
A Novel GCAPl Missense Mutation (L151F) in a Large 
Family with Autosomal Dominant Cone-Rod 
Dystrophy (adCORD)
Izabela Sokal,1 William J. Dupps,2 Michael A. Grassi,2 Jerem iah Bro wn, Jr,2 3 
Louisa M. A ffa tiga to2 N irm alya R o y c h o w d h u ty L ili Yang,' Sfawom ir Filipek,5 
K rzysztof Palczewski,1 67 Edwin M. Stone,28 and  Wolfgang B aehr '310

Purpose. To elucidate the phenotypic and biochemical charac
teristics of a novel mutation associated with autosomal domi
nant cone-rod dystrophy (adCORD).
Methods. Twenty-three family members of a CORD pedigree 
underw ent clinical examinations, including visual acuity tests, 
standardized full-field ERG, and fundus photography. Genomic 
DNA was screened for mutations in GCAPl exons using DNA 
sequencing and single-strand conformational polymorphism 
(SSCP) analysis. Function and stability of recombinant GCAP1- 
L151F were tested as a function of [Ca2 f ], and its structure was 
probed by molecular dynamics.
Results. Affected family members experienced dyschromatop- 
sia, hemeralopia, and reduced visual acuity by the second to 
third decade of life. Electrophysiology revealed a nonrecord- 
able photopic response with later attenuation of the scotopic 
response. Affected family members harbored a C—»T transition 
in exon 4 of the GCAPl gene, resulting in an L151F missense 
mutation affecting the EF hand motif 4 (EF4). This change was 
absent in 11 unaffected family members and in 100 unrelated 
normal subjects. GCAP1-L151F stimulation of photoreceptor 
guanylate cyclase was not completely inhibited at high physi-
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ological [Ca2 f], consistent w ith a lowered affinity for Ca2 f- 
binding to EF4.
Conclusions. A novel L151F mutation in the EF4 hand domain 
of GCAPl is associated with adCORD. The clinical phenotype 
is characterized by early cone dysfunction and a progressive 
loss of rod function. The biochemical phenotype is best de
scribed as persistent stimulation of photoreceptor guanylate 
cyclase, representing a gain of function of mutant GCAPl. 
Although a conservative substitution, molecular dynamics sug
gests a significant change in Ca2 ^-binding to EF4 and EF2 and 
changes in the shape of L151F-GCAP1. { In v e s t O p h th a lm o l Vis 
Sci. 2005;46:1124-1132) DOklO.l l67/iovs.04-1431

T  n rod and cone photoreceptors, two diffusible secondary 
JLmessengers, cGMP1 and Ca2 regulate phototransduc
tion and recovery of photoreceptors from photobleaching. In 
the dark-adapted photoreceptor cells, concentrations of both 
cGMP and Ca2 f are high (1-10 and 0.5-1 /xM, respectively). 
High levels of cGMP keep a portion of cGMP-gated cation 
channels in the open state, and photoreceptors are depolar
ized. The effect of phototransduction is to lower [cGMP] rap
idly by activation of rod- and cone-specific cGMP phosphodi
esterases (PDE6s), an event that closes channels located in the 
plasma membrane, causing hyperpolarization of the cell. In the 
recovery phase, after shut-off of other activated phototransduc
tion components, cGMP must be replenished by a membrane- 
associated guanylate cyclase (GC). GC is activated when Ca2 f 
decreases after photobleaching, as a consequence of the clo
sure of cation channels and the continued extrusion of Ca2 f by 
a light-insensitive Na VCa2 f-K *" exchanger.7 The Ca2 f sensi
tivity of GC is mediated by a set of calmodulin-like Ca2 f- 
binding proteins term ed guanylate cyclase-activating proteins 
(GCAPs).9,10 When the Ca2 f concentration decreases below 
200 nM, Ca2 f dissociates from GCAP, converting it into a GC 
activator. Once cGMP levels are replenished to normal dark 
levels, cation channels open again, Ca2 f levels are restored, 
and GCAP reassociates with Ca2 f and reverts into an inhibitor, 
terminating GC stimulation.

In human retina, two GCs (GCl and -2) and three GCAPs 
(GCAPl to -3) have been identified.9"15 GCl (gene symbol 
G U C Y2D ) is located on chromosome 17 at p i 3.1 and GC2 
{G U CY2F) at Xp22. Both cyclases are closely related in struc
ture and function, and both are expressed specifically in pho
toreceptors.1” Only GCl gene defects have been associated 
with Leber congenital amaurosis (LCA type i ) 17-ls and domi
nant cone-rod dystrophy (CORD l) ,19 whereas pathogenic mu
tations in the GC2 gene have not been identified. GCAPl and 
-2 are arranged on opposite strands in a tail-to-tail gene array 
{GUCA1A  and G U C A1B ) on chromosome 6 at p21.1,2° sepa
rated by a 5-kb intergenic region. The GCAP3 gene (G U C A1C ), 
structurally identical w ith the GCAP1/2 genes, is located on 
chromosome 3 at q13.1.lj Several missense mutations in two 
of three functional EF hands of GCAPl (Y99C, E155G, and
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F ig i i r f  1. Clinical data. (A) Pedi
gree  o f  a family w ith  autosom al dom 
inant co n e-ro d  dystrophy (adCORD). 
A C—*T transition in exon  4 o f 
GCAPl that, w ou ld  b e  ex p e c te d  to  
result in an 1.151F m issense m utation 
in GCAPl w as identified  by  SSCP and 
DNA sequencing. F urther analysis re
vealed  th a t th is m utation c rea ted  an 
7?coRI restriction  site in th e  gene. A 
200-bp PCR product, con tain ing  this 
site w as genera ted  for all family 
m em bers an d  w as sub jec ted  to  7?coRI 
digestion. U naffected family m em 
bers  d em onstra ted  a single uncut, 
band , w h ereas affected  individuals 
show ed  a diagnostic second  band  
{arrow). Individuals from  w hom  
b lo o d  sam ples w ere  not. acqu ired  are 
not. dep ic ted . (B) Exam ples o f fundu- 
scopic features in adCORD associ
a ted  w ith  th e  GCAPl -1.151F m uta
tion . la b e ls  co rre sp o n d  to  patient, 
num bers in Table 1. Top row. Patient.
2 h ad  m ild cen tral p igm entary  macu- 
lopathy  at. age 40, m ore evident, w ith  
perifoveal RPE transm ission defects 
on angiography {rightmost panel). 
M iddle row. Patient. 2, 17 years later, 
had  m arked cen tral a trophy. Bottom  
row. Patients 4, 19 (33 and  26 years 
o f  age, respectively) show ed  extra- 
m acular p igm entary  abnorm alities.

