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ABSTRACT 

This paper presents a fast, recursive least-squares (RLS) adaptive nonlinear 
filter. The nonlinearity is modelled using a second order Volterra series 
expansion. The structure presented in the paper makes use of the ideas of 
fast RLS multichannel filters and has a computational complexity of 
O(N3) multiplications. This compares with O(N6) multiplications required 
for direct implementation. Simulation examples in which the filter is 
employed to identify nonlinear systems using noisy output observations 
are also presented. Further simplification to the structure through a 
simplified model is discussed very briefly in the paper. 

I. INTRODUCTION 

In this paper we present a fast, recursive least-squares (RLS) adaptive 
nonlinear filter. The nonlinearity employed is that of a second order 
Volterra series expansion where the input output relationship is given by 
[15) 

N-! N-! 

y(n) = L a.x(n-i) + L b .. x(n-i) x(n-j), 
i:O 1 ij:O I,] (1) 

where x(n) and (y)n are the input and output sequences, respectively, N is 
the number of delays involved and ai; i=O, 1, oo., N-I, and bij; ij = 0, 1, 
oo., N-I are possibly time-varying linear and quadratic coefficients of the 
nonlinear filter. We will assume without loss of generality that the 
quadratic coefficients are symmetric (i.e., bij = bj,;)' 

System analysis using smaller order Volterra series has several 
applications. Several researchers have used such nonlinear system 
representations for nonlinear channel equalization and noise cancellation 
[3,4], studying nonlinear distortion in electronic devices and 
communication systems [6,14], performance evaluation of data 
transmission systems [1,9,12), process control [17) and several other 
applications. 

Possibly because of their high computational complexity, very little 
work has been done in adaptively tracking time-varying nonlinear system 
parameters. Many of the past work employ the least mean square (LMS) 
algorithm [3,4,7,8). In many applications, the slow convergence of the 
LMS algorithm is unacceptable. Continuously adaptive RLS second order 
Volterra flIters were studied in [5,18]. However, both the methods assume 
the structure derived for Gaussian input signals and consequently do not 
work well when the input probability distribution is non-Gaussian. The 
method presented here presents an exact, recursive solution to the least 
squares estimation problem and therefore will work well with any type of 
input signal. 

The rest of the paper is organized as follows. The next section 
introduces the fast RLS second order Volterra filter. The ideas used for fast 
RLS multichannel filters are employed in our derivations and they result in 
a computational complexity that corresponds to O(N3) multiplications per 
data sample. The direct solution of the problem requires O(N6) 
multiplications. This is a tremendous savings in computations. 
Simulation examples in which the filter is employed to identify a 
nonlinear system are presented in Section III. The final section contains 
the concluding remarks where we briefly discuss some further 
simplifications to the structure through approximate techniques and also 
using simpler models. 

This work was supported in part by the National Science Foundation under 
Grant MIP-8708970 and by a University of Utah Research Grant. 
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n. THE FAST RLS SECOND ORDER 
VOLTERRA FILTER 

Let den) and x(n) represent the reference and primary inputs, 
respectively, to the adaptive filter. Then the problem considered in the 
paper is that of finding an exponentially windowed, fast RLS solution for 
the linear and quadratic coefficients of the adaptive filter that minimizes the' 
cost function 

J(n)=l '" n-k (d(k) - d n (k)/ (2) 

k:O 

at each time instant n. In Eq. 2, ~ .(k) is obtained as 

N-! N-! N-! 

d (k) = '" ~ .(n) x (k-i) + '" '" b .. (n) x(k-i) x(k-j) (3) n £..J 1 £..J £..J 1,) 
i:O i:O j=i 

Note that we have made use of the assumed symmetry of the quadratic 
coefficients. (Comparing the right-hand sides of Eqs. 1 and 3, we note that 

~i(n) is an estimate of ai while ~i,jCn) is an estimate of 2bi,j if i;=j and of 

bi,j if i = j). Also 0 < A. ~ 1 is the parameter of the exponential window 
that controls the rate at which the adaptive filter tracks time-varying 
parameters. 

Let us define the input vector Xn (of size N(N+3)/2) at time n as 

Xn = [x(n), i (n), x(n) x(n-1), ... , x(n) x(n-N+ 1), x(n-1), 

2 2]T x (n-1), ... , x(n+1-N), x (n-N+1) (4) 

where (e)T denotes the transpose of (e). Also, define the coefficient vector 
Wn at time n as 

Wn = [~o(n), b o,o(n), b O,! (n), .... , b O,N-! (n), ~ 1 (n), 

b 1,1 (n) b 1,2(n), ... , ~ N-! (n), b N-!,N-l (n)]. (5) 

Then, the least-squares problem under consideration is to find at each time 
n, the optimum coefficient vector Wn that would minimize the cost 
function 

J(n) = t ",n-k[ d(k) -W~~] 
k:O (6) 

It is easy to show that the optimal solution to the problem is given 
by 

W =n-lp 
n,opt n n (7) 

where 

(8) 

and 
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(9) 

Direct evaluation of this solution requires O(N6) multiplications at each 
instant. Even when the block Toeplitz nature of Q is taken into account, 
this requires O(N4) multiplications per sample. Previous attempts at 
simplification of the computational complexity have been through 
approximate techniques [3,4,5,7,8,18]. The results that we present obtains 
the exact RLS solution using O(N3) multiplications. 

Due to page limitations, only sketches of the derivation will be 
given. The derivations are based on modifications to fast RLS 
multichannel filtering algorithms of [2,11]. 

