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Abstract The paper develops an argument for the necessity of exam-
ining individual coefficients in policy models. As a result of this need, it
is posited that something other than OLS estimators should be used since
they are inflated and have extremely large variances when multicollinear-
ity is present. Further, it is argued that policy models are by definition
theoretically nonorthogonal. Ridge regression as one of a class of biased
estimators is offered as one possible approach to dealing with the non-
orthogonality problem in policy research. The logic of the approach is
articulated and an empirical model of a health system is estimated with
ordinary least squares and ridge estimators. The models are compared
and implications discussed.

Introduction

Most rural sociologists do not engage in practical policy-oriented re-
search (Nolan et al., 1975; Nolan and Galliher, 1973; Stokes and Mil-
ler, 1975). While such neglect is philosophically at odds with the sanc-
tioned role for the discipline (Bealer, 1969; Ford, 1973; Loomis and
Loomis, 1967), more “practical” reasons for conducting such research
have captured the attention of many academically-based sociologists.
First, it has become clear to academicians that there is a real need for
non-academic job markets for their products (see the ongoing series
in the footnotes). The existence of such a market is at least partly
contingent upon the ability of the graduates to engage in applied
policy-relevant research. Second is the realization that the era of carte
blanche in public science is rapidly being replaced by an era of tough-
minded accountability (Bozeman, 1976). The gatekeepers of the
monetary faucet have begun to demand that publicly supported re-
search have some demonstrable utility. Relevance both to the solution
of complex societal problems and/or the attainment of national ob-

1 The authors acknowledge helpful suggestions provided byJames E. Martin, Donald
E- Voth, and reviewers for the Journal, and programming assistance provided by
Patricia Firey and Randy White. The paper is published with the approval of the
director of the Arkansas Agricultural Experiment Station. Work on the paper was
supported by CSRS Project NE129 and Arkansas Experiment Station Project 894.
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jectives is the definite front runner when it comes to criteria for as-
sessing that utility (Spilerman, 1975).

With the renewed push for applied policy research has come a set
of coterminous issues ranging from philosophical value neutrality
problems to very practical questions of how academically-based re-
search can organize to respond to policy problems in the restricted
time frame required. One set of concerns that is ever present in the
debate centers around methodological issues. It is the intent of this
paper to contribute to that dialogue. Specifically, we examine the
theoretically desirable but methodologically arduous presence of mul-
ticollinearity in substantive policy research models. Subsequently, we
examine the efficacy of using a biased estimation technique—ridge
regression—as one possible solution to the multicollinearity problem.
The parameters of a health systems model are estimated by ordinary
least squares and ridge regression, and the results are presented for
comparison. Finally, implications for health care policy are discussed.

The problem, of multicollinearity in policy models

The literature is replete with statements addressed to the differences
(or lack thereof) between basic academic research and applied re-
search, such as the hows of problem definition, variable selection,
model specification, time frame, and so forth (Coleman, 1972; Fen-
nessey, 1972; MacRae, 1971; Merton, 1949; Rossi and Wright, 1977;
Scott and Shore, 1974). Although there are distinctive features of
policy research that set broad parameters within which the researcher
must operate, the fundamental goal is still the same: “making valid
and reliable inferences about the effects of one set of variables on
another” (Rossi and Wright, 1977).

Rossi and Wright (1977) have argued that if there is a difference,
it is that the methodological requirements for policy research are (or
should be) more stringent because so much depends on the correct-
ness of casual inference. In such cases, the issue of discerning “net”
effects of policy tractable variables becomes of paramount concern.
Inherent in these “internal validity” issues is the problem of multi-
collinearity. In the absence of the ability to randomly assign policy
treatments to randomized experimental and control groups, such as
handling multicollinearity issues in the design stage, the problem
must be dealt with in the analysis phase. One such strategy is the
estimation of structural parameters by ridge regression. The prob-
lems of multicollinearity and how those problems are tackled by ridge
estimation is the concern of the remainder of this paper.2

