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Thermal conductivity and thermodynamics of phonons for an exactly soluble model of disorder 
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We calculate the exact thermal conductivity and the heat capacity of an insulator for which the lattice 
dynamics are given by a phonon gas in the presence of frozen-in disorder, in the special case of the 
"backward-scattering" model of impurity scattering. 

The thermal conductivity of an insulator is difficult to 
calculate theoretically; transport theory applied to pho
nons is notoriously inexact and inconclusive. Recently, 
however, the Kubo-type formulas for such systems have 
been formulated. 1 Nevertheless, these formulas are rath
er complicated and in general require summation of an 
infinite number of diagrams, so that in the process of 
evaluating them a certain number of simplifications and 
approximations have been found useful or necessary. 1 

The effects of scattering on the thermodynamics proper
ties are also of physical interest. One would like to know, 
in general, how the changes in thermodynamics proper
ties due to scattering effects correlate with the transport 
properties. 

In this paper we examine an extremely simple and ex
actly solvable "backward-scattering model", in which 
stabilizing anharmonicities are included. For this model, 
we can obtain the one- and two-body Green functions 
without any approximation. A similar model has been 
used successfully in the study of classical transport2 and 
in the electron gas. 3 We believe this to be the first appli
cation to phonons. The thermal conductivity and specific 
heat (or arbitrary other thermodynamic functions) are 
found exactly, in terms of normalized distribution func
tions P q (v q ) of the random scattering matrix elements v q' 
The result for the latter is 

c (T) = k B{32(2Vol)-1 

X 1: J dvqPq(vq ) 
q," 

X {il,,(vq )/[2 sinh({3il,,(vq )/2)] J 2 , 

(1) 

where (3= 1 IkB T, 1i= I, a = ±, and 

wqy2(2Ivql-l), vq <-I/2 

il+(vq)= wqyl +2v q, -1/2 <Vq < 1/2 

2wqYvq, vq > 1/2 , 

j
2WqYlvql, Vq < -1/2 

il_(vq)= WqY~, -1/2<vq <l/2 

wqY2(2vq-l), vq>1/2. 

(2) 

(3) 

Here Wq is the frequency of the qth normal mode, in 
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the absence of disorder. For perfect crystals, P q (v q ) ap
proaches a delta function 8(vq), and (1) reduces to the 
textbook formula for the lattice specific heat. The 
specific heat associated with disorder is c( T) -co( T), 
where 

co( T)=kB{32(Vol)-1 1: [wq/2 sinh({3wq/2)]2 . 
q 

The high-temperature limit of c (t) is obtainable in a 
straightforward manner. In the limit (3-'>-0, 
[wq/2 sinh({3wq/2)f-'>-{3-2, with f dv P(v)= 1 indepen
dent of the choice of P (v) and the sum over q restricted 
to the first Brillouin zone, Eq. (1) yields the usual 
Dulong-Petit value of kB per site in this limit. 

To analyze the low-temperature behavior, more infor
mation concerning P q (v q) is required, it is convenient to 
examine P near the two critical points, Ivi =0 and Ivi =t. 
For Ivi near 0, the normal modes are close to those of a 
perfect crystal, so that the resulting contribution in 
three-dimensions is a: T 3, the Debye law. But if there is a 
finite probability that Ivi ~ t, we find that under fairly 
general circumstances it is this region that dominates the 
low-temperature specific heat. 

For suppose P(v):=:: A (2Ivl-l )-Y, independent of q, in 
the neighborhood of Ivi :=::t. (The exponent r has to be 
< 1 in order for P to be integrable). With this ansatz it is 
a matter of some simple algebra to evaluate Eq. (1) in the 
low-temperature limit, and obtain c(T)a: AT2(1-y). For 
any - 1 < r < 1 this contribution dominates over the T3 
contribution from the region I v I :=:: O. A particular choice, 
r = t, yields a linear specific heat at low temperature, in 
conformity with experimental evidence covering a wide 
variety of glasses. 4 Thus, it appears that strong random
scattering matrix elements, Ivl > t, are somehow related 
to the thermodynamics properties of glasses. We shall 
see why and how this occurs in more detail, below. 

