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Abstract

In this paper we study non-commutative Yang-Mills theory (NCYM) through 
its gravity dual. First it is shown that the gravity dual of an NCYM with self
dual ^-parameters has a Lagrangian in the form of five-dimensional dilatonic 
gravity. Then we use the de-Boer-Verlinde-Verlinde formalism for holographic 
renormalization group flows to calculate the coefficient functions in the Weyl 
anomaly of the NCYM at low energies under the assumption of potential 
dominance, and show that the C'-theorem holds true in the present case.
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I. INTRODUCTION

Yang-Mills theory on a non-commutative space [1,2], or simply noncommutative Yang- 
Mills theory (NCYM), has recently received increasing attention in string theory community. 
A few years ago, coordinates for coincident D-branes were shown to naturally promote to 
matrices [3], signaling the relevance of noncommutative gauge theory [4]. Later, NCYM  
was shown to actually appear in the D-string solution to the IIB matrix model [5] and in 
various string/M(atrix) theory compactification with constant NS-NS B-background [6-10]. 
This is not too surprising, because for a single D-brane in a background with constant gauge 
field-strength or rank-two anti-symmetric B-tensor, some appropriate limit should lead to a 
situation similar to that of a particle in the lowest Landau level, where the guiding-center 
coordinates are known to be non-commuting. Indeed in a recent seminal paper, among other 
things, Seiberg and Witten [11] have explicitly identified the precise limit in string theory for 
NCYM to work, which is similar to the limit in M theory for discrete light cone quantization 
of Matrix theory to work [12]. In this way, NCYM arises as a new limit in string theory, 
providing a new probe to non-perturbative effects in string/M (atrix) theory.

In this paper we study NCYM by exploring its supergravity dual. By now it is widely 
believed that gauge theory is dual to a certain limit of string theory [13,14]; in particular, 
type IIB supergravity on an anti-de Sitter background, say of five dimensions, can be used 
to describe a large-N  supersymmetric Yang-Mills (SYM) theory on the four dimensional 
boundary, which is known to be a conformal field theory (CFT). One important test of 
this AdS/CFT correspondence is the holographic derivation of the quantum Weyl anomaly 
in the D — 4, J\f — 4, SU (N ) SYM from the generally covariant boundary counter-terms 
in the classical action of its bulk AdS gravity dual [15], with central charges reproducing 
the expected large-A/- behavior. It seems natural to extend this correspondence between 
gauge theory and gravity to NCYM. The supergravity backgrounds with non-vanishing B- 
fields that are supposed to be dual to NCYM have been recently suggested in refs. [16] 
and [17,18]. Furthermore, it was observed in ref. [19] that these supergravity duals can be 
derived from the Seiberg-Witten relations [11] between closed and open string moduli, by 
assuming the running string tension is a simple power function of energy. This observation 
suggests that one should try to use the supergravity duals to explore the running behavior 
of NCYM.

It is known that NCYM is no longer conformally invariant, because of the length scale 
associated with a non-vanishing B-background. Thus, one expects that the ’’ central charges” 
of NCYM, defined as the coefficients in its Weyl anomaly, should run as a function of the 
energy scale. It is interesting to calculate these functions, the so-called c-functions, and to 
see whether they obey a generalization of the famous C-theorem [20] in two dimensions, 
that asserts the c-function is always monotonically increasing with the energy scale. The 
consistent coupling of NCYM to a curved background is not known yet, so it is not possible 
at this moment to directly calculate the Weyl anomaly of NCYM on the field theory side. 
The goal of the present paper is to study the c-functions in a holographic manner through 
the supergravity dual, thus providing constraints and shedding light on the problem of 
consistently coupling NCYM to a curved background.

