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We studied the ultrafast photoexcitation dynamics in disubstituted polyacetylene ⑦DPA✦. We found two

distinctively different relaxation channels for the photogenerated excitons; ionic and covalent pathways. In

DPA films the photogenerated odd-parity (Bu) excitons that are responsible for the high photoluminescence

quantum efficiency follow the ionic relaxation pathway. During the hot exciton thermalization process, how-

ever, a fraction of the Bu excitons undergo a phonon-assisted transition to the covalent 2Ag state, which

consequently decomposes into two neutral soliton-antisoliton pairs that are subject to ultrafast recombination

or dissociate into stable neutral solitons. In DPA solutions the ionic channel remains unchanged, however, the

covalent channel becomes ineffective due to the different hot exciton thermalization pathways.

DOI: 10.1103/PhysRevB.67.035114 PACS number⑦s✦: 78.47.✶p, 72.20.Jv, 78.30.Jw, 78.55.Kz

The disubstituted polyacetylene �DPA✁, of which back-

bone structure is shown in Fig. 1 inset, is unique among the

class of ♣-conjugated polymers �PCP✁.1 On the one hand,

DPA has a strong photoluminescence �PL✁ band, which has

been used in optoelectronic applications such as light emit-

ting diodes2 and solid-state lasers.1,3 On the other hand, this

polymer has been shown to have a degenerate ground state,1

which supports topological soliton excitations.4 It has been

shown that the PL quantum efficiency in PCP is associated

with the order of the lowest lying excited states with odd

(1Bu) and even (2Ag) parities.5 If the energies E(1Bu)
✱E(2Ag), then the polymer is strongly luminescent; con-
versely, if E(2Ag)✱E(1Bu), then the polymer is only
weakly luminescent. It has been shown by Mazumdar et al.
that in DPA E(1Bu)✱E(2Ag) in spite of its polyene back-
bone, because of transverse conjugation.6 Surprisingly, it was
discovered1 that the steady-state photomodulation �PM✁

spectrum of DPA films contains long-lived soliton excitations
�neutral solitons, S°, as well as charged solitons, S✻), for
which the photogeneration mechanism has remained a mys-
tery. A persistent debate exists whether soliton excitations are
by-products of photogenerated intrachain excitons, or con-
versely, excitons are unstable towards the formation of
soliton-antisoliton pairs. Other types of photoexcitations,
such as polarons, were also discovered in DPA in solution,7

where again, their photogeneration mechanism has remained
largely unclear.

In this work we elucidate the primary photoexcitation dy-
namics in DPA solutions and films in the femtoseconds �fs✁
to picoseconds �ps✁ time domain using transient PM spec-
troscopy. In DPA solutions we found that the primary photo-
excitations are 1Bu excitons in agreement with the assumed
order E(1Bu)✱E(2Ag). In DPA films, however, we found
that along with 1Bu excitons in the ionic channel, neutral
solitons are also photogenerated in the covalent channel, via
the process of phonon-assisted transitions from 1Bu to 2Ag .
Due to the ground-state degeneracy of DPA the 2Ag decom-

poses into two soliton-antisoliton, S̄S pairs:8,9 2Ag✮2(S0

✂ S̄0). The generation, separation, and recombination dy-

namics of S̄S pairs in DPA solid films are similar to those

previously observed for the high-energy band in films of
transpolyacetylene ❅ t-(CH)x★ ,

10 and thus our results in DPA
may also clarify the ultrafast transient processes in t-(CH)x .

In our studies we have employed both steady-state and fs
transient PM spectroscopies. The studies of ultrafast photo-
excitation dynamics were performed utilizing the pump-
probe correlation spectroscopy with 100-fs resolution in a
broad spectral range from 0.5 to 2.7 eV.11 The pump beam
was extracted from a Ti-sapphire fs regenerative laser ampli-
fier that was doubled to 3.1 eV, whereas the probe beam was
either a fs white light continuum in the spectral range from
1.1 to 2.5 eV, or extracted from an optical parametric ampli-
fier �OPA✁ in the spectral range from 0.5 to 1.1 eV. The probe
beam was mechanically delayed with respect to the pump
beam using a computerized translation stage in the time in-
terval t of up to 200 ps. The changes ❉T in the probe optical
transmission T due to the pump were measured by a phase
sensitive technique with a resolution in ❉T/T of about 10✷4,
which corresponds to photoexcitations density of about
1017 cm✷3. ❉T/T is either negative for photoinduced ab-
sorption �PA✁, or positive for stimulated emission �SE✁ and
photo bleaching �PB✁. In addition, since the pump and probe
beams were linearly polarized, we could also measure ❉T

for pump and probe with polarization parallel �par✁ and per-

FIG. 1. Room-temperature optical spectra of PDPA-nBu film

absorption ❛ and photoluminescence ⑦PL✦. The polymer repeat unit

is shown in the inset.
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pendicular ⑦per✦ to each other.

