
DFT for Fast Testing of Self-timed Control Circuits

Sandeep Pagey
Cadence Design Systems (I) Pvt. Ltd.

NEPZ, Noida 201 305, India

Abstract

In this paper, we present a methodology to performfast
testing of the control path of self-timed circuits [91. The
speedup is achieved by testing all the execution paths in the
control simultaneously.

The circuits considered in this paper are those designed
using an OCCAM based circuit compiler [2]. This Com
piler translates an OCCAM pro gram description into an in
terconnection of pre-existing self-timed macro-modules [2,
10). The method proposed involves modifying certain mod
ules and structures in such a way that the circuits obtained
by translation using these modified modules are testable in
above mentioned way.

1 Introduction

Asynchronous circuits have been receiving a renewed
interest by the circuit designers in the recent past. This is
due to the advantages offered by these circuits such as free
dom from clock related problems, possibility of low power
consumption, simpler composition and average case per
fonnance as compared to worst case perfonnance in syn
chronous circuits. There have been many recent efforts in
the area of asynchronous circuits specification, synthesis
and verification. Testing Asynchronous circuits however is
a relatively new area.

In this paper we discuss a fast testing method for self
timed control circuits. In particular we focus our attention
on self-timed circuits synthesized using an OCCAM com
piler [2]. These circuits are composed of a predesigned set
of library components called macro-modules [2, 10]. The
OCCAM program is translated automatically into an inter
connection of these modules, which implements the behav
ior described by the OCCAM program.

The method proposed in this paper uses the property of
the self-timed circuits that the circuit halts in the presence
of the faults because of the handshake required by the self
timed protocol. A faulty circuit will fail to complete the
handshake and will thus halt. Testing the control path re
quires each path in the control flow graph of the circuit to
be activated. The approaches reported in the literature test
each of these paths separately (one by one). We propose to
exploit the distributive nature of the control path of this type
of circuits to speed up the testing by exciting multiple paths
concurrently. Modifications to the modules have been pro
posed to achieve this effect.

0-8186-7129-7/95 $4.00 © 1995 IEEE
The Fourth Asian Test Symposium

382

Ajay Khoche and Erik Brunvand
Dept. of Computer Science, University of Utah

Salt Lake City, UT 84112, USA

2 Self-Timed Circuits

Self-timed circuits are a subset of a broad class of asyn
chronous circuits. These circuits generate completion sig
nals to indicate that they are finished with their process
ing [9]. A signalling protocol used with the completion sig
nalling allows self-timed systems to be composed of cir
cuits which communicate using self-timed protocols. Self
timed protocols are often defined in tenns of a pair of sig
nals, one to request or initiate an action, and another to ac
knowledge that the requested action has been completed.
One module, the sender, sends a request event (Req) to an
other module, the receiver. Once the receiver has com
pleted the requested action, it sends an acknowledge event
(Ack) back to the sender to complete the transaction. The
circuits in our library use two-phase transition signaling for
control. Two-phase transition signaling [9] uses transitions
on signal wires to communicate theReq andAck events de
scribed previously. Only the transitions are meaningful; a
transition from low to high is the same as a transition from
high to low and the particular state, high or low, of each
wire is not important.

2.1 Self-Timed Module Library

As mentioned earlier, the circuits of interest in this pa
per consist of an interconnection of macro-modules. The
specific set of modules used are those described in [2, 10].
These modules are described in brief in this section and are
shown symbolically in Figure 1. All these modules follow
two-phase transition signalling described above.

The control modules include circuits that act as OR gates
for transitions (implemented using an XOR) and AND
gates for transitions (implemented using a C-element). A
transition-OR gate will produce a transition at its output
whenever there is a transition at either input. An AND re
quires transitions at both inputs before producing a transi
tion at the output. Also included are modules that steer tran
sitions depending on a Boolean input signal (a Select mod
ule) or alternate transitions on the output for each transition
on the input (a Toggle module). A Call module allows mul
tiple sender circuits to have access to a common receiver
circuit by implementing a hardware subroutine call. The
Call module requires that the multiple requests be mutually
exclusive so that it need not perform arbitration.

