test (tbLf) 
TFO: Apply tbLf to 1/5 of French Test 

(perform in 5-fold cross-validation)
.47 .66 .54

Table 2: Monolingual IE Baseline Performance

6.3 TBL-based IE Projection and Induction

As noted in Section 5, both the English and French 
corpora were divided into unannotated (“plain”) 
and annotated (“antd” or “Tst”) sections. Figure
3 illustrates these native-language data subsets in 
white. Each native-language data subset also has 
a machine-translated mirror in French/English re­
spectively (shown in black), with an identical num­
ber of sentences to the original. By word-aligning 
these 4 native/MT pairs, each becomes a potential 
vehicle for cross-language information projection.

Consider the pathway =¥■ Tpl as a rep­
resentative example pathway for projection. Here



an English TBL classifier is trained on the 140K- 
word human annotated data and the learned TBL 
rules are applied to the unannotated English sub­
corpus. The annotations are then projected across 
the Giza++ word alignments to their MT-French 
mirror. Next, a French TBL classifier (TBL1) is 
trained on the projected MT-French annotations and 
the learned French TBL rules are subsequently ap­
plied to the native-French test data.

An alternative path (Tg4 =4> PA  =4> French-Test) 
is more direct, in that the English TBL classifier 
is applied immediately to the word-aligned MT- 
English translation of the French test data. The MT- 
English annotations can then be directly projected 
to the French test data, so no additional training 
is necessary. Another short direct projection path 
(P h a2 7 h a 2  French-test) skips the need to 
train an English TBL model by projecting the En­
glish human annotations directly onto MT-French 
texts, which can then be used to train a French TBL 
system which can be applied to the French test data.

English tei 
Annotation

Cross­
Language 
Projection ^

I  MT-French 1
[ ( p l a i n ) !

French TBL 
Training and 
Transfer to 
Test Data

Figure 3: TBL-based IE projection pathways

Table 3 shows the results o f our TBL-based ex­
periments. The top performing pathway is the 

two-step projection pathway shown in 
Figure 3. Note the F-measure o f the best pathway 
is .45, which is equal to the highest F-measure for 
monolingual English and only 9% lower than the F- 
measure for monolingual French.

Projection and Training Route P R F
Te 1: Apply tbLe to English-plain 
P I: Project to MT-French(Engiish-piain) 
T>1: Train TBL & Apply to FrTest

.69 .24 .36

-  Use human Annos from Eng_Antd 
Pha‘2: Project to MT-French(Engiish_Antd) 
Tha2: Train t b l  & Apply to FrTest

.56 .29 .39

Te '3: Apply TBLe to MT-Eng(FrenchPlain)
P3: Project to French-Plain 
T>3: Train tbl & Apply to FrTest

.49 .34 .40

Te 4: Apply TBLe tO MT-Eng(FrenchTest) 
P  i: Direct Project to French-Test .49 .41 .45

Table 3: TBL-based IE projection performance

6.4 Sundance-based IE Projection and 
Induction

Figure 4 shows the projection and induction model 
using Sundance for English IE annotation, which is 
almost isomorphic to that using TBL. One notable 
difference is that Sundance was trained by apply­
ing AutoSlog-TS to the unannotated English text 
rather than the human-annotated data. Figure 4 also 
shows an additional set o f experiments ( and 
S m t $) in which AutoSlog-TS was trained on the 
English MT translations o f the unannotated French 
data. The motivation was that native-English extrac­
tion patterns tend to achieve low recall when applied 
to MT-English text (given frequent mistranslations 
such as “to crush” a plane rather than “to crash” a 
plane). By training AutoSlog-TS on the sentences 
generated by an MT system (seen in the and

pathways), the F-measure increases.5

English (English)
Annotation

Cross­
Language
Projection

I  MT-French 1 
■ ( p l a i n ) !

French TBL 
Training and 
Transfer to 
Test Data

Figure 4: Sundance-based projection pathways

4The irrelevant texts are needed to train AutoSlog-TS, but 5This is a “fair” gain, in that the MT-trained AutoSlog-TS
not TBL. patterns didn’t use translations of any of the French test data.



Projection and Training Route P R F
AutoSlog-TS trained on native English (ASe)

S 2: Apply aSe to English-Antd 
P 2: Project to MT-French(Engiish-Amd) 
T2: Train tbLfp2 & Apply to FrTest

.39 .24 .29

,5(1+2): Apply ASe to English_Antd+Plain 
P(l+2): Project to MT-French(Eng-Am+pi) 
T(l+2): Train tbLfpi+2 & Apply to FrTest

.43 .23 .30

S3: Apply ASe to MT-Eng(FrenchPlain)
P3: Project to French-Plain
T3: Train tbLfp3 & Apply to FrTest

.45 .04 .07

S 4: Apply ASe to MT-Eng(FrenchTest) 
PA: Direct Project to French-Test .48 .07 .13

AutoSlog-TS trained on MT English (ASmte)
Sm t3: Apply ASmte to MT-Eng(FrPlain) 
Pm t 3: Project to French-Plain 
Tm t3: Train tbLfmt3 & Apply to FrTest

.46 .25 .32

Sm t4: Apply ASmte to MT-Eng(FrTest) 
Pmt 4: Direct Project to French-Test .55 .28 .37

Table 4: Sundance-based IE projection performance 6

Table 4 shows that the best Sundance pathway 
achieved an F-measure of .37. Overall, Sundance 
averaged 7% lower F-measures than TBL on com­
parable projection pathways. However, AutoSlog- 
TS training required only 3-4 person hours to review 
the learned extraction patterns while TBL training 
required about 150 person-hours of manual IE an­
notations, so this may be a viable cost-reward trade­
off. However, the investment in manual English IE 
annotations can be reused for projection to new for­
eign languages, so the larger time investment is a 
fixed cost per-domain rather than per-language.