The method we are going to use to calculate the holographic Weyl anomaly is the 
Hamilton-Jacobi approach to the 5-dimensional bulk gravity developed by de Boer, Ver-
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linde and Verlinde [21]. In this approach an analogue of the first-order Callan-Symanzik 
equations for the 4-dimensional dual field theory on the boundary can be derived from the 
bulk Hamilton-Jacobi equations. The key point is to interpret the Hamilton-Jacobi func
tional as the quantum effective action in the dual field theory resulting from integrating out 
the matter degrees of freedom coupled to the boundary background gravity Then from it 
one can derive the holographic Weyl anomaly and c-functions. Moreover, in the de Boer- 
Verlinde-Verlinde formalism there are dilaton-like scalar fields in 5-dimensional gravity The 
radial profile of these fields in the bulk represents the renormalization group (RG) running of 
certain coupling constants in the dual field theory on the boundary. To apply this formalism, 
one needs to show that the N CYM ’s gravity dual given in [17] for the full 10-dimensional 
IIB background really has a 5-dimensional dilatonic gravity Lagrangian after dimensional 
reduction. In this paper we will show that this is indeed the case for an NCYM with self
dual ^-parameters, corresponding to isotropic non-commutativity, whose gravity dual has a 
self-dual B-background, such that the B-field does not explicitly appear in the action for the 
dilaton-gravity sector after dimensional reduction to 5 dimensions.

The paper is organized as follows. In Sec. II we show that after dimensional reduc
tion from 10-dimensional IIB supergravity, the gravity dual of an NCYM with self-dual 
non-commutativity parameters has a 5-dimensional Lagrangian in the form of a dilatonic 
gravity In Sec. Ill the de Boer-Verlinde-Verlinde formalism for holographic renormalization 
group flows is adopted to calculate the c-functions of the NCYM at low energies under the 
assumption of potential dominance. In Sec. IV, we show that the c-functions defined in Sec. 
II transform as vectors on the dilaton-space as the beta function does. The final section, Sec. 
V, is devoted to conclusions and discussions. In the appendix we show how to generalize 
the de Boer-Verlinde-Verlinde formalism to the non-canonical form of dilatonic gravity.

II. DILATON GRAVITY DUAL OF NONCOMMUTATIVE YANG-MILLS

In contrast to the gravity dual of ordinary Yang-Mills theory, the supergravity dual of 
NCYM involves turning on nontrivial scalar and various r-form (anti-symmetric r-tensor) 
backgrounds with a radial profile [17]. One may wonder if there exists a 5-dimensional gravity 
action from which the equations of motion dimensionally reduced from 10-dimensional IIB 
supergravity can be derived. We will show that there is indeed such a 5-dimensional dilatonic 
gravity action, at least for the case with self-dual B-backgrounds.

The bosonic action for type IIB supergravity in ten dimensions in the Einstein frame is

I w  =  2 k  S dl° z V I ^  "  2 T 3 !e " * ^  “  2 ^ 3 ! ^  "  4 ^ 5 ! ^  ’

(2 .1 )

where </> is the dilaton, x  the RR scalar and the form strengths are defined as

— dB2 , (2-2)

F3 =  dA2 — xHz , (2.3)

F5 =  dA± — - A 2 A H% +  - B 2 A F 3 . (2-4)
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Here B2 and A2 are respectively the NS-NS and RR 2-form potentials, A4 are the RR 4-form 
potential and the 5-form strength F5 is self-dual, that is

* F5 =  —i F5 , (2.5)

where * is the 10-dimensional Hodge dual.
In this paper, we only consider self-dual B-backgrounds, together with the following 

conditions motivated by supersymmetry [26]:

X -  i e =  ic ,

F3 =  icH3 ,

Boi  =  B 23 , A 0i =  A 2s . (2 -6)

where c is a real constant.
These conditions are consistent with the equations of motion for scalars and two-form 

potentials. Moreover, they make the contributions to the energy-momentum tensor from the 
NS-NS and RR sector cancel each other, except the one from self-dual five-form strength. 
The Einstein equations and the Gauss law for the five-form strength thus form a closed set 
of equations:

R m N =  ^MTV > (2 -7)

dM{Vdet GF mnpqr) =  0 , (2.8)

where T^N — ^ F mpqrsF ^ RS is the energy-momentum tensor of the five-form strength. 
Once the solution to this set is known, the other fields can be solved from their equations 
of motion.

