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Luttinger’s exactly soluble model of a one-dimensional many-fermion system is discussed. We 
show that he did not solve his model properly because of the paradoxical fact that the density oper­
ator commutators [p(p), p (—p'j\, which always vanish for any finite number of particles, no longer 
vanish in the field-theoretic limit of a filled Dirac sea. In fact the operators p(p) define a boson field 
which is ipso facto associated with the Fermi-Dirac field. We then use this observation to solve the 
model, and obtain the exact (and now nontrivial) spectrum, free energy, and dielectric constant. This 
we also extend to more realistic interactions in an Appendix. We calculate the Fermi surface param­
eter fit, and find: dnt /dk\t r  =  <*> (i.e., there exists a sharp Fermi surface) only in the case of a suffi­
ciently weak interaction.

I. INTRODUCTION
T HE search for a soluble but realistic model in 

the many-electron problem has been just about 
as unfruitful as the historic quest for the philoso­
pher’s stone, but has equally resulted in valuable 
byproducts. For example, 15 years ago Tomonaga1 
published a theory of interacting fermions which was 
soluble only in one dimension with the provision 
that certain truncations and approximations were 
introduced into his operators. Nevertheless he had 
success in showing approximate boson-like behavior 
of certain collective excitations, which he identified 
as “phonons.” (Today we would denote these as 
“plasmons,” following the work of Bohm and Pines.2) 
Lately, Luttinger3 has revived interest in the subject 
by publishing a variant model of spinless and mass- 
less one-dimensional interacting fermions, which 
demonstrated a singularity at the Fermi surface, 
compatible with the results of the modem many- 
body perturbation theory.4

Unfortunately, in calculating the energies and 
wavefunctions of his model Hamiltonian, Luttinger 
fell prey to a subtle paradox inherent in quantum 
field theory5 and therefore did not achieve a correct

* Research supported by the U. S. Air Force Office of 
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1 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544
( 1950).

2 d ! Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
*J. M. Luttinger, J. Math. Phys. 4, 1154 (1963). Note 

that we set his v0 =  1 , thereby fixing the unit of energy. 
References to this paper will be frequent, and will be denoted 
bv L (72), for example, signifying his Eq. (72).

« J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417

^ 6 *Luttinger made a transformation, L (8 ), which was 
canonical in appearance only. But in the language of G. Bar­
ton [Introduction to Advanced Field Theory, (Interscience

solution of the ‘problem he himself had posed. In the 
present paper we shall give the solution to his inter­
esting problem and calculate the free energy. We 
shall show the existence of collective plasmon modes, 
and shall calculate the singularity at the Fermi 
surface (which may in fact disappear if the inter­
action is strong enough), the energy of the plasmons, 
and the (nontrivial) dielectric constant of the system. 
In an Appendix we shall show how the model may be 
generalized in such a maimer as to remove certain 
restrictions on the interactions which Luttinger had 
found necessaiy to impose.

It is fortunate that solid-state and many-body 
theorists have so far been spared the plagues of 
quantum field theory. Second quantization has been 
often just a convenient bookkeeping arrangement 
to save us from writing out large determinantal 
wavefunctions. However there is a difference be­
tween very large determinants and infinitely large 
ones; we shall show that one of the important dif­
ferences is the failure of certain commutators to vanish 
in the field-theoretic limit when common sense and 
experience based on finite N  tells us they should 
vanish! (Here N  refers to the number of particles 
in the field.)

Publishers, Inc., New York, 1963), pp. 126 et seq.] this 
transformation connected two “unitarily inequivalent” Hil­
bert spaces, which has as a consequence that commutators, 
among other operators, must be reworked so as to be well- 
ordered in fermion field operators. It was first observed by 
Julian Schwinger [Phys. Rev. Letters 3, 296 (1959)] that the 
very fact that one postulates the existence of a ground state 
(i.e., the filled Fermi sea) forces certain commutators to be 
nonvanishing even though in first quantization they auto­
matically vanish. The “paradoxical contradictions” of which 
Schwinger speaks seem to anticipate the difficulties in the 
Luttinger model.
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We shall show that these nonvanishing com­
mutators define boson fields which must ipso facto 
always be associated with a Fermi-Dirae field, and 
we shall use the ensuing commutation relations to 
solve Luttinger’s model exactly. Because this model 
is soluble both in the Hilbert space of finite N  and 
also in the Hilbert space 2V =  ®>, with different 
physical behavior in each, we believe it has applica­
tions to the theory of fields which go beyond the 
study of the many-electron problem. The model can 
be extended to the case of electrons with spin. This 
has interesting consequences in the band theory of 
ferromagnetism, as will be discussed in some detail 
in an article under preparation.5*

II. MODEL HAMILTONIAN

We recall Luttinger’s Hamiltonian3 and recapitu­
late some of his results:

H  =  H a +  W ,  (2.1)

where the “unperturbed” part is

H 0 =  [  dx ^ +(x)a3p4'(x) (2.2a)
Jo

— : fc)&> (2.2b) 
k

and the interaction is

H '  =  2 X J J  dx  d y  ^ }( x ) ^ l (x)

Sn, the canonical transformation
.•xs, He~

gave the result that
f r  _ tt

JL JL JL jL Q ^

(2.6)

(2.7)

and consequently that the spectrum of H  =  i f 0 +  H'  
was the same as that of H 0) independent of the inter­
action V(x — y). This can be explicitly verified for 
his choice of

L

So =  J J  dx dy \p\(x) \px(x)E{x -  y ) ^ ^ ) ^ ) ,  (2.8)
0

where E(x),  not to be confused with the energy E,  is 
defined by:

8E(x — y)/dx =  V(x — y),  (2.9)

assuming that

V - ! / > * > dx — 0 . (2-10)

In the Appendix we shall show among other things 
how to generalize to V  0. It is also simple and 
instructive to verify Eqs. (2.6) and (2.7) somewhat 
differently by using the first quantization,

and
/ /< ,=  - i l r  +  i l f  JTi dxn dy„ (2.11)

IV  =-- 2X £  £  F(zn -  ym),  (2.12)

x V{x -  y )V ,iv )U y )  (2.3a)

2X 2D ~

where N  and M  are, respectively, the total number 
of “ 1” particles and “ 2” particles, with coordinates 
xn and y m, respectively. The properly antisym­
metrized wavefunctions are given by

X aft,aUaa?i,a2jfc,. (2.3b)

Here \p is a two-component field and the form (b) 
of the operator is obtained from (a) by setting

^  =  det lc**'*') det
Ar M

i k x t a i k

and
■ y/L  *

Oa*),

X exp £  i E(xn — y m) j .  (2.13)

Using Eqs. (2.9) and (2.10), ’®r is readily seen to obey 
Schrodinger’s equation

V l
(2.4)

h *  =  m

with just the unperturbed eigenvalue

with a,Vs defined to be anticommuting fermion 
operators which obey the usual relations

E Et V '
I s  Qm‘

(2.14)

(2.15)

(2.5)ajkO'j'k' ~l~ i.O'jkj a j fk' \  0

{afi!c, a f . k,} =  0, and {aih, a?.k. } =  Si r Skk.. 

Luttinger noted that for an appropriate operator 

s* D . Mattis, Physics 1, 184 (1964).

The wavenumbers are of the form

ki or q,- =  2tt integerJL,  (2.16)

as required for periodic boundary conditions. This is 
in exact agreement with the results of Ref. 3, and 
can also be checked in perturbation theory; first-
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order perturbation theory also gives vanishing re­
sults, and indeed, it is easy to verify that to every 
order in X the cancellation is complete, in accordance 
with the exact result given above.

Up to this point, Luttinger’s analysis (which we 
have briefly summarized) is perfectly correct. It is 
the next step that leads to difficulty. The Hamil­
tonian discussed so far has no ground-state energy; 
in order to remove this obstacle, and thereby es­
tablish contact with a real electron gas, Luttinger 
proposed modifying the model by “filling the infinite 
sea” of negative energy levels (i.e., all states with 
ki <  and q2 >  0). Following L(8) we define 6’s and 
c’s obeying the usual anticommutators, such that

fbk k >  0 
alk =  ^

and lc * * f c < 0, (217)
f b* k <  0 

^2 k ~  -j
Ic* k >  0.

Using this notation the total particle-number 
operator becomes

91 = E  K h  -  o\ck (2.17a)
an k

(i.e., the number of particles minus the number of 
holes).

Since the Hamiltonian commutes with 31 we can 
demand that 31 have eigenvalue N 0. In the non­
interacting ground state there are no holes and the 
b particles are filled from — kF to kF where kF — 
ir(N0/L )  =  7rp. The noninteracting ground-state 
energy is A W  +  energy of the filled sea {W).

The kinetic energy assumes the form

H 0 =  £  (b%bk +  cfe) \k\ +  W,  (2.18)
all *

where
W  =  ( Z k - Z k )  (2.18a)

*<0 k>0

is the infinite energy of the filled sea, an uninteresting 
c number which we drop henceforth in accordance 
with Luttinger’s prescription. The interaction [H', 
Eq. (2.3) and the operator S 0, Eq. (2.8)] can also be 
expressed in the new language by means of the 
substitution (2.17). The reader will no doubt be 
surprised, as indeed we were, to find that now with 
the new operators, Eq. (2.7), with H  defined, in  (2.6), 
is no longer obeyed.