For the configurationally averaged thermal conductivi
ty (K) we find a somewhat similar-looking, yet funda
mentally different, result: 

(K)=kB {32(21T/3)(Vol)-1 1: Pq(O)wq 
q*O 

X {Sq 1[2 sinh({3wq/2) W , 
(4) 

where Sq =awq/aq is the sound velocity. The shape of 

8173 © 1992 The American Physical Society 



8174 MARIO I. MOLINA AND DANIEL C. MA TIIS 46 

P q (u q ) at 1 U q 1 =1=0 is irrelevant to the value of K. The for
mula (4) takes on a more conventional look if we identify 
P q (0) with the lifetime 1" q.5 In the glass phase, P q (u q ) = 0 

for 1 U q 1 < t; Eq. (4) predicts (K) = O. While it is true that 
amorphous solids have a far lower thermal conductivity 
than crystals, and this result goes in the right direction, it 
is truly extreme and is an artifact of the model. 

The significance of the critical points at 1 U q 1 = 0 and t 
can be understood as follows. For any 1 U q 1 > 0 the degen
eracy between standing waves a: sin(q'r) and a: cos(q'r) 
is lifted. Traveling wave packets, which transport energy 
coherently, can be constructed only if these waves are de
generate. Therefore, the (configurationally averaged) 
thermal conductivity must come about entirely from the 
unperturbed fraction of normal modes, those for which 
1 U q 1 = O. This explains the proportionality of (K) to 
Pq(u q =0) found in Eq. (4). 

The model and its motivation are described as follows. 
In any solid, the distribution of defects (vacancies, inter
stitials, foreign atoms, broken bonds, etc.) scatters plane
wave normal modes k into k', with matrix elements 
M k,k' Y wkwk" The M k,k' are governed by the nature, and 
spatial distribution, of the defects. Although a number of 
approximate theories such as the coherent potential ap
proximation have been developed to obtain the thermal 
properties of defective solids by averaging over the na
ture, and spatial distribution, of the defects, these 
methods have proved incapable of yielding the delicate 
phase relationships among eigenstates needed to evaluate 
the Kubo formulas. 

Now, the principal contributions in thermal transport 
come from the transmission and reflection coefficient of 
each plane-wave normal mode. Our simplified model as
sumes, essentially, that such coefficients may be treated as 
independent random variables. Specifically, we consider 
just th~ne backscattering matrix element 
Mk,-k Y wkw-k=Ukwk with the random matrix quantity 
Uk governed by a statistical distribution function Pk(Uk)' 
Because of the possibility that some 1 Uk 1 is too large, such 
that the normal modes k and - k become overcoupled 
and the renormalized frequency becomes complex, we in
troduce an additional quartic term into the model. The 
quartic term comes with a very small coefficient (compa
tible with a small Griineisen constant). Therefore, if 1 Uk 1 

is small, the quartic term has no effect but when 1 Uk 1 is 
sufficiently large that the modes become overcoupled, the 
quartic term allows a new equilibrium state to be 
achieved. Either way the thermodynamic and transport 
properties can be computed exactly for arbitrary values 
of the Uk'S and the results averaged over the P k ( Uk )'s. 
This is precisely what we now do. Because the procedure 
may be unfamiliar to those readers who are most con
cerned with the properties of glassy materials, we show 
all the steps in the calculations. 

The derivation now follows, and is quite straightfor
ward. The model Hamiltonian is H = H 0 + HI + H 2 
where, 

Ho= ~ (Wk/2)[-PkP- k+QkQ-d, (5) 
kz >0 

HI = ~ WkUk[Q~ +Q~k] , (6) 
kz >0 

H 2=r ~ Q2Q2 
~ ~ wk k -k' (7) 

kz >0 

and Pk=a-k-at and Qk=a-k+at. The Uk are in
dependent random potentials defined for half the k's. As 
H is hermitean, Uk = U _ k defines Uk over the remaining 
half. We will take Uk as real. The quartic term in the 
Hamiltonian has been added to insure stability when 
1 U q 1 > t· The anharmonic parameter S will be taken to be 
arbitrarily small or even zero, at the end of the calcula
tion. For values of 1 U q 1 < t, the anharmonic term is just a 
irrelevant perturbation and the limit s~O can be taken 
safely, leaving H as a quadratic form. However, when 
1 U q 1 > t, the anharmonic term proves crucial by shifting 
the position of each normal mode to a .!.lew, random, equi
librium position at distance of 0 (1 /v s). 

