
DESIGNING PARALLEL SPECIFICATIONS IN CCS

Ken Stevens, John Aldwinckle, Graham Birtwistle, Ying Liu,
Department of Computer Science, University of Calgary, Canada.

Abstract

We describe a style of specifying concurrent sys­
tems based upon the parallel composition op­
erator of CCS and apply it to several asyn­
chronous hardware examples.

1 Introduction

In this paper we display a straightforward and flexible
style for writing down the specifications of concurrent sys­
tems in CCS. CCS [4, 5] is a process algebra developed by
Milner over the last 20 years. It permits object oriented
descriptions of system components. Within itself, aCeS
process may carry out a sequences of actions (using .),
choose non-deterministically from several courses of ac­
tions (using +), or synchronize with another agent (using
I). It is limited in scope in that it models interaction but
not functionality. On the positive side it is a very sparse
language with a very clean semantics. CCS scales hierar­
chically, and contains equational reasoning proof systems
for analyzing behaviours and equalities. It has been used
successfully to model and reason about network protocols
and self-timed hardware.

Petri net or state graph representations for control and
sequencing relations has been a traditional method for de­
signing hardware in both synchronous and asynchronous
disciplines. These pictures can be appealing because for
simple designs they are easily understood. They match
the intuition of the designer while showing ordering, par­
allelism, and causality between different signals. However,
these techniques do not scale well pictorially, and usu­
ally lack the formalism necessary to compose and analyze
complex systems of graphs for equality and behavioural
properties.

In Section 2 we quickly introduce the CCS notation.
Section 3 states our style of specification with an example.
In Section 4 we apply this style to two token rings.

2 Background

CSS builds from the agent (process or object) Nil which
can do nothing. From there CCS permits three ways of
building more interesting agents.

Prefixing.
The agent a.b.Nil can do an a action, then a b
action, and after that, nothing more. By con­
vention, we overline all output actions. Recursive
definitions are allowed; we can define a clock as:

Clock d;j tick. Clock

This clock ticks forever.

When describing asynchronous hardware, the dis­
tinction between input transitions (a) and output
transitions (b) is significant. We have enough no­
tation to describe a toggle:

Toggle d;j a.b.a.c.Toggle

After the first a input transition, the toggle outputs
a transition on b. After the second a input transition,
the toggle outputs a transition on c. This behaviour
cycle then repeats.

N on-deterministic choice +
The C element accepts inputs on a and b in any order
and then outputs on z. In CCS this is written

C d;j a.b.z.C + b.a.z.C

If the C element receives a transition on a, it evolves
into the agent b.z.C. If the C element receives a tran­
sition on b, it evolves into the agent a.z.C. If the C
element receives a transition on a and on b, it evolves
into one of the above agents non-deterministically.

For brevity, we adopt a convenient notational short­

hand and write the C element as C d;j (a.b + b.a).z.C

As a second example,

Lock d;j free.Lock + lock.unlock.Lock

can perform either a free action or a lock action.
After a free action it evolves into a Lock again. After
a lock action, it evolves into the agent unlock.Lockin
which state it can only perform an unlock action.

Parallel composition I
We use the I operator to allow concurrent operation
of agents. Parallel agents will be wired together and
synchronize by communicating. A communication
can occur when an action is an input to one agent
and an output to another, and both are enabled.

CCECE/CCGEI '93 0·7803·1443·3/93 $3.00 © 1993 IEEE 57.2

983

984

When a signal is hidden (syntactically via \{}), the
communication becomes local to those agents.

Suppose we wish to describe LC, a lockable C ele­
ment [1). When unlocked, this C element behaves
like the C element above. When locked, it will still
accept inputs, but will not output until unlocked. LC
is defined as the parallel composition of two agents -
LockC is solely concerned with inputting on a and on
b and tiring z only when it is safe to do so; Lock deals
with the lock/unlock interactions and keeps the flag
free 'waving' when it is in the unlocked state.

LockC d;j (a.b + b.a).free.z.C

Lock d;j free. Lock + lock.unlock.Lock

LC d;j (LockC I Lock) \ {free}

We shield the line free from the environment by hid­
ing (\{free}). Now whenever the LockC agent re­
quires a transition on free, the only place it can get
it from is the Lock element, and Lock cannot offer a
transition on free after a lock but before an unlock.