Upon further reflection one sees that this must 
be so, on the basis of very general arguments. In the 
new Hilbert space defined by the transformation to 
the particle-hole language (2.17), H  is no longer 
unbounded from below and now has a ground state.

A general and inescapable concavity theorem states 
that if E 0( \ )  is the ground-state energy in the pres­
ence of interactions, (2.3), then

d 2E 0( k ) / d \ 2 <  0. (2.19)

This inequality is incompatible with the previous 
result, viz. all E  = independent of X, which was 
possible only in the strange case of a system without 
a ground state.

The same thing can be seen more trivially using 
second-order perturbation theory (first-order per­
turbation theory vanishes). It is easily seen that

= “ ( f ) 2 (2-20)

where n x(k) and n %(k) are the number of ways of 
shifting a particle of type “1” and type “2” respec­
tively by an amount k to an unoccupied state. A 
simple geometric exercise will convince the reader 
of the following facts: (1) if we start with a state 
having a finite number of particles, then n1 and n2 
are always even functions of k (i.e., there are just as 
many ways to increase the momentum by k as to 
decrease it by the same amount.) (2) If we start 
with a filled infinite sea then there is no way to 
decrease the momentum of the “1” particles nor to 
increase the momentum of “2” particles. Hence 
for this second case nx(k)n2( —k) is nonzero only for 
k >  0. Thus E q ) vanishes for a state with a finite 
number of particles, but it is negative for a filled sea.

If the reader is unconvinced by perturbation 
theory, then he can easily prove that E 0 is lowered 
by doing a variational calculation.

What has gone wrong? We turn to some algebra 
to resolve this paradox, and following this, present a 
solution of the field-theoretic problem defined by 
H a +  H'  in the representation of b’s and c’s.

HI. CASE OF THE FILLED DIRAC SEA
The various relevant operators are given below; 

the form (a) of each equation will not be used in the 
bulk of the paper, and is just given here for complete­
ness. In the following equations, p >  0.

Pi(+P) =  a?t+1,aj * (3.1a)
k

=  2  c*+*°* +  Z) &*+p°* +  X) bt+vbk, k<—p —p<k<0 k> 0
(3.1b)

Pi( V) — Of*fctti fc+p (3.2a)
k

^  j Gk0k + P “f~ ^  > ®k^k + p ^  > ^%^k + p t 
k<~ p ■“i><£<0 A>0

(3.2b)



P2(_t~p) — (3.3a) [A,B] = [A*,B] = 0, (3 9)

=  £  b t A  +  Z  e „ ,b k +  1 ^ ,  [A(P)> A ' m  =  =  5- ' -
k<-v -p<*<o k>o The B  field is the continuation of the A  field to nega-

(3.3b) tiVe p; therefore together they form a single boson
P*(-P) =  £  a t ka2 k+P (3.4a) field defined for all p.

* The relationship of the p(p)’s to Luttinger’s
= £  bibl+p +  £  b%cf+p +  £  0*c?+p. N ( xYs, L(25), is obtained by using (2.4):

k< — p —p<k<0 k>Q
(3.4b) Nl{x) =  M x M x )  =  I  £  Pi(p)e~iEI,

Equations (3.1a)-(3.4a) give the density operators (3.10)
in the original representation, so let us calculate in N 2(x) =  4/\(x) \p2(x) — — £  p2(j>)e~ipx.
this language a commutator such as (assume p >  ^
p' >  0 for definiteness) IV. SOLUTIONS OF THE MODEL HAMILTONIAN
r . , , r * * i Before making use of the results of the previous
(Pi(-P), P.(p )1 = £  [alka lk+P, a lk.+p.alk.] sectiori, we remark that Pl(+p) and Pa( - p )  are

+„ +„ exact raising operators of II0, and pi(—p) and p2(p)
= £  oftfli ~  £  a*k+p-aik+p =  0. (3.5) are exact lowering operators of H a corresponding to

excitation energies p. That is,
The zero result could have been expected by writing ru , , m , / ,

. • <, , l-^O, Pl(±P)J =  ± p p i ( ± p ) ,  , .the operators in first quantization: (4.1)
/ \ v* -IPX. J / \ V"* t;>„ /o o'. [H a, p2(± p )]  =  -Fpp2(± p ) .

