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Introduction 

 

Multiple-input, multiple-output (MIMO) antenna systems such as the one 

depicted in Fig. 1 offer capacity benefits over their single-input, single-output 

(SISO) counterparts [1], thus attracting considerable current research.  MIMO 

performance depends on a wide range of parameters [1] including radiation 

efficiency, correlation [2], mutual coupling [3], matching efficiency and 

polarization misalignment [4].  No single simulation method has been described 

that includes each of these effects so critical to handset array designs.  This work 

synthesizes a comprehensive model to incorporate each of these effects.  In order 

to manage the complexity of such a model, the MIMO Transmission Equation is 

introduced—similar to the well-known Friis Transmission Equation. 

 

Comprehensive capacity simulations 

 

Capacity, the principle metric of MIMO systems, expresses the maximum rate at 

which information can be reliably transferred in a system and is a function of the 

channel matrix, H, in Fig. 1.  Assuming a narrowband scenario, H expresses the 

relationship between the transmit voltage vector, x = [x1, …, xm], applied to m 

transmit antennas and the receive vector, y = [y1, …, ym], at n receive antennas: 

 

y = Hx.       (1) 

 

Without significant feedback from the receiver, the transmitter evenly divides 

power over m transmitters [1].  One is generally only interested in a statistical 

measure of this distribution, such as the average or ergodic capacity, CE: 
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where I is the identity matrix, the transmitted signal power is PT, the noise 

variance is 
2
, H

H
 represents the Hermitian of the channel matrix, H, and the 

nonsubscripted E{} represents the expectation operator. 

 

The effect of antenna efficiency on the channel matrix can be included as follows.  

Given i
th

 receive- and j
th

 transmit-antenna embedded radiation efficiencies, ecdr,i 

and ecdt,j, [5], one may represent the voltage relationships of (1) as: 
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where HL is a lossless channel matrix and H is expanded to include channel 

losses.  Ecdr and Ecdt are matrices of the antenna radiation efficiencies.  Essentially 

the same form of matrix multiplication can be used to include other losses in the 

channel, such as absorption by a user’s body.  Similarly, the average directivity 

and polarization alignment losses can also be computed on a per-element basis, 

yielding diagonal matrices DR and P from Fig. 1. 

 

 

Fig. 1  A general MIMO system model.  MR is the n x n impedance matrix describing the 

receive antenna array with efficiencies Ecdr, ecdr,i described at (3).  Rs is the spatial correlation 

of the signals impinging on the receiver—traditionally including the directivity and 

polarization effects expressed above as DR and P.  Corresponding matrices for the transmit 

array are subscripted with a T or t.  r̂  represents the orientation of the receiver.  Grouping 

designator, HLMU, represents a lossless, matched, uncoupled channel matrix and H 

represents a complete system-channel matrix. 

To comprehensively model H, one may combine (18), (37) and (38) from [3] and 

add missing effects.  We start with characteristic impedance, Z0, scattering 

parameters of the unloaded transmit and receive arrays, STT and SRR, and channel 

scattering matrix, SRT.  Following [3], we let S11 and S21 represent a selected 

matching and transmission circuit and use far-field patterns for the i
th

 receive 

antenna, Ei
R
(AOA), and a trans-impedance form [3] for the j

th
 transmit antenna, ej

T
 

(AOD), as a function of angle-of-arrival and -departure (AOA) and (AOD).  The 

dependence of capacity on receive array orientation is included by making the 

dependence of the receive gain pattern on the orientation of the receiver, ,r̂  

explicit as ✭ ✌r̂,AOAE R
i  and accounting for polarization loss as the dot product 
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between this quantity and the unit vector describing the polarization of the 

impinging signal, Tp̂ [5].  The influence of the channel on channel-system 

capacity is expressed as a summation of Np plane waves where the k
th
 plane wave 

has complex gain (path loss and phase shift) k, and angles of arrival and 

departure, AOAk and AODk.  Receive and transmit antenna efficiencies, Ecdr and 

Ecdt, are incorporated from (3).  Thus, the channel matrix, H, can be expressed as:  
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where the grouping designators MR, MT, Ecdr, Ecdt and H in (4) correspond to those 

in Fig. 1 and L is a loss term with LL
H
 = I-SRRSRR

H
 to account for antenna effective 

area.  The form of (4) begins to show the power of defining the interrelationship 

of channel and antenna effects in a simple linear form.  Single-input, single-output 

