Mouse Opsin

GENE STRUCTURE AND MOLECULAR BASIS OF MULTIPLE TRANSCRIPTS*

(Received for publication, March 16, 1990)

Muayyad R. Al-Ubaidi \ddagger, Steven J. Pittler \ddagger, Mary S. Champagne \ddagger, John T. Triantafyllos§, James F. McGinniş̧, and Wolfgang Baehr $\ddagger \ddagger$
From the \ddagger Department of Ophthalmology, Cullen Eye Institute, Baybor College of Medicine, Houston, Texas 77030 and the §Department of Anatomy and Cell Biology, Brain Research Institute and The Mental Retardation Research Center. uCla School of Medicine, Los Angeles, Califormia 90024

The single copy mouse opsin gene produces five major transcripts, varying in size from 1.7 to 5.1 kilobases. The mRNAs are present at levels that vary over 2 orders of magnitude and can be detected as early as postnatal day 1. Each of the transeripts is polyadenylated and can be identified in polysome-bound RNA, suggesting that each is translated in vivo. To elucidate the molecular basis of this complex transcription pattern, we have characterized genomic fragments covering the entire mouse opsin gene, including several kilobases of 5 ' - and 3 '-flanking regions. Transcription initiates at a single site 97 base pairs upstream of the translation start codon. Northern hybridization with exon- and intron-specific probes demonstrated that the various transcripts are not generated by partial or alternative splicing. Sequence analysis of the 3 ' end of the gene showed the presence of multiple polyadenylation signals. Analysis by polymerase chain reaction of the 3^{\prime} end of opsin cDNA demonstrated that the complex transcription pattern originated from the selective use of these polyadenylation sites, generating transcripts that differ only in the length of the $3^{\prime \prime}$ untranslated region. Transcript heterogeneity similar to that observed in mouse was also found in rat and, to a lesser degree, in human and frog opsin mRNAs.

Phototransduction in mammalian rod photoreceptors operates via a complex enzyme cascade initiated by the absorption of light by rhodopsin (1,2). Rod rhodopsins are comprised of a chromophore, 11 -cis-retinal, and a $40-\mathrm{kDa}$ apoprotein, opsin (3, 4). The amino acid sequences of bovine (5,6) and ovine opsins (7) consisting of 348 residues have been deter-

[^0]mined by peptide sequencing. The mammalian opsin genes that have been identified thus far are present in single copy in their respective genomes (8). The human gene was mapped to the long arm of chromosome $3(9,10)$, and the mouse gene, to chromosome 6 (11). Genes and cDNAs encoding opsins have been described for various vertebrate and invertebrate species, including bovine (12), human (13), Drosophila (14, 15), mouse (16), octopus (17), and chicken (18). The characteristic organization of the mammalian opsin gene is a 5 exon, 4 -intron arrangement with highly homologous exon sequences and with precise conservation of intron positions. Mutations in the opsin gene may disrupt phototransduction and therefore lead to blindness. Recently, a point mutation in exon 1 (a C to A conversion in codon 23 resulting in a Pro to His substitution) of the human opsin gene has been implicated as causative of one form of autosomal dominant retinitis pigmentosa (19). In an earlier, unrelated study, an autosomal dominant retinitis pigmentosa gene in a large Irish pedigree was mapped to the long arm of chromosome 3 (20). In order to facilitate studies aimed at the establishment of a mouse model for this blinding disorder we have extended our preliminary characterization of the mouse opsin gene (16). It was shown previously that transcription of the gene produces at least five major transcripts ($16,21,22$). The sizes of the RNAs range from 1.7 to 5.1 kb , ${ }^{1}$ and the various species are present in the rod cytoplasm at levels that vary over 2 orders of magnitude (16). The major transcript of the bovine opsin gene, in contrast, is a 3 -kb species which was shown to contain a large 3^{\prime}-untranslated region (12). The molecular basis leading to the heterogeneity observed in mouse is not understood.

