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Abstract

As Web applications manipulate an increasing amount of 
XML, there is a growing interest in storing XML data in re
lational databases. Due to the mismatch between the com
plexity ofXML’s tree structure and the simplicity of flat re
lational tables, there are many ways to store the same doc
ument in an RDBMS, and a number ofheuristic techniques 
have been proposed. These techniques typically define fixed 
mappings and do not take application characteristics into 
account. However, a fixed mapping is unlikely to work well 
for all possible applications. In contrast, LegoDB is a cost- 
based XML storage mapping engine that explores a space of 
possible XML-to-relational mappings and selects the best 
mapping for a given application. LegoDB leverages cur
rent XML and relational technologies: 1) it models the tar
get application with an XML Schema, XML data statistics, 
and an XQuery workload; 2) the space of configurations is 
generated through XML-Schema rewritings; and 3) the best 
among the derived configurations is selected using cost es
timates obtained through a standard relational optimizer. In 
this paper, we describe the LegoDB storage engine andpro- 
vide experimental results that demonstrate the effectiveness 
ofthis approach.

1 Introduction

XML has become an important medium for represent
ing, exchanging and accessing data over the Internet. As 
applications are processing an increasing amount of XML, 
there is a growing interest in storing XML data in relational 
databases so that these applications can use a complete set 
of data management services (including concurrency con
trol, crash recovery, and scalability) and benefit from the 
highly optimized relational query processors. Due to the 
mismatch between the complexity of XML's tree structure 
and the simplicity of flat relational tables, there are many 
ways to store the same document in an RDBMS, and a num
ber of fixed heuristic XML-to-relational mapping strategies

have been proposed [7, 10, 13, 17, 18]. However, a fixed 
mapping is unlikely to work well for all of the possible ac
cess patterns different applications may present. For ex
ample, a Web site may perform a large volume of simple 
lookup queries, whereas a catalog printing application may 
require large and complex queries with deeply nested re
sults. On the other hand, recent versions of commercial 
RDBMSs (see e.g., [22]) allow the developer to specify 
their own XML to relational mapping. Although more flexi
ble, this approach requires development effort, and the mas
tering of two complex technologies (XML and RDBMS). 
Moreover, it might be hard, even for an expert, to deter
mine a good mapping for a complex application. In this 
paper, we introduce a novel cost-based approach to XML 
storage design. We describe the design and implementa
tion of LegoDB, an XML storage mapping system based on 
this approach, that automatically finds an efficient relational 
configuration for a target XML application.

The three main design principles behind LegoDB are: 
cost-based search, logical/physical independence, and re
use of existing technology. Since the effectiveness of a one- 
size-fits-all mapping is improbable given the wide variety 
of XML applications (with data ranging from flat to nested, 
schemas ranging from structured to semistructured, and ac
cess patterns ranging from traditional SPJ queries to full- 
text or recursive queries), our first principle is to take the ap
plication into account. More precisely, given some param
eters describing the target XML application, the LegoDB 
engine explores various relational configurations in order to 
find the most efficient for the target application. Our sec
ond principle is to support logical/physical independence. 
Developers of XML applications should deal with XML 
structures and queries, and should not be concerned with 
the physical storage. The LegoDB interface is purely XML- 
based, and isolates the developer from the underlying stor
age engine—in our case, relational. Our third principle is to 
leverage existing XML and relational technologies when
ever possible. LegoDB relies on: 1) XML Schema and 
XQuery to model the target application, 2) XML Schema 
rewritings to generate a search space of storage mappings,
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and 3) a traditional relational optimizer to obtain cost esti
mates for these mappings. The paper makes the following 
contributions:

• We introduce the notion of physical XML Schemas (p- 
schemas) which extend XML Schemas in two significant 
ways: they contain data statistics and they can be easily 
mapped into relational tables. We define a fixed mapping 
from p-schemas to relational configurations, and the cor
responding mapping from XML documents to databases 
(Section 3).

We propose a set of p-schema rewritings: when succes
sively applied to ap-schema, these rewritings lead to a space 
of alternative storage configurations. Because the proposed 
rewritings exploit XML Schema structures, the resulting 
search space contains new storage configurations that have 
not be explored by previous approaches (Section 4).

We use a relational optimizer to obtain cost estimates for 
each storage configuration. For a given p-schema, we map 
XML data statistics into relational statistics, and an XQuery 
workload into SQL to provide as inputs to the optimizer.

• Due to the nature of XML Schema, p-schema transforma
tions may lead to a large (possibly infinite) search space. We 
present a simple greedy evaluation strategy that explores an 
interesting subset of this space (Section 4.2).

We give experimental results which show that LegoDB is 
able to find efficient storage designs for a variety of work
loads in a reasonable time. Our results indicate that our 
cost-based exploration selects storage designs which would 
not be arrived at by previously-proposed heuristics, and that 
in most cases, these designs have significantly lower costs 
(Section 5).

Our goal is to cover the main components of the mapping 
engine, but to keep with space limitations, discussions on 
statistics and query translation are omitted.

2 LegoDB Approach and Architecture

We motivate our approach with an XML applica
tion scenario inspired from the Internet Movie Database 
(IMDB) [12]. Figure 1(a) shows a Document Type Defini
tion (DTD) [3] for a subset of the IMDB information. The 
IMDB DTD contains a collection of shows, movie directors 
and actors. Each show can be either a movie or a TV show. 
Movies and TV shows share some elements (e.g., t i t l e  
and year of production), but there are also elements that 
are specific to each show type (e.g., only movies have a 
box_of f i c e ,  and only TV shows have season s). Fig
ure 1(b) shows an XML Schema description of the IMDB 
data written in the type syntax of the XML Query Alge