R'g A' RS

a1. AS

:: -7

Figure 1: Control Modules for Self-Timed Designs

2.2 Synthesis Method

The Synthesis method of [2] involves description of the
circuit in a subset of OCCAM. Once the circuit is described
in OCCAM it is translated automatically into an intercon
nection of macro-modules described earlier. The transla
tion is syntax directed in the way that each construct of
the language is translated into a predetermined subcircuit.
There are five constructs in the subset used: SEQ, PAR, IF,
WHILE and ALT. SEQ and PAR constructs are used for se
quential and parallel composition of the processes. A pro
cess is a subcircuit made of the library modules with a Req
input and an Ack output. The subcircuits corresponding to
the IF, WHILE and ALT constructs are shown in Figure 4,
5, and 6. In the IF construct the conditions are checked in
sequence at the set input of Select modules and if found true
the corresponding process is executed on the true branchof
the Select Module. In the WHILE construct, after initiation
on theReq input the loop body process is executed until the
loop condition on Sel input becomes false. The ALT con
struct is used to implement guarded processes. These pro
cesses require their associated guards to be true before the
process is invoked. This construct differs from conditional
construct in the sense that in an IF statement at most one
process is invoked while in an ALT statement exactly one
process is executed. Also the control remains within the
statement until a guard becomes true.

3 Related Work

Testing asynchronous circuits is a relatively new area.
Very few attempts have been made so far. Efforts directly
related to our work are described in this section.

Hazewindus [3] has analyzed the delay insensitive cir
cuits built using Martain' s [5] synthesis methods. He found
that a circuits halts for most of the faults. He outlined a
procedure to generate tests to activate each path in control
circuits. However he also found that there were faults for
which the circuits does not halt. These are the faults on
isochronic forks [3]. He had proposed an ad hoc scan ap
proach to test these faults.

Roncken and Saejis [8] had proposed a method to test the
circuits built using Tangram compiler developed at Philips
labs. This synthesis method translates Tangram descrip
tions into circuits as an interconnection of predesigned
modules like in the synthesis methods used by us. The test
method proposed also used the propeny of these circuits
that the circuit halts for most of the faults. However each

383

path in the control circuit -.vas tested separately. Also the
faults on the isochronic forks inside the modules were not
tested.

Kudva and Akella had proposed a design for testabil
ity method to test the circuits built using SHILPA(A High
level synthesis system). This system also translates the cir
cuits described in a language called HopCp into an inter
connection of predesigned modules. In their method they
proposed a modified design for a Select module which al
lows the control to be directed on a particular path in the
control part. This was done by controlling the S elline of the
Select modules through a scan path. In their approach also
each path in the control part was tested separately and scan
ning is required to select a particular path. Also the mod
ules were considered atomic i.e. the faults inside the mod
ules were not considered. The method proposed in this pa
per is different from the approaches described in the sense
that all the paths in the circuits are tested simultaneously
and no scanning is involved either. This reduces the test ap
plication time. In addition the faults inside the modules on
isochronic fork were also considered with the exception of
Celement.

4 Test Methodology
4.1 Basic Requirements

As mentioned earlier, our method relies on testing all
control paths simultaneously. This means that all the paths
in the circuit are excited simultaneously. A new path is in
troduced in the circuit when a branching point or a fork is
encountered in the circuit. While all the paths are excited
automatically in the fork case, modifications are needed for
the branch point where the branches are mutually exclusive.
The requirements for our method to be applicable are de
scribed below.
1. At a branching point all the branches should be activated.
What this means in circuit terms is that both the outputs of
Select and Toggle elements should be activated upon aReq
event at their inputs.
2. When two branches are merged through a Merge ele
ment a single event should be produced at the output of the
Merge element after both the branches finish their process
ing. This is required to maintain the self-timed protocol
even during the testing.
3. The third requirement is related to non-interference of
the control paths. The control paths in general are non
interfering except when sharing of resources occurs. When
sharing occurs in the circuits, we have to guarantee that
progress on one control path is not stopped because of
progress of some other control path. Also the shared mod
ule should be executed only once because the multiple exe
cution do not give any additional information and increase
the test time unnecessarily [8].
4. The control path should be decoupled from data path dur
ing testing so that the control path can be tested separately.
In the type of circuits we deal with in this paper, the data
interacts with control only on the Selline of Select mod
ules. The control path should be made independent of data