The "glassy phase" in the present model requires not 
just IUq 1=1=0, but IUq I> t. Equations (2) and (3) reflect the 
profound change in the spectrum as 1 U q 1 passes through 
this critical point. At the critical point, one set of normal 
modes softens critically. Beyond it, there is found a sym
metry breaking in each normal mode, and disorder be
comesJrozen-in at random in the amount Ifql a: l/v~. 

Let us recast the Hamiltonian in a useful form. First, 
rewrite H in terms of the bare operators I ak l: 

H = ~ wd a ta k + a ~ ka - k + 1) 
kz >0 

+( 1/2)uk[(at +a_k)2+(a ~k +ak )2] 

+s(at+a_k)2(a~k+ak)2l . (8) 

Now per0rm a rotation: ak=(1/v2)(b k+b_k ) and 
a -k =( 1/v2)(bk -b -k)' The Hamiltonian becomes 

H= ~ wk!btbk+b~kLk+l 
kz >0 

+( 1/2)ud(bk +bt )2+(b_k +b ~k )2] 

+(s/4)[(bk +bt )2-(Lk +b ~k )2]2l. (9) 

Now define Qk=(bk +bt)/v2; P k=(-i/V2)(bk 
- b t ). In terms of these, H becomes 

H= ~ wd(1/2)Pk2+(1/2)(1+2uk)Qk2 
k z >0 

+( 1/2)( 1-2uk )p'2 k +( 1/2)Q'2k 

+S[Qk2+p'2kfl. (10) 

Now interchange P and Q in the negative k sector: 
P '- k ~ - Q '-k; Q '- k - P'- k to restore symmetry. The 
Hamiltonian becomes 

H = ~ wk! (1 /2)P k
2 + (1 /2)(1 +2uk )Qk2 

k z >0 

+( 1I2)p'2 k +( 1 /2)( 1-2uk )Q~k 

+S[Qk2+Q'2k ]2l. (11) 
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Following Ref. 4, we perform the symmetry-breaking 
transformation Qk-+Qk+/k and Q~k-+Qk+l-k· 
This introduces a number of new contributions to H: (a) 
constant terms, 

(l/2) l: lUkl (l +2vk )/~ +(l- 2vk )/~k 
kz >0 

(b) linear terms, 

(112) l: lUkl [2( 1 + 2Vk )/k +SSftf~k lQk 
kz >0 

(c) quadratic terms, 

(l/2) l: lUd[I+2vk+12Sf~+4Sf~klQk2 
kz >0 

+ [1- 2vk + 12Sf~k +4Sf~ lQ~k 

+ 161tf -kQkQ~k 1 , 

and (d) cubic terms; 

(l/2) l: lUklSSfkQk3 +SSf -kQ~k +SSfkQkQ~k 
kz >0 

with only the quartic terms remained unaffected. 

(14) 

We determine the Uk,! -kJ by the stability require
ment that all linear terms vanish. This leads to 

[2(l +2Vk)+SSf~ +SSf~k l/k =0 , 

[2(l-2vk)+SSf~k+SSfUI -k=O. 

(16) 

(17) 

(l) For -+ < vk < +, the only solution is Ik =0= I -k' 
(II) for Vk<-t, we have l-k=O and 

Ik=V-(l+2vk)/4S, and (III) for Vk>+' we have 
Ik=O and I -k=Y( 2vk-1)/4S· 

Casel: -112<Vt <112 

Since all I are zero, the Hamiltonian reduces to 

H = l: lUkl (l 12)Pk2 + (l /2)( 1 + 2vk )Qk2 

k z >0 

which is easily diagonalized by a contraction-expansion 
transformation: Pk-+AtPk; Qk-+Ak1qk. Similarly for 
P~k,Q~k. The Hamiltonian becomes 

H = l: (1/2)lUk[A~~ +(l/A~)(l +2v k )q~ 
k z >0 

+A~tP~k +(1 /A~k)(l-2vk )q~t.l . 