Pi(-P) =  2- ,e  and Ps(p) =  . (3-6) . . .  .
n ra The identification of the p’s with boson operators

whence they evidently commute. Nevertheless, the made in the previous section suggested to us the
zero result is achieved in (3.5) only through the possibility of constructing a new operator T  which
almost “accidental” cancellation of two operators, obeys the same equations (4.1), as H 0. This is indeed
each of which may diverge in the field-theory limit possible, if we define T  as follows:
when N  — °°. We now show that in that limit the 2ir > ■
operators in fact no longer cancel, by evaluating the ^  =  £  {pi(p)pi(—P) +  P2(—p)p2(p)} (4.2)
commutator using form (b) for the density operators. .
It is a matter of only some minor manipulation to ^ ie p s being defined here and in the remainder of
obtain the important new result: PaPer by Eqs. (3.1b) (3.4b), i.e., always in

the hole-particle representation]. It follows that
[P i(-P ) , Pi(p')] =  [p2(p). P a(-P ')] ,rp s , ,  ON

[1 , Pi(dhp)] =  ± p Pl(± p ) (4.3)

= &„,»■ £  1 = 2tt 5p'v’' (3 -7a) as required, and similarly for p2(:Fp). Therefore, let
~v<k<0 w us decompose H  into two parts

I n  ° d d i t i ° n '  H - K + H ,  (4 .4 )
[Pi(p), p2(p0] =  o. (3.7b) with

A quick check is provided by evaluating the vacuum H , =  H 0 — T  =  \k\ (b*kbk +  o*kck)
expectation value  ̂ *

(0| [pi(-p), Pi(p)] |0) ~  X  §  +  P2(-p )p 2(p)}|, (4.5)

=  £  (0 \ckbk+pbt,+pck*. |0) = pL/2x, (3.8) and
-*<*,*■<0 H 2 =  H'  +  T

which is exactly what is expected on the basis of the  ̂ r
previous equation. Evidently the form (b) of the = y  2X £  M p ) p i( —p)p2(p) +  «(—p)pi(p)p2(—p)}
operators (2n-/pL)+ip1( + p )  and (2ir/pL)+*p2( — p) v>°
have properties of boson raising operators [call them +  2.  £  {Pl(p)Pl(-p )  +  p2(-p )p 2(p)} 1 (4 .6)
A*(p)  and B * ( ~ p)] and (2ir/pL) Pi(—p) and p>° J
(2ir/pL)+ip2(+p) have properties of boson lowering with v(p) =  real, even function of p. By actual
operators [A(p)  and B (-p )], i.e., construction, all the p operators which appear in H 2
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commute with H t . This will be an important feature 
in constructing an exact solution of the model. We 
define an Hermitian operator S,

^ =  ¥ Z ^ P 1(P)P,(-P), (4.7) 
"  »n*  P

where <p(p) is also a real, even, function of p  to be 
determined subsequently by imposing a condition 
that the unitary transformation e ' 8 diagonalize I I 2- 
First we evaluate the effect of such a transformation 
on various operators. It commutes with //,,

eisH ie~"s =  H 1 =  H 0 -  T ,  (4.8)
because both p1 and p.2 appearing in S  commute with 
Hi,  as noted above. In the following, p  can have 
either sign:
e, sPl(p)e~'s = pi(p) cosh<p(p) +  p2(p) sinh <p(p) , (4.9) 
e<sp2(p)e~is =  p2(j>) cosh<p(p) +  Pl(p)sinhv?(p). (4.10) 
We have verified that this transformation is a proper 
unitary transformation and preserves commutation 
relations (3.7) as well as anticommutation relations
(2.5), and the reader may easily check this point.
I I 2 is brought into canonical form by requiring that 
in (exp iS)  H 2 (exp —iS)  there be no cross terms 
such as pi(p)p2( —p). This leads to the equation

tanh 2<p =  — \u(p)/r,  (4.11)
which cannot be obeyed unless

|Xw(p)| < 7r for all p .  (4.12)
Equation (4.12) serves to limit the magnitude of 
potentials capable of having well-behaved solutions 
(e.g., a real ground-state energy). For the more 
realistic potentials discussed in the Appendix, there 
is also a more realistic bound on v ( p ) : there, v(p) may 
not be too attractive, but it can have any magnitude 
when it is repulsive, i.e., positive.

With the choice of <p in (4.11), the evaluation of 
H 2 becomes

e iSH 2e~iS = ~  sech 2<p(p){Pl(p )Pl( - p )
L i  p>Q

+  p2( - p ) p 2(p)} -  2 3 p( l  — sech 2(p). (4.13a) 
p >  0

The second term is the vacuum renormalization 
energy
Wt =  - £ p ( l  -  sech 2<p) 

p >  0

<4i3b)
It may be expanded in powers of X to effect a com­
parison with Goldstone’s many-body perturbation 
theory4; we have checked that they agree to third 
order.

