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Changing Systems
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The problem of state estimation and system structure detection 
for discrete-time stochastic systems with parameters which may 
switch among a finite set of values is considered. The switchings are 
modeled by a semi-Markov, or Markov, chain with known 
transition statistics. A fixed time delay (lag) is allowed in estimation 
(smoothing) and detection. The optimal solutions require 
geometrically increasing computations and storage with time. 
Suboptimal solutions are proposed to alleviate this problem and 
simulation results are presented to illustrate the effectiveness of the 
proposed algorithms and the advantages of introducing a delay in 
processing of the observations.
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This paper is concerned with state estimation and 
system structure detection for linear discrete-time 
stochastic systems with abruptly changing parameters. It 
is assumed that a fixed time delay (lag) is allowed in 
estimation and detection, i.e., the processes of estimation 
and detection at time t utilize measurements till time 
t + N  where the lag N is a nonnegative integer. The 
abruptly changing parameters are modeled as a finite-state 
semi-Markov, or Markov, chain with known transition 
statistics.

Motivation for considering system models with jumps 
stems from applicability of such models to a large class 
of realistic problems. Failures in components or 
subsystems of a dynamical system can be represented by 
abrupt changes in the system parameters [13—15]. 
Similarly, repairs of the failed components and system 
reconfigurations also cause abrupt changes in the system 
parameters [14]. Approximation of nonlinear systems by 
a set of linearized models to cover the entire dynamic 
range can also lead to linear systems with jump 
parameters [16-18]. Modeling with semi-Markov or 
Markov jump parameters may also be thought of as an 
extension of the multiple model partitioning approach to 
estimation, detection, and control of systems with 
unknown time-invariant parameters [19-22] to include 
systems with (abruptly) time-varying parameters [4, 7]. 
For some other motivations, see [1, 3, 23].

The problem of state estimation and system structure 
detection with zero lag, for abruptly changing systems, 
has received considerable attention [1-7, 16]. A recent 
survey concerning linear discrete-time systems with 
Markov jump parameters may be found in [7]. In [1, 2,
4-7], the abruptly changing parameters have been 
modeled as a finite-state Markov chain whereas, in [3, 
16-18, 23, 25], a semi-Markov chain model has been 
employed. The semi-Markov chain model is more general 
in that it includes the Markov chain model [9-11]. The 
optimal solutions to the filtering and the detection 
problems are intractable; therefore, in [1-7, 16], efforts 
are directed toward finding suboptimal solutions.

For linear systeals with completely known parameters, 
it is well known that state estimation with fixed time 
delay (fixed-lag smoothing) leads to an improvement in 
the performance at the cost of increased complexity when 
compared with the zero-lag case [8, 12]. In this paper we 
examine the consequences of introducing a fixed lag for 
systems with jump parameters. It is assumed that this 
time delay is of little consequence in the intended 
application. This is certainly true if the intended 
application is off-line analysis of a maneuvering target 
tracking problem [3, 4, 16].

The paper is organized as follows. In Section II a 
formal statement of the problem is presented. In Section
III, we discuss the optimal solution to the state estimation 
and the system structure detection problems. Since the 
optimal solutions are computationally intractable,
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suboptimal algorithms are proposed in Section IV.
Several simulation examples are presented in Section V to 
illustrate the effectiveness of the proposed 
approximations.

II. PROBLEM STATEMENT

Let r(t) ES = {1, 2, ..., s}y fE{0, 1, 2, ...}, denote 
a finite-state, discrete-time, stochastic process (either a 
Markov chain or a semi-Markov chain) with completely 
known probability laws. The process r(f) governs the 
structure of a stochastic dynamical system. The system 
state equation is given by

x(f + 1) = A(r(f + l))jt(f)

+ fl(r(f + l))w(f) + 6 (r(f+ 1)) ( l ) 1

where x( t )ERn is the system state, w(t )ERl is a zero- 
mean white Gaussian noise sequence with covariance Q, 
and b{r( t+ 1)E/?" is a “bias” input which cannot be 
measured (e.g., it may be inaccessible). The matrices 
A(r(f)) and B(r(t)) are functions of the chain r(f) and so 
is the vector b(r{t)). The observation equation associated 
with (1) is modeled by

z(f) = C(r(t))x(t) + D(r(f))v(f) + (2)

where z ERm is the observation vector, vERm is a zero- 
mean white Gaussian measurement noise sequence with 
covariance R such that2 Di RDj >0  (V/ES) where 
D(r( t ) )E{Di9 i = 1, 2, ..., s} and g(r(t)) is an 
unmeasurable “bias” input. The initial state jc(0) is 
assumed to be Gaussian with mean x0 and covariance 
matrix P0. Finally, x(0), v(f), w(t), and r(t) are mutually 
independent.