1143NT) have been linked to autosomal dominant cone dystro
phy (adCD).~ A transgenic mouse model expressing
C.CAP1-Y99C has recently been shown to produce cone-rod 
degeneration .'' A fourth mutation (P50L), affecting a variable 
Pro residue present only in some C.CAPIs of various species, 
has been found to be associated with adCORD.'5 ' 0' Several 
polymorphisms not linked to disease were discovered in the 
C.CAP2 gene,27 and recently, a C. 157R missense mutation in the 
G U C AIJi gene (C.CAP2) has been suggested to be causative of 
recessive RP.'X However, one family member carrying the 
mutation had an asymptomatic normal phenotype; thus, the 
pathogenicity of this mutation is unproved. To date, no patho
genic mutations have been identified in the human C.CAP3 
gene.

Null alleles of C.C1 in h u m a n s 29 and the deletion of 
C.C1 in mouse30 and other animals31 cause severe retinal dys
trophies. Deletion of C.CAPl and -2 genes in mice, however, 
affects only recovery from bleaching, whereas the retina stays 
intact,3' suggesting that C.CAP gene expression is not essential
for development or
GCAP- retinas, Ca-

survival of photoreceptor cells. In 
sensitivity of C.C is abolished and re

covery of both the cone driven b- and a-wave is delayed. 
Transgenic C.CAPl, but not C.CAP2, could restore normal rod 
and cone response recovery.3'~3J Taken together, these ge
netic results suggest that C.CAPl and C.C1 form a C a '+-sensi- 
tive regulatory complex indispensable for regulation of photo
transduction in rods and cones.

In this communication, we analyzed a 23-member family of 
an autosomal dominant cone-rod dystrophy (CORD) pedigree 
for pathogenic mutations. We focused our attention on the

C.CAP gene array located at 6 p 2 1 .l '°  and identified a novel 
missense mutation which cosegregated with affected family 
members. The mutation affected C a '+-binding to KF4 and com
promised inhibition of activated C.CAPl, leading to persistent 
C.C 1 stimulation in the dark, and presumably elevated levels of 
cGMP.

M a t e r ia l s  a n d  M e t h o d s  

P a t i e n t s

The study w as app roved  b y  th e  institutional rev iew  b o ard  o f  th e  
U niversity o f  Iow a C arver College o f  M edicine an d  ad h ered  to  th e  
ten e ts  o f  th e  D eclaration o f  Helsinki. P atients com prised  a single large 
family. T here w ere  11 b ranches o f  th e  family, w ith  4 b ranches having 
affected  family m em bers. W e use th e  term  ‘ family” to  refer to  th e  
descendan ts o f  a mult.igenerat.ion ped igree o f  know n re la ted  individu
als (Fig. 1). Autosom al dominant, inheritance  w as evident, w ith  th e  
p resence  o f  m ultiple affected  individuals in each generation  and  male- 
to-male transm ission. Twenty-six individuals p artic ipa ted  in th is study. 
In all patients, pheno ty p ic  characterization  inc luded  an ophthalm ic 
history, assessment, o f  visual acuity, Farnswell-M unsworth co lo r vision 
testing , and  a funduscopic exam ination . Selected patien ts (Table 1) 
received  additional psychophysical testing , w h ich  inc luded  a Ganzfeld 
electro re tinogram  (ERG) in acco rdance  w ith  th e  recom m endations o f 
th e  In ternational Society for Clinical E lectrophysiology o f  Vision, as 
w ell as a G oldm ann visual field. P atients w ere  considered  affected  if 
th ey  h ad  bilateral cen tral visual loss associated  w ith  m acular retinal 
pigment, epithelial (RPE) abnorm alities an d  p oor co lo r vision. In all 
cases, th e  disease status w as d e term ined  before  genotyping. In cases in



1126 S o k a le t a l .  JO  KS, April 2005, Vol. 46, No. 4

T a b l e  1 .  Clinical and  Flectrophysiologic Findings in Affected Family M em bers

Patient
Age
Cy)

BCVA 
(OD, OS)

Photopic ERG 
(% amp)*

Scotopic ERG 
(% am p)f Field Defect H em eralopia

Color
DeflcitJ

1 10 20/25. 20/25 Minimal Borderline -1 -1 -|
2320/40. 20/40 NR 62%

2 40 20/60. 20/200 Minimal <50% Central
57 20/400. 20/400 NR NR

4 33 20/160. 20/50 20% 37% Central.
38 20/200. 20/50 NR 73% Paracentral

11 58 20/400. 20/400
16 27 20/40. 20/30

35 20/50. 20/50
17 85 I,P. I.P U nable
18 36 20/40. 20/40
19 26 20/40. 20/50 Slightly reduced Borderline Central -

37 20/63. 20/80
20 40 20/60. 20/50 No red Normal N one 4 4

61 20/125. 20/125
22 17 20/30. 20/40 No red  13%: no flicker Normal Paracentral 4 4

38 20/50. 20/50 78% 4
23 18 20/25. 20/25 4 4
24 17 20/20. 20/20 D elayed implicit, tim e Normal

BCVA. bes t co rre c ted  visual acuity: I,P. light, percep tion  only: NR. nonrecordab le FRG.
* b-Wave am plitude for 10-minut.e light-adapted, bright, w h ite  flash (as percen tage  o f th e  m inim um  norm al response, average o f bo th  eyes). 