(SISO) systems can be represented by the Friis power transmission equation [5]: 
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where receiver descriptors are power, Pr, antenna reflection coefficient, r, 

radiation efficiency, ecdr, directivity, Dr(AOA) and unit polarization vector, rp̂ , of 

the gain pattern in the direction of the angle of arrival, AOA.  Corresponding 

terms are designated with a subscript “t” for transmit parameters.   is the 

wavelength at the carrier frequency, and R is the separation of the two antennas in 

a line-of-sight (LOS) configuration.  Additional loss terms such as loss in the 

human body, atmospheric attenuation, etc. can also be added to this equation.  In a 

SISO system, Pr = yy
H
 and (4) reduces to (5).  Otherwise, the Friis equation does 

not accommodate multiple impinging signals of varying path length, path loss, 

angular spread and phase shift. 

 

Decomposing the capacity budget 

 

The singular value decomposition HH
H
 = U HU

H
 helps indicate when (2) can be 

considerably simplified: 
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   (6) 

Thus, if the condition iPT/(m
2
) >> 1 holds for all eigenvalues, 1 … n, of HH

H
, 

one can ignore the contribution of I in (2).  Then, recognizing the concavity of log 
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|A| and applying Jensen’s inequality, Loyka points out that the expected value of 

the capacity function given in (7.10) is bounded by the capacity function applied 

to the expected value of its argument [2].  That is if E{HLMUHLMU
H
} = RLMU, 

where RLMU is the signal correlation matrix, then the corresponding term in (7.10) 

is bounded as E{log2|HLMUHLMU
H
|}  log2|RLMU|.  The bound can be shown to be 

relatively tight over a wide range of antenna arrays [4].  This bound and the 

removal of I as previously discussed, allows (6) to be decomposed to:  

 

��✁��✂✄�✁�✂✄��✁��✂✄
�� ✁�� ✂✄

��✁��✂✄�✁�✂✄ ncorrelatio
channel

LMU

ydirectivit
ddistribute

n

i
i

onpolarizati

n

i
i

matching

H
RR

efficiency

n

i
i,cdr

pathloss
N,SNR

T
E

m

R
logDlogPLFlogMMlogelog

P
lognC 2

1
2

1
22

1
222 ✰✰✰✰✰☎☎

✆

✝
✞✞
✟

✠
✡ ☛☛☛

❂❂❂☞

, (7) 

 

where PLFi and Di represent the polarization loss factor and directivity of the i
th

 

receive antenna averaged over the angle-of-arrival distribution function (compare 

to [4]).  When (7) is valid—see (6), it offers advantages familiar to users of the 

Friis equation.  It illustrates how matching, radiation efficiency, SNR, directivity, 

and polarization at the receiver independently contribute to a system “capacity 

budget.”  Each antenna’s log-efficiency values are additive in the capacity budget. 

 

Conclusions 

 

Just as the Friis equation easily summarizes disparate contributions to a SISO 

power budget, the MIMO Transmission Equation decomposes the system capacity 

budget into its individual contributors.  Its accuracy allows for incremental design 

iterations without excessive measurement campaigns.  Indeed, its comprehensive 

nature allows for conclusions to be drawn about arrays with different element 

counts, types, orientations, radiation efficiencies and matching circuits on the 

basis of measurements involving very canonical, e.g. dipole arrays.  When arrays 

differ in multiple parameters, the MIMO Transmission Equation offers both the 

correct metric and the correct weight to evaluate each variation. 
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