The objective is to find the minimum mean-square 
error (MMSE) smoothed estimate x(t — N\t) of system 
state x(t — N) given the observations Z, t  {z(k), 0 < k < t }  
and to decide on the value of r(t — N) (system structure 
detection), given Z,, minimizing the probability of error. 
Here N (a fixed positive integer) is the fixed lag in 
estimation and detection.

Ml. OPTIMAL SOLUTION 

A. Fixed-Lag Smoothing

It is well known that the MMSE smoothed state 
estimate x ( t - N \ t )  is given by the conditional mean

x( t ~N\ t )  = E{x( t -N) \Z, }  . (3)

Define a system structural state sequence /(f) as

/(f) = {r(0), r(l), r(t)} . (4)

*In the right-hand side of (1) we have used time index /+  1 for r( ) 
to indicate that the quantities involved influence the system state 
x (t+  1) at time /+  1; hence, they influence observation z(t + 1).

2R > 0 denotes that the matrix R is positive definite.

Denote the smoothed state estimate conditional on a 
specific sequence as

Xj{t - N \ t ) k  E{x(t  —N)\Z„  (5)

where Ij(t) denotes a specific sequence from the space of 
all possible sequences /(f). This leads to

= 2  Xj{t -N\ t )P(Ij { t ) \Z, )  (6)

where P(Ij(t)\Zt) is the conditional probability of the 
sequence Ij(t) given the observations Zt. By the Bayes’ 
rule it follows that

P{ I j ( t + \ ) \ Z t+ x)

~ m  (7)
2  f ( z l + l \Zl, I „ ( t + \ ) ) P ( I n( t + l ) \ Z l)

n =  1

where/(zf+1|Z„/y-(f + 1)) is the conditional probability 
density of the observation zt+1 given the past 
observations Zt and the particular structural state sequence 
Ij(t+ 1). Furthermore, we have

P ( I j ( t +  1)| Z,) = P( Im(t)\Zt) P( r( t  + 1)|Z„U0) (8)

where Ij(t+ 1) = {/OT(f),r(f + 1)} with r(f + 1)ES, i.e., 
lm{t) is a subsequence of /y(f + 1) and r(t + 1) is the 
“last” or “most recent” element of Ij(t + 1).
Computation of the second quantity of the right side of
(8) depends upon the nature of the probability law of 
{r(f)} and is discussed later in the section.

Now/(z(f+ l)|Z„/,-(f +  1)) and £j(t — N\t)  can be 
calculated recursively by applying Kalman filtering/ 
smoothing methods to the system model (l)-(2). The 
initial condition jc(0) has a Gaussian distribution. Given 
the sequence /y(f 4- 1), the system (l)-(2) is now a linear 
system with Gaussian noise and known parameters. 
Therefore, equations for Xj{t - N \ t )  are those for a 
Kalman smoother [8 , sec. 7.3] matched to the sequence 
l j ( t+ 1); the equations may be found in the appendix. 
Finally, it is easy to show that (see, e.g., [1]) 
f(z(t  + \ ) \ Z tJ j ( l  + 1)) is Gaussian, where the mean and 
covariance can be calculated by using the various 
quantities associated with the Kalman filter/smoother 
matched to the sequence /y(f + 1); the details are given in 
the appendix.

It remains to calculate P{r{t  + 1)|Zt,Im(t)) needed in
(8). This depends upon the nature of the process r(f). We 
discuss two cases.

