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Abstract—Redundant multi-threading (RMT) has been pro-
posed as an architectural approach that efficiently detects and
recovers from soft errors. RMT can impose non-trivial overheads
in terms of power consumption. In this paper, we characterize
some of the major factors that influence the power consumed by
RMT. We outline mechanisms that can reduce this power and
derive simple analytical estimates to identify the most promising
approach.

I. INTRODUCTION

Soft error rates in microprocessor logic have been projected

to increase at an alarming rate [10]. Soft errors can be handled

at the process level, circuit level, or at the architecture level.

Redundant multi-threading (RMT) has emerged as an efficient

mechanism to detect and recover from faults at the architecture

level. In RMT, two copies of a thread are executed and results

are periodically checked. A number of implementations have

been proposed over the last decade [1], [3], [5], [6], [7], [8],

[9], [11], [12], [13]. Many of these implementations rely on the

processor’s ability to support multiple thread contexts (such as

in an SMT or CMP processor). A few implementations [1],

[11] augment a conventional pipeline with an in-order-like

pipeline that redundantly executes every instruction.

Most studies have not focused on the power overheads

of RMT. Given that power consumption is already a major

design constraint, we expect that power-efficient implementa-

tions of RMT will receive much attention from the research

community. A first-order estimate of RMT power overheads

serves as a useful guideline for such research. In a recent

technical report [4], we have carried out a detailed analysis of

a number of strategies to reduce RMT power. This paper is an

attempt to distill the insight gathered from that study. While [4]

relies on detailed simulations, this paper deals exclusively with

analytical estimates. This allows us to present data for a wide

design space, while occasionally compromising on accuracy.

II. RMT TECHNIQUES

We restrict ourselves to RMT techniques that leverage the

processor’s ability to maintain multiple thread contexts. We

assume that the processor is a heterogeneous chip multi-

processor (CMP), where each core itself can execute one or

more threads in simultaneous multi-threaded (SMT) fashion.

For every primary thread, a redundant checker thread is

executed in a different thread context. We assume that the

checker thread trails the primary thread by a certain amount

of slack. The primary thread is also referred to as the leading

thread and the checker thread is also referred to as the trailing

thread. For most of this discussion we assume that a leading

thread and its trailing thread execute on different cores within

the CMP.
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Fig. 1. An example of the effect of scaling the frequency of the checker
core.

A. Baseline RMT

In our baseline implementation (similar to that in [3],[6]),

the leading thread commits instructions just as a conventional

processor would, except that stores are written to a Store

Buffer (StB) instead of to the L1 data cache. As shown in

Figure 1, committed results are communicated to the trailing

thread through a Register Value Queue (RVQ). The results

of loads are also sent to the trailing thread (through a Load

Value Queue (LVQ)) so that the trailing thread never has to

access its data cache (this is necessary for correctness). The

trailing thread executes just as a conventional thread, except

that (i) instructions are committed only after confirming that

the result matches that produced by the leading thread, (ii)

store results are forwarded to the leading thread so that the

result in the StB can be checked and written to the leading

thread’s L1 data cache, (iii) load values are acquired from the

LVQ. If there is any mis-match in results, the state of the

trailing thread is used to initiate recovery. Branch outcomes

are also communicated by the leading thread to the trailing

thread (via the branch outcome queue (BOQ)), allowing the

latter to have perfect branch prediction. If multiple threads are

co-scheduled on an SMT core, fetch priorities are adjusted to

allow every set of leading and trailing threads to maintain a

roughly constant slack.

The fault model is assumed to be the same as in [3], [6].

Storage structures such as caches are ECC-protected. The LVQ

and the entire datapath from the cache to the LVQ to the

trailing core are also ECC-protected as the trailing thread

directly uses these values. The register file need not be ECC

protected as a copy exists in the other core. Based on this

model, the above RMT implementation is guaranteed to detect

and recover from a single event upset in either leading or

trailing cores.
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B. Power-Efficient RMT

When executing leading and trailing threads, it is desireable

that a constant gap (slack) be maintained between both threads.

The trailing thread experiences no branch mispredicts or cache

misses because of the LVQ and BOQ. The results in the RVQ

can also be exploited to implement a perfect value predictor.

