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Abstract 

We describe a style of specifying concurrent sys­
tems based upon the parallel composition op­
erator of CCS and apply it to several asyn­
chronous hardware examples. 

1 Introduction 

In this paper we display a straightforward and flexible 
style for writing down the specifications of concurrent sys­
tems in CCS. CCS [4, 5] is a process algebra developed by 
Milner over the last 20 years. It permits object oriented 
descriptions of system components. Within itself, aCeS 
process may carry out a sequences of actions (using .), 
choose non-deterministically from several courses of ac­
tions (using +), or synchronize with another agent (using 
I). It is limited in scope in that it models interaction but 
not functionality. On the positive side it is a very sparse 
language with a very clean semantics. CCS scales hierar­
chically, and contains equational reasoning proof systems 
for analyzing behaviours and equalities. It has been used 
successfully to model and reason about network protocols 
and self-timed hardware. 

Petri net or state graph representations for control and 
sequencing relations has been a traditional method for de­
signing hardware in both synchronous and asynchronous 
disciplines. These pictures can be appealing because for 
simple designs they are easily understood. They match 
the intuition of the designer while showing ordering, par­
allelism, and causality between different signals. However, 
these techniques do not scale well pictorially, and usu­
ally lack the formalism necessary to compose and analyze 
complex systems of graphs for equality and behavioural 
properties. 

In Section 2 we quickly introduce the CCS notation. 
Section 3 states our style of specification with an example. 
In Section 4 we apply this style to two token rings. 

2 Background 

CSS builds from the agent (process or object) Nil which 
can do nothing. From there CCS permits three ways of 
building more interesting agents. 

Prefixing. 
The agent a.b.Nil can do an a action, then a b 
action, and after that, nothing more. By con­
vention, we overline all output actions. Recursive 
definitions are allowed; we can define a clock as: 

Clock d;j tick. Clock 

This clock ticks forever. 

When describing asynchronous hardware, the dis­
tinction between input transitions (a) and output 
transitions (b) is significant. We have enough no­
tation to describe a toggle: 

Toggle d;j a.b.a.c.Toggle 

After the first a input transition, the toggle outputs 
a transition on b. After the second a input transition, 
the toggle outputs a transition on c. This behaviour 
cycle then repeats. 

N on-deterministic choice + 
The C element accepts inputs on a and b in any order 
and then outputs on z. In CCS this is written 

C d;j a.b.z.C + b.a.z.C 

If the C element receives a transition on a, it evolves 
into the agent b.z.C. If the C element receives a tran­
sition on b, it evolves into the agent a.z.C. If the C 
element receives a transition on a and on b, it evolves 
into one of the above agents non-deterministically. 

For brevity, we adopt a convenient notational short­

hand and write the C element as C d;j (a.b + b.a).z.C 

As a second example, 

Lock d;j free.Lock + lock.unlock.Lock 

can perform either a free action or a lock action. 
After a free action it evolves into a Lock again. After 
a lock action, it evolves into the agent unlock.Lockin 
which state it can only perform an unlock action. 

Parallel composition I 
We use the I operator to allow concurrent operation 
of agents. Parallel agents will be wired together and 
synchronize by communicating. A communication 
can occur when an action is an input to one agent 
and an output to another, and both are enabled. 
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When a signal is hidden (syntactically via \{}), the 
communication becomes local to those agents. 

Suppose we wish to describe LC, a lockable C ele­
ment [1). When unlocked, this C element behaves 
like the C element above. When locked, it will still 
accept inputs, but will not output until unlocked. LC 
is defined as the parallel composition of two agents -
LockC is solely concerned with inputting on a and on 
b and tiring z only when it is safe to do so; Lock deals 
with the lock/unlock interactions and keeps the flag 
free 'waving' when it is in the unlocked state. 

LockC d;j (a.b + b.a).free.z.C 

Lock d;j free. Lock + lock.unlock.Lock 

LC d;j (LockC I Lock) \ {free} 

We shield the line free from the environment by hid­
ing (\{free}). Now whenever the LockC agent re­
quires a transition on free, the only place it can get 
it from is the Lock element, and Lock cannot offer a 
transition on free after a lock but before an unlock. 