Textual descrip tions w ere  adap ted  d irectly  from sum m ary reports w h en  original tracings w ere  n o t available.
t  b-Wave am plitude for 30-m inute dark-adapted, dim  ( - 2 4  dB) w h ite  flash (calculated  as d escribed  for ph o to p ic  response). 
t  (4 4 ). severe dyschrom atopsia based  on FM-100 e rro r  score > 3 0 0  o r  0 /1 4  pseudo-isochrom atic plates: (4 ). FM-100 e rro r  score > 2 0 0  o r red  

dyschrom atopsia by  Nagel anom aloscope.

w h ich  th e  patien t h ad  died, th e  disease status w as in ferred  by  clinical 
h istory  ob ta ined  from family m em bers and  from  m edical records, 
w h en  available.

G enotyping and Mutation Analysis
G enom ic DNA w as ex trac ted  from  periphera l b lood  by  using standard  
techn iques. For bo th  genotyp ing  and  m utation screening. 12.4 ng of 
each p a tien t’s DNA w ere  used  as a tem pla te  in an 8.35 ptl. polym erase 
chain reaction  (PC R )contain ing: 1.25 ptl. 10X b u ffe r(1 0 0  mMTris-HCl 
[pH 8.3]. 500 mM KC1. and  15 mM MgCU): 300 fj,M each  o f dCTP. 
dATP. dGTP. and  dTTP: 1 p icom ole o f  each prim er, and  0.25 units 
polym erase (Biolase. San Clem ente. CA). Samples w ere  d en a tu red  for 5 
m inutes a t 94°C and incubated  for 35 cycles u n d e r th e  follow ing 
conditions: 94°C for 30 seconds. 55°C for 30 seconds, and  72°C for 30 
seconds in a DNA therm ocycler (O m nigene: Therm oH ybaid. Ashton. 
UK). After am plification. 5 /xl, o f  sto p  solution (95% form am ide. 10 mM 
NaOH. 0.05% b rom opheno l blue, an d  0.05% xylene cyanol) w ere  
added  to  each sam ple. For analysis o f  short, tandem  repeat, polym or
phism s (STRPs). th e  PCR am plification p roducts w ere  d en a tu red  for 3 
m inutes at. 94°C an d  e lec tro p h o resed  on 0 .4 m m  d enatu ring  gels (6% 
19:1 acrylamide-bis. and  7 M u rea) w ith  a runn ing  buffer o f 1.0% TBF 
at. 65 W  for 3 hours at. room  tem peratu re . After electrophoresis, gels 
w ere  sta ined  w ith  a silver n itrate solution. For each  m arker, sam ples 
w ere  labeled  accord ing  to  allele pair size and  analyzed for segregation 
w ith in  th e  family. Pair-wise linkage analysis w as perform ed  w ith  
MI.INK and  I.ODSCORF program s as im p lem en ted  in th e  FASTUNK 
(ver. 2.3) version o f  th e  UNKAGF program  package (h ttp :w w w .h g m p . 
m rc.ac.uk/: prov ided  in th e  public dom ain by  th e  H um an G enom e 
M apping Project. R esources C entre. Cam bridge. UK). For single strand  
conform ational polym orphism  (SSCP) analysis, am plification products 
w ere  d en a tu red  for 3 m inutes at. 94°C an d  e lec tro p h o resed  on 6% 
polyacrylam ide. 5% glycerol gels at. 25 W  for approx im ately  3 hours at. 
room  tem peratu re . After electrophoresis, gels w ere  sta ined  w ith  silver 
n itrate. Abnorm al PCR p roducts identified  by  SSCP analysis w ere  se
q u en ced  by  using fluorescent, d ideoxynucleo tides on an au tom ated  
se q u en cer (m odel 377: A pplied Biosystems Inc.. Foster City. CA). AH 
sequencing  w as bidirectional.

E xpression Constructs o f  Mutant GCAPls
The m utations w ere  in troduced  in to  a hum an GCAPl plasm id (hG- 
CA P1'5)  by  site-directed m utagenesis, and  th e  mutant. GCAPs w ere  
exp ressed  in insect, cells. Briefly, th e  i'coR I-digested insert, o f  hGCAPl 
w as c loned  in to  pFast.Bac-1 (Invit.rogen-C.ibco, G rand Island. NY) and 
transform ed  in to  th e  X Zi-G old Escherichia coli strain. The orientation  
o f  th e  resultant, plasm id w as confirm ed w ith  Pstl digests, and  th e  
m utations w ere  verified by  DNA sequencing  w ith  th e  p rim ers 5'- 
GTTGGCTACGTATACTCCGG an d  5 ' -GT A AAACCT CT AC A AAT GT GG. 
M utagenesis to  genera te  G CA Pl-1151F w as perform ed  in th is plasm id 
w ith  th e  sense p rim er 5'-AACGGGGATGGGGAAXTCTCCCTGGAA- 
GAG and  th e  antisense p rim er 5'-CTCTTCCAGGGAGA^TTCCCCATC- 
CCCGTT (italic nucleotides in troduce  th e  m utation). W ild-type hum an 
GCAPl. GCAP1-F155G. and  GCAP1-I143NT plasm ids (pFastBac) w ere  
g en era ted  as previously d escribed .22