bra [8].1 A full description of DTD, XML Schema and 
XML Query Algebra types for the IMDB scenario, as well 
as a sample document, can be found in the full version of 
the paper [2].
DTDs vs. XML Schema Like the DTD, an XML 
Schema describes elements (e.g., show) and attributes (e.g., 
@type), and uses regular expressions to describe allowed 
subelements (e.g., imdb contains Show*, D irector* , 
Actor*). XML Schema also has specific features that are 
useful for storage. First, one can specify precise data types 
(e.g., S tr in g , In teg er ) instead of just text. Also, reg
ular expressions are extended with more precise cardinal
ity annotations for collections (e.g., {1,10} indicates that 
there can be between 1 to 10 aka elements for show). 
Finally, XML Schema supports wildcards: for instance,
* [AnyType ] indicates that the rev iew  element can con
tain an element with arbitrary name and content. As a result, 
XML Schema can specify parts of a schema for which no 
precise structural information is available.
XML Schema, p-schema, and storage mapping Another 
important difference between XML Schema and DTDs is 
that the former distinguishes between elements (e.g., a 
show element) and their types (e.g., the Show type). The 
type name never appears in the document, but can be used 
to classify nodes in the XML tree. LegoDB uses this clas
sification as the basis for storage mappings. Figures 2(b) 
and (c) illustrate a simple XML Schema to relational map
ping. Each XML Schema type groups a set of elements and 
attributes together. The LegoDB mapping engine creates a 
table for each such type (e.g., Show) and maps the contents 
of the elements (e.g., typ e, t i t l e )  into columns of that 
table. Finally, the mapping generates a key column that con
tains the id  of the corresponding element (e.g., Show_id 
column), and a foreign key that keeps track of the parent- 
child relationship (e.g., parent-Show column). Clearly, 
it is not always possible to map types into relations. For 
instance, the schema in Figure 2(a), although equivalent to 
that of Figure 2(b), indicates that the type Show can contain 
many rev iew  elements. These elements cannot be directly 
mapped into one column of a table. In Section 3, we intro
duce physical schemas as the subset of XML Schemas that 
can be directly mapped into relations.
Schema transformations There are many different 
XML Schemas that describe the exact same set of doc
uments: different regular expressions (e.g., ( a ( b | c * )  ) 
( (a , b)  | ( a , c * ) ) ) can be used to describe the same el

ement content; and the children of an element can be di
rectly included (e.g., t i t l e  in Show) or can be referred 
to through a type name (e.g., see the type Year). As our

1This notation captures the core semantics of XML Schema, abstract
ing away some of the complex features of XML Schema which are not 
relevant for our purposes (e.g., the distinction between groups and com- 
plexTypes, local vs. global declarations, etc).



< !D O C T Y P E  i m d b  [
<!E LE M E N T  i m d b  ( s h o w * ,  d i r e c t o r * ,  a c t o r * ) >

t y p e  IMDB =
i m d b  [ S h o w * ,  D i r e c t o r * ,  A c t o r *  ]

< !E LE M E N T  s h o w
( t i t l e ,  y e a r ,  a k a + ,  r e v i e w s * ,  

( ( b o x _ o f f i c e ,  v i d e o _ s a l e s )
| ( s e a s o n s ,  d e s c r i p t i o n ,  e p i s o d e * ) ) ) >  

< ! A T T L I S T  s h o w
t y p e  CDATA #R E Q U IR E D >

<!E LE M E N T  t i t l e  (# P C D A T A )>
<!E LE M E N T  y e a r  (# P C D A T A )>
<!E LE M E N T  a k a  ( # P C D A T A )>
<!E LE M E N T  r e v i e w  (# P C D A T A )>

<!E LE M E N T  b o x _ o f f i c e  ( # P C D A T A ) ) >
<!E LE M E N T  v i d e o _ s a l e s  ( # P C D A T A ) ) >

<!E LE M E N T  s e a s o n s  ( # P C D A T A ) ) >
<!E LE M E N T  d e s c r i p t i o n  ( # P C D A T A ) ) >  
<!E LE M E N T  e p i s o d e  ( n a m e , g u e s t _ d i r e c t o r ) >  
<!E LE M E N T  n a m e  (# P C D A T A )>
<!E LE M E N T  g u e s t _ d i r e c t o r  (# P C D A T A )>

t y p e  S h o w  =
s h o w  [ @ t y p e [  S t r i n g  ] ,  
t i t l e [  S t r i n g  ] ,
Y e a r ,  A k a {  1 , 1 0 } ,  R e v i e w * ,  
( M o v i e  | TV) ]

t y p e  Y e a r  =  y e a r [  I n t e g e r  ]
t y p e  A k a  =  a k a [  S t r i n g  ]
t y p e  R e v i e w  =  r e v i e w [  ~ [ S t r i n g

t y p e  M o v i e  =
b o x _ o f f i c e [  I n t e g e r  ] ,  
v i d e o _ s a l e s [  I n t e g e r  ]

t y p e  TV =
s e a s o n s [  I n t e g e r  ] ,  
d e s c r i p t i o n [  S t r i n g  ] ,  
e p i s o d e [  n a m e [  S t r i n g  ] ,

g u e s t _ d i r e c t o r [  S t r i n g  ] ] *

] ]

( a ) (b)

Figure 1. DTD and XML Schema for the IMDB documents

t y p e  S h o w  =
s h o w  [ @ t y p e [  S t r i n g  ] ,  

t i t l e  [ S t r i n g  ] ,  
y e a r [  I n t e g e r  ] ,  
r e v i e w s [  S t r i n g  ] * ,  
. . .  ]

(a) Initial XML Schema

t y p e  S h o w  =
s h o w  [ @ t y p e [  S t r i n g  ] ,  

t i t l e  [ S t r i n g  ] ,  
y e a r [  I n t e g e r  ] ,  
R e v i e w s * ,
. . .  ]

t y p e  R e v ie w s  =
r e v i e w s [  S t r i n g  ]

(b) P-schema

TABLE S h o w
( S h o w _ i d  I N T ,  

t y p e  S T R IN G ,  
t i t l e  S T R IN G ,  
y e a r  I N T  )

TABLE R e v i e w
( R e v i e w _ i d ,  

r e v i e w  S t r i n g ,  
p a r e n t _ S h o w  IN T  )

(c) Relational confi guration

Figure 2. XML Schema, p-schema, and relational configuration

TABLE S h o w
( S h o w _ i d  I N T ,  

t y p e  S T R IN G ,  
t i t l e  S T R IN G ,  
y e a r  I N T ,  
b o x _ o f f i c e  I N T ,  
v i d e o _ s a l e s  I N T ,  
s e a s o n s  I N T ,  
d e s c r i p t i o n  S T R IN G  )

TABLE R e v i e w
( R e v i e w s _ i d  I N T ,  

t i l d e  S T R IN G ,  
r e v i e w s  S T R IN G ,  
p a r e n t _ S h o w  I N T  )

TABLE S h o w
( S h o w _ i d  I N T ,  

t y p e  S T R IN G ,  
t i t l e  S T R IN G ,  
y e a r  I N T ,  
b o x _ o f f i c e  I N T ,  
v i d e o _ s a l e s  I N T ,  
s e a s o n s  I N T ,  
d e s c r i p t i o n  S T R IN G  )