1. Markov Jump Parameters

In this case the probability law for the Markov chain 
r(t) is completely specified [11] by specifying the initial 
probabilities P{r(0) = /}, iES,  and the transition 
probabilities/?  ̂ = P{ r ( t 4-1) = j \r(t)  = /}, i JES;  for 
simplicity, we assume that the Markov chain is 
homogenous, i.e., /?y is not a function of time f. It is
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assumed that these probabilities are known. With r(t) 
modeled as a Markov chain, we have

P(r(t+ \ )\Zt, Im(t)) = P(r(t + \)\ lm(t))

= P(r(t+ l)|r(?) = /) (9)

where the first step in (9) follows from conditional 
independence of {r(t)} and {z{t)} and the second step in
(9) follows from the Markovian nature of r(t) [11]. In
(9), r{t) = i is the “ last” element of sequence

2. Semi-Markov Jump Parameters

Suppose the process {r(0, f ̂ 0} is modeled as a 
homogeneous semi-Markov chain [9-11]. The semi- 
Markov process is a renewal process that makes its 
transitions according to the transition probability matrix 
of a Markov process, but whose time between transitions 
can be an arbitrary random variable. The Markov chains 
are special cases of the semi-Markov chains. By 
conditional independence of {r(0} and {z(r)}, it follows 
that

P(r(t+  1)|Z„Im(t)) = P ( r ( i+ \ ) \ l m{t)) . (10)

To compute the above quantity, we need to define the 
following probabilities. With IES,  let («>0)

Pi(n) k P{r(t) ^  r(t — 1) | r(r — 1)

r ( t ~  2) 

I *  r(t~

= r(t -  n + 1)

n)} d D
i.e., Pi(n) is the probability that a jump (transition) 
occurs at time t given that the last jump occurred at time 
t — n +  1 to state IES.  By homogeneity of the semi- 
Markov chain, Pi(n) is not a function of time t. Also, we 
must have P t(n) -  1 for each IES.  It should be 
noted that P{(n) defined in (11) is a function of n 
(“ holding” or “ sojourn” time) and / (the “current” 
state) only. Furthermore, we have [9-11]

P//(h) = p An)Pn (12)

where £//(«) denotes the probability that a jump occurs to 
state i at time t given that the last jump occurred to state / 
at time t — n + 1, and p n is the transition probability of 
the imbedded Markov chain as defined in Section III A-1. 
It is assumed that Pt{n), V IE S  and 0, and 
p ij9 \ f i , jES,  are completely known.

To rewrite (1) in terms of P{(n) and p ijy let Im(t) = 
{r(0), r(l), ..., r(t) : r(t) = r{t~  1) = ••• = r ( t - j  + 1) 
= / 7̂  r ( t—j), j > 0}, i.e., Im{t) is such that the last 
transition occurs at time t —j +  1 to state IES.  Then we 
have

P(r(f+  l ) |/w(f)) = p/;0 '+  1) if r (t+  1) = / ^  /

-  1 -/> /(/+  1) if r ( t+  1) = / . (13)

It is easy to see from (6)—(10), the appendix, and (13) 
that x(t — N\t) can be computed recursively by running

st+l “elemental” smoothers in parallel. For large t, this 
is clearly impractical. Therefore, one has to resort to 
suboptimal schemes. In the next section we propose a 
suboptimal algorithm based on the detection-estimation 
approach of [6, 7].

B. Structure Detection  

Find r(t -  N) such that

r ( t - N )  = arg < min P(i ^  r(t -  N)\Zt) (14)

It is well known [12] that in such case we must have

r ( t - N )  = arg i max P ( r ( t - N )  = i\Zt) 
[ /es

Now we have

(15)

(16)

where Ij(t) is a specific sequence from the space of all 
sequences I(t) as defined in (4) such that its ( t - N +  l)th 
element r ( t - N )  = i. Note that out of st+] possible 
sequences at time t, sr sequences satisfy this criterion.

Now (16), V/ES, can be computed recursively using 
(7)-(10), the appendix, and (13), by running st+l 
elemental smoothers in parallel, as in Section III A. The 
approximation used to alleviate this difficulty is the same 
as for the smoothing problem; we discuss it in the next 
section.