SDS-PAGE and Im m unoblot Analysis

The expression  o f  GCAPl p ro te ins w as confirm ed w ith  UW101 anti
body  using  SDS-PAGF an d  im m unoblot. analysis, as d escribed .5’ AH 
purification p roced u res w ere  p erfo rm ed  at. 4°C. After hom ogenization. 
cell suspensions w ere  cen trifuged  at. lOO.OOOg for 20 m inutes. Super- 
natants w ere  used  as a source o f  recom binant, p ro te ins for protein 
purification. GCAPs w ere  purified using m onoclonal antibody  (G2) 
co u p led  to  CNBr-act.ivat.ed Sepharose resin ( —5 m g o f  IgG p e r 1 ml, o f 
th e  gel) as d escribed  previously.5'’ Purified p ro teins w ere  dialyzed 
overnight, against. 10 mM BTP (pH  7.5). con tain ing  100 mM NaCl. The 
purity  o f  th e  p ro te ins w as estim ated  by  SDS-PAGF and  Coom assie 
staining. SDS-PAGF in th e  p resence  and  absence o f  Ca2 1 an d  lim ited 
proteolysis o f  purified GCAPl and  GCAPl m utants w ere  p erfo rm ed  as 
d escribed  previously.22 5

GC Activity Assay
W ashed ro d  o u te r  segment. (ROS) m em branes58 w ere  p rep ared  from 
fresh bovine retinas reconstitu ted  w ith  recom binant. GCAPs and as
sayed as d escribed .5'’ [Ca2 1 ] w as calculated  using th e  co m p u te r  p ro 
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gram  C helator 1.00*° and adjusted to h igher co ncen tra tions by  increas
ing the  am ount o f CaCK. All assays w ere  repeated  at least tw ice.

Fluorescence M easurements
F luorescence m easurem ents o f  GCAPl and its m utants w ere  p er
form ed on a spectro fluo rom eter (IS  50B; PerkinFlm er. W ellesley. MA) 
using a 1 X 1-cm quartz cuvette . Emission spectra  w ere  recorded  w ith  
excitation  a t 280 nm  at 5-tun slit w id ths in 50 mM HFPFS (pH  7.8). 
con tain ing  60 mM KC1. 20 mM NaCl. 1 mMFGTA. 1 mM dith io threito l. 
and 10 111 to 10 s M CaCl,.

M odeling GCAPl and GCAF1-L151F
A m odel o f  GCAPl w as built using  th e  hom ology m odeling m ethod  in 
the  program  M odeler*1 from  the  H om ology M odule o f  the  Insight IT 
softw are (ver. 2000; Accelrys Inc.. San Diego. CA) based on th e  crystal 
struc tu re  o f  unm yristoylated GCAP2 w ith  th ree  calcium  ions bound  
(1JBA accession co d e  in Protein Data Bank; pdbbeta .rcsb .o rg /pdb ; 
provided in the  public dom ain by  Research C o lla b o ra to r  for Structural 
B io in fo rm atics)/2 *3 T he quality  o f  the  calculated stru c tu re  was 
checked  by  th e  Profile-3D p rogram .*1 T he C-terminal region, encom 
passing residues 177-201 o f GCAPl ex tend ing  beyond residues in the  
crystal struc tu re  o f  GCAP2. w as n o t m odeled. This 177-201 fragm ent 
does n o t con tain  FF hand dom ains and is n o t essential for GC-stimu- 
lating activity.37

H om ology m odeling w as applied for the  stru c tu re  o f  W T and
I.151F-GCAP1. After energy  m inim ization, m olecular dynam ic (MD) 
sim ulations w ere  perform ed for WT and I.151F-GCAP1. All MD tasks 
w ere  conducted  in a periodic b o x  filled w ith  TIPJP-type w a te r  a t a 
constan t p ressu re  o f  1 atm  and a tem pera tu re  o f  300 K. During th e  first 
100 ps o f  equilibration phase, the  pro tein  w as frozen, and w a te r  w ith  
sodium  and chloride coun terions w as allow ed to m ove. T hen a 1-ns 
p roduction  phase o f MD w as applied . To double-check results, w e  
used Yasara ( ‘yet an o th er scientific artificial reality ap p lica tio n ' ver. 
4.9; Yasara Biosciences, h ttp ://w w w .yasara .o rg /index .h tm l)  w ith  the  
Y am ber2 force field (m odification o f  th e  Am ber99 force field) and 
Nam d2 (h ttp ://w w w .k s.u iu c .ed u /re sea rc h /n am d / provided in the  p u b 
lic dom ain by  T heoretical Biophysics G roup. Beckm an Institute. Uni
versity  o f  Illinois. Chicago. II,)*5 w ith  Charm m  27 force field (h t tp :/ /  
w w w .charm m .org )  for bo th  m inim ization and MD. In bo th  program s, 
a particle m esh Fwald (PMF) algorithm *0 for trea tm en t o f  long-range 
electrostatic  in teractions w as used.