Note from the definition of the input vector Xk in Eq. 4 that at time 
n+ 1, N+ 1 elements of Xk are replaced by new entries. Let vn+ 1 denote the 
vector formed by the new elements that appear in Xn+1 and let rn be the 
vector formed by the elements that are removed from Xn at time n+1. 
Define 

(10) 

and let L be a permutation matrix consisting of only ones and zeroes such 
that 

(11) 

Then, the algorithm in Table 1 constitutes the fast RLS second order 
Volterra filter. 

In the algorithm, An and Bn are the "predictors" for Vn and rn.1 and 
are of order (N+3)N/2 x (N+l), CN(n) is the gain vector of size (N+3)N/2 
and CN+l(n) is the augmented gain vector that has N+l additional 
elements. A count of the multiplications involved will show that the 
complexity is O(N3) multiplications per time instant and therefore this 
algorithm represents a substantial improvement over direct 
implementations in terms of computational complexity. 

1lI.EXPE~NTALRESULTS 

The system identification set up in Fig. 1 was used in the 
experimental results presented here. The results presented are ensemble 
averages of 20 independent runs using 2,000 samples each. The 
performance index used here is the norm of tap error vector evaluated 
separately for the linear and quadratic coefficients. They are defined as 

N-1 

~ I~ .(n) _ a.12 
L. 1 1 

IIV
A

(n)1I = 10 log_i=_O ___ _ 
N-l 

LI~12 
i:O 

and 

N-1 N-1 

~ ~ lb .. (n) -(2 - 8(i-j)) b. l L.L. 1,] 1,] 

IIV B(n)1I = 10 log _i=_O-,J,-'=l_' -:N-:--1:---:-N~-1-----

~~Ib.l L.L. 1,] 
i:O j:O 

where 8(i-j) is the Dirac-delta function defined as 

8(i-j) = { 
i=j 

o otherwise 

(12) 

(13) 

(14) 

In all our experiments, the filter was initialized using zero values for 
AO, BO, Co and WOo Further Yn(O) was chosen to be 1, and ClN(O) was 
chosen to be JlI where Jl is a positive constant and I is the (N+l) x (N+l) 
order identity matrix. It is possible to use exact initialization of the 
adaptive filter, but we did not do so because of the numerical problems 
associated with exact initialization. 

It is well known that fast recursive least-squares algorithms suffer 
from numerical instability. The algorithm presented in this paper is no 
exception. In the experimental works, we reinitialized the algorithm every 
time YN(n) became negative [2,10]. We have found that this approach 

works satisfactorily in many situations. Several other techniques for 
improving the numerical stability are also being studied now. 

Example 1: In this example the input signal to the experimental 
setup was obtained by processing a psuedo random, zero mean, Gaussian 
sequence with unit variance with a low pass filter. The resulting primary 
input sequence to the adaptive filter had an eigenvalue spread that was 
greater than 400. The system to be identified was a second order Volterra 
system with nine delays (10 linear coefficients ai; i = 0.1, ... 9 and 100 
quadratic coefficients bij; i,j = 0,1, ...• 9). The norms of the tap error vector 
are plotted in Figs. 2a and 2b for signal to noise ratios of 10, 20 and 30 
dB. The forgetting factor A. used in this experiment was 0.989. We can 
notice that the adaptive filter performs very well in this application even 
for those cases where the SNR is relatively low. 
~: In this example we consider identifying the coefficients 

of a second order Volterra system with three delays. The primary input 
sequence to the adaptive filter is a sum of two sinusoids. There are several 
applications in which it is required to predict the output of a nonlinear 
system when the inputs are sinusoidal. The results presented in Figs. 3a 
and 3b indicate that the fast RLS second order Volterra filter works well 
even when the spectral contents of the primary input signal exist only at 
discrete frequeIfies. 

IV. CONCLUDING REMARKS 

In this paper, we presented a fast. RLS second order Volterra filter. 
Exploiting the ideas used for developing fast RLS multichannel linear 
filters, we were able to obtain an adaptive filter structure that requires 
O(N3) multiplications per sample. This complexity represents a 
substantial saving over direct implementations. The experimental results 
presented showed that the algorithm works well for different types of input 
signals. Further, by appropriate initialization of the algorithm and also 
reinitializing the filter every time '¥N(n) became negative, we were able to 
mitigate the effects of numerical instability associated with the algorithm. 
Further studies on the properties of the algorithm are required and are being 
done by the authors. 

Several simplifications to the structure are also being studied now. 
One of them include using a simplified model consisting of a squarer 
followed by a linear system for the nonlinearity. This is a simple case of 
the problem discussed in [13] and requires only O(4N) multiplications per 
data sample. Preliminary results have been very encouraging. Use of 
approximate predictors in the filter structure is another topic that is being 
investigated. 
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Figure 1. Block diagram for experimental set up 
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Table 1. Fast RLS Second Order Volterra Filter 

llN(n) = v + AT 1 X 
n n- n-l 

}N(N+3)J2 vector 

}N+l vector 

-I 

'YN(n) = [ 1 - ~(n) ~n] 'YN+l (n) 

~(n) = [ 1 - 'l'~n) ~n r {mn - Bn_l ~) 
T 

Bn = Bn_l - CN(n) 'l<r(n) 

T 
t:N(n) = den) - Wn _l Xn 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 
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Figure 2a. Norm of linear coefficients error vector for example 1 
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