IV. SUBOPTIMAL SOLUTION

In this section a suboptimal solution to the optimal 
smoothing problem is proposed. It is an extension of the 
detection-estimation approach to filtering proposed in [6]. 
The same approximation is used for structure detection 
also. The scheme consists of running at most M (instead 
of sr+1) elemental smoothers in parallel at any time t 
where M  is a fixed positive integer dictated by the 
computation and storage capabilities of the processor. A 
maximum of M  “ most likely” structural state sequences 
are selected based on their a posteriori probabilities 
P{I(t)\Zt) and then the state estimate is based on the 
selected sequences only.

Suppose that, at time t -  1, we have selected Lt_ x 
system structural state sequences where At time
t consider all possible extensions of these j state 
sequences. By an extension I(t) of Ij(t— 1) we mean

I{t) = { I 1, r(f)}, r(t )ES  .

Clearly, in all s extensions of Ij(t~ 1) are possible. Let 
Ii(t) denote an “extended” state sequence where / = 1,
2, ..., (L,_j x s). Now compute the a posteriori 
probability P(It{t)\Zt) and choose Lt (where Lt = M if 
Lt^ x X s > M  and Lt = Lt_ xX s  otherwise) most likely
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sequences out of the L,~ \ x 5 extended sequences using 
the maximum a posteriori probability criterion which 
leads to minimum probability of error [12]. In other 
words, arrange />(//(/)|Z,) in a decreasing order of 
magnitude and select the first Lt sequences. (It should be 
noted that since P{I,{t)\Z,) = [f(Z,\It(t))P{I,(t))lf(Zt)} 
where the denominator is common for all values of /, 
only the numerator need be considered.) The approximate 
smoothed state estimate is then based on the selected 
structural state sequences. Therefore, (6) is modified as

h
i ( t ~ N \ t )  = 2  Xj(t~N\t)P(Ij(t)\Z,) (17)

j =  1

where

n m Z t ) ,  t/g , i ' , ( » » ^ < » >  <l8) 

2  D Z . l h u i i P i I j l n i
I= 1

and subscripts j  and / now index the selected Lt 
sequences.

Remark 1. Further refinements of the algorithm to 
reduce the computational requirements may be carried out 
following [6]. The number M  can be viewed as a design 
parameter which is selected based on the computational 
and storage constraints.

Structure Detection. Equation (16) is modified in 
that the sequences on the right side of (16) are restricted 
to belong to the set of Lr_ j X s extended sequences 
discussed earlier in this section.

Remark 2. The computational loads of the proposed 
approximations to the structure detection and the state 
smoothing problems are proportional to that of M x s  
elemental filters and M  elemental smoothers, respectively.

Other Possible Approximations. The various 
approximations to state estimation and structure detection 
with zero lag (and Markov jump parameters) available in 
the literature can be classified into three broad categories 
[7]: (1) detection-estimation algorithm (DEA), (2) random 
sampling algorithm (RSA), (3) generalized pseudo-Bayes 
algorithm (GPBA). The suboptimal approach proposed 
earlier in this paper is based on the DEA. Approximations 
to smoothing based on RSA and GPBA can also be 
devised. It was noted in [7] that, in general, being a 
Monte Carlo technique, the RSA needs a fairly large 
number of elemental filters (smoothers in this paper) in 
parallel to be effective, i.e., it is computationally 
demanding. Therefore, we have not considered the RSA 
in this paper. The GPBA also has some drawbacks when 
applied to the smoothing problem. The essential 
assumption here is that the probability density of x(t) 
conditioned on the past observations Z, and the structural 
state sequence

Ij(t, t — n) t  {r(k),t — n <  k <  t},

j  = 1, 2, ..., sn + l \ n > 0

is Gaussian, whereas, in truth, it is a Gaussian sum.
Under this assumption, the smoothed state estimate is 
approximated as

s n +  1

i ( f -A r |0  = E  i j ( t -N \ t ) P ( I j ( t , t - n ) \ Z , )  . (19)
j =  1

In order to compute Xj(t — N\t) “ matched” to I j ( t , t - n ), 
one needs filtered estimate Xj(t -  N\ t - N) and system 
parameters corresponding to I j ( t , t -  n)\ therefore, it is 
easy to see that one must have n > N  — 1 (for N = 0, this 
amounts to n >  — 1 where n — — 1 corresponds to 
assuming that the conditional density f(x(t)\Zt) is 
Gaussian, as is done in [1]). In other words, for given 
lag N, one has to run at least sN x  s elemental smoothers 
in parallel (which corresponds to sN terms on the right 
side of (19)). This renders the GPBA impractical for 
large N. It was noted in [7] in the context of filtering that 
the performance of the GPBA improves considerably with 
increasing n. Therefore, in practice, it may be advisable 
to use n >  0. Further details regarding the GPBA may be 
found in [7] and references therein. We note that, for 
filtering, the GPBA with n — 0 has been used in [3, 4, 
16-18, 25].