R e s u l t s

Phenotypic Appearance o f  GCAP1-L151F Patients
Common symptoms in affected family members included pho
tophobia, depressed central vision, and poor color vision. In 
the first decade of life, the funduscopic changes w ere minimal, 
consisting of a subtle, but definite, granularity of the retinal 
pigment epithelium (RPB). Visualization of the RPB abnormal
ity was enhanced by fluorescein angiography. These minimal 
findings w ere consistent w ith the patients' vision, which was 
as good as 20/20. However, color vision was consistently 
abnormal, even in patients with relatively good visual acuity. 
For example, patient 1 had a complete inability to recognize 
any of the color plates at the age of 11. Moreover, the photopic 
KRG response was severely depressed (Table 1). la te r changes 
included a progressive decline in best corrected visual acuity 
associated w ith the development of more pronounced macular 
atrophy (Fig. 1B). The photopic electroretinogram was nonre- 
cordable in patients in the second and third decades of life. 
Some patients noted precipitous vision loss when the macular 
atrophy extended through fixation. Patients older than 55 had 
very poor vision (Table 1). The eldest patient (no. 17) was 85 
at the time of examination and had only light perception vision 
in both eyes. Funduscopic examination of the latter individual

revealed central atrophy with marked arteriolar attenuation 
and bone-spicule-like pigmentation in the periphery.

Genetic Screening and Identification o f  a 
M issense Mutation in  GCAPl
Linkage analysis using short tandem repeat polymorphisms 
revealed significant linkage between the CORD phenotype and 
genetic markers from 6 p 2 1, near the locus of the peripherin-2 
gene (R D S) (6p21.2-pl2.3). The maximum LOD score of 3.38 
was obtained with marker D 6 S 1 6 5 0 . Analysis of recombination 
events in the pedigree revealed the limits of the disease interval 
to  lie between markers D 6 S 1 5 4 9  and D 6 S 4 5 9 , an interval that 
contains the RDS, GCAPl, and GCAP2 genes. However, SSCP 
analysis and direct DNA sequencing of the coding sequences of 
the RDS gene revealed no disease-causing sequence variations. 
We therefore analyzed the coding regions of the GCAPl and 
GCAP2 genes and identified a novel C—»T transition at the 5' 
end of exon 4 in the GCAPl gene in all affected family mem
bers (Fig. 1A). This variation changes the normal leucine resi
due at position 151 to  phenylalanine (LI5 IF). It was not 
present in any unaffected family members nor in any of more 
than 100 additional control subjects. Residue LI51 is located 
within a high-affinity, C a '+-binding domain (KF4) in the C- 
terminal domain of GCAPl. Replacement of LI51 by F is con
sidered a conservative substitution, and its linkage to disease is 
surprising.

GCAPs have three high-affinity C a '+-binding sites consisting 
of helix-loop-helix KF hand motifs,17 term ed KF2, -3, and -4. The 
KF hand is a common C a '+-binding motif consisting of a 12- 
amino-acid loop flanked by a 12-amino-acid a  helix at either 
end, providing heptahedral coordination fo rthe C a '+ ion . ,H Of 
note, residues 1 and 12 of the C a '+-binding loop are invariantly 
acidic (1) or K), and residues flanking the binding loop are 
invariantly hydrophobic (1, L, F, Y).19 In all GCAPs, the KF1 
motif is incompatible with C a '+-binding because of the ab
sence of key residues essential for C a '+ coordination.

Ca2+-Binding Characteristics o f  GCAP1-L151F
Cosegregation of GCAP1-L151F with CORD in 16 of 26 family 
members represents a strong indication of pathogenicity. We 
hypothesized that the mutation, although a conservative sub
stitution, may affect C a '+-binding to  KF4, because LI5 IF is 
located at a central position in KF4 (Fig. 2A). Residues close to 
L151—namely, HI55 and 1143— have been found to  be mu
tated in families w ith cone dystrophy.'' ' 5 However, the mu
tations K155G and I143NT, are nonconservative and are 
thought to affect C a '+-binding severely. To verify the effects of 
LI5 IF on C a '+-binding, w e further analyzed recombinant 
GCAP1-L151F by biochemical methods.

Ca2+-Dependent C onform ational Changes in  WT 
and Mutant GCAPl
C a'+-binding proteins of the calmodulin supergene family 
show a characteristic C a '+-dependent change in conforma
tion. In its C a '+-bound form (KF2 to  -4 occupied by C a '+), 
GCAPl assumes a compact structure with a higher apparent 
mobility on gel electrophoresis. In its C a '+-free form (presence 
of 1 mM KGTA), GCAPl folds into a relaxed open structure 
with a lower apparent mobility. Affinity-purified recombinant 
GCAP1-L15 IF showed a C a '+-shift very similar to  wild-type and 
GCAP1-I143NT (Fig. 2 B )'' when electrophoresed in high- and 
low-Ca'+ buffers. These results show that, at least at extreme 
C a '+ buffer conditions (0 C a '+ and 1 mM C a '+), mutant and 
WT- GCAP 1 behave indistinguishably.

We have noted57 that in the absence of C a '+ , the open 
conformation of GCAPl is readily susceptible to proteolysis by 
trypsin. This is demonstrated in Figure 2C, w here it is shown