T h e  problem is now form ally solved, for we can 
find all the eigenfunctions and eigenvalues b y  study­
ing Eqs. (4.4), (4 .8), and (4.13). F irs t notice that 
the operator T  does not depend upon the interaction 
and that if there is no in teraction  we could w rite the 
H am iltonian either as

H  — H 0, (4.14a)
or as

H  =  ( H0 - T )  +  T  =  H i +  H 2. (4.14b) 

Since H x and H 2 commute, every eigenstate, 1i r, of H  
m a y be assumed to be an eigenfunction of //, and H 2 
separately. M oreover, ^  m a y also be assumed to be 
an eigenfunction of each a P =  A * A V a n d (3P — B t  PB ^ P 
for all p  >  0, since these operators commute w ith 
H  and 91.

E v id e n tly  (4.14a) and (4.14b) provide two dif­
ferent ways of viewing the noninteracting spectrum. 
H 0 is quite degenerate: the raising operators of H 0 
are the b+>s and c+!s. B y  requiring that Hr also be an 
eigenstate of a v, ft, and H ,  we are m erely attaching 
quantum  numbers to the degenerate levels of H 0. 
I f  =  n v'V and Pp'!r =  m j i r  (where n p and m„  are of 
course integers), we say that we have n p plasmons of 
m om entum  p  and m p plasmons of m om entum  —p.  
W ith  no interaction the energy of a  plasmon is

t(p )  =  |p|. (4.15)

W e  m a y speak of H x as the quasiparticle p a rt of 
the H am iltonian; in  H i  the operator T  plays the role 
of subtracting the plasmon part of the energy from  

Ho.
W h en we tu rn  on the interaction, the above 

description of the energy levels is still valid , except 
that now we are forced to use the form  (4.14b) because 
H 2 is no longer T .  T h e  degeneracy of I I  is partially 
removed b y  the interaction, because now the energy 
of a plasmon is

t ( p )  — |p| sech 2<p(p) . (4.16)'

Notice that the plasmon energy is always lowered  
[and therefore the plasmons cannot propagate faster 
than the speed of light c — 1, i.e., de.'/dp  <  1. I n  
the more realistic case discussed in  the Appendix, 
the plasmon energy can  be increased b y  the inter­
action although d e ' / d p  <  1 is always obeyed.] 
b y  the interaction; if (4.12) is violated the plasmon 
energy is no longer real and the system becomes 
unstable. Note, there are no plasmons in  the ground 
state, so that W i (4.13), is the shift in  the ground- 
state energy of the system.

Th e re  is one im portant point, however, that re­
quires some elucidation. W e  would like to be able to 
say that in view  of the fact that H u a ( p ) ,  and P(p)
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conserve particle number, the most general energy 
level of H  (fixed N 0) is the sum of any energy of 
H l (same No, and no plasmons) plus any (plasmon) 
energy of H 2 (note: the plasmon spectrum is inde­
pendent of No)- Were we dealing with a finite­
dimensional vector space, such a statement would 
not be true, for even though Hi  and JI2 commute 
they could not possibly be independent. Thus, if 
H 2 had n eigenvalues eu ■ • • , e„, and if Hi  had an 
equal number E x, • • • , E n the general total eigen­
value would not be any  combination of e,- +  E t for 
this would give too many values (viz. ft2 instead of n.) 
But we are dealing with an infinite-dimensional 
Hilbert space and the additivity hypothesis is in 
fact true for the present model.

To prove this assertion we consider any eigen­
state 'St which is necessarily parameterized by the 
integers n p and mp. Consider the state $  = 
( I L  (AP)’*(Bp) m’’}'fr. The state 3> is nonvanishing 
and has quantum numbers np =  0 =  mp. It is also 
an eigenstate of Hi  with energy E i($0. In addition 
(and this is the important point) the state may be 
recovered from $  by the equation

*  = const x  {I I  (4 ; r ( s ; r ss#.
V

To every state therefore, there corresponds a 
unique state #  from which it may be obtained using 
raising operators. Conversely, to any eigenstate 
of Hi  (for fixed N 0) we may apply raising operators 
as often as we please and obtain a new (nonvanishing) 
eigenstate. Thus the general energy is an arbitrary 
sum of quasiparticle and plasmon energies.

It may be wondered where we used the fact that 
the Hilbert space is infinite-dimensional in the above 
proof. The answer lies in the boson commutation 
relations of the A ’s and B ’s. It is impossible to have 
such relations in a finite-dimensional vector space.

The eigenvalues corresponding to these states 
$  will be labeled in some order, E { (i  =  1, 2, • • *)> 
so that the total canonical partition function Z ( \ )  
and the free energy F( \ )  are given by
Z(X) =

= ('£e~Bi/kr)(e~W'/hT) I I
i  a l l  v  '  n  = 0 •

0̂
(4.17)

The first factor is difficult to evaluate directly. How­
ever it can be obtained circuitously by noting that 
the energies E f are independent of X and therefore
Z(  o) = er FwnT

= ( i ^ /tT) n  (4.i8)
i a 1 I p ' n«0 •5*0

But the second factor can be trivially evaluated, as 
can F(Q) =  free energy of noninteracting fermions. 
Therefore we use (4.18) to eliminate the trace in­
volving the E / s  in (4.17), with the final result:

F(\) = F( 0) +  Wx

+  2kT £  In {(1 ~ e ~ ' ’ip)/kT) / ( l  ~e~ ,{p)/kT) j , (4.19) 
p > 0

where t  and t  are given in (4.15) and (4.16). It is 
noteworthy that the ground state and free energy 
both diverge in the case of a 5-function potential.