V. SIMULATION EXAMPLES

In this section several simulation examples are 
presented to illustrate the improvement in the estimation 
and the detection performances due to a (fixed) lag in the 
estimator and the detector. For reasons of implementability, 
the suboptimal algorithm proposed in Section IV (based 
on the detection-estimation approach) with only a 
“ small” number of smoothers in parallel is considered.

Example 1

Consider a scalar dynamical system described by the 
following equations

x(?4-l) = 1.04 jc(0 + w(t)

z(t) = C(r(t))x(t) + D(r(t))v(t),

t = 0 ,1 ,  2, ...

s = 2, i.e., r(t) E {1, 2} .

The initial conditions are as follows: jc(0) ~  N(30,400), 
P(r(0) = 1) = P(r(0) = 2) = 0.5. In the actual (true) 
system we use x(0) = 1 for all simulation runs to 
generate z(t). Furthermore, {w(0} and {v(r)} are mutually 
independent zero-mean white Gaussian noise sequences 
with covariances Q = 0.1 and/? = 1.0, respectively. 
The process r(t) is modeled by a Markov chain with 
transition probabilities:

P\\ = P(r(t+  1) = l|r(f) = 1) = 0.85

p l2 =  P ( r ( t +  1) =  2 |  r(t) =  1) =  0 .1 5

M A TH E W S  &  T U G N A IT : E S T IM A T IO N  IN  A BR U P TLY  C H AN G IN G  SYSTEMS 733



p 22 = P(r(t + 1) = 2\r(t) = 2) = 0.3 

p 2l = P(r(t+  1) -  1|r(t) = 2) = 0.7 .

Finally, we take D( 1) -  40, D(2) = 1, C( 1) =
C(2) = 1.

This example has been considered in [2, 6, 7]. The 
system is unstable and the state uncertainty increases with 
time t unless the measurements are processed. The choice 
of the transition probabilities implies that accurate 
measurement data occur only rarely.

The suboptimal algorithm was simulated for various 
design parameters (lag N  and number of smoothers in 
parallel M) and operated on the same set of data. The 
structure detection and the state estimation performances 
were evaluated by averaging over 50 Monte Carlo runs.
In Fig. 1, rms errors in state estimation are compared for 
various lags (N = 0, 1, 2, 5) with number of smoothers/

T IM E t

Fig. 1. RMS errors in state estimation for Example 1 for M = 2 and 
N = 0, 1, 2, 5.

filters in parallel fixed at 2, i.e., M = 2. Fig. 2 shows 
the probability of error in structure detection for M = 2 
and N = 0, 1, 2, 5. The information in Figs. 1 and 2 is

' T IM E t

Fig. 2. Probability of error in system structure detection for Example 1 
forM = 2 and N = 0, 1, 2, 5.

summarized in Table I after averaging over 30 time 
stages also. It is seen that, on the average, an increase in 
lag N  results in improved performance. However, this is

TABLE I
Combined Ensemble and Time Averages of RMS State Estimation Error 

and Probability of Error in Structure Detection for Example 1

Number of 
Smoothers 

M
Lag
N

Average RMS 
Error in 

State Estimation

Average 
Probability 
of Error in 

Structure Detection

2 0 16.02 0.15
2 1 11.68 0.12
2 2 11.10 0.11
2 5 9.84 0.10

4 0 12.75 0.13
8 0 8.07 0.13

not true for every time instant. The reason for this is that 
we are using a suboptimal algorithm and if an error is 
committed in selecting the M most likely structural state 
sequences, the error is compounded in that it first causes 
an error in filtering which in turn contributes to 
smoothing errors since filtering is a prerequisite to 
smoothing (see the appendix). It is also seen that the first 
few lags (in this case N -  1) lead to substantial 
performance improvement, whereas, for larger lags, any 
further (incremental) improvement is only marginal; this 
is a well-known fact [12].

