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ABSTRACT

This paper presents a method for designing low-delay
nonuniform pseudo QMF banks. The method is motivated
by the work of Li, Nguyen and Tantaratana, in which the
nonuniform filter bank is realized by combining an appropri-
ate number of adjacent subbands of a uniform pseudo QMF
filter bank. In prior work, the prototype filter of the uniform
pseudo QMF is constrained to have linear phase and the over-
all delay associated with the filter bank was often unaccept-
ably large for filter banks with a large number of subbands.
By relaxing the linear phase constraints, this paper proposes
a pseudo QMF filter bank design technique that significantly
reduces the delay. An example that experimentally verifies
the capabilities of the design technique is presented.

1. INTRODUCTION

Nonuniform filter banks have been widely used in applica-
tions such as speech, audio and image processing. There are
mainly two ways of achieving a nonuniform division of the
signal spectrum. One is the wavelet/wavelet packet trans-
form. Wavelet/wavelet packet transform can be conveniently
performed using tree-structured filter banks [1]. However,
nonuniform filter banks created by cascading wavelet bases
often result in subband filters with poor frequency localiza-
tion [8]. In most applications, subband signals are usually
processed differently within different subbands. When de-
compositions with poor frequency localization are employed,
aliasing distortion will result in the reconstructed output sig-
nal.

A second approach that involves the direct design of
nonuniform filter banks have been proposed recently in an
attempt to resolve the poor frequency localization problem
[3, 2, 6]. In [3], the authors proposed a two-stage least
squares method that employed a frequency domain criteria
for the design of the analysis and synthesis filter banks. The
design criteria were set to minimize the aliasing in each sub-
band. In [2], the authors proposed a method of designing
nonuniform filter banks by joining sections of different uni-
form filter banks using transition filters. The prototype filters
of the uniform filter banks are designed to have sharp transi-
tion bands and high stopband attenuations. Both design ap-
proaches are somewhat complicated. Li et al. [6] proposed a
simple and efficient method for designing nonuniform filter
banks by combining an appropriate number of subbands of a
uniform pseudo QMF bank [7].

Besides frequency localization, the delay introduced into
the signal by the decomposition method is also a crucial com-
ponent for many applications such as speech communica-
tions. Because of the linear phase constraint, the delay of
the nonuniform filter bank proposed by Li et al. [6] is N−1

samples of the filter bank input, where N is the length of
the prototype filter. For good frequency localization in filter
banks with a large number of subbands, the filter length N
must be large, and therefore the delay associated with the fil-
ter bank will also be large. Heller et al. [4] and Schuller et al.
[10] proposed two different approaches for designing perfect
reconstruction cosine-modulated filter banks with arbitrary
delay. However, perfect reconstruction is overly restrictive
in many practical applications. More importantly, perfect re-
construction filter banks usually cannot achieve as high stop-
band attenuation as nearly perfect reconstruction filter banks
can [7]. High stopband attenuation is important to minimize
the distortion caused by the combining of uniform bands to
achieve nonuniform bands in [6].

In this paper, we present a method for designing low-
delay nonuniform pseudo QMF banks that achieves sharp
transition band and high stopband attenuation. The low-
delay nonuniform pseudo QMF bank is constructed by com-
bining an appropriate number of bands of a low-delay uni-
form pseudo QMF bank. The low-delay uniform pseudo
QMF bank design is achieved by relaxing the linear phase
condition of the prototype filter in [7]. New design con-
straints on the prototype filter for the low-delay uniform
pseudo QMF bank is derived. We prove that by imposing
these constraints on the design, near perfect reconstruction
can be guaranteed. The combining process in achieving the
nonuniform filter bank is similar to that in [6]. Our design
also assumes an oversampled filter bank.

The rest of this paper is organized as follows. Section
2 briefly reviews the theoretic background of pseudo QMF
banks [1] and the work by Nguyen [7] and Li et al. [6]. In
Section 3, we present a new scheme for designing low-delay,
oversampled nonuniform pseudo QMF banks. Section 4 pro-
vides a design example. Finally, we make our concluding
remarks in Section 5.