The trailing thread is therefore capable of high IPC. It may

be able to match the throughput of the leading thread even

if it throttled back its clock speed or IPC. This provides an

opportunity to reduce the power consumed by the trailing

thread. We consider three major techniques to exploit the

power-performance trade-off.

Dynamic Frequency Scaling (DFS)

Frequency scaling can reduce the dynamic power consumed

by the core, but has no effect on leakage power. We will

assume that a mechanism exists to select the effective fre-

quency for the trailing thread such that leading and trailing

throughputs are matched. Dynamic frequency scaling can also

be accompanied by dynamic voltage scaling (DVS). DVS has

much higher overheads for every voltage change, but can

significantly reduce dynamic and leakage power. Dynamic

power is a quadratic function of the voltage and leakage power

is roughly linearly proportional to supply voltage.

In-Order Execution

An inherently simple microarchitecture can also exploit the

power-performance trade-off. For example, the in-order Alpha

EV5 consumes half the power of the out-of-order Alpha EV6

(when operating at the same frequency), while trading off a

significant degree of IPC. If the trailing thread leverages the

RVQ for perfect value prediction, in-order execution does not

degrade IPC as instructions are never stalled at dispatch. The

trailing thread continues to achieve high IPCs and we can

further apply DFS and DVS to the trailing core.

Workload Parallelization

The trailing thread can be decomposed into a number

of parallel threads [7]. Such a workload is embarrassingly

parallel as the contents of the RVQ can be used to eliminate

all dependences between trailing threads. Such parallelization

boosts IPC and therefore affords further opportunities for DFS

and DVS. In the next section, we will provide analytical

estimates of power overheads when the above three techniques

are incrementally employed.

III. ANALYTICAL POWER ESTIMATES

After a close analysis of detailed architectural power sim-

ulators (based on Wattch [2]), we have identified the factors

that have the greatest influence on RMT power consumption.

It is possible to improve the accuracy of our analytical model

by taking more factors into account. For example, dynamic

power is considered to be linearly proportional to instruction

count. The model can be improved by considering the mix of

instruction types.

Firstly, the power consumed by the core executing a single

leading thread is the sum of its leakage and dynamic power.

▲�✁✂✄☎✆ ♣✝✞�❡ ❂ ❧�✁✟✁✆�✠✡☛☞✌✍✎ ✰ ✂❞☎✁♥✄✏✠✡☛☞✌✍✎

The power consumed by the baseline RMT mechanism that

executes the trailing thread on a neighboring identical core at

the same frequency is given by the following equation.
❚❡✁✄❧✄☎✆ ♣✝✞�❡ ❂ ❧�✁✟✁✆�✠✡☛☞✌✍✎✰

✂❞☎✁♥✄✏✠✡☛☞✌✍✎✑✞❡✝☎✆♣✁✒✓ ❢✁✏✒✝❡ ✰ q✉�✉� ♣✝✞�❡

In the above equation, ✇r♦✔✕✖✗✘✙ ✚✗❛✘♦r takes into ac-

count the fact that perfect branch prediction allows the trail-

ing thread to never execute instructions that are eventually

squashed. The term ✛✜✢✜✢ ✖♦✇✢r includes additional power

consumed within the LVQ, RVQ, BOQ, and StB. The dynamic

power saved by not accessing the data caches and branch

predictor of the trailing core is factored into the ✛✜✢✜✢ ✖♦✇✢r

term.

Since the IPC of the trailing thread is typically much

higher than that of the leading thread, we will assume that

its frequency can be scaled by a factor ✢✚✚ ✚r✢✛. The power

of the trailing core is now given by the following equation.
❚❡✁✄❧✄☎✆ ♣✝✞�❡ ❂ ❧�✁✟✁✆�✠✡☛☞✌✍✎✰

✂❞☎✁♥✄✏✠✡☛☞✌✍✎ ✣ �❢❢ ❢❡�q✑✞❡✝☎✆♣✁✒✓ ❢✁✏✒✝❡

✰q✉�✉� ♣✝✞�❡

If scaling the frequency by a factor ✢✚✚ ✚r✢✛ allows us to

scale voltage by a factor ✢✚✚ ✚r✢✛ ✤ ✈ ✚✗❛✘♦r (in practice,

✈ ✚✗❛✘♦r is greater than 1), the trailing core’s power is as

shown below.