CLR

(a) Normal Select (b) Select for Conditional

(0) select for loop

Figure 2: Basic and modified select modules

by disabling the S elline. This is achieved by modifying the
Select element as explained next.

4.2 Modifications to the Modules

The modules in the library are modified to satisfy the re
quirements mentioned above. The modifications made to
individual modules are described in this section.
XOR: The XORs are used at three places in the circuits.
First as merge elements for merging control paths. These
are also used inside Select and Call modules as shown in
Figure 2, 3. When the XOR is used to merge branches of
conditionals which are mutually exclusive, itis replaced an
XORIC element. An XORIC elements acts as an XOR dur
ing normal mode but acts as a C element in test mode. This
modification is made to satisfy condition 2 mentioned in the
previous section during testing when all the branches are
activated simultaneously. The behavior of this module as
a C element during test prevents the output of this module
being activated many times once for each merging branch.
The XORs in the Select and Call modules are also replaced
by XORIC elements in the circuit. Those modifications are
described below.
Select: The modified Select element is shown is Figure 2.

Two different kinds of modifications are required in the Se
lect modules depending upon the construct it is used for in
the circuit. However, the modifications required to make
the control path independent of data path are common to
both designs. The Selline is overridden by the Test signal
during test mode through the OR gate, such that both the
latches are enabled in test mode. Any transition on the in
put of the latches will be transmitted to their outputs in the
test mode.

The design which is used for the IF construct is shown
in Figure 2(b). In this design the XORs in the original de
sign have been replaced by an XORIC element as men
tioned above. However the B input of the XORIC Ele
ment in the upper branch is negated while the XORIC in
the lower branch has both the inputs non-negated. This is

384

R1
R2 R1 R2

R1 R2

A1 A2 A1 A2 A1 A2

Basic Call Modified Cal~ Modified Call
(...) (b) (c)

Figure 3: Basic and modified Call modules

done to explicitly sequentialize the transition on OUTT and
OUTF to avoid races. In this design, in test mode, an input
event causes first an event on OUTT and then on OVTF.

The Select for the loop construct has been modified
as shown in Figure 2(c). An additional module trans-C
has been inserted between IN and the input to lower the
XORIC. TItis module acts like a C element in the test mode
and is transparent for the IN input in normal mode. The
loop-ack input of this module is connected to the Ack of the
loop body. This modification causes loop body to be exe
cuted only once in the test mode, before generating its Ack
onOU1F.
Call: The Call module also requires two different designs
depending on the context in which it is used in. The case
where a Call module is used to share a resource among two
mutually exclusive branches in normal mode (e.g. in true
and false branches of an IF statement), the requirement is
that both the branches should progress and the shared re
source should be executed once. The need for simultane
ous progress arrives because in test mode both the branches
get activated. The Call element modified to achieve this
is shown in Figure 3(b). In test mode, A single request
is produced at RS after both the branches arrive at this
module and once the shared resource acknowledges on AS
acknowledgements are produced on both the outputs thus
both branches make progress.

The other context where a Call is used is to share a re
source between processes which are always sequential. In
this case the first design will not work because the the first
process should be allowed to continue so that second pro
cess gets a chance to be activated. However the condi
tion that the shared source should be called only once re
mains. This is achieved by negating the R2 input to the
XORIC generating RS during test mode so that when a re
quest arrives at RI, a request is produced at RS. Note that
the XORIC element generating the input to the C element
with output Al also has it R2 input negated. This allows
an acknowledgement to be produced on Al upon receipt
on AS. Thus in this design the first process is allowed to
progress without waiting for the other as in the previous de-

p1.,:p2 ,p3. .uboirc-uite

Bas.ic Mod.i.f.ied

Figure 4: Basic and modified IF construct

sign. Now when the second process arrives at this module
no event on RS is generated as Rl is still asserted. Whereas
an acknowledgement is produced on A2 as the correspond
ing C element has a 1 at its other output. Thus the second
process also progresses with the shared resource not being
activated again.