2. REVIEW OF PRIORWORK

For an M-channel maximally decimated uniform filter bank,

the reconstructed signal X̂(z) can be expressed as [1]

X̂(z) =
M−1

∑
l=0

X(zW l
M)Tl(z), (1)

whereWM = e− j 2π
M and

Tl(z) =
1

M

M−1

∑
k=0

Hk(zW
l
M)Fk(z). (2)

For perfect reconstruction of X(z), we need to have T0(z) =
z−∆ and Tl(z) = 0, 1 ≤ l ≤ M− 1, where ∆ is a positive in-
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teger corresponding to the delay of the filter bank. The sys-
tem function Tl(z) contributes to the aliasing associated with
X(zW l

M). The system developed in this paper is a pseudo
QMF bank which is a nearly perfect reconstruction cosine
modulated filter bank. Nearly perfect reconstruction means
that only “adjacent channel aliasing” (significant aliasing) is
canceled [1]. When the stopband attenuation of the proto-
type filter is high, the “non-adjacent channel aliasing” will
be small.

2.1 Uniform Pseudo QMF bank

For uniform pseudo QMF banks, the real valued coefficients
of the analysis and synthesis filters are generated using [1, 7]

Hk(z) = akUk(z)+a∗kVk(z), (3)

Fk(z) = bkUk(z)+b∗kVk(z), (4)

whereUk(z) and Vk(z) are defined as

Uk(z) = ckH(zW
(k+0.5)
2M ) (5)

and

Vk(z) = c∗kH(zW
−(k+0.5)
2M ), (6)

respectively. Here,W2M = e− j π
M , H(z) is the prototype low-

pass filter, and the coefficients ak, bk and ck are constants
with unit magnitude. The prototype filter H(z) was restricted
to be a linear phase filter with symmetry in [1, 7]. It was

shown in [1] that if we choose ak = e j(−1)k π
4 , bk = a∗k and

ck = W
(N−1)(k+0.5)

2
2M , the significant aliasing components are

canceled and the distortion function reduces to

T0(e
jω) = e− jω(N−1) 1

M

M−1

∑
k=0

|Hk(e
jω)|2, (7)

where N is the length of the prototype filter. It was proved in
[7] that if we further constrain the prototype filter H(z) to be
a linear phase spectral factor of a 2Mth band filter, the overall
distortion function T0(z) is a pure delay.

2.2 Nonuniform Pseudo QMF bank

Li, et al. [6] proposed a feasible partition nonuniform pseudo
QMF bank design approach by simply combining the neigh-
boring bands of a uniform pseudo QMF bank. For detailed
information about feasible partition filter banks, refer to [5].
Consider a feasible partition nonuniform filter bank in Fig-
ure 1. In [6], a uniformM-channel pseudo QMF bank is first

Figure 1: A K-channel nonuniform filter bank.

designed using the technique in [7], where M is equal to the
least common multiple of n0,n1, · · · ,nK−1. The pth subband

of the nonuniform filter bank is then formed by combining
M
np

uniform subbands starting at kp = ∑
p−1
i=0

M
ni

+1 so that

HNU
p (z) =

1
√

M/np

M
np

−1

∑
j=0

Hkp+ j(z) (8)

and

FNU
p (z) =

1
√

M/np

M
np

−1

∑
j=0

Fkp+ j(z). (9)

The distortion resulting from the combining operation may

be expressed as T0(z) = 1
M

(z−(N−1) +D(z)), where D(z) is
small when the stopband attenuation of the prototype filter is
sufficiently high [6].

3. DESIGN OF LOW-DELAY NONUNIFORM
PSEUDO QMF BANKS

In this section, we discuss the design of low-delay, max-
imally decimated and oversampled uniform pseudo QMF
banks. The nonuniform filter bank is then constructed similar
to that in [6].

3.1 Theoretic Statements

We start with the following two lemmas for uniform pseudo
QMF banks. Lemma 1 extends the theory of pseudo QMF
bank, which in the past has been limited to linear phase pro-
totype filters, and shows that the same theory is applicable
to nonlinear phase prototype filters as well. A proof of this
lemma is given in the Appendix.

Lemma 1: Consider the prototype filter H(z) =
N−1

∑
n=0

h(n)z−n, and letG(z) =H2(z) =
2(N−1)

∑
n=0

g(n)z−n be a 2Mth

band filter, i.e., for some delay ∆ and integer values p

g(∆+ p2M) =

{

1/2; p = 0
0; otherwise.