TABLE N Y T _ R e v i e w s
( R e v i e w s _ i d  I N T ,  

r e v i e w  S T R IN G ,  
p a r e n t _ S h o w  I N T  )

TABLE R e v i e w s
( R e v i e w s _ i d  I N T ,  

t i l d e  S T R IN G ,  
r e v i e w  S T R IN G ,  
p a r e n t _ S h o w  I N T  )

TABLE S h o w _ P a r t 1
( S h o w _ P a r t 1 _ i d  I N T ,  

t y p e  S T R IN G ,  
t i t l e  S T R IN G ,  
y e a r  I N T ,  
b o x _ o f f i c e  I N T ,  
v i d e o _ s a l e s  I N T  )

TABLE S h o w _ P a r t 2
( S h o w _ P a r t 2 _ i d  I N T ,  

t y p e  S T R IN G ,  
t i t l e  S T R IN G ,  
y e a r  I N T ,  
s e a s o n s  I N T ,  
d e s c r i p t i o n  S T R IN G  )

TABLE R e v i e w s
( R e v i e w s _ i d  I N T ,  

t i l d e  S T R IN G ,  
r e v i e w  S T R IN G ,  
p a r e n t _ S h o w  I N T  )

(a) (b) (c)

Figure 3. Three storage m appings for sh o w s



Figure 4. Architecture of the Mapping Engine

mapping generates one relation for each type, the presence 
or absence of type names affects the resulting relational 
schema. In Section 4, we define a space of storage con
figurations by introducing rewritings that preserve the se
mantics of the schema, but yield different storage configu
rations.
Cost-based evaluation of XML storage Figure 3 shows 
three possible relational storage mappings that are gener
ated, from the schema in Figure 1, by our transformations. 
Configuration (a) results from inlining as many elements 
as possible in a given table, roughly corresponding to the 
strategies presented in [18]. Configuration (b) is obtained 
from configuration (a) by partitioning the Reviews table 
into two tables: one that contains New York Times reviews, 
and another for reviews from other sources. Finally, con
figuration (c) is obtained from configuration (a) by splitting 
the Show (Show_Partl) or TV shows (Show_Part2). 
Even though each of these configurations can be the best 
for a given application, there are cases where they perform 
poorly. The key remark that justifies the LegoDB approach 
is that one cannot decide which of these configurations will 
perform well without taking the application (i.e., a query 
workload and data statistics) into account.

For instance, consider the following XQuery [5] queries:
Q 1 :
FOR $ v  i n  i m d b / s h o w  
WHERE $ v / y e a r  =  1 9 9 9  
RETURN ( $ v / t i t l e ,  $ v / y e a r  

$ v / n y t _ r e v i e w s )

Q 2 :
FOR $ v  i n  i m d b / s h o w  
RETURN $ v

Q 3 :
FOR $ v  i n  i m d b / s h o w  
WHERE $ v / t i t l e  =  c3  
RETURN $ v / d e s c r i p t i o n

Query Q1 returns the title, year, and the New York Times 
reviews for all 1999 shows and query Q2 publishes all the 
information available for all shows in the database. Queries 
1 and 2 are typical of a publishing scenario (i.e., to send 
a movie catalog to an interested partner). Query Q3 re
trieves the description of a show based on the title, and 
query Q4 retrieves episodes of shows directed by a particu
lar guest director c4. Queries 3 and 4 contain selection cri

teria and are typical of interactive lookup queries, such as 
the ones issued against the IMDB Web site itself. We then 
define two workloads, Publish and Lookup, where Publish 
= {QI : 0.4, Q2 : 0.4, Q3 : 0.1, Q4 : 0.1} and Lookup

, where each
workload contains a set of queries and an associated weight 
that reflects the importance of each query for the applica
tion. The following table shows the cost, as estimated by 
the LegoDB optimizer, for each query and workload, when 
run against the storage configurations shown in Figure 3. 
(These costs are normalized by the costs of Storage Map 1.)

Storage Map 1 
(Fig 3(a))

Storage Map 2 
(Fig 3(b))

Storage Map 3 
(Fig 3(c))

Q1 1.00 0.83 1.27
Q2 1.00 0.50 0.48
Q3 1.00 1.00 0.17
Q4 1.00 1.19 0.40
Publish 1.00 0.75 0.75
Lookup 1.00 1.01 0.40

It is important to remark that only the first one of the 
three storage mappings shown in Figure 3 can be generated 
by previous heuristic approaches (of which we are aware). 
However, this mapping has significant disadvantages for the 
workloads we considered. First, due to its treatment of 
union, it inlines several fields which are not present in all 
the data, making the Show relation wider than necessary. 
Second, when the entire Show relation is exported as a sin
gle document, the records corresponding to movies need not 
be joined with the E p isode tables, but this join is required 
by mappings 3(a) and (b). Finally, the (potentially large) 
D e s c r ip t io n  element need not be inlined unless it is fre
quently queried.
LegoDB architecture The architecture of the LegoDB 
mapping engine is depicted in Figure 4. Given an XML 
Schema and statistics extracted from an example XML 
dataset, we first generate an initial physical schema (PS0). 
This physical schema and the XQuery workload are then 
input into the Query/Schema Translation module, which in 
turn generates the corresponding relational catalog (schema 
and statistics) and SQL queries that are input into a rela
tional optimizer for cost estimation. Schema transforma
tion operations are then repeatedly applied to PS0, and the

Q 4 :
FOR $ v  i n  i m d b / s h o w
RETURN
< r e s u l t >

{ $ v / t i t l e ,
$ v / y e a r ,
(FOR $ e  I N  $ v / e p i s o d e  
WHERE

$ e / g u e s t _ d i r e c t o r  =  c 4  
RETURN $ e )

< / r e s u l t >



process of Schema/Query translation and cost estimation is 
repeated for each transformed PS until a good configuration 
is found.