In this paper, we present the complete sequence of the mouse opsin gene, including introns and flanking sequences (9.5 kb). We show that the transcript heterogeneity is not generated by alternative splicing or by the use of multiple initiation sites. The gene sequence contains several putative polyadenylation sites resembling the AATAAA consensus site (23) in the 3^{\prime}-flanking region. We provide evidence, by PCR amplification of 3^{\prime}-flanking sequences of opsin cDNA, that the transcripts observed are generated by the selective use of these polyadenylation sites. Moreover, we show that the pattern of multiple transcripts is not unique to the mouse, but is also present in the rat (four transcripts), human (three transcripts), and frog retina (two transcripts).

Materials and methods

RNA-Retinas of various vertebrate species (adult normal C57BL/ Gil mice, rats (Long Evans), Irish setter doss, humáns (a generous

[^1]gift of the Liuns' Eye Bank, Houston, TX), and frog (Rana pipiens)। were excised from enucleated eyes and immediately dropped into liquid nitrogen. Total RNA was isolated according to Chirgwin et al. (24), and poly(A) mRNA was isolated by two sequential passages through oligo(dT) columns (25). In some cases, poly(A) mRNA was also isolated according to the Fastrack procedure (Invitrogen (26)). No apparent differences in mRNAs from these procedures were observed. For Northern blotting, RNA was electrophoretically fractionated on 1% gyarose gels containing 2.2 m formaldehyde and transferred by capillary action (27) to Zetaprobe or Nytran membranes. Labeled opsin-specific oligonucleotides, opsin cDNA, or MOPS1 fragments were hybridized to the filters in 50% formamide containing either $6 \times \mathrm{SSC}(0.90 \mathrm{~m} \mathrm{NaCl}, 0.09 \mathrm{~m}$ sodium citrate) or $1.5 \times$ SSPE $(0.36 \mathrm{M} \mathrm{NaCl}, 0.02 \mathrm{~m}$ sodium phosphate (pH 7.7), 0.002 m EDTA) at $42^{\circ} \mathrm{C}$. The filters were washed three times in $2 \times, 0.5$ \times, and $0.1 \times \mathrm{SSC}, 0.5 \%$ sodium dodecyl sulfate at $55^{\circ} \mathrm{C}$ for 20 min each and exposed to Kodak XAR5 film with an intensifter screen at $-70^{\circ} \mathrm{C}$ for the times indicated in the figure legends. The transcription start point of opsin mRNA was determined by extension of synthetic antisense oligonueleotides according to Ingolia et al. (28).

Complementary DNA - The three cDNA clones M2-M4 (Fig. 1) were isolated as described previously (16,29). Exon-specifte lragments were isolated by digesting the $1.1-\mathrm{kb} \mathrm{M} 2$ insert with various restriction endonucleases according to the following strategy. M2 insert digested with Xhol yielded a 270 -bp 5 fragment which is exon 1 specific (Fig. IB, xI). The 848-bp 3' fragment was digested with Puull to give a 339 - and a 509 -bp fragment. The $339-\mathrm{bp}$ Xhol/PvuII fragment was digested with Rsal. The resulting $142-\mathrm{bp}$ fragment is exon 3-specific ($x 3$); the larger 197 -bp fragment was then digested with HaeIII to yield a 102 -bp exon 2 probe ($x 2$). The 509 -bp PouII/XhoI fragment was digested with SacI yielding two fragments that were digested with $M n d$. The resulting 194 -bp fragment is exon 4 -specific $(x 4)_{1}$ and the 140 -bp fragment is exon 5 -specific (Fig. $1 b$, 25). All exon-specific fragments were shown not to cross-hybridize to each other by a standard dot blot procedure and to hybridize to thr original M2 cDNA (results not shown).