One thing that should be noted at this point is that with
the above modifications all the nets are activated once when
their inputs are activated once in all modules. Moreover if
there is a fault on any net then an acknowledgement for the
event which activates that net with value opposite to that of
fault, will not be generated. This means that to test a mod
ule it is enough to generate two events on its inputs, one
rising and one falling. This will activate all the nets in the
module with values 0 and 1.

5 Modifications to the Constructs

The modifications described above make the modules
testable by generating two events at their inputs. In order
to carry that argument at the language construct level the
circuit structures corresponding to them have been modi
fied. This allows testable circuits to synthesized which can
be tested by generating two events at their inputs. The con
structs which have been modified are described below:

IF: An example of the basic construct for a nested IF
statement is shown in figure 4(a). Here Gl, G2 and G3
are the conditions for the three nested IF statements. Pl,P2
and P3 are the bodies of those IF statements. The condi
tions of this construct are checked in the order G I, G2 and
then G3. If a condition is true at a certain point then the
remaining conditions are not checked and an acknowledg
ment is produced for the construct on the Ack line through
the tree of XORs which merge the acknowledgement from
the bodies of IF statements. This construct has been modi
fied by replacing the basic Select modules by the modified
version described in the previous section so that both the
branches of each Select can be activated. This modifica
tion results in all paths in this nested IF construct being ac
tivated upon activation of Req. The second modification in
this construct pertains to XORs used for merging acknowl
edgements. These have been replaced by XORIC elements.
Thus in test mode a single acknowledgement is produced
after all the paths have finished their processing. A fault
on any path will result in Ack not being produced for ei-

385

LB, Loop Body

Basic Modified

Figure 5: Basic and modified LOOP construct

ther rising event or a falling event and thus will be detected.
LOOP: The LOOP construct has been modified in such a
way that in test mode the loop is executed only once and
then an acknowledgement is produced on Ack. Specifically
the basic Select module has been replaced with the modi
fied one for the LOOP as described in the previous section.
Also the XOR before the Select has been replaced by an
XORIC gate with its feedback input being negated, which
prevents further iterations of the loop. Thus an event on the
Req input causes the loop body to be executed once and an
acknowledgement to be produced on Ack line.

ALT: ALT Construct is not discussed in detail here due

G~ G2

G1.~G2 - Guards

Figure 6: Basic and modified ALT construct

to space limitation, however it can be modified in a way
very similar to the IF construct. The Q-Select [2] modules
(Which are very similar to the Basic Select modules) are
replaced by their testable versions. and the XOR tree for
generating Ack is replaced by XORIC tree.

The point to be observed here is that one activation at
the input of a construct causes all the nets in that construct
to be activated. Moreover if there is any fault on any of
these nets then it inhibits the response on the output from
being produced for either an invocation with low to high
or high to low transitions. This means that to test any con
struct one simply needs to produce a low to high and high
to low events on its inputs.

6 Example

The control part of a self-timed circuit to implement the
GCD of two numbers A and B is shown in Fig. 7. This
circuit has three possible paths through which the control
can flow. In order to test the control path using the ear
lier methods [3, 8,4], each path is executed one by one,
thereby requiring six transitions on the REQ input. Exe
cuting each path one by one also requires setting up appro-

Figure 7: Control path of a GCD circuit

priate data values which allow a particular path to be ex
ecuted. The method in [4] uses a scan path to control the
choice of the path to be executed which requires additional
time for scan. The method presented in this paper modi
fies the circuit such that it can be tested with only two input
transitions on the REQ input. The XOR Xl is replaced by
an XOR/C element and XORX2 is replaced by an XOR/C
element with a negated input as described for LOOP. The
CALL modules eLl and eL2 are replaced by a testable Call
module of Fig. 3(c), whereas Call module eL3 is replaced
by the one shown in Figure 3(b). The SELECT module Sl
is replaced by the testable SELECT module of Fig. 2(c).
The SELECT module S2 is replaced by the testable SE
LECT module of Fig. 2(b).