We now perform dimensional reduction by using the following ansatz for the 10
dimensional metric:

ds2 =  GMN{z)dzMdzN =  gmn{x)dxmdxn +  £2Q(x)gab(y)dyadyb , (2.9)

with the indices {?7?., n} running on the reduced 5-dimensional manifold A4, and indices {a, b} 
on a prescribed 5-sphere with ^-dependent radius ^ 'd2$(x), where £2 is the typical length 
scale of M  related to the D3-brane charge (or the 5-form flux), and the Jordan-Brans-Dicke 
scalar $  turns out to be the dilaton in the reduced theory.

Using this ansatz we can solve the Gauss law equation (2.8) for the five-form strength, 
and the solution is

Fmnopq =  4̂  ̂ $   ̂ \Jd(it (J €mn0pq 5 (2.10)

where the e—symbol is equal to 1(—1) for even (odd) permutations of 0 ,1 ,2 ,3 ,? ’ , and to 0 
otherwise.

The components of the corresponding energy-momentum tensor are

Tmn =  - ^ ~ 59 mn , gab , =  0 . (2 .1 1 )

The 10-dimensional Einstein equation (2.7) then decomposes into
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R m n =  R m n ~  ^  1 V TOV n $  +  ^  2V m $ V n $  =  5 g mn , ( 2 . 1 2 )

R °» =  ( |  -  ^ 24> -  j 4 ' “ 1(V 4-)2)sot =  , (2.13)

#ma =  ^ _ 1̂ m ^ 6C(V c^a6 -  V a#6c) =  0 , (2.14)

where i?mn is the Ricci tensor of the metric gmn, while V  and V  the covariant derivative 
with respect to gmn and guh respectively.

Given the prescribed 5-sphere metric g^ , eq. (2.13) reduces to a single equation of motion 
for the dilaton <E>, and eq. (2.14) is just an identity because of the metricity condition.

It turns out that this reduced set of equations of motion (2.12) and (2.13) for gmn and 
$  can be derived from the following 5-dimensional action for a dilatonic gravity

J5 =  - A -  [  d5xJdet g $ 5/2[R +  5 $ “ 2(V $ )2) +  r 2(20$“ 1 -  8 $ “ 5)] , (2.15)
2 J M

where V5 is the volume of the unit 5-sphere. This action reduces to the familiar action for 
AdS gravity if we set $  =  1.

To bring the gravity action to the canonical Einstein-Hilbert form we need to do the 
following Weyl transformation

gmn =  $~5/3gmn , (2-16)

and the corresponding new 5-dimensional action is

l f H =  [  d5xJdet g [R -  —  $ “ 2(V $ ) 2 +  r 2$ “ 8/3(20 -  8$ “ 4)] , (2.17)
2/v̂ q Jm  3

where the unhatted quantities are with respect to the new 5-dimensional metric gmn.
This action was derived before from the gauged supergravity point of view in a different 

context [27]. Our above discussions establish that the proposed gravity dual [17] of an 
NCYM with isotropic non-commutativity has a 5-dimensional dilatonic gravity description 
given by the action (2.15) or (2.17).

One may feel odd at first sight that in the 5-dimensional reduced dilatonic gravity dual, 
the 2-form field that specifies the non-commutativity in the original boundary Yang-Mills 
theory does not show up explicitly. The puzzle is resolved by noticing that the self-duality 
conditions (2 .6) place strong restrictions on the holographic profile of the dilaton $  to make 
it dependent on the asymptotic value of the 2-form field. This is most easily seen from the 
full expression of Maldacena and Russo’s solution [17] (in the near horizon limit):

ds% =  £2r2&{&~2(dxl +  dx\ +  dx\ +  dx\) +  r~Adr2 +  r~2d£l\} ,

$  =  (1 +  a4r4)1/2 , Fomr =  iM~l<S>-b/2̂ det g =  i4f4r3$ “ 4

Boi =  B23 =  ĝ~sa2r4$ - 2 , A01 =  A23 =  - i ^ = r 4$ “ 2 ,

=  g 2 $ - 2   ̂ ^  =  i °^ i_  ^

9 s
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where gs is the string coupling in the IR limit r =  0, and a2 =  y  -47ra'2gsN /B°°, I2 =  a V^ttN  
with a the string scale, N  the D3-brane charge and B°° the boundary value of B-field at 
r — oo. Note that the world-volume (specified by the directions 0,1,2,3) quantities have 
been properly re-scaled as in [17], and also that with a self-dual 2-form background (or 
non-commutativity parameters) the world volume metric for the NCYM remains isotropic.

