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ABSTRACT 

This paper presents a fast, recursive least­
squares (RLS) adaptive nonlinear filter. The 
nonlinearity in the system is modeled using the 
Hammerstein model, which consists of a memoryless 
polynomial nonlinearity followed by a finite 
impulse response linear

2
s y stem. T2e complexity of 

our method is ahout 3NP +7NP+N+IOP +6P multiplica­
tions per iteration and is substantially lower 
than the computational complexities of fast RLS 
algorithms that are direct extensions of RLS 
adaptive linear filters to the nonlinear case. 

I. INTRODUCTION 

Linear filtering of stationary and nonsta­
tionary signals has had enormous impact on the 
development of various techniques for processing 
such signals. While linear filters are inherently 
simple, there are several situation in which their 
performance is unacceptable. A very simple exam­
ple is that of trying to relate two signals whose 
significant frequency components do not overlap. 

In this paper we will present a fast, recur­
sive least-squares (RLS) adaptive nonlinear 
filter. The nonlinearity employed in the 
structure is that of the Hammerstein model, which 
consists of a zero-memory nonlinearity followed by 
a linear system. vIe will further assume that the 
nonlinearity is mild enough so that it can be 
adequately represented using a low-order Taylor's 
series expanslon. There are several applications 
for such "moderately" nonlinear filters. Due to 
imperfections in nonlinear amplifiers and 
companders and also due to possibly overdriven 
devices, nonlinear distortions are introduced into 
telephone networks. At high data rates, these 
distortions, even though only mildly nonlinear, 
will increase the bit error probahility and 
therefore the channel distortions can no longer be 
modeled adequately as that due to linear system 
characteristics and additive noise. Several 
researchers have used nonlinear system 
representations for application in channel 
equalization, performance evaluation of data 
transmission systems [1,9,12], adaptive nonlinear 
noise cancellation [3,15] and a variety of other 
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areas including process control [16] and device 
characterization [6,13]. 

Possibly because of their high computational 
complexity, very little work has been done in 
adaptively tracking time-varying nonlinear 
systems. Many of the past works employ Vol terra 
series [14] representation of the nonlinear system 
and the least-mean-square (LMS) adaptation algo­
rithm [3,7,R]. Computationally efficient gradient 
based adaptive nonlinear filters were studied in 
[4] • In many applications the slow convergence of 
the LMS algorithm is not acceptahle. A hlock 
adaptive nonlinear filter employing an iterative 
least-squares solution was introduced in [15]. 
The method presented here is a continuously adap­
tive RLS approach. Continuously adaptive (RLS) 
second order Volterra filters were studied in 
[5,17]. However, both the methods assume the 
structure derived for Gaussian input signals and 
consequently do not work very well when there are 
derivations from the Gaussian signal assumption. 
This paper's method presents an exact solut ion to 
the least-squares problem and therefore will work 
well with any type of input signals. Furthermore, 
we will see that the method presented here makes 
efficient use of the structure of the nonlinearity 
and, as a result, is considerably simpler than 
direct extensions of the fast RLS algorithm to the 
nonlinear case. 

II. PROBLEM STATEMENT AND THE FAST, 
RLS ADAPTIVE NONLINEAR FILTER 

Let d(n) and x(n) represent the reference 
and primary inputs, respectively, to the adaptive 
filter. Then, the prohlem considered in the paper 
is that of finding an exponentially windowed, fast 
RLS solution for the 1 inear and nonlinear coeffi­
dents of the adaptive filter that minimizes the 
cost function 

n 

J(n) I (1) 
k=O 

at each time instant n. In Eq. 1, the esti­
mate d (k) is obtained as the output of a linear, 
finite

n 
impulse response filter whose input 

sequence is a nonlinear function f (.) of the 
primary input sequence x(n). That is, n 

N-l 

I 
i-O 

h.(n) f (x(k-i») 
1 n 

(2) 



Also, 0 < A " 1 is the parameter of the exponen­
tial window that controls the rate at which the 
adaptive filter tracks time-varying parameters and 
fn(x) is a static nonlinearity that can be ade­
quately modeled using a P-th order Taylor series 
expansion 

(3) 

Now the problem becomes one of estimating the 
linear coefficients h.(n) and nonlinear 
coefficients a.(n) such thal Eq. 1 is minimized. 