Since the control path is completely isolated from the
data path, setting up data values or scanning the SELECT
modules is not required.

7 Advantages and Disadvantages

This approach offers following advantages:
Fast testing: The circuits can be tested very quicldy as all
the paths are tested simultaneously. Also the test applica
tion procedure is very simple as compared to scan based
techniques. Shorter test time will result in saving expen
sive tester time.
No test generation: The testing of circuits involves only
producing two events at the inputs, so no test generation is
involved.
Automation: Such a scheme can be incorporated easily in
existing compilers which are targeted towards such mod
ules e.g. OCCAM Based [2] and SHILPA [1], where the
testable version of the modules can be used in place of orig
inal modules.
General concept: This concept can also be extended to
other methodologies for the design of self-timed or delay
insensitive circuits, for instance Martain's method [5, 6].

Following are the disadvantages of this method:

Overhead: As with any design for testability method
there are overheads associated with it. In this method
the overhead comes from replacing XORs with XOR/C
gate. Research in underway to design an efficient version
of XOR/C gate. Initial design of an XOR/C gate showed
around 15% degradation in performance. However one

386

should note that this percentage degradation will not trans
late into the same percentage degradation for the entire cir
cuit as many modules which form a path are not modified.
The area overhead of the initial designs is not much and if
we take into account the fact that control typically forms a
small percentage of the circuit, the overhead over the en
tire circuit will be small. For example in the AMULET
processor the control occupied only 15 % of the entire chip
area [7].

8 Conclusions
A fast testing method is proposed to test the control path

of self-timed circuits generated by an OCCAM based syn
tax directed circuit compiler. The method involves mod
ifying library components to allow circuits to be tested
quicldy. This method, unlike other methods proposed, tests
multiple paths in the control unit of the circuit simultane
ously. This method alleviates the need for test generation
and is easily automatable. It can also be extended to other
design methods. Results for various other example circuits
are being generated presently. We are also working towards
extending concepts presented here to the testing of the data
path.

References
[1] V. Akella and G. Gopalakrishnan. SHILPA: a high level syn

thesis system for self-timed circuits. In Proc. International
Con! Computer-Aided Design (ICCAD), 1992.

[2] E. Brunvand. Translating Concurrent Communicating Pro
grams into Asynchronous Circuits. PhD thesis, CMU, 1991.

[3] P. Hazewindus. Testing Delay-InsensitiveCi;cuits. PhD the
sis, CalTech, 1991.

[4] P. Kudva and V. Akella. Testing Two Phase Transition Based
Self-timed Circuits in a High Level Synthesis Environment.
High Level Synthesis workshop May 1994.

[5] A. J. Martin. Compiling Communicating Processes into
Delay-insensitive Circuits. Distributed Computing, 1(3),
1986.

[6] S. Pagey Fast Functional Testing of Delay Insensitive Cir
cuits. TechnicalReport, Concordia Univ., Montreal, 1994.

[7] N. Paver. The Design and Implementation of an Asyn
chronousMicroprocesor. PhD Thesis, Univ. of Man chaster,
UK,1994.

[8] M. Roncken and R. Saeijs. Linear Test Times for Delay
insensitive Circuits: A Compilation Strategy. In Proceed
ings of IFIP Working Conference on AsynchrOJwus D~sign
Methodologies, Manchester, UK, Elsevier Science, 1993.

[9] C. L. Seitz. System Timing. In Mead and Conway, Intro
duction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[10] 1. Sutherland. Micropipelines. CACM,32(6), 1989.