For the steady-state PM spectroscopy we used a standard

cw experimental setup with a number of solid-state detectors,

diffraction gratings, and optical filter combinations.1 The

pump beam was a modulated cw Ar✶ laser beam, and the

probe beam was extracted from an incandescent lamp in the

spectral range 0.3–2.5 eV. ❉T/T was measured with a stan-

dard lock-in amplifier at frequencies in the range of 1 KHz

that corresponds to photoexcitation lifetime of the order of a

millisecond.

The DPA polymer was a disubstituted biphenyl derivative

of transpolyacetylene, where one of the hydrogen-substituted

phenyl groups was attached to a butyl group, which we re-

ferred to as PDPA-nBu ⑦see Fig. 1, inset✦.12 The polymer

films were cast on sapphire substrates from a toluene solu-

tion; the same solution was used for measuring the photoex-

citation dynamics in a PDPA-nBu solution. During the ps

transient PM measurements the polymer films were kept at

room temperature in an optical cryostat under a dynamic

vacuum to prevent photo-oxidation;13 no special precautions

were taken for the ps transient measurements of the polymer

solution.

The optical-absorption and PL spectra of a PDPA-nBu

film at room temperature ⑦Fig. 1✦ have been recently studied

in detail;14 the respective spectra in PDPA-nBu solution are

very similar. The relatively broad absorption band with an
onset at 2.65 eV, and peaks at about 2.85 and 3.05 eV, re-
spectively, are due to delocalized ♣-♣* transitions involving
optical transitions from the ground state (1Ag) to the first
odd-parity exciton band (1Bu), and phonon replicas. This
absorption band is broadened by the inhomogeneity in the
sample caused by a distribution of the polymer chain conju-
gation lengths. The band at 4 eV is due to delocalized to
localized transitions.6 The featureless PL band with an onset
at 2.65 eV and peak at 2.4 eV somewhat resembles the first
absorption band, with an apparent Stokes shift of about 0.45
eV between the peaks of the respective bands. We found that
the PL emission has a quantum efficiency of about 50% both
in solid films and solutions, which is considered to be rela-
tively large in the class of PCP, and is thus in agreement with
the assumed order E(1Bu)✱E(2Ag).

6

The ultrafast excitation dynamics in dilute PDPA-nBu so-
lution are studied via the transient PM spectra as shown in
Fig. 2⑦a✦. Upon photoexcitation ⑦or at t✺0) a SE band at 2.4
eV and two PA bands with peaks at 1.2 eV (PA1) and 2.0 eV
(PA2), respectively, are formed. We found that the SE band
is polarized preferentially parallel to the pump polarization
⑦see below✦, i.e., mainly along the polymer chains, and there-
fore we assign it as due to intrachain excitons. Since the SE
and the cw PL bands ❅Figs. 1 and 2⑦a✦� are essentially the
same, we therefore attribute the PL in PDPA-nBu to intrac-
hain excitons with dipole moment lying along the polymer
chains. Figure 2 inset shows that the SE lifetime is about 120
ps, similar to those of the two PA bands. This demonstrates
that intrachain excitons in PDPA-nBu have a strong SE band
in the visible spectral range and two correlated PA bands in
the visible/near-infrared spectral range, similar to intrachain
exciton spectra in other luminescent PCP’s.15

Figure 2⑦b✦ shows the room-temperature steady-state PM
spectrum of PDPA-nBu in solution. The PM spectrum con-
sists of two correlated PA bands at 0.25 and 2.35 eV, respec-
tively, followed by PB of the ♣*-♣ transition ⑦not shown✦.
The lower energy PA band is correlated with photoinduced
infrared active vibrations ⑦IRAV✦ seen at energies below
about 0.2 eV. We therefore conclude that the underlying
long-lived species are charged, and, in accordance with pre-
vious studies using PA-detected magnetic resonance,1 have
spin 1