2 It is critical to point out that neither ridge regression nor any other “mechanical
fix” can substitute for well-constructed measures and attention to precise theoretical
detail explicating the nature of the relationship among independent variables. We are
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From a strictly methodological point of view and from the point of
view of those people making policy, it would be ideal to have a set of
tractable variables strongly related to the target variable and com-
pletely unrelated to each other and to other variables not included
in the model. This situation would allow the researcher to estimate
parameters of the relationships between any given policy variable and
the target or dependent variable without being concerned about con-
trolling the effects of other variables. In such instances, the gross
effect would be the net effect and the policy maker would have a
very clear picture of how to proceed to acquire the desired level of
the target variable. However, completely orthogonal systems are very
unsatisfying theoretically and nonexistent empirically. Some degree
of intercorrelation among the set of germane independent variables
is always present. The question is: How does one go about offering
a structural interpretation, such as discussing “net effects” of individ-
ual independent variables, where there is some degree of multicollin-
earity present? It will be useful to examine the problem somewhat
formally.

Probably the most widely-used approach to obtaining coefficients
of net impact is through the use of the basic linear regression model:

Y=XB + U

where:

B is a vector of regression coefficients which summarize, quanti-
tatively, the effect of a change in any given independent variable on
the value of the dependent or target variable.

Since B provides information that allows the researcher to analyze
the separate effects of each of the independent variable’s influence
on the dependent variable, it is this coefficient that is of central con-
cern. In order for B to provide valid information on net impacts,
however, certain assumptions about the nature of the data must be
met (Farrar and Glauber, 1967; Johnston, 1972).

Although there are several assumptions—disturbance assumption,
homoscedasticity, absence of serial correlation,3 independence of ex-
planatory variables and error terms—one which is often neglected
relates directly to the multicollinearity problem. Formally, the as-
sumption is p(X) = K, a rank assumption. The assumption dictates
that the rank of the matrix X be equal to the number of independent

only suggesting that, subsequent to these efforts, if it is still necessary to undertake
some steps to deal with multicollinearity, ridge regression has some characteristics to
recommend its use.

_ 3ltshould be pointed out that if serial correlation is present, as when the assumption
is violated, the variance estimates will be affected in the same way as when the inde-
pendent variables in the model are correlated.
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or exogenous variables (including the “dummy” variable of the in-
tercept). In general this means that no independent variable in the
matrix is an exact linear combination of any or all of the other in-
dependent variables. This guarantees that each column of X is an
independent vector and hence there can be a parameter estimated
for each variable (again including the intercept).4 If the assumption
is not met, there are two levels at which difficulties can arise: a purely
mathematical level and a statistical analysis level (Rockwell, 1975). In
the first instance the problem is rather straight-forward. If one col-
umn of X is a perfect multiple of another (or several others in com-
bination), then the determinant of the matrix is zero, such as in
|X'X| = 0. This implies that X'X is a singular matrix mathematically
impossible to invert. Since no inversion is possible, the vector B can-
not be estimated and further analysis is unachievable.5 The more
typical situation and the one of greatest concern arises where rather
extensive, but not perfect, linear association exists between two or
more variables. This results in a multicollinearity problem which renders
interpretation of individual regression coefficients inappropriate.
The problem is that as the interdependency among the predictor
variables increases, the magnitude of the determinant of the X'X
matrix will approach zero. If |[X'X| ~ 0, then its inverse, (X'X)-1,
will tend to inherit large diagonal elements. The condition will typi-
cally result in least squares regression estimates that have large stan-
dard errors (implying lack of precision in the estimators) and small
t ratios, (Mason and Brown, 1975). This will be the case because the
estimated standard errors are directly proportional to the square
roots of the main diagonal elements in (X'X)-1. In other words, the
variances of the respective regression coefficients are inflated by an
amount directly proportional to the size of the diagonal elements of
(X'X)-1 and the increase is due solely to the correlation among the
independent variables.6 Additionally, the estimated parameters, B,
are susceptible to incorrect algebraic signs, have absolute values that

41t should be realized that the rank assumption p(X) = K implies a degrecs-of-free-
dorn assumption, d.f. —N — K > 0. This is true since if N < K it would be impossible
for X to have rank K. As a result, the major assumption is one of rank, not of degrees
of freedom (see Intriligator, 1978).