The nonlinear structure that is described by 
Eq. 2 and 3 is known as the Hammerstein model and 
a block diagram for the resulting adaptive filter 
structure is shown in Fig. 1. Note that Eq. 2 and 
3 cau be combined to get a linear representation 
for d (k) in various power of x(k-i) as 

n 

N-l P 
d (k) L L w .. (n)jx (k-i) 

n 
i=O j=1 1,J 

(4) 

where 

w .. (n) h. (n) a. (n); 0 " i " N-l 
1J 1 J .. j " P 

(5) 

So as to be able to uniquely solve for hi (n) and 
a.(n), we will constrain 

J 

With this constraint, 

and 

where 

hi(n) = wilen) 

N-l 
a. (n) = _1_ L 

J Sen) i=O 

Sen) = 

for all n. (6) 

o " i " N-1 (7) 

w .. (n) 1 " 1J 
j " P (8) 

N-l 

L hi(n). (9) 
i=O 

We will also assume that S(n)* 0 except at those 
times when hi(n) = 0 for 0 " i "N-l. While these 
constraints exclude certain types of systems (for 
example, note that Eq. 6 implies that the non­
linear function fu(x) must have a linear component 
a

1 
(n) x), there 1S a large class of systems for 

wfiich the algorithms developed in this paper will 
work well. 

To derive the fast, RLS adaptive nonlinear 
filter, we make use of the fast algorithms in 
[2,11] and apply it to our structure. Because of 
stability considerations, the algorithm that is 
presented here is not the simplest possible one. 
However, experimental results have indicated that 
the extra computational complexity does consider­
ably improve the numerical stability of the algo­
ri thm. 

The fast RLS, nonlinear adaptive filter 
makes use of four nonlinear filters (with the same 
structure as in Fig. 1) in parallel. Different 
parameters of these filters and other associated 
variables that appear in the algorithm are defined 
in Tahle 1. 

The key step that provides simplifications 

157 

in our algorithm is the structure of th$ solution 
of Eq. 5 given in Eq. 7 and 8. Let a.(n) = 

Sen) a. (n). Substituting this and Eq. J 6 in Eq. 
4, we can see that 

d(k) 
N-l 

_1_ 'i' 
'" L hi(n) 
a

1
(n) i=O 

P 

L 
j=l (10) 

Further, let us define vectors wen) and kN(n) of 
size NP such that 

wI 1(n), ••• ,w1 p(n) •••• 'wN_ 1 l(n) ••• , , , , 

(11) 
and 

kN(n) [hc,N,O(n). a C,N,l(n), hc,N,O(n) 

• a C,n,2(n), •••• , h c ,N,N-1(n) • aC,N,p(n)]T. 

(12) 

These are just expanded vectors obtained from the 
linear and nonlinear coefficient vectors and when 
they act on an appropriately defined input vector 
will behave in a manner that is equivalent to the 
filter structure in this paper. 

It is well known [2,11] that the Wen) vector 
can be updated in fast RLS algorithms using the 
equation 

(3) 

where EN(n) is the predicted estimation error and 
is defined in Table 1. Applying Eq. 7 and 8 to 13 
and using the scaled nonlinear 
coefficients C;.(n), ;:c N .. (n), etc.)' we get the 
update equatiorls for, 'fli'~ linear and nonlinear 
coefficient vectors as 

'" '" 
A(n) = A(n-1) + AC N(n) EN(n) (14) , 

and 
H(n) = H(n-1) + HC,N(n) EN(n) (15) 

The derivation of the rest of the update 
equations is similar and will be omitted here. 
The complete algorithm is described in Table 2. 

Remarks: 1. The algorithm was initialized using 
zero values for all filter coefficients and the 
associated parameters except 

ex (-1) = II I 
N PxP 

(16) 

Exact initialization is possible, but we did not 
use it for the sake of numerical stability. 

2. An operation~ count will ~how that our 
algorithm requires 3NP +7NP+N+6P+ lOP multiplica­
tions and 4P + 2 divisions per data sample. This 
represents a substantial reduction in the 
computational complexity from those methods that 
are direct extensions of fast, transversal 
multichannel filters to the nonlinear case. 



III. CONCLUSIONS 

This paper presented a fast recursive least­
squares adaptive nonlinear filter. The 
nonlinearity used in the structure was the 
Hammerstein model. By making use of the structure 
of the nonlinearity, the algorithm reduces the 
computational complexity of direct extensions of 
fast RLS adaptive linear filters by more than 
half when N is somewhat larger than P. This 
saving in computational complexity is substantial 
and it is expected that the algorithm will find 
applications in several practical problems. 