scalar type s ::
physical scalar ps  ::

named type n t  ::

optional type ot  ::

physical type

schema item 
schema

I n t e g e r |  S t r i n g  B o o le a n  
p s< # s ize ,

# r a o i ,  # d i s t in c t s  >
X 
n t  | n t  
0

,
n t

I [ot]
,

()
n t

,
s

[ ]
,

()
t y p e  X  = p t  
schem a Sri =

type name 
choice 

empty choice 
repetition 

named type 
optional scalar 

optional element 
optional sequence 

empty sequence 
named type 

optional type 
scalar 

element 
sequence 

empty sequence 
type declaration 

, . . .  e n d

Figure 5. Stratified XML Schema Types

3 From XML Schema to Relations

Physical XML Schemas We now introduce the notion of 
physical XML Schema (p-schema). P-schemas have the 
following properties: (i) they are based on XML Schema,
(ii) they contain statistics about the XML data to be stored, 
and (iii) there exists a fixed, simple mapping from p- 
schemas into relational configurations. As we have seen 
in the previous section, not all XML Schemas can be easily 
mapped into relations. However, by inserting appropriate 
type names for certain elements, one can satisfy condition
(iii) above, while preserving the semantics of the original 
schema. The Show type of Figure 2(a) cannot be stored di
rectly into a relational schema because there might be mul
tiple r e v ie w s  elements in the data. However, the equiv
alent schema in Figure 2(b), where a separate type name 
exists for that element, can be easily mapped into the re
lational schema shown in Figure 2(c). The p-schema also 
stores data statistics. These statistics are extracted from the 
data and inserted in the original physical schema PS0 dur
ing its creation. A sample p-schema with statistics for the 
type Show is given below:
t y p e  S h o w  =

s h o w  [ @ t y p e [  S t r i n g < # 8 , # 2 >  ] ,
y e a r [  I n t e g e r < # 4 , # 1 8  0 0 , # 2 1 0 0 , # 3 0  0>  ] ,  
t i t l e [  S t r i n g < # 5 0 , # 3 4 7 9 8 >  ] ,
R e v i e w * < # 1 0 >  ]

t y p e  R e v i e w  =
r e v i e w [  S t r i n g < # 8 0 0 >  ]

ing size (e.g., 4 bytes for an integer), minimum and max
imum values, and the number of distinct values. The no
tation String<#size, # d istin cts>  indicates the length 
of a string as well as the number of distinct values. The 
notation *<#count> indicates the relative number of r e 
v ie w s  elements within each element of type Show (e.g., 
in this example, there are 10 reviews per show).
Stratified physical types The main difficulty in defining 
p-schemas is to make sure the type structures allow an easy 
mapping into relations. For that purpose, we introduce the 
notion of stratified physical types, adapted from the original 
syntax for types of [8]. The grammar for stratified phys
ical types is shown on Figure 5. This grammar contains 
three different productions for types: named, optional, 
and physical types). Each production refers to the previ
ous one, ensuring that type names are always used within 
collections or unions in the schema. Physical types con
tain only singleton elements, nested singleton elements, and 
optional types. Optional types are used to represent op
tional nested elements. Finally, named types only contain 
named types and ensure that complex regular expressions 
(such as union and repetition) do not contain nested ele
ments.
Mapping p-schemas into relations Assuming the above 
stratified types, mapping a p-schema into relations is now 
straightforward:

Create one relation for each type name .
For each relation , create a key that will store the node 

id of the corresponding element.
• For each relation R t , create a foreign key To_PT_Key to 
all relations such that is a parent type of
• A column is created in R t  for each sub-element of T that 
is a physical type.
If the data type is contained within an optional type then 

the corresponding column can contain a null value.

The mapping procedure follows the type stratification: el
ements in the physical type layer are mapped to columns, 
elements within the optional types layer are mapped to 
columns that allow null values, and named types are used 
only to keep track of the child-parent relationship and for 
the generation of foreign keys. For a given p-schema , 
the relational schema defined by the above mapping is re
ferred to as . A detailed definition of the mapping of 
p-schemas into relations is given in [2].

It is noteworthy to mention that this mapping deals with 
recursive types, and maps XML Schema wildcards (i.e., 
elements) appropriately. Take for example the definition of 
the AnyElement in the XML Query Algebra:

The notation Scalar<#size, #min, #max, # d istin cts>  
indicates for each XML Schema datatype the correspond-

ty p e  A n y E lem en t = ~[ (A n y E le m e n t |A n y S c a la r )*  ] 
ty p e  A n y S c a la r  = S t r i n g  | I n t e g e r  | . . .



This type is valid for all possible elements with any con
tent. In other words, this is a type for untyped XML doc
uments. Note also that this definition uses both recursive 
types (AnyElement is used in the content of any element) 
and a wildcard ( ). Again, applying the above rules, one 
would construct the following relational schema:

TABLE S t r i n g  . . .  TABLE A n y E lem en t =
( __ d a t a  STRING, . . .  ( E le m e n t_ id  INT,

p a r e n t  INT ) . . .  t i l d e  STRING,
p a r e n t_ E le m e n t  INT )

This also shows that using XML Schema and the pro
posed mapping, LegoDB can deal with structured and 
semistructured documents in an homogeneous way. Indeed 
the AnyElement table is similar to the overflow relation 
that was used to deal with semistructured document in the 
STORED system [7].
Mapping XQuery queries Although query mapping is an 
important part of the optimization process, rewriting XML 
queries into their equivalent SQL counterparts is not the fo
cus of this paper and we omit any further discussion on 
this issue. We refer the interested reader to recently pro
posed mapping algorithms from XML query languages to 
SQL [4, 9].

4 Schema Transformations and Search

In this section, we describe possible transformations for 
p-schemas. By repeatedly applying these transformations, 
LegoDB generates a space of alternativep-schemas and cor
responding relational configurations.

4.1 XML transformations

Before we define the p-schema transformations, it is 
worth pointing out that there are important benefits to per
forming these transformations at the XML Schema level 
as opposed to transforming relational schemas. Much of 
the semantics available in the XML schema is not present 
in a given relational schema and performing the equiva
lent rewriting at the relational level would imply complex 
integrity constraints that are not within the scope of rela
tional keys and foreign keys. As an example, consider the 
rewriting on Figure 3(c): such partitioning of the Show ta
ble would be very hard to come up with just considering 
the original schema of Figure 3(a). On the other hand, we 
will see that this is a natural rewriting to perform at the 
XML level. In addition, working at the XML Schema level 
makes the framework more easily extensible to other non
relational stores such as native XML stores and flat files, 
where a search space based on relational schemas would be 
an obstacle.