❚❡✁✄❧✄☎✆ ♣✝✞�❡ ❂ ❧�✁✟✁✆�✠✡☛☞✌✍✎ ✣ �❢❢ ❢❡�q ✣ ✥ ❢✁✏✒✝❡
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Next, we will consider the effect of employing an in-

order core. Note that ✢✚✚ ✚r✢✛ will be a function of the

in-order core’s IPC, which in turn, depends on whether we

use value prediction or not. If value prediction is employed,

✛✜✢✜✢ ✖♦✇✢r will change as there will be more accesses to

the RVQ. The trailing core’s power is given by the following

equation (when only employing DFS). The terms ✦❦✕ r✗✘✧♦

and ★✩✔ r✗✘✧♦ (typically greater than 1) account for the power

difference between an out-of-order and in-order core.
❚❡✁✄❧✄☎✆ ♣✝✞�❡ ❂ ❧�✁✟✁✆�✠✡☛☞✌✍✎✑❧✟✆ ❡✁✒✄✝✰
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Finally, we will consider the effect of parallelizing the ver-

ification workload across ◆ in-order trailing cores. Assuming

that we only employ DFS for each in-order core, trailing thread

power is given by:
❚❡✁✄❧✄☎✆ ♣✝✞�❡ ❂ ✪ ✣ ❧�✁✟✁✆�✠✡☛☞✌✍✎✑❧✟✆ ❡✁✒✄✝✰

✪ ✣ ✂❞☎✁♥✄✏✠✡☛☞✌✍✎ ✣ �❢❢ ❢❡�q✑✭✞❡✝☎✆♣✁✒✓ ❢✁✏✒✝❡ ✣ ✂❞☎ ❡✁✒✄✝✮

✰q✉�✉� ♣✝✞�❡

Note that the dynamic power remains the same as in

Equation (1) – ✢✚✚ ✚r✢✛ goes down by a factor ◆ , but that

amount is now expended at ◆ different cores. In other words,

the same amount of work is being done in either case. Leakage
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power increases because leakage is a function of the number of

transistors being employed. Parallelization has a benefit only

if we are also scaling voltage. Power is then expressed as

follows:

❚r❛�✁�✐✂ ♣✄☎❡r ❂ ✈ ❢❛✆✝✄r ✞ ✁❡❛✟❛✂❡❧✠✡☛☞✌✍✎✁✟✂ r❛✝�✄✰

◆ ✞ ✈ ❢❛✆✝✄r✷ ✞ ❞✏✐❛♥�✆❧✠✡☛☞✌✍ ✞ ❡❢❢ ❢r❡✑

✎✭☎r✄✐✂♣❛✝✒ ❢❛✆✝✄r ✞ ❞✏✐ r❛✝�✄ ✞◆✷✮ ✰ ✑✉❡✉❡ ♣✄☎❡r

Voltage cannot be arbitrarily scaled down as N is increased.

Hence, ✓ ✔✕✖✗✘✙ in such a scenario is likely to be much

higher than in the scenarios examined earlier. While the above

estimates only consider a single-thread workload, they can be

easily extended to deal with multi-threaded workloads as well.

We validated our analytical models by comparing their re-

sults with detailed simulation results obtained from Wattch [2].

A baseline out-of-order processor simulation was used to com-

pute parameters such as the contribution of leakage, wrong-

path instructions, etc. An implementation of trailing cores with

frequency scaling was modeled in detail on Wattch (for out-

of-order and in-order trailing cores) and the outputs of the

analytical model closely matched those of Wattch. Results

were also verified after modifying major parameters such as

✇✙✘♦✚✛✕✗✜ ✔✕✖✗✘✙, ✢✔✔ ✔✙✢✣, and contribution of leakage

for out-of-order and in-order trailers. In all cases, the accuracy

of the analytical model was within 10%.

