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Lattice Monte Carlo and off-lattice molecular dynamics simulations of h1t4 and h4t1 ⑦head/tail✦

amphiphile solutions have been performed as a function of surfactant concentration and

temperature. The lattice and off-lattice systems exhibit quite different self-assembly behavior at

equivalent thermodynamic conditions. We found that in the weakly aggregating regime ⑦no

preferred-size micelles✦, all models yield similar micelle size distributions at the same average

aggregation number, albeit at different thermodynamic conditions ⑦temperatures✦. In the strongly

aggregating regime, this mapping between models ⑦through temperature adjustment✦ fails, and the

models exhibit qualitatively different micellization behavior. © 2002 American Institute of

Physics. ❅DOI: 10.1063/1.1461355★

INTRODUCTION AND MOTIVATION

Due to the tremendous importance of micellar solutions

in various industrial and biological applications,1,2 many the-

oretical and modeling studies of the self-assembly of am-

phiphilic molecules in solution have addressed questions of

micellar structure, shape, size distribution, kinetics of forma-

tion, and solution phase properties. However, nanoscale

structural heterogeneity and complications with obtaining

equilibrium configurations largely prohibit brute-force atom-

istic simulations of amphiphile self-assembly. The few re-

ported atomistic simulations are limited to systems with a

single micelle of predefined size and are unable to discern

whether the resulting structures correspond to equilibrium

conditions.3–5

More progress has been made in coarse-grained simula-

tions of micelle forming amphiphile solutions. Lattice Monte

Carlo ⑦MC✦6–10 and bead-spring molecular dynamics

⑦MD✦11–14 and MC15 simulations of model surfactant systems

have investigated phase behavior, micelle shape and size dis-

tribution, free energy of amphiphiles in solution, dynamics of

self-assembly, and other properties of micellar solutions. In

these coarse-grained simulations, the surfactant molecules

are composed of head ⑦h✦ and tail ⑦t✦ segments consisting of

one bead ⑦off-lattice MD and MC✦ or occupying one lattice

site ⑦lattice MC✦ each. Solvent molecules ⑦s✦ are likewise

considered to occupy single lattice sites. While both tech-

niques are more efficient than atomistic MD simulations, lat-

tice MC methods are computationally more expedient than

the coarse-grained off-lattice MD or MC simulations. Fur-

thermore, taking the lattice system as incompressible allows

treating the solvent implicitly, i.e., as empty sites. For a lat-

tice system with ternary ⑦h-t-s✦ interactions, the excess solu-

tion energy may be expressed in terms of three exchange

energy parameters, given as ❉w i j✺z(E i j✷
1
2�E ii✶E j j✁),

where z is the lattice coordination number, i, j✺h , t, s, and

E i j is the interaction energy between segments of type i and

j on nearest neighbor lattice sites. Since all combinations of

intermolecular energies that yield the same ❉w are equiva-

lent on the incompressible lattice, we can arbitrarily set Ess

✺Ehs✺E ts✺0, allowing us to ignore interactions involving

surfactant molecules with the predominant solvent mol-

ecules.

Although incompressible lattice MC simulations are

computationally expedient, their wide use raises the impor-

tant question of how the assumed incompressibility affects

the thermodynamics of self-assembly. In other words, does

compressibility significantly influence the self-assembly of

the hxty surfactants, or are the effects of compressibility neg-

ligible, making the incompressible lattice MC method an at-

tractive alternative to the more realistic but much more ex-

pensive off-lattice methods? A hint of the importance of

compressibility effects emerges from studies of polymer

blends, where the asymmetry in intermolecular interactions

is typically much weaker than in micelle forming amphiphile

solutions. The importance of compressibility for polymer

blend thermodynamics has been demonstrated by extensive

lattice cluster theory ⑦LCT✦ computations of blend

properties,16 especially LCT predictions of a significant pres-

sure dependence to the phase behavior of polymer blends,17 a

prediction subsequently confirmed experimentally.18 Further-

more, it is computationally expedient to ignore the solvent

degrees of freedom, both in incompressible lattice and in

off-lattice simulations, as recently done in a MC study of

self-assembly of diblock amphiphiles.15 A recent combined

liquid state theory and MD simulation study of polymer so-

lutions with and without explicit solvent19 shows that the

solvent strongly influences the polymer structure and phase

behavior. Simulations of amphiphile solutions are compared
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here using several different lattice and off-lattice models

⑦with and without solvent✦ to determine the influence of

model details and solvent representation on the self-assembly

behavior of these systems.