In Figs. 3 and 4, the estimation and the detection 
performances, respectively, are shown for TV = 0 
(filtering or zero lag) and M — 2, 4, 8; see also Table I 
for time averages. It is seen that increasing the number M 
of smoothers/filters in parallel leads to improved 
performance (although not necessarily at every time 
instant, due to the reasons discussed earlier). However, 
the detection performance does not appear to be improved 
as much by increasing M with fixed Af = 0. Note also

Fig. 3. RMS errors in state estimation for Example 1 foriV = 0 and 
M = 2, 4, 8.
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Fig. 4. Probability of error in system structure detection for Example 1 
for N = 0 and M = 2, 4, 8.

that, with M = 2, in Fig. 1, an increase in N  for N  ^  1 
affects primarily the initial uncertainty (for t <  10), 
whereas, from Fig. 3, an increase in M  affects the state 
estimation accuracy primarily for t ^  10. Therefore, 
provided the resources permit, increasing both M and N  
may be advantageous in a complementary sense.

Example 2

Again consider the system of Example 1 except that 
now C(l) = 0 and C(2) = 1; all other parameters 
remain unchanged. The detection and the estimation 
performances were evaluated by averaging over 50 Monte 
Carlo runs. Fig. 5 shows the rms error in state estimation

TIME t

Fig. 5. RMS errors in state estimation for Example 2 for M = 16 and 
N =  0 ,1 , 2, 5.

for M = 16 and lag N = 0, 1, 2, 5, and Fig. 6 provides 
the corresponding information about probability of error 
in structure detection. Table II summarizes this 
information after averaging the Monte Carlo averages 
over 30 time stages. It is seen that an increase in lag N

Fig. 6. Probability of error in system structue detection for Example 2 
for M = 16 and N = 0, 1, 2, 5.

TABLE II
Combined Ensemble and Time Averages of RMS State Estimation Error 

and Probability of Error in Structure Detection for Example 2

Number of 
Smoothers 

M
Lag
N

Average RMS 
Error in 

State Estimation

Average 
Probability 
of Error in 

Structure Detection

16 0 25.23 0.15
16 1 24.52 0.14
16 2 23.73 0.13
16 5 21.66 0.12

leads to improvement in both estimation and detection 
performances. The choice of the transition probabilities 
(see Example 1) implies that most of the time the 
observations contain noise alone. Therefore, compared 
with Example 1, the estimation performance is much 
worse, as would be expected. The performance for M < 
16 was still worse and has not been presented.

Example 3

Now we model r(t) as a semi-Markov chain. The 
scalar system considered is described by

x(t+ 1) = 1.04 x(t) + w(t)

z(t) = x(t) + D(r(t))v(t), t = 0, 1, 2, ...

5 = 3, i.e., r(t) E {1, 2, 3} .

We have D (l) = 100, D(2) = 10, and D(3) = 1. The 
initial conditions are x(0) ~  N(30, 400), P(r(0) = i) = 
1/3 for i = 1, 2, 3. In all simulation runs to generate z(t) 
we use jc(0) = 1 in the true system. Furthermore, {w(0} 
and {v(/)} are mutually independent zero-mean white 
Gaussian noise sequences with covariances (2 = 0.1 and 
R = 1.0, respectively. The process r(t) is modeled by a 
semi-Markov chain with transition probabilities of the 
imbedded Markov chain given by p u = p 2i = P33 = 0, 
P\2 = 0.7, pi3 = 0.3, p 2\ = 0.6, p 23 = 0.4, p3X = 0.3,
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and p 32 -  0.7. The probability mass functions Pi(n) 
defined in Section I1IA-2 are assumed to be P\{n) = ax 
exp[ —|w —3|], P 2(n) = exp[—|m- 6|], and P3(«) = 
a3 exp[ — \ n — 8|] for a? >  0 with at such that 'I£=0Pi(ri)
= 1, i = 1, 2, 3.