51f perfect multicollinearity is present, it is usually caused by a problem that can be
corrected fairly easily. Examples include situations where: (1) one of the explanatory
variables is a constant over the range of the entire sample (if this is the case, rhen that
particular column isa multiple of the unity variable included in the equation to account
for the intercept); and (2) the investigator has included all categories of a dummy
variable in the equation as well as an intercept term. In both instances the solution is
simply to eliminate the offending explanatory variable (or category of the dummy)
with no loss of information.

6The reason that the diagonal elements of (X'X)-1 are referred to as “parameter
variance inflation factors” (Marquardt, 1970) should be clear by noting that the
standard error of the regression coefficient is defined algebraically as § = s2(x'x)" ¢
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are too large and are plagued by the “bouncing beta” syndrome
(Marquardt, 1970). This last condition implies that the regression
estimates are highly sensitive to even minor changes in the data base.
Consequently, it becomes impractical to attempt replication or vali-
dation through the use of another sample (Churchill, 1975). Finally,
if multicollinearity is a problem, it is common to get relatively large
R2 values and significant F values for the entire model while simul-
taneously getting small t values indicating that no individual predictor
variable is statistically important. Hence, one is left with exactly the
situation that a policy researcher does not want. You know that the
set of explanatory variables does affect the target variable, but you
can’t be certain what the separate net effect of any given variable is.
What does one do if multicollinearity is judged to be an issue?
Maddala (1977) suggests six possible solutions to the problem: (1)
dropping variables, (2) using extraneous estimates, (3) using ratios or
first differences, (4) using principal components, (5) getting more
data, and (6) ridge regression. All of the possible solutions have ben-
efits and costs associated with them. Ultimately, the circumstances
surrounding a particular research problem must dictate which solu-
tion is most desirable. If the model to be estimated is based on a
sound theoretical framework and/or if policy makers have dictated
that the model include a certain set of variables, then respecification,
such as dropping variables, is an unacceptable solution. Similarly,
when working with cross-sectional data, as is often the case, using
first differences is not an available alternative. Further, the use of
ratios and first differences adversely affects the properties of residuals
by introducing heteroscedasticity and autocorrelation respectively
(Maddala, 1977). While the use of principal components has one very
ingratiating methodological feature, producing a completely orthog-
onal set of explanatory variables, its utility for policy research appears
almost nonexistent. For example, how is a useful policy interpretation
given to a regression coefficient attached to a complex linear com-

Hence, if you have a 2 x 2 correlation mat: = li™l ancj

(x'xr

Suppose the multicollinearity is evidenced by a correlation between X, and X2 equal
to rk>= .98. Then the variance inflation factors will be equal to 1- 9604 25.25.
In a 2 x 2 matrix, the inflation factor will be the same for both parameters. For
larger matrices this will not usually be true since the value of the diagonal elements
depends on the magnitude of the partial correlation between each x and all other
x*s. The same logic does, however, apply.
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bination defined by 2 (race) + 3 (differentiation) + 4 (percent ur-
ban)? It is not overstating the case to suggest that such a variable has
little meaningful interpretation from a policy perspective.

The use of ridge regression is not the be-all-end-all solution to
multicollinearity problems. That is not the claim. It does, however,
seem particularly well suited (among the less than perfect alterna-
tives) for use in policy research, because it allows structural interpre-
tation of individual coefficients with more confidence. The logic of
the procedure is*presented below. ] r