(10)

By choosing ak = e j(−1)k π
4 , bk = a∗k and ck = W

∆(k+0.5)
2

2M , the
pseudo QMF bank in which the analysis and synthesis filters
are given by

Hk(z) = akckH(zW
(k+0.5)
2M )+a∗kc

∗
kH(zW

−(k+0.5)
2M ),

Fk(z) = bkckH(zW
(k+0.5)
2M )+b∗kc

∗
kH(zW

−(k+0.5)
2M ),

or equivalently in the time domain by

hk(n) = 2h(n)cos(
π

M
(k+0.5)(n−

∆

2
)+(−1)k

π

4
),

fk(n) = 2h(n)cos(
π

M
(k+0.5)(n−

∆

2
)− (−1)k

π

4
),

exhibits no amplitude and phase distortion with T0(z) = z−∆.
Furthermore, the significant aliasing components, i.e., the
“adjacent channel aliasing” terms are completely canceled
by the above choice of ak and bk.

From this Lemma, it is clear that we can design a low-
delay maximally decimated uniform pseudo QMF bank by
relaxing the linear phase constraint on the prototype filter.
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We note that as formulated here, ∆ is a free design parameter
that we can select.

All the pseudo QMF banks mentioned before assume
maximal decimation. In general, the pseudo QMF banks lose
their aliasing cancelation property for the oversampled case.
However, for a special subclass of oversampling factors, we
can design oversampled filter banks by simply changing the
sampling factor associated with a maximally-decimated filter
bank. This is formally stated in the next lemma.

Lemma 2: Let R be an integer such that K = M/R is an
integer. Then an oversampled pseudo QMF bank with over-
sampling factor R can be designed from a maximally deci-
mated pseudo QMF bank such that there is no amplitude and
phase distortion and the significant aliasing terms are com-
pletely canceled.

Proof of this lemma is simple. If M/R is an integer, the
set of nearly perfect reconstruction constraints of an over-
sampled filter bank will be a subset of the constraints of the
maximally decimated filter bank. This indicates that if we
design a maximally decimated nearly perfect reconstruction
filter bank, an oversampled nearly perfect reconstruction fil-
ter bank can be obtained by simply increasing the sampling
rate of the maximally decimated filter bank R times.

Using the above lemmas, one may argue that the method
of [6] can be applied on a low-delay uniform oversampled
filter bank from which a low-delay nonuniform oversampled
filter bank can be constructed.

3.2 Design Procedure

From Lemma 2, we know it is simple to construct an over-
sampled pseudo QMF bank from a maximally decimated
pseudo QMF bank if the oversampling factor is an integer
factor of the maximal decimation rate. We thus only discuss
the design procedure of a maximally decimated pseudo QMF
bank.

Let h = [h(0) h(1) · · · h(N−1)]T and

e(z) = [1 z−1 · · · z−(N−1)]T , where the super-
script T denotes transposition. The transfer function of the
prototype filter is H(z) = h

T
e(z). Then,

G(z) = H2(z) =
2(N−1)

∑
n=0

g(n)z−n

=
2(N−1)

∑
n=0

(hT
Snh)z−n. (11)

In the above equation, Sn are constant matrices whose ele-
ments take values from 0 or 1

[Sn]k,l =

{

1; k+ l = n
0; otherwise.

(12)

From Lemma 1, we know that we can design a low-
delay pseudo QMF bank by designing a prototype filter
H(z) with high stopband attenuation and satisfying (10) with

p ∈ [−⌊ ∆
2M

⌋,⌊ 2(N−1)−∆
2M

⌋]. Comparing (10) and (11), we can
now constrain the filter coefficients vector h so that whenever
n = ∆+ p2M,

h
T
Snh =

{

1/2; p = 0
0; otherwise.

(13)

In addition to the above constraints, h should also yield a
prototype filter with good stopband attenuation. That is, we
need to minimize the stopband energy

Es =
1

2π

∫ 2π−ωs

ωs

|H(e jω)|2dω

= h
T
Φsh, (14)

where, the (i, j)th element of Φs can be expressed as

Φs(i, j) =











1−
ωs

π
; i = j

−
sin[ωs(i− j)]

π(i− j)
; i 6= j.