There is a large number of possible rewritings applicable 
to XML Schemas. Instead of trying to give an exhaustive set 
of rewritings, we focus on a limited set of such rewritings 
that correspond to interesting storage alternatives, and that 
our experiments show to be beneficial in practice.
Inlining/Outlining As we pointed out in Section 2, one 
can either associate a type name to a given nested element 
(outlining) or nest its definition directly within its parent 
element (inlining). Rewriting an XML schema in that way 
impacts the relational schema by inlining or outlining the 
corresponding element within its parent table. Inlining is 
illustrated in below:

t y p e  TV =
s e a s o n s [  I n t e g e r  ] ,
D e s c r i p t i o n ,
E p i s o d e *

t y p e  D e s c r i p t i o n  =
d e s c r i p t i o n [  S t r i n g  ]

Inlining Transformation

Two conditions must be satisfied for this transformation to 
be permissible. First, the type name must occur in a position 
where it is not within the production of a named type (i.e., 
it must comply with the type stratification). Second, since 
this rewriting implies that one table is removed from the 
relational schema, the corresponding type cannot be shared.

Note that inlining is the basis of the strategies proposed 
in [18]. Inlining has some similarities with vertical parti
tioning. It reduces the need for joins when accessing the 
content of an element, but at the same time it increases the 
size of the corresponding table and the cost of retrieving in
dividual tuples. In the inlining example above, the benefits 
of inlining or outlining d e s c r i p t i o n  element within the 
TV type depend both on the frequence of accesses to this 
element in the workload as well as its length. Our search 
algorithm decides whether to outline or inline that element 
based on the cost of each derived configuration.
Union Factorization/Distribution Union types are often 
used to add some degree of flexibility to the schema. As 
queries can have different access patterns on unions, e.g., 
access either parts together or independently, it is essen
tial that appropriate storage structures can be derived. In 
our framework, we use simple distribution laws on regular 
expressions to explore alternative storage for union. The 
firstlaw ( ( a , ( b | c ) )  == ( a , b | a , c ) ) allows distribu
tion of a union within a regular expression and is illustrated 
in Figures 6(a) and (b). Note that the common part of the 
schema ( t i t l e ,  etc.) is now duplicated, while each part 
of the union is distributed. The second law ( a [ t 1 | t 2 ]  
== a [ t 1 ]  | a [ t 2 ] ) allows to distribute a union across an 
element and is illustrated in Figure 6(c). Here the distri
bution is done across element boundaries. Note that at the 
relational level, this results in the schema on Figure 3(c).

t y p e  TV =
s e a s o n s [  I n t e g e r  ] ,  
d e s c r i p t i o n [  S t r i n g  ] ,  
E p i s o d e *



t y p e  S h o w  =
( S h o w _ P a r t 1  | S h o w _ P a r t 2 )

t y p e  S h o w  =
s h o w  [ @ t y p e [  S t r i n g  ] , 

t i t l e [  S t r i n g  ] , 
y e a r  [ I n t e g e r  ] , 
A k a {  1 , 1 0 } ,
R e v i e w * ,
( M o v i e  | TV) ]

t y p e  M o v i e  =
b o x _ o f f i c e [  I n t e g e r  ] ,  
v i d e o _ s a l e s [  I n t e g e r  ]

t y p e  TV =
s e a s o n s [  I n t e g e r  ] ,  
d e s c r i p t i o n [  S t r i n g  ] ,  
E p i s o d e *

(a)

t y p e  S h o w  =
s h o w  [  ( @ t y p e [  S t r i n g  ] ,  

t i t l e [  S t r i n g  ] ,  
y e a r  [  I n t e g e r  ] ,
A k a {  1 , 1 0 } ,
R e v i e w * ,
b o x _ o f f i c e [  I n t e g e r  ] ,  
v i d e o _ s a l e s [  I n t e g e r  ] )  

| ( @ t y p e [  S t r i n g  ] ,  
t i t l e [  S t r i n g  ] ,  
y e a r  [  I n t e g e r  ] ,
A k a {  1 , 1 0 } ,
R e v i e w * ,
s e a s o n s [  I n t e g e r  ] ,  
d e s c r i p t i o n [  S t r i n g  ] ,  
E p i s o d e * )  ]

(b)

t y p e  S h o w _ P a r t 1  =
s h o w  [ @ t y p e [  S t r i n g  ] ,  

t i t l e [  S t r i n g  ] ,  
y e a r  [  I n t e g e r  ] ,
A k a {  1 , 1 0 } ,
R e v i e w * ,
b o x _ o f f i c e [  I n t e g e r  ] ,  
v i d e o _ s a l e s [  I n t e g e r  ]  ]

t y p e  S h o w _ P a r t 2  =
s h o w  [ @ t y p e [  S t r i n g  ] ,  

t i t l e [  S t r i n g  ] ,  
y e a r  [  I n t e g e r  ] ,
A k a {  1 , 1 0 } ,
R e v i e w * ,
s e a s o n s [  I n t e g e r  ] ,  
d e s c r i p t i o n [  S t r i n g  ] ,  
E p i s o d e *  ]

(c)

Figure 6. Union Distribution (XML Schema)

This transformation highlights the advantages of work
ing in the space of XML Schemas. The corresponding hor
izontal partitioning of the relational schema of Figure 3 
would not be easily found by a relational physical-design 
tool, since the information about the set of attributes in
volved in the union would have been lost.
Repetition Merge/Split Another useful rewriting exploits 
the relationship between sequencing and repetition in reg
ular expressions, by turning one into the other. The cor
responding law over regular expressions (a+ == a,a*)  
is illustrated below for the aka element in the Show type 
of Figure 1(b). Note that this transformation (followed by 
inlining the unrolled occurrence of aka into Show) is an 
alternative considered in [7].

t y p e  S h o w  = 
s h o w  [ @ t y p e [  S t r i n g  

t i 
t l e  [ S t r i n g  ] ,

y e a r [  I n t e 
g e r  ] ,

A k a { 1 , * }  ]

t y p e  S h o w  = 
s h o w  [  @ t y p e [  S t r i n g  

t i 
t l e  [  S t r i n g  ] ,

y e a r [  I n t e 
g e r  ] ,

A k a ,
A k a { 0 , * }  ]