It is quite possible to give a specification which spells 
out the state transitions one by one. Here is one: 

LC d;j LCD 

LCD d;J a.LCI + b.LC9 + lock.LC5 

LCI d!:l b.LC2 + b.LC3 + lock.LC6 

LC2 d;J lock.LC4 + lock.LC7 + z.LCO 

LC3 d!:l lock.LC4 + z.LCO 

LC4 
d;U 

unlock.LC3 + z.LC5 

LC5 d!:l a.LC6 + b.LC8 + unlock.LCO 

LC6 d;J b.LC7 + unlock.LCI 

LC7 d;j unlock.LC2 + unlock.LC3 

LC8 d;J a.LC7 + unlock.LC9 

LC9 
d;U 

a.LC2 + a.LC3 + lock.LCS 

Concurrent systems are notorious for the enormous num­
ber of states they can enter. The key observation is that 
specifications spelled out in steps using the. and + op­
erators cannot avoid being long as they describe system 
evolution state by state. Experience has shown that de­
scriptions written in terms of I can be very much shorter 
(linear in the number of interactions) and easier to un­
derstand because they can present the structure of the 
communications. 

3 Specifying with the composition op­
erator 

We take the well-known RGDA arbiter as our run­
ning example in this subsection. Given two users 
of a resource both of which obey the protocol 
NCS request grant CS done ack, the RGDA 
arbiter ensures that only one will be in its critical section 
at a time. 
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Figure 1: RGDA arbiter 

Our proposed style has the following mechanical rules: 

1. How many devices does this one connect to - name 
an agent responsible for each interaction. 
Two users: UI and U2 • 

2. focus on each agent one by one and write down its 
sequence of interactions with the device being spec­
ified 

3. list the timing constraints 
!J1.dl and [fi.dz must be mutually exclusive. 

4. inject handshakes to enforce the necessary con­
straints 

•. 91· dl . 

•. "92. d2 . 

•• 
o. (j). 

O. a2. 
O. S 

5. complete the formal specification by composing the 
agents and the constraints in parallel and hiding off 
any internal handshake lines 

(UI I U2 IS) \ {g,p} 
where 

UI 
d!:l rl.gS.!J1.dl .pS .(j).UI 

Uz 
d!:l 

r2 .gS.[fi.d2 .pS .a2 .U2 

S d!:l gS.pS.S 

Martin's distributed arbiters 

Instead of designing a monolithic arbiter, we look instead 
at a distributed arbiter, where the users are presumed to 
be spatially well-separated. 

Each user goes through the request, grant, done, ack pro­
tocol at its own node. The nodes are connected together 
in a token ring and instead of contention between users, 
after a request, the user has to wait until the token ap­
pears. Martin describes three variants on the theme of a 
distributed arbiter in [3). Here are the first two. 



Node21---.. 

Figure 2: Token ring 

4.1 Perpetuum mobile 

In this arbiter, when the token reaches a node and there 
is a request, the token stays until the request is satisfied 
and then moves on. If there is no request, the token moves 
straight on. A deficiency with this design is that the token 
is in motion when there are no requests and this wastes 
energy. 

We specify an individual node as a pair of agents oper­
ating in parallel. 

IF d;j req.grant.done.ack.I F 

TOl( d;j tin.tout.TOl( 

1. IF plays the role of a user following the request, 
grant, done, acknowledge protocol and 

2. TOK plays the role of the token arriving, completing 
a service if need be, and then moving on. 

The timing constraints are: 

1. req arrives first: service, then pass token on. 
ack 

req tin grant CS done 
tout 

2. tin arrives first: no request to serve. 

tin tout 

A more detailed specification is: 

I F d~ req . .,..grant.done.O.ack + 1/1.1 F 

TOl( d;j tin.(.,..O.tout.TOl( + l/I.tout.TOl() 

where there are three rendezvous points: 

1. .,. - when the request is accepted prior to the token 
arriving; 

2. 0 - when the critical section is over and both IF 
and TOl( may proceed independently 

3. 1/1 - when the token arrives and there is no request, 
so all there is to do is pass the token on. 

Notice that when the token arrives, IF will either be in 
state 

• IF (no request as yet so that 1/1 is on offer), or 

• "'.grant.done.O.ack.I F (a request has been ac­
cepted). 