The results of 50 Monte Carlo runs average are shown 
in Figs. 7-10 for various values of N  and M. The results 
of averaging over 30 time stages are displayed in Table 
III. The discussion of Example 1 pertaining to the effects 
of increasing N  and M  on the estimation and the detection 
performances applies here too.

Fig. 7. RMS errors in state estimation for Example 3 for N = 2 and
M = 2, 4, 8.

Fig. 8. Probability of error in system structure detection for Example 3 
for N = 2 and M = 2, 4, 8.

Example 4

Now we consider the systems of Examples 1 and 3, 
except that in the truth models (used for generating the 
data), we fix the structural state sequence {r(f), t >  0}. 
The suboptimal algorithm is designed assuming the 
switching models with transition statistics as used in

TIME t

Fig. 9. RMS errors in state estimation for Example 3 for M = 4 and 
N = 0 ,1 , 2, 5.

TIME t

Fig. 10. Probability of error in system structure detection for Example 
3 for M = 4 and N = 0, 1,2, 5.

Table III
Combined Ensemble and Time Averages of RMS State Estimation Error 

and Probability of Error in Structure Detection for Example 3

Number of 
Smoothers 

M
Lag
N

Average RMS 
Error in 

State Estimation

Average 
Probability 
of Error in 

Structure Detection

4 0 4.93 0.16
4 1 4.07 0.09
4 2 3.44 0.07
4 5 2.36 0.05

2 2 12.80 0.14
8 2 3.09 0.06

Examples 1 and 3. The objective is to test the ability of 
the algorithm to identify the system structure if it is held 
constant for a sufficiently long length of time, even if the 
design transition statistics and the true transition statistics 
are mismatched.
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The fixed sequence used for the truth model in 
Example 1 was selected as

r(t) = 1, 0 <  t <  9, 20 <  t <  29

= 2, 10 <  r <  19 .

The detector was designed assuming that r(t) was a 
Markov chain as described in Example 1. In Fig. 11, the 
(approximate) a posteriori probabilities

TIM E t
11111111*112222222 22 21111111111 
i i i . i I i . i i i ■ ■ i i i i i i i t i -j— i i I i  - i— i—i

FIXED STATE SEQUENCE r ( t )

Fig. 11. A posteriori probabilities of system structural states for 
Example 4 assuming Markov switchings.

P(r(t  -  N)\Zt), r(t) E {1, 2}, have been plotted for N =
1 and 5 and M — 4 after averaging over 50 Monte Carlo 
runs (the approximation results because of suboptimality 
of the detection-estimation algorithm). Ideally, one would 
like to have, for any N, P(r(t  - N)\Zt) = 1 if r ( t - N )
= its true value and is equal to zero otherwise. It is seen 
from Fig. 11 that increasing N  leads to improved 
discrimination between the hypothesized values of the 
Markov chain states.

The fixed sequence used for the truth model in 
Example 3 was selected as

r(t) = 1 ,  0 <  t <  9

= 2, 10 <  t <  19

= 3, 20 <  t <  29 .

The detector was designed assuming that r(t) was a semi- 
Markov chain as described in Example 3. In Fig. 12, the 
(approximate) a posteriori probabilities P(r(t - N)\Zt), 
r{t) E {1, 2, 3}, have been plotted for N = 1 and 5 and 
M  = 4 after averaging over 50 Monte Carlo runs. Again, 
it is seen from Fig. 12 that increasing N  leads to 
improved discrimination.

VI. CONCLUDING REMARKS

The problem of state estimation and system structure 
detection with a fixed lag for discrete systems with

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
I . . i l l  ■ i i i I » i > i 1 i i i t I i i i i I i i i-i 

FIXED STATE SEQUENCE r ( t )

Fig. 12. A posteriori probabilities of system structural states for 
Example 4 assuming semi-Markov switchings.

abruptly changing structure was considered. The changes 
were modeled by a Markov or a semi-Markov chain with 
known transition statistics. Since the optimal solution was 
impractical, a suboptimal approach was proposed and its 
efficacy was demonstrated through several simulation 
examples. It was shown that (as expected) a delay in 
processing the observations could lead to improvements 
in both estimation and detection performances.