As one can see, the profile of $  is chosen so that the solutions of NSNS and RR scalars 
in (2.18) satisfy the first equation of the self-duality conditions (2 .6), which would not 
hold for an arbitrary dilaton profile. Following the proposal of [17], we then conclude that 
the dilatonic gravity (2.17) with the specific dilaton radial profile given in (2.18) is the 
holographic dual of the NCYM with isotropic non-commutativity. Moreover, we can read 
the 5-dimensional background metrics from (2.18), that is

gmndxmdxn — 2̂r~2^dr2 +  l 2r2&~1dx2 (2.19)

for the action / 5, and

gmndxmdxn =  C2r~2<S>8/3dr2 +  t 2r2$ 2/3dx jj (2 .20)

for the action I$ H. where x\\ represents the longitudinal coordinates and r is called the 
holographic coordinate which is the energy scale from the field theory point of view.

III. H O LO G R A P H IC  RG FLO W  OF N C Y M  IN SELF-DUAL B -B A C K G R O U N D

The existence of a consistent effective 5-dimensional dilatonic gravity allows us to gen
eralize a counter-term generating algorithm in the AdS/CFT correspondence, known as the 
holographic renormalization group (RG) flow that is determined by the dilaton profile [25]. 
The dilaton is interpreted as an effective coupling running with the energy scale in the 
dual field theory. If the dilaton has a constant radial profile, the theory reduces to pure 
AdS gravity with the holographic dual a CFT having a vanishing beta function. When 
the dilaton has a nontrivial radial profile, the holographic Callan-Symanzik RG equations 
have been constructed by de Boer, Verlinde and Verlinde in an elegant formalism using the 
standard Hamilton-Jacobi theory [21,22]. The c-functions in the Weyl anomaly can then be 
calculated.

The essence of the de Boer-Verlinde-Verlinde formalism is the observation that though 
the equations of motion of the 5-dimensional supergravity is of second order, the evolution 
equation of its on-shell action S, derived from the standard Hamilton-Jacobi theory, is of 
first order and takes the usual form of the Callan-Symanzik equations, therefore S can be 
interpreted as the 4-dimensional quantum effective action after integrating out all the matter 
degrees of freedom coupled to the background gravity

According to the holographic interpretation of the gravity dual, a preferred radial coor
dinate in the bulk gravity can be selected out as representing the energy scale of the dual 
field theory. For simplicity, we choose the ’’ temporal” gauge for 5-dimensional metric

gmndxmdxn =  dp2 +  7av(p, x)dxadxv , (3.1)

where p is the holographic radial coordinate.

6
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For the metric on a boundary screen located at the radial position p, we can further 
separate out the holographic coordinate dependence:

7ctA p , x) =  p2(p)% v{x) ■ (3.2)

where 7a;/ is the background geometry seen by the dual field theory at some fundamental 
scale, and the warp factor p2 is the overall length scale on the boundary screen. According 
to the holographic U V /IR  relation [24], p stands for the energy scale of the boundary QFT, 
and we define the beta function for the dilaton $  by

a  =  (3 .3 )

which can be easily calculated once the 5-dimensional metric and the dilaton profile are 
given.

For example, the proposed gravity dual (2.18) of NCYM with isotropic commutativity 
has the dilaton profile

$  =  (1 +  a4r4)1/2 , (3.4)

and the energy scale can be read from the defining metric (2.20), (3.1) and (3.2):

=  £ r  $ 1/3 =  -  $ 1/ 3($ 2 -  l )1/4 , (3.5)
a

and the resulting beta function from (3.3) and (3.5) is

q 6* ($2 -  !) r ,  ^
13 =  5 * » - 2  • (3'6)

Note that p is a monotonically increasing function of $  and r, so the UV limit r —» oo 
corresponds to p —» oo and <E> —» oo, and the IR limit r —► 0 to p —» 0 and $  —► 1.