Ridge regression

As pointed out above, if there is no intercorrelation among the set of
independent variables (and the other relevant assumptions are met),
ordinary least squares does a yeoman’sjob of providing estimates of
the slope coefficients. But, as multicollinearity increases, the variances
of the OLS estimates also increase. The resulting increase renders
the estimated values for the coefficients, B, produced from any one
sample questionable. Small changes in the data, such as adding or
deleting one or two observations, can result in very significant
changes in the magnitude of the coefficients and even in the direction
of their impact. Hence, although OLS estimates still retain their
BLUE properties in the presence of multicollinearity, the results from
any particular sample are likely to exhibit a host of undesirable char-
acteristics. Ridge regression (Hoerl and Kennard, 1970a, 1970b) is
an estimation technique producing estimates of the coefficients that
are closer, on the average, to the true population parameter, B, than
are the OLS estimates (Feig, 1978). Somewhat more formally, ridge
regression isone of a whole class of biased estimation techniques that,
in the face of multicollinearity, result in a total mean square error
that is significantly smaller than the total variance resulting from an
OLS solution (Feldstein, 1973; McDonald and Galarneau, 1975).
Hence, the chances of getting an estimate of B that is a “good” ap-
proximation is increased.7 The ridge technique accomplishes this re-
sult by a very straightforward procedure. Since the problem stems
from inflated values in the diagonal of the inverse, the ridge proce-

7 It should be noted at this point that the decision to employ minimum mean square
error (MSE) as an evaluation criteria is not inconsistant with the “least squares” criteria
normally encountered in OLS regression. In fact, least squares is a special case of the
more general mean square error. In particular, it is true that: mean square error =
bias2 + variance. Since OLS estimates are unbiased, as when E(B) = B, MSE turns out
to be the traditional variance criteria normally encountered. Since MSE is a summary
measure of the accuracy of estimated coefficients, that is the smaller the value of MSE
the closer the estimates, B, cluster around the true parameter, and takes variance and
bias into account it is a most appropriate measure to use where unbiased and biased
estimators need to be compared.
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dure counters the tendency by adding small positive quantities, K, to
the diagonal of X'X such that Bp = [X'X + KJAX'Y. This mechan-
ically decreases the size of the diagonal entries in the inverse matrix.8
The reason this procedure produces estimates closer to the true value
of the parameter has to do with the relationship between the bias,
variance and mean square error of an estimator. In particular, it
turns out that if the criterion of least mean square error is to be used
to evaluate an estimator, the following relationship must be consid-
ered: Mean square error = Bias2+ Variance. Mathematically, the
nature of the relationship is such that to facilitate a reduction in the
variance means you will, at the same time, increase the bias. That is
exactly what happens when the positive quantity, K, is added to pro-
duce the ridge estimates, Br. Both the variance and the squared bias
are functions of K (Hoerl and Kennard, 1970a). Specifically, the total
variance is a monotonic decreasing function of K while the squared
bias is a monotonic increasing function. Hence, there is a trade-off
necessary. Fortunately, the nature of the relationships between K and
the variance and bias is such that there are admissable values of K
for which the mean square error of the ridge estimator is less than
the OLS estimator. This is possible because the aforementioned
monotone functions do not change at the same rate (Churchill, 1975).

8 The reason for the decrease in the diagonal elements of the inverse can best be
understood by noting what happens to the determinant of the 2 x 2 matrix presented
in Footnote 3 when small positive quantities are added to the diagonal of X'X.

If r2= .98 then:

(x-xi-t; f]
The determinant of that matrix is given by:
IX'X| = (1)) - (.98)(.98) = .0396

1 -.98
0396 0396
L OXX-
50 .98 1
0396 0396

Hence, in this case the main diagonal elements, as the variance inflation factors,
equal 25.25. Now suppose a positive quantity, K equal to .40 is added to the main
diagonal of X'X. It then follows that:

: [14 .98
XX+ K [98 14J
IX'X + K = (1.4)(1.4) - (.98)(.98) = .9996
14 -98 1
Then: [X'X + K]:1= 9996 9996
-98 14
9996 9996 J

The main diagonal elements of the inverse have now been reduced from 25.25
to 1.30.
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As K increases away from zero, such as when small positive values
are added to the diagonal, the variance decreases rapidly. Conversely,
the squared bias remains almost zero at first and then begins to in-
crease more quickly (Churchill, 1975; Hoerl and Kennard, 1970a).
Hence, as Hoerl and Kennard (1970a) point out, it is possible to
substantially reduce the total mean square error of estimation by al-
lowing a small amount of bias, but at the same time substantially
reducing the variance. As a result, when multicollinearity is a prob-
lem, “ridge estimates can be produced which tend to be closer to the
true parameter value, on the average, than the corresponding least
square estimates” (Churchill, 1975). Further, the magnitude of the
improvement of using the ridge estimation increases rapidly as X'X
becomes less well conditioned, as when multicollinearity becomes
more severe, and as the model fit decreases, as when R2is low (Dee-
gan, 1975; Feig, 1978; Hoerl, Kennard and Baldwin, 1975).