Genomic DNA-A 5-kb genomic EcoR[framment (Fig. 1, MOPSH) was isolated as described previously (16). Genomic clones with approximately $15-\mathrm{sb}$ inserts ($\mathrm{AMO1}$ and $\mathrm{AMO2}$) were isolated from a bacteriophage library which was prepared by cloning partial Mbol digests into the BamHil site of EMBL; (Clontech). Pstl and XbaI subelones of MOPSI and EcoRI/SalI, XhoI and BamHI subclones representing flanking sequences of the opsin gene were generated using standard procedures (30) with pUC or Bluescript vectors. Subclones were sequenced using the double-stranded plasmid sequencing technique 131), M13 universal and sequence-specific primers, and Sequenase (U.S. Biochemical Corp.). Sequencing reactions followed the Sequenase protocol except that 1000 ng of primer were used for each set, and incubations for annealing were omitted. The coding region and introns of opsin were sequenced on both strands (the untranslated regions in only one direction), using dITP, where necessary, to resolve compression problems. Radiolabeling of DNA fragments was by nick translation (30) or random priming (32).

Oligonucleotide Synthesis-Oligonucleotides W9 and W11-W13 were from Genetic Designs (Houston, TX), purified by preparative polyacrylamide gel electrophoresis (19% acrylamide, 1% bisacrylamide, 7.5 M urea), and allowed to diffuse at $4{ }^{\circ} \mathrm{C}$ into 500 нl of $\mathrm{H}_{2} \mathrm{O}$ overnight. An aliquot containing 100 ng of DNA was directly used for DNA sequencing. For PCR amplification, the eluate was concentrated by precipitation in 50% isopropyl alcohol. Oligonucleotides W34-W60 were synthesized on a PCR-MATE DNA synthesizer (model 39iA. Applied Biosystems, Inc.) and deprotected in 14 M NH, OH at $55-65^{\circ} \mathrm{C}$ for $12-18 \mathrm{~h}$. After lyophilization, the oligomers were dissolved in 300 , 1 of water, quantitated by spectrophotometry ($1 A_{\text {zanmm }}-33 \mu \mathrm{~g}$), and diluted to $100 \mathrm{ng} / \mu \mathrm{l}$. End labeling of oligomucleotides was performed with ' $\Gamma 4$ polynucleotide kinase and [$\gamma \gamma^{2} P$] ATP.

Polymerase Chain Reaction-To map the polyadenylation sites in the 3^{\prime} end of the opsin gene, the polymerase chain reaction (33) was modified to allow amplitication of specific 3^{\prime}-untranslated repions (34) of opsin cDNA. In the first step of this procedure, retinal cDNA was synthesized with reverse transcriptase using an oligonucleotide primer, $3^{\prime} \mathrm{T}_{16} A G C T A T A G A T C T A G A C G C C G G C G T A C G C C ~ 13 '-~$ T_{16} - Clal/EcoRV/BgtII/Notl/SphI or 3'- $\mathrm{T}_{2 \mathrm{f}}$-mes , consisting of an oligo(dT ${ }_{(6)}$) domain and a 29 -nucleotide maltiple cloning site (mes). The conditions for cDNA synthesis were according to the manufacturer's protocol (Promega Biotech). In a second step, the cDNAs produced were used directly after a 10 -fold dilution as a template for

PCR amplification. The cDNA regions to be amplified were delimited by a primer (5' $\mathbf{~ C C G C A T G C G G C C G C A G A T C T A G A , ~ m e s 2 3) ~ w h i c h ~}$ contained the first 23 nucleotides of $\mathrm{T}_{15}-\mathrm{mes}^{2}$, and by opsin-specific primers (W9-W59, Figs. 2 and 4), Thirty cycles of amplification were performed in a thermal cycler (Ericomp) at $92 / 72 / 55^{\circ} \mathrm{C}$ (denaturation, 1 min; extension, 2 min; annealing, 2 min; final extension, 10 min) with 2.5-4 units of Taq polymerase (Perkin-Elmer Cetus Instruments) and $1 \times$ Taq buffer (50 mM KCI, 10 mm Tris. $\mathrm{HCl}, \mathrm{pH}$ $83,0.1$ \% gelatin) modified to contain $0.9-1.5 \mathrm{~mm} \mathrm{MgCl}_{2}$. The optimal enzyme and $\mathrm{Mg}^{2+}(1-2 \mathrm{~mm})$ concentrations were determined individually for each set of primers. The length of the amplified DNA fragments was determined after electrophoresis on 1% agarose gels, Southern blotting, and hybridization with opsin-specific probes. In some cases, fragments of interest were purified by agarose gel electrophoresis and sequenced directly.