To develop the Hamilton-Jacobi theory, we shall cast the 5-dimensional dilatonic gravity 
action into the canonical formalism using the above metric:

/  =  J L  /* d5xJdet g [R +  i< 3 ($ )(V $ ) 2 +  V{^)} (3.7)
J m  2

J dp L ,

2 d 5 
1

2 4

L =  j  dAx\jdet 7  +  n<t> — 7i\ . (3.8)

Here ’ denotes the derivative with respect to p, and the canonical momenta and the 
Hamiltonian density are defined by

—  ̂ ^  TT —  ̂ ^  cA
au \Jdet 7 ’ \Jdet 7  (5$  ’

H =  ^  -  w "  +  ^  -  C , (3.10)

C =  -R +  ] - G  ~ rd „$ > d ^  +  V  , (3.11)
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with 1Z the Ricci scalar of the boundary metric 7^ .  Note that f  d4xC  is the action dimen
sionally reduced from (3.7).

The defining equations of canonical momenta (3.9) can be inverted to obtain the first 
order flow equations

% v =  2,7raL/ -  ? 7a„7T° , (3.12)

3. =  I  . (3.13)

These equations will be helpful in solving the resulting Hamilton-Jacobi equation.
In the canonical formulation of the gravity theory, the Hamiltonian density 7i gives rise 

to a constraint Ti =  0, imposed upon the canonical variables:

J7T2 -  ^  =  n  +  i  G +  V  . (3.14)

We then introduce the Hamilton-Jacobi functional S with a properly assumed form, and 
see if we can derive first-order evolution equations for terms in S. With the hint of the 
AdS/CFT correspondence, one interprets S as the quantum effective action of the dual 
field theory after integrating out the matter degrees of freedom coupled to the background 
gravity, which is assumed of the usual form on a curved space:

S[7 ,$ ]  =  SE //[7 ,$ ]  +  r[7 ,$ ] ,  (3.15)

Se h Ij , 4>] =  / dix\fdet~/ [Z(<S>)K +  ^ dc<S>d„<S> +  £/($)] . (3.16)

Seh  is the tree level renormalized action which is similar in structure to the Lagrangian 
density C, and T contains the higher-derivative and non-local terms.

In the Hamilton-Jacobi theory, the canonical momenta are related to the Hamilton-Jacobi 
functional S by

_  1 SS 1 s s
av \Jdet 7  5^av ’ \]det 7  (5$

With these relations and the interpretation of S as the effective quantum action, the quantum 
average of the boundary stress tensor <  Tav >  and that of the gauge invariant operator 
<  0 $  >  to which $  couples can be related to T by

< T „ > = ^ = ^ ~  , (3.18)
^/det 7  5^av y/det 7  (5$

The factor of two is determined from the Hamilton-Jacobi equation by requiring the correct 
proportionality to the beta-function term in the Weyl anomaly:

<  Taa > =  (3 <  0 $ >  - c n avn av +  d n 2 , (3 .19)

where (3 is the beta function defined in (3.3), and c and d are the c-functions.
Substituting (3.16) into (3.17) we obtain the explicit form of the canonical momenta, 

which will be helpful in solving the Hamilton-Jacobi equation (3.14),
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^gv — — <  Tav >  -\-ZlZav +  (——  Z — Z

-  ^ [ z n  +  (y  -  2Z ") ( V $ ) 2 -  2Z 'V 2$  +  C/] , (3.20)

n  =  <  Oq > +Z'lZ -  ^ ( V $ ) 2 -  M V 2$  +  i f  , (3.21)

where ' denotes the derivative with respect to $  and the covariant derivatives here are with 
respect to r)av.

To derive the evolution equations for terms in Seh , we insert the expansion (3.20) and 
(3.21) into (3.14), and solve the resulting Hamilton-Jacobi equation by equating terms on 
both sides with the same functional form. With this procedure we get from the potential 
term,

U2 U'2
T  +  k  =  v ’ <3 -22)

and from the curvature term,

U i f  , , ,
- Z + - Z  =  1 . (3.23)