Since ridge regression provides more efficient estimation in the
presence of multicollinearity (for a certain range of K), the problem
becomes one of determining what value of the biasing parameter, K,
to employ. Although Farebrother (1975), Hoerl, Kennard and Bald-
win (1975), and Kasarda and Shih (1977) provide algorithms for the
automatic selection of the “optimum” K value, for pedagogical pur-
poses we will discuss the use of the more subjective ridge trace. An
examination of the trace provides a method of selecting a reasonable
range of K values which will, in any given instance, provide practical
results (Marquardt, 1970).

A ridge trace is simply a graphical procedure for estimating an
appropriate value for K. The strategy suggested by Hoerl and Ken-
nard (1970b) is to estimate Br = (X'X + K)_1X'Y for a series of K
values from 0 to 1 (as in 0~ k 1). Subsequently, the estimates B/
are plotted as a function of K. Finally, using guidelines based on (1)
“stability” of the trace, (2) magnitudes, and (3) sign reversals of esti-
mated coefficients, and (4) increase in residual sum of squares,9 the
ridge trace is examined and a specific K value for the given model is
selected. In the section that follows, the ridge procedure is applied
to an empirical health systems model presented by Miller and Stokes
(1978).

9 Hoerl and Kennard (1970) offer the following specific guidelines for selecting th
value of K from an examination of the ridge trace: (1) at a certain value of K the
system will stabilize and have the general characteristics of an orthogonal system; (2)
coefficients will not have unreasonable absolute values with respect to the factors for
which they represent rates of change; (3) coefficients with apparently incorrect signs
at K = 0 will have changed to have the proper sign; and (4) the residual sum of squares
will not have been inflated to an unreasonable value. The reader is urged to examine
the article by Conniffe and Stone (1973) for a critical assessment of using the ridge
trace as a means of selecting K values.
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Figure 1. Ridge trace: infant mortality rate 1970.

Ridge estimates for a health systems model

Many governmental efforts designed to improve health status are
guided by the “Great Equation.” To wit: more resources = better
health. While this basic formula is consistent with conventional wis-
dom, there is a growing literature (Fuchs, 1974; lllich, 1976; Miller
and Stokes, 1978; Somers, 1973) to suggest that empirically it does
not work. In fact, several recent studies (lllich, 1976; Miller and
Stokes, 1978) have argued that the reverse is true; increased concen-
trations of manpower and facilities result in higher death rates. To
empirically evaluate the two opposing claims, it is necessary to con-
struct a model of the health care system and then observe the system’s
impact on health. However, the internal components of the health
system are themselves interrelated both theoretically and empirically
(Anderson, 1972, 1973; Field, 1973; Rushing, 1975). Further, the
levels and types of manpower and facilities available to a population
are determined in large part by the socioeconomic structure of the
particular community (Miller and Stokes, 1978; Rushing, 1971,
1975). In short, interdependency within the health system itself and
between the system and the structure of the supporting community
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is ever present. Hence, if the goal is to contribute to informed public
health care policy via estimation and structural interpretation of em-
pirical models, the difficulties inherent in collinear systems must
somehow be dealt with.