2. Therefore the two PA bands are due to long-lived
charged polarons ❅Fig. 2⑦b✦, inset�.16 Compared to the ps
transient results above we conclude that the long-lived po-
larons are generated in PDPA-nBu solution via exciton dis-
sociation, and are therefore not the primary photoexcitations.
This was also recently seen in another ps transient dynamics
study of PDPA in solution, where the time in which excitons
dissociate into polarons was measured to be about 200 ps.7

Figure 3⑦a✦ shows the ps transient PM spectra in a
PDPA-nBu film. In addition to the SE band and two PA
bands at 1.1 eV (PA1) and 2.0 eV (PA2), respectively,
which, as in Fig. 2⑦a✦ for PDPA-nBu solution are due to
photogenerated 1Bu excitons, the transient PM spectrum in
the polymer film also shows a PA band at 1.7 eV (PAg). At

FIG. 2. ✁a✂ Transient PM spectrum of PDPA-nBu solution at t

✄0 showing a SE and two PA bands. The decay kinetics of the SE

✁full line✂ and two PA bands ✁dashed lines✂ are shown in the inset.

✁b✂ The steady-state PM spectrum showing other two correlated PA

bands and photoinduced IRAV’s. The inset shows the energy levels

and optical transitions associated with a positively charged polaron

excitation in PCP’s.
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200 ps PAg significantly narrows ❅Fig. 3⑦a✦ inset★; it becomes
the dominant PA feature in the PM spectrum at longer delay
times. The transient dynamics of the various PM bands are
shown in Fig. 4. It is seen that whereas SE shares the same
dynamics as PA1 and PA2 ❅Fig. 4⑦a✦ inset★ having a lifetime
of about 50 ps, it does not show the same dynamics as PAg .
In fact, whereas SE has an exponential decay, the decay ki-
netics of PAg is complicated. This band decays much faster
in the first few ps, but basically stops decaying after about 30
ps. Two possible scenarios can explain this latter dynamics:
either PAg changes from one type of photoexcitation to an-
other during the time period of about 10 ps, or the photoex-
citations associated with PAg experience ‘‘random-walk-
type’’ geminate recombination with recombination time of
about 10 ps.10

To get further insight into the excited-state dynamics in
a PDPA-nBu film, we measured the time-resolved degree
of polarization memory, P(t)✺�❉T(par)✷❉T(per)✁/

�❉T(par)✶❉T(per)✁ , which reflects the transient reorienta-
tion of transition dipole moment. P(t) dynamics at the SE

⑦2.3 eV✦ and PAg ⑦1.7 eV✦ bands appear to be very different
from each other ❅Fig. 4⑦b✦★. P(t) at the SE band decays in
about 2 ps to half its magnitude at t✺0, whereas P(t) at the
PAg band remains constant in time beyond 100 ps. The rela-
tively fast P(t) dynamics at the SE band shows that the
photogenerated 1Bu excitons are quite mobile in the polymer
film, probably via interchain hopping17 ⑦Fig. 5✦. In contrast,
P(t) at PAg does not change so much during the first 10 ps,
and this suggests that the photoexcitations associated with
PAg are not involved in the interchain hopping process. This
may be due to the strong lattice relaxation that follows PAg

generation,9 which suppresses interchain hopping.4,10

In Fig. 3⑦b✦ we show the steady-state PM spectrum in the
PDPA-nBu film at 80 K. In contrast to the PM spectrum in
PDPA-nBu solution that shows two PA bands ❅Fig. 2⑦b✦★ and
associated IRAV’s, in PDPA films only a single PA band
(❞S) at 1.65 eV dominates the steady-state PM spectrum,
and no IRAV’s are observed. Using PA-detected magnetic
resonance it was shown before1 that ❞S is associated with
spin- 12 excitations; also the lack of IRAV’s shows that ❞S is
due to neutral excitations. This reversed spin-charge relation-
ship, which contrasts other known spin- 12 excitations in
condensed-matter physics, is unique to soliton excitations in

FIG. 3. ✂a✄ Transient PM spectrum of PDPA-nBu film measured

at t☎0 showing a SE and two PA bands. The higher energy PA

band is decomposed into two separate PA bands, PAg and PA2 . The

inset compares the normalized transient photomodulation spectra at

t☎0 ✂full line✄ and t☎200 ps ✂dotted line✄, where PAg transforms

into ✆S . ✂b✄ The steady-state PM spectrum of the PDPA-nBu film at

80 K showing a single, neutral PA band ✆S . The inset shows the

two degenerate optical transitions ✆S associated with a neutral soli-

ton excitation S°.