http://www.yasara.org/index.html
http://www.ks.uiuc.edu/research/namd/
http://www.charmm.org
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F ig u r e  2 .  Location o f  th e  I.151F m issense m utation and biochem ical data o f  GCAP 1-1,15 IF. (A) I.151F is located  in the  Ca2 ' -binding dom ain FF4. 
An am ino acid sequence  alignm ent o f v erteb ra te  GCAPl s encom passing  FF3 and -4 (C-terminal half o f  th e  m olecule) is show n. This part o f  the 
m olecule con tains th e  Ca2 1 -binding sites FF3 and -4 w h ich  form hclix-loop-helix structu res. FF3 and -4 are relevant for converting  the  Ca2 1 -bound 
GCAPl inh ib ito r o f  p h o to recep to r  GC in to  an activator (Ca2 1 -free). T h ree  disease-causing m issense m utations (Y 9 9 C , I143NT, F155G in th e  hum an 
sequence) are located  in this region (arrows). Conserved residues are prin ted  on a black  background. Residues conserved in six o f  seven sequences 
are prin ted  a gray  background . Prefix h , hum an; prefix  m, m ouse; prefix  b, bovine; prefix  f, frog (S a n a  pipiensy, prefix c, chicken; prefix  fugu, 
puffer fish (Fugu rubripes)-, prefix  z, zebrafish (Danio rerio). (B) Ca21-dependen t m obility shift o f  w ild-type and m utan t GCAPl po lypeptides. 
Im m unoblo tting  o f  GCA Pl, GCAP1-I.151F, and GCAPl (II43N T ) in the  p resence  (H )  o r  absence ( - )  o f  Ca2 1. T he antibody  used w as UW 14. (C, D) 
Limited proteolysis o f  GCAPl (C) and GCAPl-LI 51F (D) by  trypsin. T he digestions w ere  perform ed a t 30°C a t a ratio  o f G C A Pl/trypsin 300:1, and 
the  digest w as analyzed by  SDS-PAGF at 0, 5, 10, and 20 m inutes; H Ca2 1 rep resen ts 2 fxM [Ca2+] and - C a 2 1 indicates 30 nM [Ca2+], N ote that 
after 10 m inu tes' d igestion, the  high-m olecular-w eight co m p o n en ts  w ere  nearly com pletely  digested in GCAP1-L151F.

that exposure of C.CAPl in the absence of Ca2 led to com
plete digestion after just 5 minutes (last two lanes). In the 
presence of 2 /niM Ca2+, however, proteolysis was restricted 
because GCAPl assumed a much more compact structure 
inaccessible to trypsin (Fig. 2C, left lanes). The compact core 
of C.CAPl remained intact, even at 20 minutes of digestion. In 
contrast, C.CAP1-L151F at 2 /nM Ca2+ is much more susceptible 
to proteolysis. These biochemical results illustrate that the 
C.CAP1-L151F mutation prevents the protein from folding into 
a compact structure.

WT and Mutant GCAPl Conform ations Probed  
b y Fluorescence
An increase of Ca2 bound to C.CAPl causes a decrease in 
fluorescence intensity, w ith a minimum occurring at 200 to 
300 mM ICa2+J(rrt.. Further increases in Ca2+ levels reverse this 
trend and cause an increase in fluorescence intensity (Fig. 3A). 
These changes in the fluorescence correlate with a structural 
rearrangement of C.CAPl similarly to the Ca2+-shift experi
ment, and reflect the transition from an activator to an inhibitor 
of photoreceptor C.C, C.CAP1-L151F showed an incomplete 
reversal (Fig. 3B), suggesting a Ca2+-dependent structural re
arrangement, perhaps a defect in Ca2 -binding at KF4 (caused 
by the L151F mutation).

Persistent Stim ulation o f  ROS GC by GCAP1-L151F
We next compared the ability of C.CAP1-L151F and WT-GCAP1 
to stimulate C.C1 in vitro (Fig. 3C). Both C.CAPs, together with

previously characterized mutants C.CAP1-I143NT and GCAP1- 
K155C., were assayed for C.C 1 stimulation as a function of Ca2+. 
Due to previous analyses with KF3 mutations5'1,19 and KF4 
mutations,22,23 we expected incomplete inactivation of C.C 1 at 
700 mM Ca2+ levels found in dark-adapted photoreceptors. We 
found that C.CAPl-LI 5 IF was active at low [Ca2+J (<200 nM) 
and remained active even at levels (—700 mM) that inhibit 
WT-C.CAP 1. This inhibition is physiologically relevant since it 
terminates production of cGMP by C.C when Ca2+ levels have 
recovered to dark levels. The mutants C.CAP1-K155C. and 
C.CAP1-I143NT exhibit similar activation-inactivation kinetics. 
Together, the findings indicate that mutations affecting KF4 
and -3 partially impaired C.C inhibition, leading to persistent 
stimulation in dark-adapted photoreceptors.

The Effect o f  the L151F Mutation on  
GCAPl Structure
The N- and C-terminal domains of C.CAPl each contain pairs of 
KF hands that form a compact structure in the Ca2+-bound 
state. The arrangement of amino acids in KF1 is incompatible 
with Ca2+-binding,9 whereas KF2, -3, and -4 are known to each 
bind one Ca2+ ion, confirmed by numerous site-directed mu
tagenesis experiments.37,39,50,52-51 The mutant residue L151F 
is located in the j3-sheet of the last KF hand domain, w here it is 
in a position to influence nearby Ca2+-binding sites. 1,15IF is a 
conservative replacement and it is not obvious why affinity for 
Ca2+ is affected. To identify potentially significant changes in 
protein folding and Ca2+-binding at the molecular level, and to
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F ig to f .  3. Ca2*'- d e p e n d e n c e  o f fluorescence em ission and biological 
activity o f w ild-type GC.AP1 and its m utants. F luorescence em ission of 
(A) WT-GC.AP1 and (B) GC.AP1-I.151F as a function o f Ca2 ' .  F luores
cen ce  w as excited  a t Aex =  290 nm . and em ission w as m easured a t A^,, 
=  343 nm . Insets-, fluorescence em ission spectra  o f  GCAPs using 
excitation  at 280 nm  from  4 .6  X 10 s M to 2.4 X 10 0 M Ca2 '.  (C) 
Stim ulation o f  GC activity in ROS m em branes by  norm al and m utant 
GCAPs as a function  o f [Ca2 ' ]. The dark  shaded  area above  the  jc-axis 
ind icates low  [Ca2 ' ex p ec ted  in th e  light-adapted p h o to recep to rs  
(~ 5 0  nM), the  gray shaded  area reflects high [Ca2 ' ex p ec ted  in 
the  dark-adapted p h o to recep to rs  (5 0 0 -7 0 0  nM). Ca2 ' d ep en d en c e  o f 
GCAPM.151F is similar to th a t o f GCAPl-T143NT and GCAPl-F.155G. 
w h ich  also carry m utations in F.F4.