V. EVALU ATIO N  OF T H E  M O M E N TU M  
D IS TR IB U TIO N

In this section we calculate the mean number of 
particles with momentum k. This quantity is nk 
and is the expectation value of

n» =  b\b„ (5.1)

in the ground state. Since nk is an even function of k 
we need only consider k >  0, and it is further con­
venient to introduce a Fourier transform*so that 
[using (2.4)]

h

%k =  H I  d s d t  0 - (5.2)
0

Here

/(*, I) =  <¥| ^ ( s )# .C 0  |*>

=  ( * 0\ e iS f +M e - ,s e <sm ) e ~ iS |*o>, (5.3)

where 8  is given by (4.7), ’f  is the new ground state, 
and ’i'o is the noninteracting ground state which is 
filled with b particles between — k r and kF and has 
no holes (or c particles). This assignment depends on 
there having been no level crossing, which can be 
readily verified using (4.7)-(4.13).

In order to calculate the quantity eis4>i(t)e~<s we 
introduce the auxiliary operator

U t )  =  e‘" * ,(0 e-‘rS. (5.4)
where <r is a c number. We observe that /, (£) is the 
desired quantity while

U O  =  U t ) .  (5.5)
In addition, 

dj /dv  =  e"*t[S,

=  e‘" I V £ E p . ( - P ) ^ ) p ' V ’ ‘] e - n ( < ) ,

’  (5.6)

where we have used the commutation relations (3.7) 
as well as the fact that commutes with p3. Equa-



tion (5.6) is a differential equation for /„(«) and (5.5) 2,(s, t) =  exp {2 v /L  E  [cosh ipip) — l ]2 
is the boundary condition. The solution is ”>0

W) = W,m*{t)Ut), (5.7) Xp"V’(* f) -  1) 1- (5.15)
where Likewise,

W M  =  exp {2w/L £  [Pi(~p)eipt R~\s)R(t)  =  «_(*, #£*(«, i)Z2(s, t), (5.16)
p > 0

-  P i ^ ' V ’tcOBhavfo) -  1]} (5.8) Wlth
and JR+(s, /) =  exp [2-r/L ^  p2(p) [sinh <̂ ?(p)]

p>0
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J5S,(f) =  exp {2w/L 2 )  [#>2(-p )e i:
*?>0 X p - V * M - « " * ’*) 1,

sinh <rp(p)} (5.9) 22_(s, I) =  exp | 2r / L  E  p2(-p)[sinh <p(p)}
V> 0

The reader may verify that (5.7) satisfies (5.5) and ivt (
(5.6) by using the commutation relations (3.7). X p ie e ) \
We recall the weE-known rale that Z t(s, t) — exp {2 v /L  J ]  [sinh <p(p)f

p > Q

exp {A  +  B) =  exp (A) exp (B) exp (—1/2 [A ,B \ )
(5.10) X p T 1M - l ) S .  (5.17)

when [A, B] commutes with A  and B.  From here on see once r̂om definition (3.1b), (3.2b),
we shall set <r = 1 and drop it as a subscript. We /*»(?) that, for p >  0, pt ( —p)  l^i) =  0. Similarly
note that since Pi(p)+ =  P i ( — p) and p2(p)+ =  =  P2^  l1̂ 2) = and ^*1 P*(~P) — 0-
P2( - p ) ,  Hence,

R*{t) =  R-'(t)  and W +{t) =  W~l(t). (5.11) J^s> =  Z ^s > #

We also note that R  and W  commute with each other. and
Thus, (5.3) becomes Zi(Sj t) =  w Z l +\ (*)W-W+*x{t)WZ' |^ ) .

n s ,  t) =  <*0| i*0> ( s .is )

=  hi s ,  t)I2{s, t), (5.12) if  we now define

w^ere h+(y) =  2wjL E  [cosh <p(p) — 1]
hi s ,  i) =  m  m w - \ S) w w m  i^>, , ,  ^  ’># t . .(5.13) x  -y » «  _  e- ) e- «

h ( S , i ) -  ( * 2\ R ~ ' m i t )  i*2>. '  v
, , , , . h-(y) =  2ir/L 2^ [cosh (pip) — 1]

We have used the fact that the ground state is a »»o
product state: f'o =  * 'J'a where ^  is a state of y  — e~<p*)eivt (5 19)
the “ 1” field and ^2 is a state of the “2” field. ^1 is ' '
filled with b particles up to + k F and has no c parti- combining (3.10) and (5.15) we have that
cles; ^2 is filled with b particles down to —kF and t
has no c particles. TF+(s, t) =  exp I Ni(y)h+(y) dy,

Now, using the definition (5.8) and the rule (5.10) 0 (5.20)
we easily find that t) »  exp -  f ‘ N M h - ( y )  dy.