RESULTS

Characterization of Mouse Opsin Clones-We previously described the isolation of a 5 -kb genomic clone MOPS1 (16), which was shown to contain the complete opsin-coding sequence, including the four introns but only short flanking regions. In order to characterize larger genomic fragments containing several kilobases of 5^{\prime} - and 3^{\prime}-flanking sequences, we used MOPS1 to isolate two overlapping genomic EMBL3 clones ($\lambda \mathrm{MO1}$ and $\lambda \mathrm{MO}$) . $\lambda \mathrm{MO1}$ is the parent clone for all genomic subclones (except MOPS1) described in Fig. 1A. It contains approximately 6 kb of sequence upstream from the translation start codon (ATG) and 3.5 kb of the 3^{\prime}-untranslated region. The $1.3-\mathrm{kb}$ XhoI fragment XX1, whose 3^{\prime} XhoI site is located just 10 bp upstream from ATG, contains putative CCAAT and TATAA boxes (Fig. 2) and, presumably, other upstream transcription regulatory sequences. The 3^{\prime} flanking fragment ES4 contains several polyadenylation sites (see below). The cDNA clones M2-M4 (Fig. 1B) were described previously (16).

Structure and Sequence of the Mouse Opsin Gene-A complete composite sequence (9.5 kb) of the mouse opsin gene, starting with the 5^{\prime} XhoI site of XX1 and ending at the 3^{\prime}

Fig. 1. Map of the mouse opsin gene and its mRNA. A, restriction map and extent of the mouse opsin genomic fragment λ M01 (15 kb). The vector is indicated by hatched boxes. Single letters symbolize restriction sites that were used for sequencing and subclon-
 the restriction map represent the extent of genomic clones between two sites. Except for MOPS1, genomic clones are named using the single letter symbols of their flanking restriction sites, followed by the approximate length of the cloned insert in kilobases. Below MOPS1 is a schematic representation of the opsin gene. Boxes indieate the extent of exons and lines connecting the exons denote the length of introns. B, schematic representation of opsin cDNA. The filled bor represents the coding sequence, and open boxes are the 5^{\prime}. and 3 '-untranslated regions. The actual ' 3 ' end of the structural gene is undetermined. The extent of cDNA clones M3, M4 and M2 is indicated below. A restriction map of M2 with sites used for excision of exon-specific fragments is shown at the bortom ($M, \mathrm{Mnll} ; X, X h o \mathrm{I}$; P, PouII; H. HaeIII; R, RsaI; C, SacI). The positions of incrons in M2 are marked with arrowheads. x !-x $\overline{\text {, expo specific probes. }}$

 6R－grcgge

 tr．cas＊

 $\because G \quad 5 \quad=$

 ～－ －

Fic．2．Complete sequence of the mouse opsin gene．The composite sequence of 9466 nucleotides is numbered in $300-\mathrm{bp}$ inter－ vals on the right；position 1 is the transcription start point（tsp）． Sequences upstream of this point and introns are in lowercase leteers， and exon sequences are in capital letters．TATAA and CCAATT hoxes preceding the transcription start point and polyadenylation signals downstream of the translation stop codon are buldface EcoRI， XbaI，and XhoI sites used for subcloning are italic and boldfoce． Abbreviations for oligonucleotides（W9－W60）used for the polymer－ ase chain reaction，in Northern blots，and for DNA sequencing are shown in the left margin，and their sequences are underlined．Arrows to the left or right indicate antisense or sense direction．Also shown in the left margin are positions of polyadenylation sites（A1－A9）， exon designations framed by rectangles，and the CA repeat in intron 1．The predicied amino acid sequence for mouse opsin is sbown in single fetter symbols underneath the exon sequences．

 \＃aj：－
 1 Палала：

 ミニАニ̈А

T ：
 h

 r放 A：

 chan

 Banten

 hisui－t

 hamomesmadanalio

 (48)