Miller and Stokes (1978) used OLS to estimate an eight variable
model designed to assess the net impact of health resources on phys-
ical health status. Briefly, their conclusions were that increased con-
centrations of manpower (with the single exception of nurses) and
facilities (such as hospital beds) are associated with higher death rates
once the impacts of socioeconomic structure of the community have
been removed. Conversely, the higher the concentration of nurses,
the lower the death rates. Throughout their analysis the authors
make reference to and interpret as significant (substantively) both the
direction and magnitude of individual coefficients. The problem is
that the degree of multicollinearity among the set of predictor vari-
ables was, by most all criteria (Johnston, 1972; Kmenta, 1971; Mad-
dala, 1977; Rockwell, 1975) at a problematic level.10 Hence, the as-
sessment of individual effects was somewhat tenuous. Because of the
nature of the results and the implications for public health care pol-
icy, and because the extant level of multicollinearity could have had
a marked effect on the estimates of the parameters, we have reesti-
mated the model via ridge regression. The ridge traces are presented
in Figures 1and 2. A summary of the reestimation results are con-
tained in Table 2.11

Turn first to Figures 1and 2. An examination of the ridge traces
allows several conclusions to be drawn:

@ The set of coefficients at K = 0 (the ordinary least squares so-
lution) is collectively unstable. This is evidenced by the fact that
very small increases in K result in widely different estimates of B.
This suggests that the estimates, B, are very sample specific and that
another sample would, most likely, produce substantially different
estimates of the parameters.

0There are any number of ways to assess whether multicollinearity is in fact at a
problematic level. For the data analyzed in the present study {and by Miller and Stokes,
1973), the following information summarizes the degree of difficulty:

(1) Determinant of X'X - .0202

(2) Condition number of matrix = 20.366. This is the ratio of the largest eigenvalue
to the smallest eigenvalue. Thus, when the matrix is orthogonal the condition number
is one. Any value beyond one indicates increasing problems of multicollinearity. See
Von Neumann and Goldstine (1947) for a formal discussion.

(3) Haitovsky’s heuristic chi square statistic = 2.982 indicating a very high proba-
bility of severe multicollinearity (see Rockwell, 1975 for a discussion of this statistic).

1 Because of space limitations we have not included the models for 1950 or 1960.
The results of those reestimated models are consistent with the 1970 data presented
in this paper. Readers who are interested in the specific results can obtain a copy of
the ridge traces and the coefficient estimates in the range 0~ K 1 from the authors.
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Figure 2. Ridge trace: age-sex standardized death rate 1970.

(2) The coefficients for variables 7 and 8 (hospital beds and nurses,
respectively) are decidedly unstable at the least squares point; their
respective coefficients demonstrate very rapid declines in magnitude
as K becomes positive. The instability is caused by the degree of
multicollinearity or correlation between these two variables and oth-
ers in the system.

(3) The coefficients for variables 1 (education), 2 (income), 3 (per-
cent urban), 4 (occupation) and 6 (physicians) maintain relative con-
sistency over the entire range of K values considered. The trace also
indicates that degree of urbanization (variable 3) exerts virtually no
impact on the two measures of health; the coefficient moves very
close to zero with the introduction of small values of the biasing pa-
rameter.

(4) Medical specialists (variable 5) exhibits opposite signs at K = 0
for infant mortality (— and age-sex standardized death rate (+). In
both cases, however, the coefficient moves toward zero and the neg-
ative sign changes to positive as K approaches .40.

(5) Finally, an examination of the two ridge traces indicates that
both systems stabilize around K = .30. It should be noted that there
has been some increase in error sum of squares at this value; notice
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Table 1. Estimates of Mean Square Error (MSE) for OLS and Ridge
Estimators*

(Dependent variable) Estimator Variance + Bias2 = MSE

OLS (k = 0)  19.68(12.007) 0 236.30
Ridge (k = .3)  5.04 (12.007) + .05679  60.57

OLS (k- 0) 19.68 (.2981) 0 5.866
Ridge (k = .3) 5.04 (.2981) + .0894 1.592

*The two components of the MSE (variance and Bias2) are defined algebralcally as:
MSE - o2\i/(Ai + k)24 k2B'(X'X + kl)“2B
~ [Variance] + [BiasZ]