Repetition Split Transformation

Wildcard rewritings Wildcards are used to indicate a set 
of element names that can or cannot be used for a given el
ement. We use ’ ~ ’ to indicate that any element name can 
be used, and ’ ~ ! a ’ to indicate that any name but a can be 
used. In some cases, queries access specific elements within 
a wildcard. In that context, it might be interesting to mate
rialize an element name as part of a wildcard as illustrated 
below:

t y p e  R e v i e w s  = 
r e v i e w [

( N Y T R e v i e w  
| O t h e r R e v i e w ) *t y p e  R e v i e w  = 

r e v i e w [
~ [  S t r i n g

]

t y p e  N Y T R e v i e w  = 
n y t [  S t r i n g  ]  

t y p e  O t h e r R e v i e w  = 
( ~ ! n y t )  [ S t r i n g

Wildcard Rewriting Transformation

This transformation can be thought of as distributing of 
the (implicit) union in the wildcard over the element con
structor (i.e.,~ = (nyt_reviews|  (~!nyt_reviews)) ). 
Here again this results in some form of non-trivial horizon
tal partitioning over relations. As we show in Section 5, this 
rewriting is useful if some queries access NYTimes reviews 
independently of reviews from other sources.
From union to options All of the previously proposed 
rewritings preserve exactly the semantics of the original 
XML schema. This last rewriting that was proposed in [18] 
does not have this property, but allows to inline elements of 
a union using null values. This relies on the fact that a union 
is always contained in a sequence of optional types (i.e., 
( t 1 | t 2 )  c  ( t1?,  t 2 ? ) ). This often results in tables 

with a large number of null values, but allows the system 
to inline part of a union, which might improve performance 
for certain queries.

4.2 Search Algorithm

The set of configurations that result from applying the 
previous schema transformations is very large (possibly in
finite, e.g., when applying repetition merge). For that rea
son, we use a greedy heuristic to find an efficient configu
ration. The exploration of the space of storage mappings is 
described in Algorithm 4.1. The algorithm begins by deriv
ing an initial configuration from the given XML 
Schema (line 3). Next, the cost of this config
uration, with respect to the given query workload 
and the data statistics is computed using the func
tion GetPSchem aCost which will be described in a mo
ment (line 3). The greedy search (lines 5-16) iteratively up
dates to the cheapest configuration that can be de
rived from using a single transformation. Specif
ically, in each iteration, a list of candidate configurations 
pSchem aList is created by applying all applicable trans



formations to the current configuration (line 7).
Each of these candidate configurations is evaluated using 

and the configuration with the smallest 
cost is selected (lines 8-14). This process is repeated until 
the current configuration can no longer be improved.

Algorithm 4.1 Greedy Heuristic for Finding an Efficient 
Configuration

P r o c e d u r e  G r e e d y S e a r c h  
Input: x S c h e m a  : XML s c h e m a ,

x W k ld  : XM L q u e r y  w o r k lo a d ,  
x S t a t s  : XML d a t a  s t a t i s t i c s  

O utput: p S c h e m a  : a n  e ffi cien t p h y s ic a l  s c h e m a  
1 b e g in

m i n C o s t  = oo;
p S c h e m a  = G e t I n i t i a l P h y s i c a l S c h e m a ( x S c h e m a )  
c o s t  = G e t P S c h e m a C o s t ( p S c h e m a ,  xW k ld ,  x S t a t s )

5 w h i l e  ( c o s t  m in C o s t )  d o  
m i n C o s t  = c o s t
p S c h e m a L i s t  = A p p l y T r a n s f o r m a t i o n s ( p S c h e m a )  
for e a c h  p S c h e m a '  p S c h e m a L i s t  d o

c o s t ’ = G e t P S c h e m a C o s t ( p S c h e m a ’, xW kld ,  x S t a t s )
10  if c o s t ’ <  c o s t  t h e n

c o s t  = c o s t '  
p S c h e m a  = p S c h e m a '  

e n d if  
e n d fo r  

1 5  e n d w h i l e
r e tu r n  p S c h e m a  

e n d .

We now outline how computes the
cost of a configuration given a , the XML Query
workload , and the XML data statistics .
First, is used to derive the corresponding re
lational schema. This mapping is also used to translate 

into the corresponding statistics for the relational 
data, as well as to translate individual queries in into
the corresponding relational queries in SQL. The resulting 
relational schema and the statistics are taken as input by a 
relational optimizer to compute the expected cost of com
puting a query in the SQL workload derived as above; this 
cost is returned as the cost of the given . Note
that the algorithm does not put any restriction on the kind 
of optimizer used (transformational or rule-based, linear or 
bushy, etc. [11]); though for the exercise to make sense it is 
expected that it should be similar to the optimizer used in 
the target relational system.

5 Experimental study

LegoDB prototype We have implemented the LegoDB 
components shown in Figure 4. Our initial prototype is 
limited to exploring inlining/outlining rules in the greedy 
search—the other XML transformations are explored sepa
rately. To evaluate the cost of alternative configurations in 
our mapping engine, we used a variation of the Volcano re
lational query optimizer [11], as described in [14]. This re
lies on a cost model that takes into account number of seeks, 
amount of data read, amount of data written, and CPU time

for in-memory processing. Our cost model is fairly sophis
ticated and its accuracy has been verified by comparing its 
estimates with numbers obtained by running queries on Mi
crosoft SQL-Server 6.5 (see [14]).
Experimental Settings We use an XML Schema based 
on the data from the Internet Movie Database (IMDB)[12] 
which contains information about movies, actors and direc
tors. We compose workloads by drawing on two classes of 
queries: lookup queries and publishing queries. Lookup is 
representative of interactive SPJ queries, such as Find the 
alternate titles for a given show. Publishing queries are 
more document-oriented and return all available informa
tion about a particular element (or set of elements), for ex
ample List all shows and their reviews. Detailed statistics 
that include information about all elements (cardinalities, 
sizes, etc), as well as the XML schema and XQuery work
loads can be found in the full version of the paper [2].
Efficiency of Greedy Search In this experiment, we 
demonstrate the efficiency of the greedy search heuristic 
described in Section 4.2. We experimented with two varia
tions of the greedy search: greedy-so and greedy-si. In the 
greedy-so search, all elements in the initial physical schema 
are outlined (except base types) and during the search, inlin
ing transformations are applied. For greedy-si, all elements 
are initially inlined (except elements with multiple occur
rences) and during the search, outlining transformations are 
applied.

For the purpose of this experiment, we considered two 
workloads: Lookup, which contains five lookup queries, 
and Publish, which consists of three queries that publish 
information about shows, directors and actors. Figure 7 
shows the cost of the configurations obtained by greedy- 
so and greedy-si on successive iterations for each of these 
workloads. Each iteration took approximately 3 seconds.