(19) 

We choose A~=Yl+2vk and A~k=YI-2vk and the 
Hamiltonian becomes 

H = l: I (l/2)lUkyl +2Vk(P~ +q~) 
kz >0 

+(l/2)lUkYI-2vk(p~k+q~k)J. (20) 

Finally, if we define qk = (l /v2)( ak + at) and 
Pk =( -j /v2)(ak -at), then H takes the form 

+(l/2)(yl +2vk +yl-2vk)J . (21) 

CaseII: Vt < -1/2 

In this case I -k =0 and Ik =y -( 1 +2vk )/4S. After 
inserting these into Eqs. (12)-(15) and in the limit S-+O, 
the Hamiltonian becomes 

H = l: lUd -( 1 116S)(l-2Ivkl )2+(1 /2)[Pk2 +P/~k +2(2Ivkl-l)Qk2 +SIVk IQ~k lJ (22) 
kz >0 

As in case I, we perform a contraction-expansion 
transformation, getting A~ = Y 2( 21 vk 1-1) and 
A~k=2-v'fvJ. The Hamiltonian now reads 

H= l: lUtf-(1/16S)(I-2Ivklf 
kz >0 

+( 1 /2)y2(2Ivkl-l )(p~ +q~) 

+YIVkl(p~k +q~k >l . (23) 

H = l: lUtf y2(2Ivkl- l )(atak+ 1/2) 
kz >0 

+2YIVk I(a~ka_k + 112) 

-( 1I16S)(21vk 1-1 )2J 

Case III: Vt > 1-

(24) 

In terms of the diagonal operators I ak J, H takes the Following an analogous procedure to that of case II, 

~ ~-
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H= l: wk[2yvk(atak+1/2) H= l: [n+(vk)atak+fL(vk)a!..-ka-d , (26) 
k

z 
> D kz > D 

+ y2(2vk -1 )(a!..-ka-k + 1/2) 

-(1/16S')( 2vk-l)2l . (25) 

where n+(vk) and !L(vk) were defined in (2). Equation 
(1) follows directly from Eq. (26) and from 
c(T)=(Vol)-I(d(H)ldT) where (H) is the total inter
nal energy averaged over the (random) v's. 

In summary, omitting the constant term, the dynamic 
portion of the Hamiltonian is 

For the thermal conductivity we start from the Kubo 
formula for phonons: I 

kB (3 f 00 f/3 
K= 3V I l: l: Sk'SqWkWq dt dA(nk(O)nq(t +iA) , 

o b"D q*D D 0 
(27) 

where nk ==atak and ( ... ) indicate both thermal and configurational averages. After some algebra, K can be ex
pressed as 

ikB (3 f 00 

K= 3V I l: l: sk'SqWkWq dt t< [nk(t),nq(O)]} . 
o k*D q*D D 

(28) 

For the backward-scattering model, it is convenient to rewrite Eq. (28) as 

(29) 

and after averaging over configurations, 

(30) 

We need to expand the commutator in terms of the diagonal operators [ak l. Taking kz > 0 for definiteness, the trans
formation that diagonalize H takes the following form: 

where 

A± =( I±A~)/(23/2Ak) , 

B± =i (I±A~k)/(23!2A_k) . 

The A'S are 

2ylvkl vk<-1/2(CaseIl) 

A~= y~ IVkl < 1/2 (Case I) 

Y2(2vk-1) vk> 1/2 (Case III), 

Y2(2Iv k l-l) vk < -1/2 (Case II) 

A~k= yl-2vk IVk 1<1/2 (Case I) 

2YVk vk> 1/2 (Case III). 

The integral over vk can be divided into three portions: From - 00 to t, from t to t, and from t to + 00. 