W \ * ) W ®  =  W-is ,  t )w+is,  i)Zxis, t), (5.14) *
. . Since

with

W +{s, t) =  exp {2ir/L £  pii p)[cosh v (p) -  1] I#l(a:)’ =  S(x ~  )̂#l(x)’ (5.21)
P>0 , . =  - « ( * - » ) * : ( * ) ,

X p \ e 'p‘ -  e'1")}, it foUows that
W-(s,  t) =  exp {2t / L  E  Pi(p)[cosh <p(p) -  1] t ) U t ) w - i{St t) =  ^  exp [ _ A+0)]

X p -V " *  -  €-*••)}, W Z l(s, i) =  M s )  exp [+*_(«)]•
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Finally,

<*.| *t(«)*i(0 l*i> = l/L  E
TS‘k" (5.23)

Z 3(s, t).

Combining all these results, we conclude that 

I(s, t) =  Z 0(s, t)Zi(s, t)Z2(s, t)Z3(s, t), (5.24) 

where

Z 0(s, t) =  exp (h-(s) — h+(t))

= exp {—4ir/L £  [cosh <p(p) — 1] 
p > 0

X  (1 -  e ""* -0) } .  (5.25)

In order to make a comparison with Luttinger’s 
calculation of nk, we first observe that the functions 
Zj(s, t) are really functions of r =  s — t and that 
they are periodic in s and t in (0, L). We then define 
the functions G(r) and Q(r) as follows:

exp [—Q(r)] =  G(r) =  Z Q(r)Zl(r)Z2(r). (5.26)

Substituting (5.26), (5.24), and (5.23) into (5.2) we 
obtain

nt =  2t / L  £  F(k -  p), (5.27)
V < k F

where

F(k) =  1/2tt [ iL dr eikre~0M (5.28)
J - i L

S l / 2 tt f  d re ikTe~QM. (5.29)
V — 00

In (5.29) we have passed to the bulk limit N,  
L  —> <», not an approximation.

At this point our expression for nk is formally the 
same as Luttinger’s [cf. L (52), L (69)]. The dif­
ference is that our Q is different from his. He obtains 
Q by evaluating an infinite Toeplitz determinant 
with the result that [L (70)]

Q(r) =  X2/2ir2 f  d p - ----- C°Spr Kp)[2. (Luttinger)
Jo p

(5.30)

Our Q, which is the correct one to use, is obtained 
by combining (5.15), (5.17), and (5.25), replacing 
sums by integrals in the usual way, and using the 
definition (4.11) of <p(p). The result is

Q(r) =  X72tt2 f  dp |u(p) |2, (5.31)
Jo V

where

|«(p) I2 =  (2tt2/x 2) {(1 -  ( M p ) M 2)- '  -  1} ■ (5.32)

It is worth noting that (5.30) agrees with (5.31) to 
leading order in X2.

Since we have not yet specified v(p), we may now 
follow Luttinger’s discussion from this point on 
with the proviso that we use the correct (X depen­
dent) u(p) instead of v(p). The reader is referred to 
pages 1159 and 1160 of Luttinger’s paper.

There are two main conclusions one can draw. The 
first is that if we start with a 5-function interaction 
[so that v{p) and hence u(p)] are constants, it can 
be shown that =  § for all k. Such a result is quite 
unphysical, but it is not unreasonable because the 
ground-state energy W  (4.13a) diverges when v(p) =  
constant at large p. Also, the result would be the 
same if we started with the more physical interaction

H'  =  1/ L  E  (pi(p) +  P2(p)}{pi(-p) +  pa(~p)Mp)
V

discussed in the Appendix. This is indeed unfor­
tunate, because relativistic field theories usually 
begin with local (5-function) interactions.