 Thx $140+2+4 x=10$

$4844 x+m$

45:
(0) -

at the $\operatorname{poly}(\mathrm{A})$ tail are amplified using the polymerase chain reaction. The results show that, of nine putative polyadenylation sites in the 3^{\prime}-untranslated region of the mouse opsin gene, five are utilized to produce the major species seen on the Northern blot. Use of the most proximal site thus produces the shortest transcript, whereas the most distal yields the longest. Many genes contain internal AATAAA sequences that apparently do not function in 3^{x} processing, suggesting the requirement for additional signal sequences (23). A transcript heterogeneity similar to that in mouse is also observed in rat and, to a lesser extent, in human and frog (Fig. 4). No sequence information is available for the rat and frog opsin genes, and the 3^{\prime} end of the bovine gene has been only partially sequenced (12). The human sequence (13) has at least two polyadenylation sites that may lead to differential polyadenylation. Apart from multiple poly(A) sites, the organization of the mouse opsin gene is relatively uncomplicated. With a single transcription starting point, no alternative splicing, and multiple polyadenylation sites, the mouse opsin gene is similar to a group of genes (46) encoding very diverse protein products, among them murine dihydrofolate reductase (48), chicken vimentin (49), and human N-ras (50). The human N-ras gene has two and the dihydrofolate reductase gene 11 functional polyadenylation sites. While 3^{\prime}-untranslated sequences may play a role in regulation of gene expression or may affect RNA transport and stability (46), a functional significance of the multiple mouse opsin mRNA species remains elusive.
The recent discovery that a Pro to His mutation at position 23 near the N terminus of human opsin may be causative for one form of autosomal dominant retinitis pigmentosa (19), an inherited photoreceptor degeneration in the human retina, has renewed interest in the mouse opsin gene as a candidate gene to study retinal degeneration. Compared with the predicted human sequence (13), only 19 residues differ in mouse opsin (16). Pro ${ }^{23}$ is present in the mouse sequence (Fig. 2) and is conserved in all sequenced vertebrate and invertebrate opsins and in related G protein receptors (51). Apart from asparagine-linked glycosylation, a precise function for the N terminal end of opsin or for Pro ${ }^{23}$ has not been determined. The detailed characterization of the mouse opsin gene and availability of cloned gene fragments as described in this study will allow the introduction of specific point mutations, the following of the consequences of expression of the mutated opsin gene in a transgenic mouse, and, possibly, the facilitation of the establishment of an animal model which mimics one autosonal dominant form of human retinitis pigmentosa.

Acknowiedgments-We thank Drs. Gregory I. Liou and Richard Hurwitz for critically reading this paper. We are grateful to Dr. Kuyas Bugra for generating the exon-specific cDNA probes and to Nancy Baumann for help with the manuscript.

REFERENCES

1. Stryer, L. 119881 Cold Spring Harbor Symp. Quart. Biod 53, 283-294
2. Chabre, M. and Deterre, P. (1989) Eur J Hiochern. 179, 2m-966
3. Hargrave P. A. (1982) Prog. Retinal Res $1+1-51$
4. Koenig, B. Arend, A., McDowell, J. H., Kahlert, M, Hargrawe, P. A. and Hofmmn, K. P. (1989) Proc. Noth Acod Sci U.S. A. 86, 6878-6882
5. Owehinnikov, Y. A., Abdulaev, N. G., Feigina, M. Y., Artamonor, 1. D. Zolotarev, A. S., Kostina, M. B., Bogachuk, A. S. Miroshnikov, A. L.,