(15)

The optimization problem can be summarized as minimizing
(14) subject to the constraints in (13). Here, we adopt the
iterative least squares design technique developed by Rossi
et al [9] to solve the nonlinear optimization problem. First,
apply Cholesky factorization to obtain Φs = C

T
C and (14)

can be rewritten as Es = (Ch)TCh = ‖Ch‖2. Minimization
of Φs can be accomplished by minimizing the length of the
vector Ch. The constraints (13) can be combined together
and written as













h
T
S∆+p(1)2M

...

h
T
S∆
...













h−











0
...

1/2
...











= 0. (16)

Assume that hi is a vector that is close to its optimum value.
An iterative process for finding the optimum solution pro-
ceeds as follows:

1. Evaluate the matrix

Bi =













h
T
i S∆+p(1)2M

...

h
T
i S∆
...













(17)

and form the error vector

vi = Dihi−u, (18)

where

Di =

(

Bi

γC

)

and u =















0
...

1/2
0
...















. (19)

The parameter γ is a constant that is chosen to strike a
balance between the stopband attenuation and the accu-
racy of the constraints (13).

2. Find a vector h̃i that minimizes the cost function ‖vi‖
2.

This is a least squares problem and has the solution h̃i =
(DT

i Di)
−1

D
T
i u.
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3. Average the current solution h̃i with the initial vector hi

to obtain a new value for the next iteration, i.e., let hi+1

equal to h̃i+hi
2

.

4. Evaluate ‖vi+1‖
2 for hi+1. Stop the iterations if it is

smaller than a pre-determined error or if a certain number
of iterations has been executed. Otherwise, go to 1) and
continue with the next iteration.

For convergence of the iterative least squares approach,
a proper initial hi has to be designed. Here, we adopted the
design approach in [7] to design an initial filter hi. The de-
sign approach in [7] was for linear phase filter. The major
difference is that we do not impose symmetrical structure in
the low-delay design. For details of the design, refer to [11].

4. DESIGN EXAMPLE

We present the design result of a 9-channel nonuniform fil-
ter bank that was obtained from combining subbands of a
16-channel pseudo QMF bank. The first 6 channels of the
nonuniform filter bank were the same as those in the uniform
filter bank. The 7th channel of the nonuniform filter bank
was created by combining the 7th and 8th channels, the 8th
by combining the 9th - 12th channels and the 9th channel
by combining the 13th - 16th channels of the uniform filter
bank.

Figure 2 shows the design of a filter bank with a delay
of 192 samples (solid line) and a linear phase design with
a delay of 383 samples (dashed line). The plots presented
in Figure 2(a)-(d) are the magnitude responses of the pro-
totype filter H(z), the analysis filters Hk(z), k = 1,7 and 9,
the overall distortion function T0(z), and the aliasing transfer
functions Tl(z), l = 1, respectively. The parameters of the
prototype filter were N = 384, ωs = 0.059π . In order for a
fair comparison, we chose γ that both the low-delay and the
linear phase design had an amplitude distortion in the same
level. In other words, we chose γ that satisfied the constraints
(13) in the low-delay case and the constraints (29) in [7] to
the same degree. In this example, γ is chosen to be 0.015
and 0.65 for the low-delay case and the linear phase case, re-
spectively. This results in an amplitude distortion at the level

of 5×10−5 dB in both cases as can be seen from Figure 2(c)
(where no combining is done). 100 iterations were run. Com-
paring the magnitude responses in Figure 2(a), we can see
that the lower delay was obtained at the cost of lower stop-
band attenuation. Lower stopband attenuation caused higher
amplitude distortion and aliasing in the combining process
to achieve nonuniform filter bank as can be seen from Figure
2(c) (where combining is done) and Figure 2(d), respectively.
The maximum amplitude distortion of the low-delay design
is less than 0.0015 dB and the aliasing distortion is below -
100 dB for all cases. Such distortions are negligible and thus
acceptable in a variety of applications. When we processed
speech signals with the analysis and synthesis filter banks of
this example, there were no audible differences between in-
put and output signals.