Case I: In the middle region, where I vk I < t we get 

([nk(t)-n_k(t),nq(O)-n_q(O)]) =5qk(i/2)[c +( (atak) - (a!..-ka-k) )sin(W+ -n_)t) 

-c _ (1 + (atak) + (a!..-ka-k) )sin(W+ +n_)t)] , 

where c± == [(A~±A~k)/AkA-kf and (a~kak) = [exp«(3n±)_l]-l. 
Use of the identity limE~of;; dt t exp( -Et)sin(wt)= -1T5'(w) reduces Eq. (30) for K to 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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(38) 

But, 

{(d /du)( (atuk) - (a~ka_k») Vir. =0= -2Prok exp[prok]l( exp[prok]_1)2 , (39) 

so (K) reduces to 

( )
= 2rrkBp2 2 Pk(Uk=O)rokexp[prok] 

K 3Vol ~ Sk 2 . 
k >0 ( exp[prok]-l) 

z 

(40) 

Cases II and III: Iukl> l/2. Here Qk -Qk + fk and Q'---k -Q'---k + f -k' which implies, ak-ak +(I/2)(fk + f -k) 
and a -k-a-k +( 1 12)(fk - f -k)' With this, the number operators nk transform as 

(41) 

We must use this transformed nk =atak in Eq. (30). Let us examine one (four) of them, say [nk(t),nq(O)]. Clearly, 
[nk(t),nq(O)] will give no contributions, since it is proportional to 6'(,0,+ -,0,_). Because uq*O, (,0,+ -,0,_) can only 
vanish at q = 0, which has no support. Also terms like [n k' a q] are zero in thermal equilibrium, since they are linear in 
( a k ) , therefore, linear in (ak)' The surviving terms are of the form 

(1 /4)(fk + f -k)(f q + f -q )[atU),a:(O)]+(I /4)(f k + f -k )(fq + f -q )[at(t),aq(O)] 

+( 1 /4)(fk + f -k)(f q + f -q )[at(t),a: (0)] +( l/4)(f k + f -k)(f q + f -q )[ak(t),aq(O)] . 

We have used the fact that the f are real. Expanding the bare operators ak in terms of the eigenoperators set ak' ac
cording to Eqs. (31) and (32) and using the fact that A ± are always real, while B ± are always imaginary we get, after 
some algebra, the following for the surviving terms: 

(-1/2)6kqUk + f -k )2{ (A + + A _ )2sinW+t)-(B + - B _ )2sinW_tl) . (42) 

When replacing this into Eq. (30), we must evaluate the integrals 

(-1 12)6kq(fk + f -k )2( A + + A _ )2 f 00 dt t sinW+t)+(I /2)6kq(f k + f -k )2(B + - B _ )2 f 00 dt t sinW_t) . 
o 0 

(43) 

Each one of these integrals is proportional to a 6', with support at 'o'+(Uk)=O and fi_(uk)=O. For Uk < -t, only'o'+ 
can be zero, namely at Uk = t, while ,0,_ cannot be zero. For Uk> t, the converse is true. Let us suppose, Uk < - t. 
Then, (43) reduces to 

(44) 

where ,0,+ =rok V -2(1 +2uk)' Then, Eq. (44) is essentially of the form 'o'~6'('o'+), which vanishes identically. 
Similarly, the other three terms arising from Eq. (30), after the symmetry-breaking transformation, give no contribu

tion. For the case Uk > 1/2, we also find no contribution. 
So far we have only investigated the ro=O term conductivity in the context of the present exactly solvable model. 

However, it is also possible to generalize to finite ro, by inserting a factor exp(irot) in Eq. (27). This allows to compute 
ultrasonic attenuation as a function of ro. With the argument in terms such as (44) being ('o'±±ro), one sees that the in
tegrand leading to (K(ro» ceases to vanish identically, for it now includes factors as Pq[I12±(ro/roq)2]ro2

• While the 
present model is thus capable of being extended to the study ultrasonic attenuation, we leave such extensions for future 
investigation. 
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