Martmov, V. I., and Kudelin, A. B. (1982) Biorg. Khim. 8, $1011-1014$
6. Hargrave, P. A., MeDowell, J. H., Curtis, D. R., Wang, J. K., Juszezak, E, Fong. S.-L., Ras. J. K. M., and Argos. P. (1983) Biophys. Struct. Mech 9,23-244
7. Pappin. D. J. C. Fliopoulos, E. F., Brett, M. and Findlay, J. B. C. (1984) int i. Bial Macromod 6, 73-76
8. Martin, R. L. Wood, C. Baehr, W., and Applebury, M. L. 19861 Science 232, 1266-1269
9. Nathans, d., Thomas, L., and Hogness, D. S. (1986) Science 232, 193-202
10. Sparkes, R.S., Mohandes, T., Newmon, S. L., Heinzmann, C., Kaufman, D., Zollman, S., Leveille, F.r Tobin. A. d., and McGinnis, म. F. (1986) Invest. Oph thalmol. \& Visuat Sci. 27, 11711-1172
11. Elliot R. W., Sparkes, R. S., Muhandas, T., Grant, S. G., and McGimnis, J. F. (1990) Genomics 6, 635-644
12. Nathans, J., and Hogness, D. S. (1983) Col 34, 807-814
13. Nathans, J., and Hogness, D. S. (Ig84) Proce Nati Acad. Sci. U. S. A. 81, $4851-485.5$
14. O'Tousa, J. F. Baehr. W, Martin, R. L., Hjrsh, J., Fak, W. J., and Applebury, M. L. (1983) Cell 40, 839-850
15. Zuker, C. S. Cowman, A. F., and Rubin, C. M. (1985) Celd 40, $851-858$