Note both are first-order evolution equations.
Moreover, combining the second-order curvature terms and the first-order terms in the 

quantum average <  T° >  and <  0 $  > , we can obtain the expression for the Weyl anomaly 
which is of the form of (3.19), with the c-functions given by

c = ¥ ’ d= 2u ^ + S ? ) -  (3-24>
We can rewrite the curvature part of (3.19) in terms of the Euler density £, the Weyl density 
W  and the Ricci scalar squared as follows

c n avn av +  d n 2 =  c-  {s  -  w ) +  (d -  ^) n 2 , (3.25)
Zi o

where

s  =  n 2 -  4 n ^ v r  +  n „ xsi i mXS, w  =  \ n 2 -  2 n mn ,n' +  n „ xsn ,,''x s . (3 .26)
o

Note that S is a topological density, and W  is an invariant under Weyl transformations, so 
that the combination 8 — W  is invariant up to a total derivative under Weyl transformations. 
However, the 1Z2 term is not a Weyl invariant, whose presence signals the non-conformal 
nature of NCYM when c 7̂  3d, as shown later.

Because of the nonlinearity, it is difficult to solve U from (3.22). We, however, can solve 
it from the flow equations by substituting (3.20) and (3.21) into (3.12) and (3.13). Assuming 
that the theory is at sufficiently low energy scale compared to the cutoff so that the potential 
term dominates, it then yields
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U =  —  , (3.27)

d<S> 6 t / '
1 ~dfi ~  GU ' ( ^

Clearly the effective cosmological constant U is over-determined by three equations (3.22), 
(3.27) and (3.28), the consistency of the solutions among them will imply the validity of the 
formalism and the assumption of potential dominance, which reminds us that the theory is 
at sufficiently low energy scale.

On the other hand, the effective inverse Newton constant Z  will be determined by (3.23) 
up to an integration constant given by the initial conditions. There are also equations 
determining M  in the kinetic term from the input of U and Z\ however, we omit them since 
our interest is the c-functions which are independent of M , and it is easy to show that M  
can be consistently solved from the Hamilton-Jacobi equation.

Having the formalism at hand, we are ready to calculate the running behavior of the 
quantum effective action S for the NCYM from its dilatonic gravity dual defined by (2.17) 
and (2.20). The beta function for <E> has been given in (3.6). Compare (2.17) and (3.7), we 
have

G ($) =  - 2 0 $ - 2/3  , ] /($ )  =  r 2$ - 8/3(20 -  8 $ “ 4) . (3.29)

With these data and eq. (3.6) for the beta function, we find the solutions for the effective 
cosmological constant U from the three equations mentioned above agree with each other, 
all giving

2<£>-10/ 3 0
U = -----------(5$ 2 -  2) . (3.30)

The running behavior of the effective inverse Newton constant is then determined from 
(3.23) and is given by

Z =  -  $ - 2/ 3($ 2 +  2) +  ZQ $ - 2/ 3($ 2 -  l ) - 1/ 2 . (3.31)
6

Note that the second term blows up in the IR limit $  —» 1 if Zq ^  0, which will violate 
the assumption of potential dominance at low energy scale; and thus we are forced to set 
Z q — 0.

Finally, from (3.24) the resulting c-functions are (for Z q — 0)

_  e  $ 2( $ 2 +  2)2 A _  e  $ 2( $ 4 +  8 $ 2 +  6) ooN

C “  12 5$ 2 -  2 ’ “  60 5$ 2 -  2 ' 3̂ '32^

In the above equations (3.29) to (3.32), the profile of the dilaton $  is given by eq. (3.4). 
Like the beta function, the c-functions are monotonically increasing with $  (and thus with 
ji) for $  >  1. This is a generalization of Zamolodchikov’s C-theorem [20] in two dimensions 
that the c functions are always monotonically increasing with the energy scale; so one may 
say that the C-theorem holds true in the present case. Away from the IR limit, $  >  1 and 
the ratio c/d ^  3, differing from the one (c/d =  3) for ordinary Yang-Mills theory in the 
usual AdS/CFT correspondence with $  =  1, which is the IR limit of the NCYM.