An interesting observation is that greedy-so converges to 
the final configuration a lot faster than greedy-si for lookup 
queries, while the opposite happens for publish queries, i.e., 
greedy-si converges faster. The traversals made by lookup 
queries are localized. Therefore, the final configuration has 
only a few inlined elements. Naturally, greedy-so can reach 
this configuration earlier than greedy-si. On the other hand, 
since the publish queries typically traverse larger number 
of elements, the final configuration has several inlined el
ements. In this case, therefore, greedy-si can reach this 
configuration earlier than greedy-so. Also, the curves of
ten have a point after which the improvement between it
erations decreases considerably. This suggests that, as an 
optimization, we could stop the search as soon as the im
provement falls below a certain threshold.

As the graphs show, greedy-so has higher initial costs 
for both workloads since it leads to a large number of tables 
which must be joined to compute the queries. However, 
note that both strategies converge to similar costs (the final
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Figure 7. Cost at each greedy iteration

configurations are also similar). This trend was observed 
for all variations of schemas, statistics and workloads we 
experimented with. For simplicity of presentation, greedy- 
si is the search strategy used in the experiments below.

Sensitivity of configurations to varied workloads An
important feature of the LegoDB framework is that the stor
age is designed taking an application and its query workload 
into account. One interesting question is how the resulting 
configuration performs if the workload changes. For ex
ample, the search interface of IMDB offers users a fixed 
set of queries. However, the frequency of these queries 
may vary over time. For example, in the week before the 
Academy Awards, the frequency of queries about movies 
may increase considerably. Because in many instances it 
may not be feasible to re-generate a new configuration and 
re-load the data, it is important that a chosen storage con
figuration leads to acceptable performance even when the 
frequency of queries varies.

In order to assess the sensitivity of our resulting config
urations to changes in workloads, we created a spectrum 
of workloads that combined the lookup queries and publish 
queries in the ratio , where is the
fraction of lookup queries in the particular workload. Us
ing the same statistics and XML schema, we ran LegoDB 
for three workloads corresponding to and
0.75, resulting in the three configurations C[0.25], C[0.50] 
and C[0.75] attuned to the respective workloads. Next, we 
gathered these three resulting configurations and evaluated 
their costs across the entire workload spectrum; the cost of 
a configuration is defined as the average cost of process
ing a query on that configuration. We did a similar evalua
tion with the all-inlined configuration, C[ALL-INLINED]. 
For the sake of comparison, we also plotted a curve OPT 
giving, for each workload in the spectrum, the cost of the 
configuration obtained by LegoDB for that specific work
load. (Note that, in contrast to the other curves, OPT does 
not correspond to a fixed schema.) The results are shown in

Fraction of Lookup Queries in Workload

Figure 8. Sensitivity to workload variations

Figure 8.
Before discussing the results, it is important to under

stand how inlining affects the cost of a configuration with 
respect to a query workload. For queries that traverse the 
schema contiguously and access all related attributes, inlin
ing helps by precomputing the numerous joins that may be 
required during the traversal. On the other hand, inlining 
could be a bad idea for other kinds of queries, for example: 
(a) the query does limited, localized traversals and/or does 
not access all the attributes involved, and so does not ben
efit from the inlining but nevertheless pays the overhead of 
scanning wider relations; (b) the query has highly selective 
selection predicates — this could render a selection scan 
on the inlined wider relation more expensive than evalua
tion of the query by joining the filtered non-inlined leaner 
relations, especially in the presence of appropriate indexes; 
(c) the query involves join of attributes not structurally ad
jacent in the XML Schema (e.g., a c t o r  and d i r e c t o r )
— since inlining causes respective relations to widen due 
to the inclusion of several additional attributes not required 
in the join, the join is significantly more expensive than in 
the case of other configurations. These two opposing fac
tors lead to the possibility of different inlining decisions for
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Figure 9. Union distribution vs. all-inlined

different workloads, each optimal in a certain region in the 
spectrum.

Overlap between the curves for C[0.25] and C[0.75] with 
the curve for OPT in the graph suggests that we can parti
tion our spectrum into two regions: the region defined by 

and the region defined by such
that C[0.25] is the optimal configuration for all workloads 
in the former region and C[0.75] is the optimal configura
tion for all workloads in the latter (or near enough). More
over, the curves for C[0.25] and C[0.75] cross at a small 
angle. This further implies that even if the two workloads 
lie in different regions but are not too distant, the optimal 
configurations for the two are close enough in cost. This 
shows that the configurations found by LegoDB are very 
robust with respect to the variations in the workloads.

At the extremes of the spectrum, however, we found a 
significant difference in performance of the C[0.25] and 
C[0.75]. Since these two configurations are based on 
slightly different inlining decisions, we see that both publish 
and lookup queries are sensitive to these decisions, and that 
inlining is indeed an important transformation. However, 
C[ALL-INLINED] that includes all the inlining decisions 
in the above configurations (and some more) performed two 
to five times worse than optimal. This demonstrates that 
beyond a point, the overheads due to inlining significantly 
outweigh any benefits.

In summary, the above analysis clearly demonstrates that 
the cost-based approach of LegoDB leads to configurations 
that are not only 50% to 80% less costly than the rule-of- 
the-thumb approach of ALL-INLINED, but also are very 
robust with respect to the variations in the workloads.
Union Distribution In order to measure the effective
ness of union distribution we compared the costs of vari
ous queries for the configurations illustrated in Figure 3(a) 
(all elements inlined) and Figure 3(c) (where union is dis
tributed over show).

As shown on Figure 9, the configuration obtained 
through union distribution has lower costs for all queries.

Total reviews 
Query 
NYT perc.

10,000 100,000
QI Q2

inlined wild inlined wild
50% 5.42 6.3 48 26.3
25% 5.42 5.1 48 15
12.5% 5.42 4.4 48 9.4