IV. OBSERVATIONS

The previous section attempts to capture the first-order

effects of a number of factors on power consumption. These

factors include the following:

✤ Contribution of leakage in a given baseline technology

✤ Number of wrong-path instructions executed by a thread

✤ Power overhead of inter-core buffers

✤ Effective frequency, which quantifies the IPC benefit of

a perfect cache, branch predictor, and value predictor

✤ Ratio of voltage and frequency scaling (✓ ✔✕✖✗✘✙)

✤ Ratio of power consumed by in-order and out-of-order

microarchitectures

✤ Degree of parallelization for verification workload

A designer can plug in various assumptions for the above

factors to determine early estimates of the power efficiency of

each approach. As examples, we plot the effects of the major

parameters in Figures 2-7.

We make the following assumptions for each of these

figures, unless otherwise specified. In-order cores consume

half the leakage and dynamic power of the out-of-order

leading core. ❲✙✘♦✚✛✕✗✜ ✔✕✖✗✘✙ is assumed to be 1.25 and

✣✥✢✥✢ ✛✘✇✢✙ is always assumed to be 10% of the leading

core’s power. For a single trailing thread, the ✢✔✔ ✔✙✢✣ is

assumed to be 0.5. When the trailing thread is parallelized

across two in-order cores, ✢✔✔ ✔✙✢✣ drops to 0.25 and voltage

is scaled such that ✓ ✔✕✖✗✘✙ is 1.5. Leakage power is assumed

to be 10% of the baseline core’s total power.

Figure 2 shows the power overhead of the trailing thread

executing on in-order and OoO cores with DFS for different

effective frequency assumptions. While lower frequencies do
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Fig. 2. Power overhead of the trailing core, relative to the leading core, as
a function of effective frequency, for in-order and OoO trailing cores.
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Fig. 3. Power overhead of the in-order trailing core, relative to the leading
core, for different relative OoO and in-order power ratios.

reduce the power overheads of an out-of-order trailer, the

power overhead of redundancy continues to be very high. This

is partially because DFS does not reduce leakage power. An

in-order core, even at high frequencies, can match the power

overhead of a highly frequency-scaled out-of-order core. In our

simulations with a 4-wide in-order trailer, we observed that

perfect value prediction can help reduce effective frequency

by a factor of two. Based on Figure 2, we can calculate that

this approach is worthwhile provided value prediction does

not increase the power of the inter-core buffers by an amount

that is approximately 15% of leading core power. In Figure 3,

we show the power overhead of the trailing in-order core

for different relative power ratios of in-order and out-of-order

cores. Because of the power overhead of the inter-core buffers,

there is little power benefit to employing an in-order core that

consumes less than 20% of the leading core’s power.

Figure 4 shows the power overhead of the trailing cores for

various ✇✙✘♦✚✛✕✗✜ ✔✕✖✗✘✙ assumptions. If the leading core

suffers from a high branch misprediction rate, then the corre-

sponding trailing core would have lower power overhead due

to perfect branch prediction. This effect is more pronounced

for the out-of-order model as it wastes more dynamic power

executing wrong-path instructions. In Figure 5, we show the

power overhead of the trailing cores for different contributions

of leakage power to the baseline power. As the contribution

of leakage power increases, DFS has a marginal effect on

reducing the trailing core’s power overheads, especially for an

aggressive out-of-order processor. DVS is required to reduce
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leakage power overheads and this effect is shown in Figure 6.

Based on these results, we conclude that (for the assumed

parameters) a trailer core can impose a power overhead of as

little as 20% (half of it attributed to the inter-core queues), but

this will require employing a power-efficient in-order core that

can be voltage or frequency scaled. We also note that value

prediction may be required in the in-order core to allow it to

operate at low frequencies, while still matching leading thread

throughputs.

Finally, we examine the effect of parallelizing the veri-

fication workload. Figure 7 shows the power overhead of

the trailing thread with and without parallelization for dif-

ferent assumptions on the contribution of leakage power.
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different ✈ ❢✂❛✄♦r values.
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Fig. 7. Power overhead of the trailing core, relative to the leading core, with
and without parallelizing the verifi cation workload.

Recall that parallelization helps reduce dynamic power, but

increases leakage power (even if DVS is assumed). If the

contribution of leakage is high, parallelization actually causes

an increase in total power. If the contribution of leakage is

low, parallelization reduces overall chip power by less than

5%. Voltage scaling also entails a non-trivial cost and future

technologies will afford smaller voltage margins. Such an

early rough estimate leads us to the conclusion that workload

parallelization yields little benefit for many design points.
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