1G. Waehr, W., Falk, J. D. Hugra, K., Triantafyllos, I. T., and MeGinnis, J. F. (1988) FEBS Lett. 238, 253-256
17. Ophinnikov, Y. A. Abdulaev, N. G., Zolotarey, A. S, Aptamonov, I. D. Bespalov. I. A., Dergachev, A. E., and Tsuda, M. (1988) FEBS Lett. 232, 69-72
18. Takac. M. Yusui, A., and Tokunagu, F (1988) Vision Res 28, 471480
19. Dryja. T. P., MeGee, T. L., Reichel, E., Hahn, L. R, Cowley, G. S., Yandell, D. W., Sandlerg, M. A., and Berson, E. L. (1990) Nature 343, 364-369
20. McWilliam, P., Farrar, G. J., Kenna, P., Bradley, D. G., Humphries, M. M, Sharp F_{L} M., McConnel, D. J. Lawler, M, Sheils, D., Ryan, C. Stevens, K. Daiger, S. P., and Humphries, P. (1989) Genomics 5, 619 622
21. Bowes, C. and Farber, D. B. (1987) Exp. Eyp Res. 45, 467-480
22. Travis, G. H., Brennan, M. B., Darielkon. P. E., Kozak, C. A., and Sutclifte, J. G. (1989) Noture 338. $\mathbf{7}-73$
23. Proudfow, N. J. (1989) Trends Biochem Sei 14, 105-110
24. Chirgwin, I. M., Przybyla, A. E., MacDonsld, R. J., and Rutter, W. J (1979) Biochemistry 18, 5294-i299
25. Aviv, H. and Leder, P, (1972) J Mol. Biol 134, 743-763
26. Badley, J, E., Bishop, G. A., St. John, T., and Frelimger, J. A. (1988) Butechnupes 6. 114116
27. Thomas, P' (1980) Proe Nail. Aced Sci. U. B. A. 77. $5201-5206$
28. Ingolia, D. E., Al-Ubaidi, M. R., Yeung, C.-Y., Bigo, H. A., Wright, D. A., and Kellems, R. E. (1986) Mod. Ceth Bood 6, 44584466
29. Me(Binnis, J, F., and Leveille. F. .l. (1985) d, Neurasci. Res. 16, 1is-16
alo Sambroph, T, Fritsch, E F, and Maniatis T (1989) Molecudar Cloning A Laboratory Monual, Cold Spring Harbar Laboratory, Cold Spring Harbor, NY
31. Chen. E. Y., And Seeburg, P. H. (1985) DNA $\left\{N_{1} Y, 4\right.$, 165-170
32. Feinherk, A. P, and Vogelstein, B (1984) Anat. Bioctem. 137, 266-267
33. Saiki. R. K., Scharf, S., Faloora, F., Mullis. K. H. Horn, G. T., Erlich, H. A., and Arnheim, N (1985) Srience 230, 1350-1354
34. Frohmarl, M. A., Dush, M. K., and Martin, (. R. (1988) Proe Natl Acad. Sal US A 85, 5998-9002
25. Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiter, S., and Sharp, P. A. (1986) Annu. Rew. Biechem. $55,1119-1150$
36. Weber, J. L., and May P. E. (1989) Am. I Hum Gener. 44, 389-396
37. Litt, M. and Luty, NA. (1989) Am. . Hum. Genet. 44, 397-401
38. Nir. I. Aparwal, N., Dagie. G., and Papermaster D. S. 19891 Exp Eye Res 49, 403421
39. Saiki, R. K, Geliand, D. H., Stuffel, S., Schari, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Frlich. H. A. (1988) Science 239, 487-491
40. Pittler, S. J, and Baehr, W. (1990) in Degeneratwe Retinal Disorders. Clitual and Lataratory Investisation (Chader, G. J., and Farber, D. B., eds) Alan K. Liss, Inc., New York, in press
41. Treisman, J. F. Morabito, M. A. and Barnstable, C. d. (1989) Mot Cel. Bo! 8, 1576-1579
42. Adamus, G., Palczewski, K., Carruth, M., McDowell, N, L., and Hargrave, I^{2}. A (1989) /mvest. Ophthatmol \& Visual Sci. 30, 294 (abstr.)
43. Breathnach, R., and Chambon, P. (1981) Annu. Ret Biochem 50, 349343
44. Zuker. C. S., Mismer, D., Hardy, R., and Rubin, G. M. 1988) Celt 53, 475482
45. Al- Whaidi, M. R., Overbeek, P. A., Naash, M. I., and Beehr, W. \{1990, Ineest Ophthatmol \& Vtural Sci 31,299
46. Ie介T, S. F., Rosenfeld, M. G., and Evans, R. M. (Igar6) Annu. Rou. Hiochem. $55,1091-1215$
47. Breitbart, R. Fs, Andreadis, A., and Nadel-Ginard, B. (1987) Ammi. Rep Buachem. 56, 467-495
48. Hook, A. G., and Kellems, R. E. (1988) J. Riot Chome 263, 2337-2343
49. Zehner, 7. E., and I'atcrson, B. M. i1983) Proe Nat Acrd Sci. U. S. A $80,911-915$
50. Hall, A., and Brown, R (1985) Nucheic Acids Res. 13, 5255-5268
51. Applehury, M. L., and Hargrave, P. A. (1986) Vision Res. 26, 1881-1995
52. Pittler, S.J., Baehr W., Wasmuth, J. J. MeConrel. D. G., Champagne, M. S. Wan'Tuinen, ${ }^{2}$., Ledbetter, I). and Davis. R. L. (1990) (rmomics 6, 252-283

[^0]: *This investigation was supported in part by National Eye Institute Grants EY08123 (to W. B.) and EY06085 and EY08639 (to J. F. M.); Individual National Research Service Award F32 FY06I72-01 (to S. A. P.) igrants (to W. B.) from the National Retinitis Pigmentosa Foundation/Fighting Blindness, Texas Advanced Technology Program, the Fetina Research Foundation (Houston); a National Institutes of Health Bionedical Research Support Grant (to W. B.); and a grant from the Knights Templar Foundation (to M. R. A.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

 The nucleotide sequence(s) reported in this paper has been submitted to the GenBank ${ }^{\text {TM }} / E M B L$ Data Bank with accession number's) M55171.

 If Recipient of a Jules and Doris Stein Research to Prevent Blindness professorship. To whom correspondence should be addressed: Dept. of Ophthalmology, Baylor College of Medicine, 6501 Fannin St., Houston, TX 77080. Tel.: 713-798-5965.

[^1]: ${ }^{1}$ The abbreviations used are: kb, kilobase(s); $\mathbf{P C R}$, polymerase chain reaction; PN, postnatal day; bp, base pair(s); mos, multiple cloning site.