It is quite possible to give a specification which spells
out the state transitions one by one. Here is one:

LC d;j LCD

LCD d;J a.LCI + b.LC9 + lock.LC5

LCI d!:l b.LC2 + b.LC3 + lock.LC6

LC2 d;J lock.LC4 + lock.LC7 + z.LCO

LC3 d!:l lock.LC4 + z.LCO

LC4
d;U

unlock.LC3 + z.LC5

LC5 d!:l a.LC6 + b.LC8 + unlock.LCO

LC6 d;J b.LC7 + unlock.LCI

LC7 d;j unlock.LC2 + unlock.LC3

LC8 d;J a.LC7 + unlock.LC9

LC9
d;U

a.LC2 + a.LC3 + lock.LCS

Concurrent systems are notorious for the enormous num­
ber of states they can enter. The key observation is that
specifications spelled out in steps using the. and + op­
erators cannot avoid being long as they describe system
evolution state by state. Experience has shown that de­
scriptions written in terms of I can be very much shorter
(linear in the number of interactions) and easier to un­
derstand because they can present the structure of the
communications.

3 Specifying with the composition op­
erator

We take the well-known RGDA arbiter as our run­
ning example in this subsection. Given two users
of a resource both of which obey the protocol
NCS request grant CS done ack, the RGDA
arbiter ensures that only one will be in its critical section
at a time.

4

rl 91
d l (j)

RGDA
rz gz

dz a2

Figure 1: RGDA arbiter

Our proposed style has the following mechanical rules:

1. How many devices does this one connect to - name
an agent responsible for each interaction.
Two users: UI and U2 •

2. focus on each agent one by one and write down its
sequence of interactions with the device being spec­
ified

3. list the timing constraints
!J1.dl and [fi.dz must be mutually exclusive.

4. inject handshakes to enforce the necessary con­
straints

•. 91· dl .

•. "92. d2 .

••
o. (j).

O. a2.
O. S

5. complete the formal specification by composing the
agents and the constraints in parallel and hiding off
any internal handshake lines

(UI I U2 IS) \ {g,p}
where

UI
d!:l rl.gS.!J1.dl .pS .(j).UI

Uz
d!:l

r2 .gS.[fi.d2 .pS .a2 .U2

S d!:l gS.pS.S

Martin's distributed arbiters

Instead of designing a monolithic arbiter, we look instead
at a distributed arbiter, where the users are presumed to
be spatially well-separated.

Each user goes through the request, grant, done, ack pro­
tocol at its own node. The nodes are connected together
in a token ring and instead of contention between users,
after a request, the user has to wait until the token ap­
pears. Martin describes three variants on the theme of a
distributed arbiter in [3). Here are the first two.

Node21---..

Figure 2: Token ring

4.1 Perpetuum mobile

In this arbiter, when the token reaches a node and there
is a request, the token stays until the request is satisfied
and then moves on. If there is no request, the token moves
straight on. A deficiency with this design is that the token
is in motion when there are no requests and this wastes
energy.

We specify an individual node as a pair of agents oper­
ating in parallel.

IF d;j req.grant.done.ack.I F

TOl(d;j tin.tout.TOl(

1. IF plays the role of a user following the request,
grant, done, acknowledge protocol and

2. TOK plays the role of the token arriving, completing
a service if need be, and then moving on.

The timing constraints are:

1. req arrives first: service, then pass token on.
ack

req tin grant CS done
tout

2. tin arrives first: no request to serve.

tin tout

A more detailed specification is:

I F d~ req . .,..grant.done.O.ack + 1/1.1 F

TOl(d;j tin.(.,..O.tout.TOl(+ l/I.tout.TOl()

where there are three rendezvous points:

1. .,. - when the request is accepted prior to the token
arriving;

2. 0 - when the critical section is over and both IF
and TOl(may proceed independently

3. 1/1 - when the token arrives and there is no request,
so all there is to do is pass the token on.

Notice that when the token arrives, IF will either be in
state

• IF (no request as yet so that 1/1 is on offer), or

• "'.grant.done.O.ack.I F (a request has been ac­
cepted).