FIG. 4. ✂a✄ The transient decay dynamics of PAg and ✆S ✂full

line✄ and SE ✂dashed line✄ in PDPA-nBu film. The inset compares

the transient decay dynamics of SE, PA1 , and PA2 . ✂b✄ The tran-

sient decay of the polarization memory P(t) measured at the SE

band ✂2.3 eV, open circles✄ and PAg ✂1.7 eV, full triangles✄.
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degenerate ground-state PCP’s.4 We therefore identify ❞S as
due to neutral solitons (S°), of which optical transitions are
shown in Fig. 3⑦b✦ inset. From the similarity of the transient
PAg band at 200 ps and the slightly redshifted ⑦�0.1 eV✦
steady-state ❞S band, we conclude that PAg at t✳10 ps is
also due to neutral solitons. From the almost constant P(t)
transient at PAg , and the very similar spectrum at 100 fs and
200 ps we also suggest that the nature of PAg remains un-

changed with time, and thus it is due to neutral S̄S pairs.
Indeed soliton are topological excitations that cannot partici-
pate in interchain hopping.6 This means that the transient

PAg decay up to about 10 ps ❅Fig. 4⑦a✦✁ is due to ultrafast S̄S
recombination rather than formation of a new transient spe-
cies.

Figure 5 schematically shows our proposed model for the
ultrafast energy relaxation processes in DPA films. It con-
tains two relaxation channels;18,19 ionic, via 1Bu and cova-
lent, via 2Ag , which is populated following an ultrafast
phonon-assisted internal conversion from the photogenerated
1Bu excitons. PAg at short time is thus due to transitions
from 2Ag ⑦dark✦ excitons. As in long chain polyenes20 and
t-(CH)x ,

21 these excitons are subject to ultrafast recombina-
tion dynamics and this explains the ultrafast decay dynamics

seen in Fig. 4⑦a✦. In degenerate ground-state polymers 2Ag is

unstable with respect to the formation of soliton excitations

and therefore undergoes fission into two neutral S̄S pairs,

2Ag✮2(S°✶ S̄°),8,19 followed by further separation into in-

dividual neutral solitons; the latter state has a slightly nar-

rower PA band (❞S) compared to PAg . A similar separation

between ionic and covalent relaxation channels happens in

other, nondegenerate ground-state PCP’s,22 except that the

2Ag in the covalent channel separates into two triplets rather

than into two soliton pairs. The triplets are stable in nonde-

generate ground-state PCP’s,9,19,22 and thus soliton pairs are

not formed. Comparing our data in PDPA-nBu and the pro-

totype degenerate ground-state polymer t-(CH)x , we sug-

gest that in t-(CH)x the 2Ag fission process occurs in the

sub-ps time domain.21,23 This may happen in t-(CH)x since

E(2Ag)✂E(1Bu).

The contrast between the steady-state PM spectra in

PDPA-nBu solution, that shows long-lived polarons, and
films, that show long-lived neutral solitons ❅Figs. 2⑦b✦ and
3⑦b✦, respectively✁, is quite astonishing and points to a radi-
cal change in the photoexcitation dynamics in the two poly-
mer chain environments. The underlying mechanism for this
apparent difference may be the suppression of the covalent
channel in PDPA-nBu solution. The solvent thermal bath
having many low-energy vibrations may enhance the hot ex-
citon thermalization rate in the ionic channel in polymer so-
lution. Since in PDPA-nBu E(1Bu)✱E(2Ag), then in solu-
tion the covalent relaxation channel cannot be reached
following the ultrafast hot exciton thermalization. Since soli-
tons are byproducts of 2Ag fission in the covalent relaxation
channel then the ultrafast thermalization may explain the
lack of soliton photoexcitations in PDPA-nBu in solution.7

In conclusion, we unravel the interplay dynamics between
1Bu and 2Ag in disubstituted polyacetylene. In PDPA-nBu
solution only the ionic channel with Bu excitons is observed
in the transient PM spectrum, whereas the steady-state PM
spectrum is dominated by long-lived polaron excitations fol-
lowing few exciton dissociation. In PDPA-nBu films, how-
ever, in addition to excitons, soliton-antisoliton pairs are also
photogenerated via the covalent channel. The 2Ag in the co-
valent channel is populated in the 100-fs time domain via
phonon-assisted internal conversion, followed by fission into

two neutral S̄S pairs and their subsequent separation in the
course of interchain hopping on a 10-ps time scale. This

mechanism may also explain the S̄S pair photogeneration in
t-(CH)x .

21
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