SIMULATIONS OF AMPHIPHILE SOLUTIONS

Systems studied

We have performed MD simulations and lattice MC

simulations of h-t-s systems consisting of h1t4 or h4t1 sur-

factant molecules and monomeric solvent. In the MD simu-

lations, surfactant molecules are represented as bead-

necklace chains, and solvent molecules are taken as single

beads. All beads have the same diameter (s✺1.0) and inter-

act via potentials based on the Lennard-Jones ⑦LJ✦ interac-

tion ULJ(r)✺4❅r✷12�r✷6
★ , where the well-depth is chosen

as unity. Attractive interactions are modeled by a truncated

and shifted LJ potential of the form Eatt(r)✺ULJ(r)

�ULJ(rc)�(r�rc)❅dULJ(r)/dr★✉r✁rc
with rc✺2.5, insur-

ing that both the energy and force vanish at the cutoff radius

rc and that Eatt
✺�1.0 at r✺21/6. Excluded volume ⑦purely

repulsive✦ interactions are modeled by the Weeks–Chandler–

Anderson ⑦WCA✦ potential20 E rep(r)✺ULJ(r)�ULJ(rc),

with rc✺21/6 and E rep(r)✺0 for r❃rc . The lattice simula-

tions assign the interaction energy between nearest neighbor

segments as E✺�1.0 or 0.0.

Three off-lattice and two lattice ⑦z✺6 and z✺26✦ sys-

tems, illustrated in Fig. 1, are investigated. The interaction

parameters for these cases are summarized in Table I. In the

solvophobic case ✂Fig. 1⑦a✦✄, aggregation of surfactants is

due to the ‘‘solvophobic’’ effect, i.e., interactions of the sur-

factant tail with the solvent are relatively unfavorable com-

pared to solvent–solvent and head–solvent interactions. In

the tail attraction case ✂Fig. 1⑦b✦✄, self-assembly of surfac-

tants is driven by specific attraction between surfactant tails.

The tail attraction model has also been simulated without

solvent molecules ✂Fig. 1⑦c✦✄, referred to hereafter as the im-

plicit solvent system. Each of these systems is also repre-

sented using the incompressible lattice model ✂Fig. 1⑦d✦✄

with the ❉w values given in Table I.

Methodology

Simulations are performed for solutions with surfactant

mole fractions ranging from 2✸10✷3 to 1.7✸10✷2. In MD

simulations, the h-t and t-t bonds within a given surfactant

molecule are constrained to length 1.0 using the SHAKE

algorithm.21 The systems contain between 30 and 250 surfac-

tant molecules and 15000 solvent molecules and have a con-

stant segment number density r✺0.7. The implicit solvent

simulations employ a Brownian dynamics algorithm de-

scribed previously22 with a friction coefficient of 13.3, along

with the same simulation box size and number of surfactants

as for the MD simulations with explicit solvent. The lattice

MC simulations are performed on a 25✸25✸25 simple cu-

bic lattice using the configurational-bias MC method de-

scribed elsewhere.23 The lattice size is chosen to yield the

same surfactant density and number of molecules as in the

off-lattice simulations.24

RESULTS AND DISCUSSION

Micellization

We define two surfactant molecules as belonging to the

same micelle when any of their tail segments are within a

distance of 2.0. Figure 2 shows the mole fraction of free

surfactant X1 as a function of the total surfactant mole frac-

tion Xsurf for all models at equivalent thermodynamic condi-

tions, corresponding to the same reduced temperature T*

✺kT/❉w . Saturation in the curves for X1(Xsurf) is usually

associated with micelle formation. We observe phase separa-

tion at the highest surfactant concentration studied only for

the tail attraction h1t4 system. Clearly, the four different

models exhibit disparate self-assembly behavior. Note that

while the X1(Xsurf) curves are qualitatively similar for the

h4t1 and h1t4 systems, there is a significant difference in

nature of self-assembly between these systems. The micelle

size distribution for all h1t4 systems is monotonically de-

FIG. 1. Schematic representation of h1t4 surfactants in the ☎a✆ solvophobic
and explicit solvent, ☎b✆ tail attraction and explicit solvent, ☎c✆ tail attraction
and implicit solvent, and ☎d✆ incompressible lattice models.

TABLE I. Summary of surfactant–solvent interactions for the amphiphile

solutions simulated.

Interaction

Tail

attraction Solvophobic

Implicit

solvent

Lattice

z✝26

Lattice

z✝6

Ehh WCA LJ WCA 0 0

Ess WCA LJ N/Aa 0 0

E tt LJ WCA LJ ✞1 ✞1

Ehs WCA LJ N/Aa 0 0

Eht WCA WCA WCA 0 0

E ts WCA WCA N/Aa 0 0

✟whs 0b 0b 0b 0 0

✟wht 4.2b 4.2b 4.2b 13 3

✟w ts 4.2b 4.2b 4.2b 13 3

aThere were no solvent molecules in this simulation.
bCalculated assuming ✟w✝✯

0

rc✠2.5
(Eatt(r)✞E rep(r))g(r)r2dr , where g(r)

is radial distribution function of an athermal ☎WCA✆ monomeric fluid at

✡✝0.7.
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creasing for all T down to the phase separation temperature.

The same trend is displayed by the h4t1 systems at high T,

but upon cooling, the distribution becomes bimodal, indicat-

ing the formation of preferred-size micelles before the sys-

tem phase separates at even lower T. We define the tempera-

ture range in which the micelle size distribution is

monotonically decaying ⑦or has a peak✦ as the weakly

⑦strongly✦ aggregating regime. Systems with h1t4 surfactants

do not exhibit a strongly aggregating regime, which is con-

sistent with recent phase equilibrium calculations from lat-

tice MC simulations for this system.25 In the h4t1 solvopho-

bic system with explicit solvent, the solvent undergoes a

glass transition before the system reaches the strongly aggre-

gating regime, precluding simulations for that regime.