+

Infant mortality

+

Standardized death rate

the R2for infant mortality decreased from .32 to .30. For standard-
ized death rate, the reduction was from .59 to .56. Hopefully, how-
ever, the small increases in error sum of squares will be more than
offset by a set of coefficients closer to the true parameter values. The
degree to which that is true in the present case is evidenced by the
mean square error values presented in Table 1 Clearly, the desired
increase in accuracy has been achieved by employing the ridge tech-
nique. For infant mortality, the OLS equation has an accompanying
mean square error (MSE) of 236.3. The MSE for the ridge estimate
is 60.5. Hence, the addition of a small amount of bias has resulted in
virtually a fourfold reduction in MSE. The gain in accuracy is also
apparent for the standardized death rate; the MSE reduction is from
58 to 1.5.12 N

Assuming the ridge estimates Br at K = .30 are close to the true
parameter values, what can be said about the substantive findings of
the model? First, it should be pointed out that all of the coefficients
have the same sign at K = .3 as for the OLS estimates. Hence, the

2The reader should be aware that the reported MSE for the ridge estimates are
based on the estimated b coefficients and not the true b’s. The equation for estimating
the MSE is given by Hoerl and Kennard, (1970a:60) as:

MSE = o-2\i/(Ai + k)2 + k2B'(X'X + kl)~2B = variance + bias2 '
W here cr = standard error of the OLS equations,
- A = eigenvalues of the X'X matrix,
k = positive quantities added to the main diagonal of
the X'X matrix, where 0~ k" 1,
''m B = vector of the true parameter values, and
X'X = correlation matrix,
The equation shows that the bias squared term is partly a function of the true Bs.
However, by using the “inflated” estimates of the parameters, it is obvious that the bias
squared term will be biased upwards. The consequence of this problem is simply that
the gain in MSE for the ridge regressions is underestimated.
Note that the use of the estimated B’s does not affect the MSA estimates for the OLS
equations. Since k —0, the bias squared term reduces to zero.
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| Table 2. OLS and Ridge Regressions of Health Status on Structural
Characteristics and Health System Resourcesl

Infant mortality Age/sex standardized

1970 death rate 1970

K=0 K=0

(OLS) K=.30 (OLS) - &

(X" Education -.162 -.177 -.117 -.188
(X2 Income -.150 -.094 -.137 -.099
(X3 % Urban .099 .049 .027 .016
(X4 Occupation -.122 -.136 -.383 -.308
(X5 Medical specialists -.056 -.005 .099 .059
(X6 Physicians .106 .083 .039 .042
(X7 Hospital beds 475 .294 552 .352
(X8 Nurses -.211 -.075 -.266 -.092

R2 .32 .30 .59 .56

1Appendix A contains the ridge estimates for the entire range of K values used to
produce the ridge trace.

nature of the conclusions offered by Miller and Stokes (1978) has not
changed. “Increases in health resources give no assurance of decreas-
ing mortality rates” (Miller and Stokes, 1978:275). It is also important
to note, however, that although the nature of the structural inter-
pretation has not changed, the absolute values of the coefficients have
tended to decrease. In other words, the OLS model overestimated
the impact of most of the eight variables on health status. (The ex-
ception is education which was slightly underestimated at the least
squares point.) The overestimate was particularly pronounced for
two of the health resource variables, hospital beds and nurses. The
fact that the reestimated model produced results which were consis-
tent with those presented by Miller and Stokes (1978) gives support
to the policy implications that “if medical care is going to have little
or no impact on physical health except insofar as poor care can be
worse than no care, quality becomes a central concern” (Miller and
Stokes, 1978:275). Clearly, additional research designed to further
clarify the relationship between concentration of resources and health
status is needed before policy is implemented which uses the “Great
Equation” as its principal rationale.