Experimental results have indicated that our 
algorithm works well in many situations. However, 
the aspects of numerical stability of the 
algorithm need further study. Several techniques 
available for improving the numerical stability of 
fast RLS algorithms were tested and they do seem 
to improve the numerical properties of the fast 
RLS nonlinear filter. We are in the process of 
studying several other structures that have better 
numerical stahility than the present algorithm. 
Several simplifications to the algorithm presented 
in the paper using techniques employed in f2] are 
also being studied now. 
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Fig. 1. Structure of the nonlinear filter in this paper. 
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Table 1. Fast, RLS Adaptive Nonlinear Filter Variables 

Primary input: x(n) 
X(n) = [x(n), x 2(n), •••• , xP(n)]T 

XN(n) = [X(n), X(n-l), •••• , X(n-N+l)] 

Reference input: den) 

I. 

II. 

tt 

III. 

IV. 

t 
tt 

* 

Vari~ble 

Filter 

H(n) 

A(n) 

E:N(n) 

eN(n) 

Definition 

T 
[ho(n), hl(n), •••• ,hN_l(n)] 

p;'l(n), a 2(n), ••• , ;:p(n)]T 

Remarks 

Linear coefficients 

Scaled nonlinear coefficients 

Predicted estimation error 

Error 

Forward Predictor 

HF(n) [H (n), 
f,l 

H (n), ••• , 
f,2 

H (n)] 
f,P 

Linear coefficient matrix 

AF(n) [Af,l(n), Af ,2(n), .... , Af,p(n)] Scaled nonlinear coefficient matrix 

[nN,l(n), 
T 

nN(n) nN,2(n), •••• , nN,p(n)] Predicted forward prediction errors* 

fN(n) [fN,l(n), 
T fN 2(n), •••• ,fN pen)] , , Forward prediction errors* 

n 
(IN(n) I An- k 

f N (k) f~ (k) 
k=O 

Forward prediction error power 

Backward Predictor 

HB(n) [H ~n), H b,~n), .... , H f,n)] b, b, 
Linear coefficient matrix 

AB(n) [Ab , 1 (n), Ab , 2 ( n) , ••• , Ab , P ( n ) ] Scaled nonlinear coefficient matrix 

1/IN(n) [1/IN,1(n),1/IN,2(n), ••• ,1/1 (n)] 
N,P 

Predicted backward prediction errors* 

Gain Vectors 

[he,N,O(n), 
T 

He,N(n) he N 2(n), ... , he,N,N_l(n)] Linear coefficients , , 

[;:e,N,l(n), 
~ T 

Ae N(n) a e N 2(n), ... , a e N pen)] Scaled nonlinear coefficients , , , , , 

Quantities with ~ are scaled by the sum of 
If A is an LxM matrix, A. denotes the i-th J ' 

the corresponding linear coefficients. 
column of A and a. k denotes the k-th element of the j-th 

J, 
column of A. 
See Table 2 for definition of prediction errors nN ,en), fN ,en), and 1/I N .(n). 

,J,J ,J 
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Table 2. Fast, RLS, Adaptive Nonlinear Filter. 

nN . (n) = ~j (n) + 1 ["'T ( ) ()] ) 
,] 

A (n-l) Af . n-l ~ n-l Hf . (n-l ; j 
a ,J ,J 
f,j ,1 

T 
HF(n) = HF (n-l) - H

C
,N(n-l) nN(n) 

1,2, ••• ,P (2.1) 

(2.2) 

(2.3) 

f N . (n) = x
j 

(n) + '" 1 [A~ . (n) ~ (n -1)] H f . (n); j 1 ,2 , •••• , P • ( 2 .4) 
,J a . (n)'] ,J 

f,J,1 

1,2, •••• ,P. 

HC N+l (n) , 

~N'J.(n) = xj(n-N) + '" 1 [A~ .(n-l) ~(n)] Hb j(n-l) 
a (n-1),J , 
b,j,1 

T(n) = AC,N+1 (n) [hC,N+l ,N(n) / ;:C,N+l, 1 (n)] 

AB(n) = [AB(n-l) - At,N(n) ~!(n) J (Ipxp- T(n) ~!(n) fl 

HB(n) =[HB(n-l) - Ht,N(n) ~~(n)] (Ipxp - T(n) ~~(n)fl 

Compute only if necessary 

1 ["'T ] e:N(n) = den) - ::---- A (n-l) ~(n) H(n-l) 
a (n-l) 

1 

A(n) = A(n-l) + AC,N(n) e:N(n) 

1 '" 
A(n) = --- A(n) 

;1(n) 

1 ["'T ] eN(n) = den) - -",-- A (n) ~ (n) H(n) 
a

1 
(n) 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 