The translation into formal CCS is trivial: 

IF 

TOl( 

NODE 

req.ok.grant.done.ko.I F + no.I F 

tin.(ok.ko.tout.TOl( + no.tout.TOl() 

(IF I TOl() \ {ok,no,ko} 

4.2 Reflecting privilege 

Alain Martin suggested a variant distributed arbiter 
whose token does not cycle round the ring when there 
is nothing to do, but remains at the node where it last 
did some work until fetched. A drawback of this design is 
the possibility of livelock. 

req grant 

done ack 

NODE 

lreq rreq 

tout tin 

Figure 3: Single node 

The token goes anti-clockwise round the ring and requests 
to fetch it go clockwise. The possible behaviours per node 
are: 

1. The node has the token: 

• a request is accepted: 
the firing sequence is req.grant.done.ack 

• the token is requested on the left and passed 
on. The firing sequence is lreq.tout 

2. The node does not have the token: 

• a request is accepted, the token is fetched on 
the right, then the request is granted: 
The firing sequence is 
req.rreq.tin.grant.done.ack 

• the token is requested on the left, is fetched on 
the right, and is then passed on: 
The firing sequence is lreq.rreq.tin.tout 

As usual we specify a node in Martin's distributed ar­
biter network by interface processes IF and TOK, but this 
time add in a state machine FSM, which when fired, will 
fetch the token "on the right" . 

IF d~ req.grant.done.ack.I F 

TOl( d~ lreq.tout.TOl( 

FSM d~ rreq.tin.FSM 
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The FSM will be designed to assure that this node has 
the token before the TOK or IF processes may proceed. 
If the token is not present when a request is accepted, the 
FSM must fetch the token before allowing the requesting 
process to proceed. When both interfaces request service, 
the FSM arbitrarily decides whether to pass the token on, 
or process the request. 

The synchronizations are described by 

IF d;j req .•. 0 .grant.done .•. ack.I F 

FSM d;j •. fetch?O .• FSM 

+ .·fetch?<.>.FSM 

TOK d;j Ireq .•. <.>.tout.TOK 

where FSM splits into 

+ •. rreq.tin.<.>.So 

+ •. <.>.So 

in which there are five rendezvous points: 

1. • - a user request arrives. The FSM is awakened 
and will be in state SO (and will have to fetch the 
token) or in state S1 (has the token). 

2. 0 - the node has the token and the user request 
may proceed. IF is woken up and the F SM lies 
dormant until the transaction is completed. 

3 .• - after the done signal is accepted, the FSM is 
set to state SI and IF may send the ack. 

4 .• - a token request arrives. The FSM is woken up 
and will be in state SO (and will have to fetch the 
token) or in state SI (has the token). 

5. <.> - the node has the token and the token may be 
passed out. TOK is woken up and the FSM is set 
to state SO. 

which are highlighted in Figure 4. 

IF d!C,f req • ack IF 

JJ. 
• fetch FSM 

FSM d;"f + 
• fetch ~ FSM 

11 
TOK d;"f lreq • ~ tout TOK 

Figure 4: FSM synchronizations 

Here is this specification in formal CCS: 

IF d~ req.gTo .pTo .grant.done.sTo.ack.I F 

TOK d~ Ireq.gTI.pTI.tout.TOK 

So d~ gTo .rreq.tin.pTo.sTo .SI 

+ gTI.rreq.tin.pTI.So 

SI 
d;j gTo.pTa.sTo.Sl 

+ gTI.pT1.SO 

** node initialised to NO TOKEN ** 

No d;j (IF I TOK I So) 
\ {gTa,pTo, sTo,gT1 ,pT!} 

** node initialised to OWN TOKEN ** 

N! d~ (IFITOKISt) 
\ {gTo,pTo, sTo,gT! ,pT!} 

5 Conclusions 

This paper presents a simple, intuitive method for map­
ping complex problem definitions into textual CCS spec­
ifications, representing signal relations, sequencing, and 
parallelism. These specifications can benefit from the for­
mal methods of CCS while avoiding graphical or other 
non-scalable representations. CCS is perhaps a bet­
ter model when comparing succinctness, scalability, and 
equational reasoning. 

For further advantages concerning reasoning about 
specifications see the companion paper in these proceed­
ings [2]. 
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