We considered only the suboptimal approach based on 
the detection-estimation algorithm of [6]. Other 
approximations are also possible following [7] and were 
briefly discussed in Section IV. As discussed there, it 
was felt that the proposed algorithm is the most efficient 
computationally, given limited resources. However, for 
small lags, the generalized pseudo-Bayes algorithm may 
offer a good alternative (see the results pertaining to 
detection and estimation with zero lag in [7]). Finally, it 
should also be noted that recursive optimal linear filters 
and smoothers (when they exist) may perform better than 
suboptimal nonlinear filter/smoothers. Note, however, 
that for the system model (l)-(2 ), the recursive optimal 
linear state estimator may not exist [24]. Moreover, use 
of linear state estimators does not lead to the solution of 
the detection problem.

APPENDIX

Equations are presented here for an elemental 
smoother match to a particular system structural state 
sequence. Equations for computing the density function 
f ( z ( t+  1)|Zt,Ij(t+ 1)) are also given. We follow [8, sec. 
7.3] for the fixed-lag smoothing equations.

Let Ij(t + 1)  ̂ {r(0), r( 1), ..., r(f + 1)} and 

Xj(k\i) t  E{x{k)\Zh Ij ( t+ 1)} where k, /< * +  1. The 
equations for the smoothed estimate Xj( t -N\ t )  given Z, 
and Ij(t) are as follows:
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Xj ( t - N\ t )  = X j ( t - N \ t - N )

+ X i t - N l t - N - D i ^  ei+1( t + i - N ) }  (A l)
1= 1

where

ei+l(t) = [A(r(t — i 4- 1)) —K ( t  — i)

C ( r ( t - i ) ) ] ei(t), j > 1  (A2) 

e {(t) =  C r (r ( t ) ) [ C( r ( t ) ) 2( t \ t -  l ) C T(r(t)) 

+ D(r( t ) )RDT(r(t ))]- '

{z(t) -  C(r( t ) )Xj( t \ t  -  l ) - g ( r ( 0 ) }  (A3)

2 ( * |0  k E{[x(k) -£j (k\ i ) ]

[* (* )- i /(£ |/)]T|/ /(f + 1)} (A4)

and k,i <  t+  1. The smoother (A1)-(A3) uses the 
filtering solution given by

Xj ( t + \ \ t )  = A(r(t  +  l))xj(t\t) +  b(r(t + I)) (A5) 

Xj(t\t) =  Xj(t \ t \) +  K(t){z{t) 

- C ( r ( t ) ) X j ( t \ t - I ) - g ( r ( t ) ) }  (A6)

K(t)  = 2 ( r | f -  l)C T(r(?))

[ C( r ( t ) ) 2 ( t \ t -  l )C T(r(0 ) 

+ D(r(t))RDr ( r ( t ) ) r 1 (A7)

2 ( f | f -  1) =  l \ t -  l)A T(r(0 )

+ B(r( t ))ABT(r(t)) (A8)

2 ( r |0  =  2 ( ? |? -  l ) - ^ ( f ) C ( r ( 0 ) S ( ? | r -  1) . (A9)

The initial conditions for the above equations are

i , ( 0 | - l ) = i o (A 10)

2 (0 | -  1) =  P 0 (A ll)

since it has been assumed in Section II that jc(0) ~  
N(X0,P0).

Conditional Density Function

The conditional density function 
f {z( t+  1)|Zt,Ij(t+ 1)) is Gaussian; therefore, it suffices 
to calculate its mean zj(t + 111) and co variance 
S z(f+  110- We have

i j ( t + \ \ t )  =  E { z ( t + l ) \ Z „ I j ( t +  1)}

= C( r ( t +  l ) )M (r ( f+  l ) ) i / f | f )

+ M r ( r+ l ) )}  + g ( r ( / + l ) )  (A 12)

N

2 z(f+  1 lo  =  E{ [ z { t +  1) -  Z j ( t +  11/ ) ]  [ z ( t +  1)

-  Zj(t +  \ \ t ) } T \Z , ,I j( t  +  1)}

= C( r ( t +  l) )2 ( r  + \ \ t )CT{r(t +  1)) 

+ D( r ( t +  l ) )RDr (r(t +  1)) (A13) 

where S(? +  1 |f) is given by equations similar to (A8) 
and (A9).
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