The translation into formal CCS is trivial:

IF

TOl(

NODE

req.ok.grant.done.ko.I F + no.I F

tin.(ok.ko.tout.TOl(+ no.tout.TOl()

(IF I TOl() \ {ok,no,ko}

4.2 Reflecting privilege

Alain Martin suggested a variant distributed arbiter
whose token does not cycle round the ring when there
is nothing to do, but remains at the node where it last
did some work until fetched. A drawback of this design is
the possibility of livelock.

req grant

done ack

NODE

lreq rreq

tout tin

Figure 3: Single node

The token goes anti-clockwise round the ring and requests
to fetch it go clockwise. The possible behaviours per node
are:

1. The node has the token:

• a request is accepted:
the firing sequence is req.grant.done.ack

• the token is requested on the left and passed
on. The firing sequence is lreq.tout

2. The node does not have the token:

• a request is accepted, the token is fetched on
the right, then the request is granted:
The firing sequence is
req.rreq.tin.grant.done.ack

• the token is requested on the left, is fetched on
the right, and is then passed on:
The firing sequence is lreq.rreq.tin.tout

As usual we specify a node in Martin's distributed ar­
biter network by interface processes IF and TOK, but this
time add in a state machine FSM, which when fired, will
fetch the token "on the right" .

IF d~ req.grant.done.ack.I F

TOl(d~ lreq.tout.TOl(

FSM d~ rreq.tin.FSM

985

986

The FSM will be designed to assure that this node has
the token before the TOK or IF processes may proceed.
If the token is not present when a request is accepted, the
FSM must fetch the token before allowing the requesting
process to proceed. When both interfaces request service,
the FSM arbitrarily decides whether to pass the token on,
or process the request.

The synchronizations are described by

IF d;j req .•. 0 .grant.done .•. ack.I F

FSM d;j •. fetch?O .• FSM

+ .·fetch?<.>.FSM

TOK d;j Ireq .•. <.>.tout.TOK

where FSM splits into

+ •. rreq.tin.<.>.So

+ •. <.>.So

in which there are five rendezvous points:

1. • - a user request arrives. The FSM is awakened
and will be in state SO (and will have to fetch the
token) or in state S1 (has the token).

2. 0 - the node has the token and the user request
may proceed. IF is woken up and the F SM lies
dormant until the transaction is completed.

3 .• - after the done signal is accepted, the FSM is
set to state SI and IF may send the ack.

4 .• - a token request arrives. The FSM is woken up
and will be in state SO (and will have to fetch the
token) or in state SI (has the token).

5. <.> - the node has the token and the token may be
passed out. TOK is woken up and the FSM is set
to state SO.

which are highlighted in Figure 4.

IF d!C,f req • ack IF

JJ.
• fetch FSM

FSM d;"f +
• fetch ~ FSM

11
TOK d;"f lreq • ~ tout TOK

Figure 4: FSM synchronizations

Here is this specification in formal CCS:

IF d~ req.gTo .pTo .grant.done.sTo.ack.I F

TOK d~ Ireq.gTI.pTI.tout.TOK

So d~ gTo .rreq.tin.pTo.sTo .SI

+ gTI.rreq.tin.pTI.So

SI
d;j gTo.pTa.sTo.Sl

+ gTI.pT1.SO

** node initialised to NO TOKEN **

No d;j (IF I TOK I So)
\ {gTa,pTo, sTo,gT1 ,pT!}

** node initialised to OWN TOKEN **

N! d~ (IFITOKISt)
\ {gTo,pTo, sTo,gT! ,pT!}

5 Conclusions

This paper presents a simple, intuitive method for map­
ping complex problem definitions into textual CCS spec­
ifications, representing signal relations, sequencing, and
parallelism. These specifications can benefit from the for­
mal methods of CCS while avoiding graphical or other
non-scalable representations. CCS is perhaps a bet­
ter model when comparing succinctness, scalability, and
equational reasoning.

For further advantages concerning reasoning about
specifications see the companion paper in these proceed­
ings [2].

6 Acknowledgements

This research is supported by Equipment and Operating
Grants from CMC and NSERC, and studentships from
AGT/SEED (JA), Hewlett Packard (KS) and The Al­
berta Microelectronic Centre (YL).

References

[1] G. Gopalakrishnan. The lockable c element. Technical
report, Comput.er Science Department, Universit.y of
Utah, 1992.

[2] Y. Liu, J. Aldwinckle, G. Birtwistle, and K. Stevens.
Testing the Consequences of Specifications in modal /J.

In Proceedings of Canadian Conference on Electrical
and Computer Engineering, Vancouver, 1993.

(3] A. Martin. Distributed Mutual Exclusion on a Ring of
Processes. Science of Computer Programming, 5:265-
276, 1985.

[4] R. Milner. Communication and Concurrency. Prentice
Hall, London, 1989.

[5] D. Walker. Introduction to a Calculus of Communi­
cating Systems. Technical Report ECS-LFCS-87-22,
Laboratory for the Foundations of Computer Science,
University of Edinburgh, 1987.