1 0
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IV. C-FUNCTIONS AS VECTORS ON THE $-SPACE

In the section II we have seen that the form of the 5-dimensional dilatonic gravity action, 
dimensionally reduced from 10-dimensional supergravity as the dual of NCYM, is not unique. 
We have obtained two such actions, one given by (2.17) with a canonical Einstein-Hilbert 
term for gravity and the other (2.15) of a non-canonical form; they are related to each 
other by a Weyl transformation (2.16). In the section III, we have chosen to work with the 
canonical form of the action (2.17). One may wonder what are the resulting beta and c- 
functions if we work with the non-canonical action (2.15). The answer for the beta function 
is straightforward: from its definition (3.3), it should transform as a vector on the <E>-space 
which can be thought as the coupling constant space of NCYM. To be explicit, let us call 
the energy scale parameter jiql for the non-canonical gravity in contrast to the parameter 
/i defined for the canonical one. These two quantities are related to each other by the Weyl 
transformation (2.16), which through (3.2) leads to

ft, =  4>“ 5/ V  (4.1)

From this, the beta functions in the two cases are related by

P =  ^ ~ r  =  , (4.2)a/i df-iq

O =  ^  ----- . (4.3)
Hq d /i 5 $ 2 — 2

Though the beta function has clear geometric meaning by its definition, it is not clear 
if the c-functions have also the geometric meaning as vectors on the <E>-space. To answer 
this question, we need to generalize the de-Boer-Verlinde-Verlinde formalism to the non- 
canonical action. The generalization is straightforward but tedious, we will leave the details 
to Appendix A. The resulting c- functions turn out to be

cq =  Q-1 c , dq =  Q_1d , (4.4)

and are thus vectors on the <E>-space. Note that (4.4) is true as long as the integration 
constants for Zq and Z  are set to equal, that is

Zq =  & & Z =  £ 4>($2 +  2) +  ^ f =  . (4.5)

Now that the c-functions have a geometric interpretation, it would be interesting to see 
if the C-theorem may have a generic geometric origin. This issue has been explored in the 
recent works [28] on the gravity side. We leave this problem for NCYM for future study.

xThe subscript q will be used to specify the non-canonical counterparts of the quantities defined 
in section III; the same convention will be also adopted in the Appendix.
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V . CO N CLU SIO N S A N D  DISCUSSIONS

Since Maldacena and Russo proposed the supergravity dual of NCYM, not much has been 
done along this line. In this paper, we first pointed out that the gravity dual of NCYM with 
isotropic non-commutativity has a consistent 5-dimensional action in the form of a dilatonic 
gravity, which enables us to adopt the holographic RG flow approach to investigate the 
physics on the dual field theory side, generalizing the usual AdS/CFT correspondence.

We adopted the de Boer-Verlinde-Verlinde formalism to evaluate the c-functions at low 
energies, under the assumption of potential dominance, and found that the C-theorem holds 
true in the present case. The ratio of the two coefficient fucntions in the Weyl anomaly away 
from the IR limit is different from that in ordinary Yang-Mills theory, indicating the non- 
conformal nature of the NCYM. All of these were seen from the dual gravity side. To 
examine these phenomena directly inside the NCYM itself is worthwhile, especially because 
the perturbative techniques of non-commutative field theory seem to have become matured 
in a series of recent works [29,30].

The calculations of Weyl anomaly and boundary counter-terms for the boundary confor
mal theory from the AdS gravity have been performed in many different ways [15,23], they 
all agree to each other. Not much similar efforts have been spent for the non-commutative 
cases. Besides the method adpoted in this paper, there is an alternative approach [31] by 
generalizing the method of Henningson and Skenderis [15] to dilaton gravity which applies 
only to asymptotically AdS spacetime. However, as pointed out in the second paper of ref.
[31], the NCYM dual at hand, corresponding to eq. (57) there, has not asymptotic AdS 
region in UV. It would be interesting to see whether an improvement of their approach can 
be applied to the NCYM dual.

Although we have defined the c-functions from its gravity dual by calculating the Weyl 
anomaly, we still lack a general understanding from the field theory side. It has been an 
issue of defining sensible c-functions in 4 dimensions and there is an on-going debate about 
the validity of a general 4-dimensional C-theorem [32]. In section IV, we clarified the nature 
of c-functions on the coupling constant space, and showed they are indeed vectors on the 
coupling constant space as the beta function. We hope this geometric understanding will 
help in constructing a geometric realization of the C-theorem in 4 dimensions.