6.5 Analysis and Implications
For both TBL and Sundance, the , and 
-family of projection paths all yield stand-alone 

monolingual French IE taggers not specialized for 
any particular test set. In contrast, the series of 
pathways (e.g. P m t 4 for Sundance), were trained 
specifically on the MT output o f the target test data. 
Running an MT system on test data can be done au­
tomatically and requires no additional human lan­
guage knowledge, but it requires additional time 
(which can be substantial for MT). Thus, the higher 
performance of the pathways has some cost.

The significant performance gains shown by 
Sundance when AutoSlog-TS is trained on MT- 
English rather than native-English are not free be­
cause the MT data must be generated for each new 
language and/or MT system to optimally tune to

6S(l+2) combines the training data in S I (280K) and S2 
(140K), yielding a 420K-word sample.

its peculiar language variants. No target-language 
knowledge is needed in this process, however, and 
reviewing AutoSlog-TS’ patterns can be done suc­
cessfully by imaginative English-only speakers.

In general, recall and F-measure drop as the 
number o f experimental steps increases. Averaged 
over TBL and Sundance pathways, when compar­
ing 2 and 3-step projections, mean recall decreases 
from 26.8 to 21.8 (5 points), and mean F-measure 
drops from 32.6 to 28.8 (3.8 points). Viable extrac­
tion patterns may simply be lost or corrupted via too 
many projection and retraining phases.

One advantage o f the projection path families 
of and is that no domain-specific documents 
in the foreign language are required (as they are in 
the family). A collection o f domain-specific En­
glish texts can be used to project and induce new IE 
systems even when no domain-specific documents 
exist in the foreign language.

6.6 M ultipath Projection

Finally, we explored the use of classifier combina­
tion to produce a premium system. We considered a 
simple voting scheme over sets of individual IE sys­
tems. Every annotation o f a head noun was consid­
ered a vote. We tried 4 voting combinations: (1) the 
systems that used Sundance with English extraction 
patterns, (2) the systems that used Sundance with 
MT-English extraction patterns, (3) the systems that 
used TBL trained on English human annotations,
(4) all systems. For each combination o f sys­
tems, n answer sets were produced using the voting 
thresholds . For example, for ev­
ery annotation receiving votes (picked by at
least 2 individual systems) was output in the answer 
set. This allowed us to explore a precision/recall 
tradeoff based on varying levels of consensus.

Figure 5 shows the precision/recall curves. Vot­
ing yields some improvement in F-measure and pro­
vides a way to tune the system for higher preci­
sion or higher recall by choosing the threshold. 
When using all English knowledge sources, the F- 
measure at T„=1 (.48) is nearly 3% higher than the 
strongest individual system. Figure 5 also shows 
the performance o f a 5th system (5), which is a 
TBL system trained directly from the French anno­
tations under 5-fold cross-validation. It is remark­
able that the most effective voting-based projection 
system from English to French comes within 6% F- 
measure o f the monolingually trained system, given 
that this cross-validated French monolingual system 
was trained directly on data in the same language



and source as the test data. This suggests that cross­
language projection o f IE analysis capabilities can 
successfully approach the performance o f dedicated 
systems in the target language.

1

0.9 

0.8 

0.7 

0.6 

0.5 

0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.

Precision Recall---- ►

Figure 5: Precision/Recall curves for voting systems. Each 
point represents performance for a particular voting threshold. 
In all cases, precision increases and recall decreases as the 
threshold is raised.

French Test-Set Performance P R F
Multipath projection from all English resources .43 .54 .48

Table 5: Best multipath English-French Projection Per­
formance (from English TBL and Sundance pathways)

7 Conclusions
We have used IE systems for English to automati­
cally derive IE systems for a second language. Even 
with the quality of MT available today, our results 
demonstrate that we can exploit translation tools to 
transfer information extraction expertise from one 
language to another. Given an IE system for a 
source language, an MT system that can translate 
between the source and target languages, and a word 
alignment algorithm, our approach allows a user to 
create a functionally comparable IE system for the 
target language with very little human effort. Our 
experiments demonstrated that the new IE system 
can achieve roughly the same level of performance 
as the source-language IE system. French and En­
glish are relatively close languages, however, so 
how well these techniques will work for more dis­
tant language pairs is still an open question.

Additional performance benefits could be 
achieved in two ways: (1) put more effort into 
obtaining better resources for English, or (2) 
implement (minor) specializations per language. 
While it is expensive to advance the state o f the art 
in English IE or to buy annotated data for a new

(1) Sundance pathways
(2) Sundance-MT pathways
(3) English TBL pathways
(4) English TBL + Sundance pathways
(5) TBL Trained from French Annotations

[under 5-fold cross-validation]

' ' x (2) (3) ' \  ♦
(1) ( )  M4) (5)

domain, these additions will improve performance 
not only in English but for other languages as 
well. On the other hand, with minimal effort 
(hours) it is possible to custom-train a system 
such as Autoslog/Sundance to work relatively 
well on noisy MT-English, providing a substantial 
performance boost for the IE system learned for the 
target language, and further gains are achieved via 
voting-based classifier combination.
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