The large discrepancy in the self-assembly behavior be-

tween the explicit and implicit solvent off-lattice models im-

plies that solvent mediated interactions are important for

both h4t1 and h1t4 amphiphile systems. Furthermore, differ-

ences in the extent of micellization between the two explicit

solvent off-lattice models and between these models and the

lattice models likely stem from compressibility effects

⑦known to be relevant for polymer blends✦16 that lead to op-

timization of favorable interactions and minimization of un-

favorable interactions on the subsegment length scale. For

example, lattice versions of the tail attraction and solvopho-

bic models can be shown to become inequivalent once the

system is permitted to be compressible by having empty lat-

tice sites. The importance of compressibility is further sup-

ported by our initial simulations of the pressure dependence

of self-assembly in model amphiphile solutions. In particular,

we find that the extent of micellization in the explicit solvent

off-lattice systems depends strongly upon pressure ⑦density✦;

for example, a density increase of 10–15% increases the ex-

tent of micellization in the solvophobic h1t4 system to that

found for the tail attraction system at the same temperature

and composition.

Mapping of self-assembly behavior between models

Despite the difference in self-assembly behavior shown

in Fig. 2 for the various models at the same thermodynamic

conditions ⑦Xsurf , r and T*✦, there are remarkable similari-

ties between the models for the weakly aggregating regime.

In particular, when the weight-average micelle size (Nw) is

the same for a pair of systems simulated using two different

models, then the micelle size distributions become identical,

indicating that Nw is a good parametric variable for describ-

ing self-assembly of these model surfactant solutions in the

weakly aggregating regime. Matching Nw for two models

can be easily achieved by adjusting temperature. Figure 3

illustrates this correspondence between different models by

showing X1 as a function of Nw for all models at various T*

and for Xsurf✺8✸10✷3. In all cases for the h1t4 systems and

all cases for h4t1 systems in the weakly aggregating regime

(Nw✱1.8), plots of X1(Nw) for the different systems be-

come universal with a single curve X1✺X1(Nw). Analogous

behavior is observed for all compositions studied. This uni-

versality implies that the differences in self-assembly exhib-

ited in Fig. 2 for the weakly aggregating regime can be re-

moved by adjusting T* to yield the same Nw in all models.

In contrast, in the strongly aggregating regime, this

‘‘mapping’’ of self-assembly behavior from one model onto

another fails as clearly illustrated in Fig. 3 for the h4t1 sys-

tem when Nw✳1.8. Here, adjusting T* to match Nw for the

lattice and off-lattice models does not yield the same micelle

size distributions. Even for the two lattice models ⑦z✺6 and

z✺26✦, the X1(Nw) curves are quite different. A direct com-

parison of the micelle size distributions with the same Nw for

these two lattice systems reveals that the z✺26 model tends

to predict larger micelles than the model with z✺6. On the

other hand, the off-lattice explicit and implicit solvent tail

attraction models yield similar X1(Nw) curves ⑦Fig. 3✦ as

well as similar micelle distributions at the same Nw . We

conclude that ⑦at least for this particular system✦ the explicit

presence of the solvent molecules does not influence surfac-

tant self-assembly except by ‘‘shifting’’ its location on the

thermodynamic surface, even in the strongly aggregating re-

gime. We believe that this behavior arises from the fact that

the core and corona of the micelles in the h4t1 system are

very compact due to low aggregation numbers, and therefore

solvent molecules cannot penetrate inside the micelles to in-

fluence their structure. Figure 3 also illustrates that the

FIG. 2. Mole fraction of free surfactant molecules (X1) as a function of the

total surfactant mole fraction (Xsurf) �a✁ h1t4 at T*✂0.357, �b✁ h4t1 at T*

✂0.06.

FIG. 3. The mole fraction of free surfactant (X1) as a function of the

weight-average micelle size (NW) for composition X surf✂8✄10☎3 at vari-

ous T*.
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X1(Nw) curves from the two lattice models bound the results

from off-lattice models. It may, therefore, be possible to find

a lattice representation that matches the off-lattice model

self-assembly behavior by adjusting the lattice coordination

number, but this mapping is nontrivial and requires addi-

tional systematic studies.

CONCLUSIONS

Our comparison of incompressible lattice and off-lattice

models for h-t-s amphiphile solutions reveals that compress-

ibility and solvent excluded volume effects strongly influ-

ence the self-assembly behavior of the model systems, lead-

ing to widely varying degrees of self-assembly for the

different models at the same thermodynamic conditions.

However, in the weak aggregation regime for a given solu-

tion composition, nearly identical self-assembly behavior for

the models is observed as a function of the average micelle

size. For the strongly aggregating regime, this correspon-

dence holds only for off-lattice models.
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