reveal how this mutation affects the structure, w e performed 
1-ns Ml) simulations on WT and mutant C.CAPl based on the 
nuclear magnetic resonance (NMR) structure of GCAP2.1? Ml) 
allows prediction of molecule behavior through the use of 
classic mechanics. It numerically solves Newton’s equations of 
motion for an atomistic model of a polypeptide such as C.CAPl 
to obtain information about its time-dependent structural prop
erties. We used two programs for Ml) simulations, Yasara and 
Namd2, and obtained nearly identical results. Yasara is a mo- 
lecular-graphics, -modeling and -simulation package in which 
autostereoscopic displays are used to visualize predicted struc
tures. Namd2, described by Kale et al.,15 is specifically tailored 
to parallel computing platforms. This program uses spatial 
decomposition combined w ith force decomposition to en
hance scalability. When predicted structures of GCAPl and 
GCAP1-L151F were superimposed with their C-terminal BF- 
hand pair domains, greater changes occurred during simulation 
of the L151F mutant. Direct comparison between WT and 
LI 51F structures (Fig. 4A) revealed that there was a rotation of 
approximately 20° of the N-terminal BF-hand pair in relation to 
the C-terminal pair about a long axis of the molecule. However, 
hydrophobic interactions between interacting helices (Fig. 4A) 
w ere preserved. Furthermore, the mutated BF-hand domain 
was moved by approximately 0.1 nm (1 A) along the |3-sheet in 
relation to WT-GCAP1.

In WT-GCAP1, five amino acids participate in the binding of 
Ca2+ in KF4:1)144, N 146,1)148, HI 50, and HI 55. In the mutant 
structure, N146 was moved apart and 1)148 accommodated to 
form a stronger bond w ith Ca2+, using both acidic oxygen 
atoms. We calculated the distance between C :r and Asnl46 
(side chain oxygen Osl atom) in both mutant and WT structure 
during Ml). Figure 4B shows that the preferred position of 
Asnl46 in WT-GCAP1 was close to the bound C :r (average 
distance 0.23 nm), although during the first 300 ps it was 
separated from the calcium ion with an average distance of 
0.44 nm. This is contrary to the LI 51F mutant, w here the initial 
distance of 0.23 nm increased shortly after 100 ps to 0.57 nm 
and after 600 ps to 0.68 nm. Fluctuations in this distant posi
tion are much greater than in proximity to the C :r ion in 
WT-GCAPl. This finding is consistent w ith the weakening of 
Ca2+-binding to BF4, which is the molecular reason for persis
tent stimulation of GCl at physiological Ca2+. These theoreti
cal predictions are in excellent agreement with biochemical 
and fluorescence titration experiments described earlier.

D is c u s s io n

Autosomal dominant cone-rod dystrophy is a heterogeneous 
disease caused by several diverse gene defects. At least 13 loci

L151F

F ig to f .  4 . M olecular m odeling of 
WT-GCAPl and GCA Pl-1.151F w ith  
b ound  Ca2 ' .  (A) Com parison of 
WT-GCAPl and G CA Pl-1.151F struc
tures after 1 nsec o f m olecular dy
nam ics. Red\ WT-GCAPl: green\
GCA Pl-1.151F. T he structu res are su
perim posed a t the  third and fourth 
F.F hand (F.F3 and F.F4. left). Arrows'. 
residues 1.151 and FI 51. Calculated 
positions o f Ca2 ' ions in W T and 
m utan t GCAPl are d ep ic ted  by  red 
o r green circles, respectively. (B) Dis
tance be tw een  Ca2 ' in m utant F.F4 1N146 -  -_ ™  __  __  __
and A sn l46 (side chain oxygen 0 51 MU1 N14fe I ^
atom ) during  MDs. Red: W T-GCAPl:
green-. GCAP1-T.151F. The preferred  position o f A sn l4 6  in W T w as close to bound  Ca2 ' (average d istance 0.23 ran), a lthough during the  first 300 
ps it separa ted  from  th e  Ca2 ' ion by  an average d istance o f  0.44 nm . In the  GCAPl- T.151F m utant, th e  initial d istance o f  0.23 nm  increased  shortly  
after 100 ps to 0.57 nm  and after 600 ps to 0.68 nm.

L151F
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Gene Locus Protein Mutation Disease Ref.

GUCAIA 6p21.1 GCAPl (guanylate cyclase activating p ro te in  1) P50T. 
Y99C 
Y99C 
El 55C. 
1143NT 
T.151F

adCORD
adCD
adCORD in m ouse m odel
adCD
adCD
adCORD

25
21
24
23
22
This pap er

RDS 6p21.2 P eripherin  2 V200E adCORD 55
RIMS I 6 q l3 Regulating o f synaptic m em brane exocytosis 

p ro tein  1 o r  rab3A-int.eract.ing m olecule
R844H adCORD 56

AIPT.l 17 p l3 .2 ATPI.l (arylhydrocarbon-int.eract.ing recep to r 
protein-like 1)

P351A12 adCORD 57

GUCY2D 17pl3 .1 Guanylate cyclase 1 (GC-E in m ouse) R838C
E837D
T839M

adCORD 29. 58

UNCI 19 17(jl 1.2 HRG4 hum an hom olog o f  C. elegans u n c i 19 
pro tein

T.57t.er adCORD 59

CRX 19q l3 .3 2 C on e-ro d  otx-like p h o to recep to r hom eobox  
transcrip tion  factor