Summary

The paper argues that rural sociologists need to engage in applied,
policy-relevant research. To facilitate such research, it is posited that
individual coefficients in a policy model must be estimated and in-
terpreted. But, interdependency among germane variables is an in-
tegral part of virtually any theoretically-based model. As a result, the
individual coefficients generated by an ordinary least squares esti-
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mation procedure are unstable, have large variances, and are often
plagued by erroneous algebraic signs and absolute values that over-
estimate the true impact of individual predictors. Hence, interpre-
tation of individual coefficients is tenuous. Ridge regression, as one
of a class of biased estimators is suggested as one approach to dealing
with the multicollinearity problem in policy research. The logic of the
approach was articulated and the procedure was applied to an eight
variable health systems model reported by Miller and Stokes (1978).
An examination of the ridge trace indicated that the OLS coefficients
were collectively unstable. Further, the coefficients produced by OLS
tended to overestimate the impact of the predictor variables on health
status. The overestimate was most pronounced for hospital beds and
nurses. The system stabilized at approximately K = .30. An exami-
nation of the ridge coefficients, Br, at that point indicated that, al-
though the magnitude of the coefficients was considerably reduced,
the nature of the relationship between health resources and physical
health status was consistent with those reported by Miller and Stokes.
Nurses tended to have a positive impact on health while concentration
of physicians and physical facilities exhibited a negative impact. The
results indicate the need to conduct additional research before im-
plementing policy based on the intuitively appealing formula: more
resources = better health.
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Value of K 0.0 0.02 0.04 0.06

Education Beta 1 -117 -131 -.141 -.150
Income Beta 2 -137 -132 -.128 -124
%Urban_ Beta 3 .027 027 027 027
Occugatlon ] Beta 4 -.383 =377 -371 -.365
No. Specialists Beta 5 .099 .093 .089 .085
Physicians Beta 6 .039 041 042 .043
Hospital Beds Beta 7 553 526 .504 484
Nurses Beta 8 -.267 -.241 -.220 -.202

S5 Error 409 409 410 412

R2 591 .590 589 .588

Value of K  0.10 0.20 0.30 0.40

Education Beta 1 -.164 -.182 -.188 -.189
Income Beta 2 -.118 -.107 -.099 -.093
%Urban Beta 3 .025 021 016 013
Occupation Beta 4 -.354 -.329 -.308 -.291
No. Specialists Beta 5 .078 .067 .060 .054
Physicians Beta 6 .043 043 042 .040
Hospital Beds Beta 7 451 .392 352 322
Nurses Beta 8 =172 -.122 -.092 -.071

SS Error 416 427 440 452

222 .584 573 .560 548

Value of K  0.60 0.70 0.80 0.90

Education Beta 1 -.184 -.180 -176 -171
Income Beta 2 -.084 -.080 -.077 -.074
%Urban Beta 3 .007 .005 .003 .001
Occupation =~ Beta 4 -.262 -.249 -.239 -.229
No. Specialists Beta 5 .045 041 .038 .036
Physicians Beta 6 .037 035 .034 033
Hospital Beds Beta 7 278 .262 247 235
Nurses Beta 8 -.046 -.038 -.031 -.026

SS Error 477 489 500 512

R 523 511 499 488

Appendix A. Ridge estimates for age-sex standardized death rates 1970: 0
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Appendix B.

Value of K 0.0

Beta 1 -.162
Beta 2 -.150
Beta 3 .099
Beta 4 =122
Beta 5 -.057
Beta 6 106
Beta 7 A75
Beta 8 -.210
SS Error 676
R2 .324

Value of K 0.10

Beta 1 -.178
Beta 2 =122
Beta 3 .074
Beta 4 -.134
Beta 5 -.029
Beta 6 .098
Beta 7 384
Beta 8 -.138
SS Error .681
R 319

Value of K 0. 60

Beta 1 -.161

Beta 2 -.073
Beta 3 .032
Beta 4 =127
Beta 5 .007
Beta 6 .069
Beta 7 229
Beta 8 -.038
SS Error 720
Rz .280

0.02
-.167
-.143

.093
-.126
-.049

104

452
-.191

676

324

0.20
-.180
-.106

-136
-014

330
-.099

311

0.70
-.155
-.069

.028
-.123

.009

.065

215
-.031

127

273

0.04
-171
-.137

.087
-.129
-.043

.103

432
-175

677

323

0.30
=177
-.094

-136
-.005

294
-075

697
.303

266

0.06
-174
-.132

-131
-.038
101
Al14
-.161
678
322

0.90
-.144
-.061

.023
-.116

.010

059

192
-.021

.740

.260

Ridge estimates for 1970 infant mortality: 0 » K~ 1

0.08
-177
-127

-132
-.033

-.149
679
321