The second conclusion is that if one makes a 
reasonable assumption about v(p), and hence about 
u(p)  and Q(r), one finds that for k in the vicinity 
of kr , nk behaves like

nk ~  d — e \k — kF\2a <r(k — kr), (5.33)

where

° (k )  =  i ,  k  >  o (5 34)

= - 1, k <  0

and d, e, and a  are certain positive constants. Now 
in Luttinger’s calculation

a  =  X2/ 47r\'(0)2, (Luttinger) (5.35)

[cf. L(75)], where i’(0) =  lim v(p).
p—> 0

If 2a <  1, then the conclusion to be drawn is that 
although the interaction removes the discontinuity 
in nk at the Fermi surface, we are left with a function 
that has an infinite slope there. There is, so to speak, 
a residual Fermi surface. In Sec. IV of his paper, 
Luttinger shows that at least for one example of 
v(p) perturbation theory gives the same qualitative 
result as (5.33) with the same value of a, (5.35).

If, on the other hand, 2a >  1 then there is no 
infinite derivative at the Fermi surface. nk is per­
fectly smooth there (although, technically speaking, 
it is nonanalytic unless 2a — odd integer.) In this 
case virtually all trace of the Fermi surface has been 
eliminated. But notice that the correct a  to use is 
obtained by replacing t>(0) by u(0) =  lim^ 0 u(p)  
in (5.35), i.e.,
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2a  =  {1 -  [Xt)(0)A]2}_i -  1. (5.36) (q +  N \ V )  and (k  +  M X V )  =  2 tr /L  X  integer (A l )

Th u s , even subject to the requirement that |Xv(0)| 
be less than tt, 2a  can become as large as one pleases. 
Y e t  perturbation theory predicts (5.35) which yields 
2a  always less than f .

W e  m a y  conclude that a  strong enough interaction  
can elim inate  the F e rm i surface, while 'perturbation  
theory predic ts  that i s  a lw a ys  there.

VI. DIELECTRIC CONSTANT
Because the response to external fields of wave 

vector q only depends on an interaction expression 
linear in  the density operators, we can imm ediately 
obtain for the generalized static susceptibility func­
tion or dielectric constant  (response -5- driv in g  force), 
for any temperature, T

xx(q, T )  =  Xo(q, T)  {sinh <p(q) +  cosh <p(q)\2 cosh 2<pa

1
xo(g, T)

Xt>(g)/7r
(6.1)

replace the usual condition (2.16), where 2V =  
num ber of “ 1” particles and M  =  num ber of “ 2 ” 
particles. How ever, when N ,  M  — » °° in the field- 
theoretic lim it the problem evidently becomes ill- 
defined unless f s O ,

A  less triv ia l observation concerns the form  of 
the interaction potential. Th e re  is no reason to 
restrict it to the form  «  p lp2, and in fact the more 
realistic tw o-body interaction

H> =  T H v ( p ) { Pl{ - p )  +  p2{ - p ) } { p i ( p )  +  p2{p))
J-J p

(A2)

is fu lly  as soluble as the one assumed in  the text, 
for any strength positive v(p) ,  and provided only

Ai>(p) >  - § i r , (A3)

in terms of the “ unperturbed”  susceptibility xo(q, T ) .  
I t  is also a simple exercise to calculate exactly the 
tim e dependent susceptibility in  terms of the “ un­
perturbed”  quantity.

I t  is interesting to note that the susceptibility 
can diverge (w hich is sym ptom atic of a phase trans­
form ation) only for

M ?) (6.2)

i.e. on ly  for sufficiently attractive  interactions and not 
for repulsive [v(q) >  0] interactions.

Recently Ferrell6 advanced plausible arguments 
w h y  a one-dimensional metal cannot become super­
conducting. W e  can prove this rigorously in  the 
present model. T h e  electron-phonon interaction is

i_pb =  0(p)[pi(p) +  P2(p )H £p +  £-pL (6.3)
V

where £ and £+ are the phonon field operators. In  
the “ filled-sea” lim it this coupling is bilinear in 
harmonic-oscillator operators, and therefore the 
Ham iltonian  continues to be exactly diagonalizable. 
T h e  new norm al modes can be calculated and there 
is found to be no phase transition at a ny finite 
temperature.

APPENDIX
W e  shall be interested in extending Lu ttinge r’s 

model in  two ways. F irstly , we note that the restric­
tion V  =  0 is really not necessary. T u rn in g  back to 
Eqs. (2.13) et seq. we impose periodic boundary 
conditions ^ ( -  • •, x, +  L , ■ ■ ■) =  ^ ( -  • •, x it ■ ■ ■), 
and find that

6 R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964).

i.e. provided no Fourier component is too attractive. 
T h e  shift in  the ground-state energy is now given b y

W , (A4)

T h e  plasmon energy is now

*"(p) ^  \p\ (1 +  2A»(p)/x)* (A5)

and for the im p or tan t  case of the Coulomb repulsion,  
v(p)  =  p ~ 2, the plasmons describe a relativistic 
boson field w ith  mass

and dispersion

m *  =s (2X/V)*

'(p) =  (p2 +  to*2) 5.

(A 6)

(A7)

Here, too, d e " /d p  <  1.
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