To further illustrate the effectiveness of the low-delay de-
sign, we compare the above low-delay design with a lin-
ear phase design that has the same delay of 192 samples.
The parameters for this linear phase design were N = 193,
ωs = 0.059π . γ was chosen to be 0.001 to achieve an ampli-

tude distortion at the level of 5×10−5 dB. Figure 3 compares
the low-delay design (solid line) with the linear phase design
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Figure 2: Comparison of the two filter bank designs in the
example: Solid: low-delay design with ∆ = 192, Dashed:
linear phase design with ∆ = 383 (a) Magnitude response
of the prototype filter H(z); (b) magnitude response of the
nonuniform analysis filters Hk(z), k = 1,7,9; (c) magnitude
response of the overall distortion T0(z); (d) magnitude re-
sponse plots for the aliasing transfer functions Tl(z), l = 1.

(dashed line). From the plots in Figure 3, we can see for the
same delay, the linear phase design has lower stopband atten-
uation, but also higher amplitude and aliasing distortion. The
maximum amplitude distortion of the linear phase design is
more than 0.01 dB and the aliasing distortion is above -100
dB for all cases. The linear phase design then has higher risk
of producing audible distortions than the low-delay design,
especially when the delay is further reduced.

5. CONCLUSIONS

This paper presented an approach for designing low-delay
nonuniform filter banks. The low delay is achieved by relax-
ing the linear phase constraints of traditional pseudo QMF
banks. A design example was provided to demonstrate the
effectiveness of the method. An application of this method in
speech enhancement is described in [11]. The authors believe
that the reduced delay design will facilitate the application
of nonuniform filter banks in a variety of situations where
tree-structured filter banks cannot be employed because of
the unacceptably large delays associated with them.

6. APPENDIX

With the choice of bk = a∗k , ak = e j(−1)k π
4 , the proof of the

significant aliasing cancelation is the same as that given in
[1]. We now show that the distortion function is a pure delay,

i.e., T0(z) = z−∆.

Using the same definitions of Uk(z) and Vk(z) as in (5)
and (6) and using the facts that akb

∗
k + a∗kbk = 0 and akbk =

a∗kb
∗
k = 1 for our choice of the parameters, it is can be shown
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Figure 3: Comparison of the two filter bank designs with
∆ = 192 in the example: Solid: low-delay design, Dashed:
linear phase design (a) Magnitude response of the prototype
filter H(z); (b) magnitude response of the nonuniform anal-
ysis filters Hk(z), k = 1,7,9; (c) magnitude response of the
overall distortion T0(z); (d) magnitude response plots for the
aliasing transfer functions Tl(z), l = 1.

that

T0(z) =
1

M

M−1

∑
k=0

Hk(z)Fk(z)

=
1

M

M−1

∑
k=0

[U2
k (z)+V 2

k (z)]

=
1

M

M−1

∑
k=0

[c2kH
2(zW

(k+0.5)
2M )+(c2k)

∗H2(zW
−(k+0.5)
2M )].

Since ck =W
∆(k+0.5)

2
2M , we can write

T0(z) =
1

M

M−1

∑
k=0

[W
∆(k+0.5)
2M H2(zW

(k+0.5)
2M )

+W
−∆(k+0.5)
2M H2(zW

−(k+0.5)
2M )]

=
1

M

M−1

∑
k=0

[W
∆(k+0.5)
2M H2(zW

(k+0.5)
2M )

+W
∆(2M−1−k+0.5)
2M H2(zW

(2M−1−k+0.5)
2M )]

=
1

M

2M−1

∑
k=0

W
∆(k+0.5)
2M H2(zW

(k+0.5)
2M ). (20)

Substituting G(z) = H2(z) =
2(N−1)

∑
n=0

g(n)z−n in (20), we get

T0(z) =
1

M

2(N−1)

∑
n=0

g(n)z−n
2M−1

∑
k=0

W
(∆−n)(k+0.5)
2M . (21)

Since

2M−1

∑
k=0

W
(∆−n)(k+0.5)
2M =

{

(−1)p2M; n = ∆+ p2M
0; otherwise,

(22)

and

g(∆+ p2M) =

{

1/2; p = 0
0; otherwise,

(23)

(21) reduces to

T0(z) = z−∆. (24)
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