E60A 
A196 H 1 
A rg41Trp

adCORD 60

The seven CORD genes that, w ere  identified and cloned  are listed. O nly m utations leading to  autosom al dominant. CORD phen o ty p e  are show n. 
The list, o f  m utations is not. com prehensive; additional m utations may exist..

linked to cone-rod dystrophy are listed in RetNet (h ttp :// 
www.sph.uth.tm c.edu/RetNet/ provided in the public domain 
by the University of Texas Houston Health Science Center, 
Houston, TX), 6 of which show an autosomal dominant inher
itance (Table 2). Two of these genes (GUCA 1A and G U C Y2D ) 
encode C.CAPl and C.C1, respectively, which are directly in
volved in synthesis of cGMP and phototransduetion. O ther 
CORD genes encode a transcription factor (CRX), a PDK chap
erone (AIPL1), a structural protein (peripherin/RDS), a protein 
regulating synaptic exocytosis (RIMSl), or a protein with un
known function (HRC.4), In the C.CAPl gene, three mutations 
(Y99C, K155C., and I143NT) have been linked to adCD, and 
one (P50L) has been suggested to cause a more severe form of 
retinal degeneration (adCORD). In C.CAP-Y99C,21 a hydropho
bic residue O') flanking the KF3 Ca2+-binding loop was re
placed by a polar amino acid (Cys), thus distorting the KF3 
motif.50-51 Transgenic mice expressing C.CAPl-Y99C w ere re
cently generated,21 but displayed a dominant CORD pheno
type rather than a CD, as observed in humans. In the C.CAP1- 
K155C. mutant,19 an acidic residue (K), 100% conserved in all 
KF hand motifs, was replaced in KF4 by a neutral residue, 
essentially disabling Ca2+-binding. Recently, the hydrophobic 
residue (He) flanking KF4 (1143) was found to be replaced by 
two polar residues (Asn, Thr) in another family with adCD, 
again distorting KF4 and altering C ;r -binding (GCAPl- 
1143 NT) ”

In contrast to these KF-hand mutations, recombinant 
C.CAP1-P50L does not influence the C ;r sensitivity of C.C1 in 
vitro,01 which is consistent w ith the location of P50 in the 
N-terminal half between KF1 and -2. However, C.CAPl-P50L 
shows a marked increase in susceptibility to protease degrada
tion and a reduction in thermal stability, as observed by CD 
spectroscopy.25 Its lower stability could reduce its cellular 
concentration, as has been observed for C.CAPl in GC 1 / 
animals.52 02 Reduction of C.CAPl levels, however, should have 
no impact on the survival of retinas, since C.CAPl+/_ and 
C . C A P l m i c e  have morphologically normal retinas. Kither 
C.CAP1-P50L causes adCORD by an entirely different mecha
nism involving an unknown dominant negative effect of par
tially degraded mutant C.CAPl-P50L, or the mutation repre
sents a nonpathogenic rare polymorphism.

We describe an adCORD phenotype based on a conserva
tive substitution of a hydrophobic residue (LI 51), located in

the Ca2+-binding loop of KF4, by another hydrophobic residue 
(F), which is not much bulkier than L. This is surprising, and 
for this reason w e investigated the consequences of this mu
tation rigorously by biochemical, biophysical, and molecular 
modeling techniques. The pathogenic properties of the 
C.CAP1-L151F mutations described in this article are supported 
by several independent observations. First, the mutation de
creases the Ca2+ sensitivity of C.C stimulation, an effect also 
seen in Y99C, K155C., and I143NT mutations.22 The change in 
sensitivity leads to persistent stimulation of C.C1 at high “dark” 
Ca2+ and to disease due to gain of function. Second, recombi
nant C.CAP1-L151F is susceptible to proteolysis, because it is 
unable to assume a compact Ca2+-bound conformation essen
tial for inactivity at dark Ca2+ (Fig. 2D). Third, MDs of WT-
C.CAP1 and L151F-C.CAP1 confirmed that a significant change 
in the structure of mutant C.CAPl influences the binding of 
Ca2+ in KF4 and KF2 (Fig. 4). Although residue 151 in KF4 is 
forming a |3-sheet w ith KF3, no hydrogen bond is broken after 
mutation and during the entire simulation. Fourth, the L151F 
mutations have been independently identified in a large Utah 
pedigree with dominant cone dystrophy.05 The reason for the 
discrepancy in phenotype (adCD versus adCORD) is unclear, 
but anomalies in the rod response may be slow in developing 
and may depend on the genetic background.

In summary, all C.CAPl mutations identified so far and 
linked to retinal disease (Y99C, K155C., I143NT) are inherited 
in a dominant fashion, and affect Ca2+ coordination and Ca2+ 
sensitivity (exception P50L, which may be a rare polymor
phism). The KF hand mutants display a gain of function at 
physiological high (dark) [Ca2+J, at which WT-C.CAP1 nor
mally would be inactive. The gain of function consists of 
persistent stimulation of photoreceptor guanylate cyclase lead
ing to elevated levels of cGMP in the cytoplasm of rod and cone 
outer segments. It is not surprising that C.CAPl mutants dis
rupting the interface between C.CAPl and guanylate cyclase 
associated with retina disease have not been identified, since 
mice lacking C.CAPl and -2 display no measurable retina de
generation.?2?1 It is currently not understood why some mu
tations (K155C., Y99C) lead to adCD, whereas L151F causes a 
more severe adCORD phenotype. This may depend on the 
degree of stimulation in the dark-adapted photoreceptors, and 
the level of cytoplasmic cGMP that is established in the dark. 
Higher levels would be considered more cytotoxic, but not

http://www.sph.uth.tmc.edu/RetNet/
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quite as high levels as are thought to lead to milder pheno
types. Transgenic mice expressing mutant GCAPs and mimick
ing the human disease may be useful in answering these ques
tions.
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