Up to now, we have only considered the supergravity background with self-dual B-field 
configurations. It would be interesting to consider more general B-backgrounds, which will 
correspond to NCYM with anisotropic non-commutativity. The 5-dimensional gravity dual 
will then be a dilaton gravity coupled to the 2-form potentials, and we need to generalize 
the de Boer-Verlinde-Verlinde formalism to include the dynamics of 2-form potentials, which 
may help us to understand more about the physics of NCYM from its gravity dual.

A P P E N D IX  A : G E N E R A L IZA TIO N  OF DE B O E R -V E R LIN D E -V E R LIN D E  
FO R M A LISM  FO R  N O N -C A N O N IC A L  G R A V IT Y

We start with the non-canonical action (2.15) and cast it into the ADM form as done 
for the canonical one:

1 2
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h  =  2 i t ! +  ^ . ( * ) ( ™ ) S +  n (* ) ]  (A-1)

V?
2 k 2

drLq , (A .2)
10

where X q, Gq and Vq can be read from (2.15).
Decompose the metric into the warped form

9mndxmdxn =  N 2dp2 +  7crv{p, x)dxa dxu , N  =  ± 1  , (A .3)

(with N  the lapse function). Using the identity

R =  —2V m(rcmV nran) +  7Z -  {KavKav -  K,2) (A.4)

where nm is the boundary unit normal, 7Z and K, are the intrinsic and extrinsic boundary 
curvature respectively, we then have

Lq =  J d x\Jdet 7  +  M  -  NH] , (A.5)

with

i i n i 9 x 'tt® i ' / c n  n , ^n  = N [_ y  _  + _ n2 + -  C ] , (A .6) 

c  =  x q n  +  1 G , +  Vq , (A .7)

where ' denotes derivative with respect to <£>, and ’ with respect to p.
The canonical momenta are defined by

^  s ^ r  =  ~n  (K" " ' ~  7<nX ) "  ’ ( A -8)

n =  *— S i  =  G j .  +  ^ .  (A .9)
y/det 7  £<£> -/V

By inverting these equations, we obtain the flow equations

K-'w =  2JSf̂ au X  âu 3^al' ^ ’ (A. 10)

2X' 1
<i> =  F (H  +  — ^ tt ) , F  = --------- (A .ll)

3 X q Q _  _ _ 2 _

^ 9  3X q

and then substituting these two equation into (A.6), the Hamiltonian density Ti can be 
expressed completely in terms of the canonical momenta.

Define the Hamiltonian-Jacobi functional as before

% ,  4>] =  r[7 , $] +  j  [Zq(<S>)K +  ^ M ,($ ) (V $ ) 2 +  £/,($)] , (A .12)
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and solve the Hamiltonian-Jacobi equation and the flow equations by adopting the new 
energy scale parameter jiq defined in (4.1). We obtain the beta function

/3q =  JT1/? =  2$>($2 -  1) , ft =  , (A .13)

and the renormalized dilatonic potential and coefficient of the scalar curvature

Uq =  4>10/3U =  -  -  , Zq =  4>(3>2 +  2) +  1 . (A .14)

As mentioned in section IV, if we take Zq0 =  Zq, then Zq =  <E>5/ 3Z, and the resulting 
c-functions transform as vectors on the $-space.

The formal expressions for the c-functions are somewhat involved:

1 7 2 

C =  T  ~X~q ’

d = k [i  +  S ' ~ Z<‘H ~ ^ G X 1 +  i~ ^ G ^ ] ' (A -16)J- 0-/V ri ZkJT rt O K-T rt rt V_J /]. q ^ w g  w q

with

-U a F X ' , 8X'Uq X 'u '  8 F X '3U'a /A7 1 — g _i_______1 t t _______ i  i  _i______________________ g g f a 17^
_  3 X g 3 X /  9 S X q ; 3 G q X q 9G qX *  ’ K ' 1

H  ee FXq[Zq ~ ^ ] ■ (A .18)
6 A q

However, the final expressions are very simple

cq — f2_1c , dq — Q~1d , (A .19)

as long as ZqO — Zq. Indeed, by continuity at $  =  1, we are forced to take Zq0 — Z0 — 0.

14
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