Table 1. Wildcard-transformed vs. all-inlined

As we explained in Section 4, the union distribution is 
equivalent to horizontally partitioning over the Show ta
ble into a table that contains information about movies, 
and a table that contains information about TV shows. 
Because the new tables are smaller, queries that refer 
to elements in only one of those tables will be cheaper. 
These results are rather intuitive. A less intuitive find
ing is that even queries that access elements from both 
movies and TV shows can become cheaper under the union 
rewriting. For instance, the following selection query

that returns the title and 
description of a given show, must be rewritten as the 
union of two queries: ^ HUetbox_o}}ice{aHtie=cmovies) and 
n t i t i e -4 e - s c r i p t i o n { v t i t i e - = c t v -shows) over the transformed 
schema. Not only does each subquery operate on tables 
with fewer tuples, but these tables are also narrower which 
reduce the cost of selection.
Repetition Split Another transformation we considered 
in Section 4 is splitting repetitions. The effectiveness of 
such a transformation is highly dependent on the charac
teristics of the data and on the query workload. Consider 
for example two queries: a lookup query that finds all of 
the alternate titles (akas) for a given show title; and a pub
lishing query which retrieves all information for all shows. 
The costs for these two queries under the All Inlined and 
the Repetition-Split transformed configurations for a varied 
number of total akas are given in Figure 10. For this exam
ple, the main effect of the Repetition Split transformation 
is that it reduces the size of the Aka table. As a result, the 
cost reduction is bigger for the publishing query—since the 
lookup query involves a selection on t i t l e  and this selec
tion can be pushed, the size of the Aka table will impact 
the show-aka join to a lesser extent than in the publishing 
query where no selection is performed. Also note that as the 
size of the Aka table increases (and becomes much larger 
than the Show table), the cost difference between the two 
configurations decreases.
Wildcards The wildcard’s rewriting proposed in Sec
tion 4 effectively partitions the set of elements tagged 
by the wildcard into two different sorts, corresponding to 
the wildcard labels that are present in the data. Con
sider for example the query Find the NYTimes reviews for 
shows produced in 1999. The equivalent queries under 
the configurations in Figure 3(a) and (b) are respectively:
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Figure 10. Repetition-split vs. all-inlined

n title ,data(.&year =1999(shows)  NJ <Jso„ c<,=’’NYT’’(re 'M'eu’s))
andUutie,data(o'year=i999(shows) xi n y t -review s ) . Table 1
shows the cost of these two queries for varying percentage 
of New York Times reviews, when the total number of re
views is 10,000 and 100,000. As expected, whereas the cost 
for Query 1 remains constant, the cost for Query 2 decreases 
with the size of the nyt_reviews  table.

6 Related Work

Recently, many approaches have been suggested for 
mapping XML documents to relations for storage [7,10,13,
17, 18, 19]. In [7], Deutsch, Fernandez and Suciu propose 
the STORED system for mapping between (schemaless) 
semi-structured data and the relational data model. They 
focus on a data mining technique which simultaneously 
solves schema discovery and storage mapping by identify
ing “highly supported”tree patterns for storage in relations. 
Even though they considered a cost optimization approach 
to the problem, they found it to be impractical, as in the 
absence of a schema, optimization is shown to be expo
nential in the size of the data. In contrast, we explore a 
space of storage structures but rely on the schema and statis
tics rather than directly mining the data. We use heuristics 
(e.g., the greedy approach) to avoid an exponential search, 
but still explore a variety of useful mappings. In fact, the 
LegoDB strategy may lead to substantially different config
urations than what is produced by the data-mining approach 
used by STORED. For example, we may break an extremely 
common pattern of data into multiple relations if the result 
is more efficient for the query workload.

In [18], Shanmugasundaram et al propose three strate
gies to map DTDs into relational schemas. The basic idea 
behind these mappings is to create tables that correspond 
to XML elements defined in a DTD, inlining as many sub
elements as possible so as to reduce fragmentation—multi
valued elements and elements involved in recursive associ

ations must be kept in separate tables. The three proposed 
mappings differ from one another in the degree of redun
dancy: they vary from being highly redundant (where an 
element can be stored in multiple tables), to containing no 
redundancy. While we do not consider mappings which du
plicate data, we share with [18] the use of the schema to 
derive a heuristically “good” initial storage mapping (e.g., 
for the greedy-si search strategy), and the use of a modified 
schema for the storage mapping language. Regardless of 
the particular strategy, the mapping process of [18] begins 
by simplifying an input DTD into a DTD that can be easily 
mapped into relations. Instead of simplifying away hard- 
to-map XML Schema constructs, LegoDB takes advantage 
of them (through the use of our schema transformations) 
to generate a space of mappings. And as we have shown 
in Section 5, mappings that result from the XML-specific 
transformations may lead to significantly better configura
tions for a given application than mappings based on an 
inline-as-much-as-possible approach.

Schmidt et al [17] propose a highly fragmented rela
tional storage model. Their experiments show that this ap
proach performs well on the main-memory-oriented Monet 
database, a result in stark contrast to the conclusions pre
sented in [18] where fragmentation and a large number of 
joins is identified as a key problem. These disparate per
formance results only emphasize the need for automated 
tools, like LegoDB, to determine the appropriate storage 
mapping for a given application and DBMS platform. Fi
nally, while the search space in our work does not include 
horizontal fragmentation of tables based on incoming paths, 
our rewriting rules can be extended to consider this style of 
transformation.

Florescu and Kossman [10] and Tian et al [20] com
pare the performance of several approaches to XML stor
age. Shimura et al [19] propose an inverted-list-style stor
age structure in which nodes are mapped to regions in the 
document, and paths are present as strings in a “Path” ta



ble. In all three of these cases, one or more fixed mappings 
are used, where we explore a space of storage mappings. 
Mappings from DTDs into nested schema structures of OO 
or OR/DBMS have been proposed [6, 13]. While Klettke 
and Meyer consider statistics and queries in the proposed 
heuristic mapping, no attempt is made to compare estimated 
costs for multiple mappings.

Several commercial DBMSs already offer some support 
for storing, querying, and exporting XML documents [22, 
15]; however, the user must still design an appropriate stor
age mapping.

While LegoDB is (to our knowledge) the first XML stor
age mapping tool to take advantage of cost-based optimiza
tion, similar approaches have been applied to problems in 
relational storage design, such as index selection (e.g., [16]) 
and view materialization (e.g., [1,21]) in physical optimiza
tion for relational DBMSs. Note that physical design tools 
are complementary to LegoDB, and can be applied to fur
ther optimize the relational schemas produced by our map
ping, either during the search process or simply on the final 
schema produced.

7 Conclusions

We have introduced LegoDB, a cost-based framework 
for XML storage. LegoDB explores a space of alternate 
storage configurations and evaluates the quality of each con
figuration by estimating its performance on an application 
workload. We make original use of XML Schema as a sup
port the description and exploration of new possible storage 
configurations. The LegoDB system isolates the applica
tion developer from the underlying storage engine by tak
ing XML Schemas, an XQuery workload and XML statis
tics as input. Our initial performance study indicates that 
XML storage performances can be significantly improved 
with such a cost-based approach. We consider this work 
as a first step towards a general purpose storage configu
ration engine for XML. As future work, we plan to adapt 
our approach to other storage platforms, extend the subset 
of XQuery we support, and possibly develop more efficient 
search strategies.
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