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Abstract

We study the off-diagonal blocks in the M(atrix) model that are supposed to 
correspond to open strings stretched between a Dp-brane and a Dp'-brane. It is 
shown that the spectrum, including the quantum numbers, of the zero modes in 
the off-diagonal blocks can be determined from the index theorem and unbroken 
supersymmetry, and indeed reproduces string theory predictions for p-p' strings. 
Previously the matrix description of a longitudinal fivebrane needed to introduce 
extra degrees of freedom corresponding to 0-4 strings by hand. We show that they 
are naturally associated with the off-diagonal zero modes, and the supersymmetry 
transformation laws and low energy effective action postulated for them are now 
derivable from the M( atrix) theory.
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1 Introduction

D(irichlet)-branes have many faces. In string theory, they arise as nonperturbative 
dynamic objects, allowing strings to end on them and carrying R(amond)-R(amond) 
charge [1], In the conformal field theory formulation, a Dj9-brane is a p-dimensional 
hyperplane in target space on which strings satisfy the Dirichlet boundary conditions

[2]. In the low energy field theory limit (supergravity), it appears as a soliton-like 
background with nontrivial R-R antisymmetric tensor field, solving classical equations 
of motion (see a recent review [3] and references therein). The low energy dynamics 
of parallel D-branes, due to strings stretched between them, can be described by a 
dimensionally reduced supersymmetric Yang-Mills theory on their world volume [4], 
which happens to describe a quantum space in the sense of non-commutative geometry

[5].
In the M(atrix) model [6] for M theory, which is conjectured to unify all known 

perturbative string theories, the DO-branes are treated as fundamental microscopic de­

grees of freedom. The SYM quantum mechanics, which was originally thought to be 
the low-energy theory of N  DO-branes, is promoted in the large N  limit to the status 
of the fundamental light-cone dynamics of M theory. As dimensionally reduced U(N ) 
SYM theory, its field content matches the lowest modes of open strings ending on DO- 
branes. Thus, in M(atrix) theory, everything else appears as a collective (bound) state 
of DO-branes. In particular, a multiple parallel D-brane background is realized as a 
block-diagonal matrix [6], each block represented by a topologically nontrivial gauge 
field configuration [7, 8] on a D-brane volume. In this paper we study the dynamics of 
D-branes by introducing and examining off-diagonal blocks, that are supposed to cor­

respond to strings stretched between D-branes. One of the advantages of the M(atrix) 
theory is that it provides a unifying framework for explicitly dealing with both D-brane 
backgrounds and strings stretched between them.

Previously Berkooz and Douglas [9] have considered the background of a longitu­

dinal M5-brane, which wraps around the (invisible) 11-th direction that defines the 
light-cone to give rise to a D4-brane in HA language. They bypassed the question 
of explicitly representing the D4-brane in matrix form, but rather proposed a modi­
fied M(atrix) theory by introducing by hand additional dynamical variables that are 
supposed to correspond to the massless modes of open strings stretched between the 
D4-brane and the DO-branes (called 0-4 strings). It was shown that integrating out the 
extra variables leads to the correct gravitational field of an M5-brane. Later Dijkgraaf, 
Verlinde and Verlinde [10] showed that if one integrates out the off-diagonal blocks in
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the U(N) matrix fields with two diagonal blocks for a D4-brane and a DO-brane respec­
tively, one can also recover the gravitational field of a longitudinal M5-brane. Based 
on this result, one may be tempted to identify the extra fields introduced in Ref. [9] 
with the above-mentioned off-diagonal blocks. However, there is a mismatch for the 
quantum numbers: the extra bosonic field in Ref. [9] is a spinor of the 5 0 (4 )  in the 
4-brane directions, in accordance with string theory [11], while the bosonic off-diagonal 
block is an S 0 (4) vector. Resolving this puzzle was part of the motivation for this 
paper.

Another related, unsettled issue is how to obtain the 32 additional fermions in the 
heterotic matrix theory, which is the M(atrix) theory compactified on S1 fZ^. First it 
was suggested to add these fermions by hand to cancel anomalies in the 1+1 dimensional 
field theory [12, 13, 14]. Later Horava [15] proposed that they are zero modes of the 
off-diagonal blocks that correspond to 0-8 strings. However, there is a puzzle of why 
these fermions are invariant under surviving supersymmetries. A better understanding 
of the 0-8 strings in the M(atrix) theory should help resolve this problem.

In this paper we study the spectrum of the off-diagonal blocks in M(atrix) the­

ory that are supposed to correspond to p-p' strings in the background of a Dp-brane 
and a Dp'-brane. In particular we show that the spectrum of zero modes for the off- 
diagonal blocks matches the massless spectrum of p-p' strings. Since the string theory 
results about p-p' string spectrum are most directly seen in the Neveu-Schwarz-Ramond 
formalism, while the M(atrix) description of type IIA theory [17, 18, 19] is in the Green- 
Schwarz formalism, it is nontrivial to check if their predictions agree. Moreover, note 
that D-brane charges and supersymmetry do not give a complete characterization for 
parallel D-brane configurations in M(atrix) theory. The study of the zero-modes of 
off-diagonal blocks will provide more information on proper identification of D-brane 
backgrounds, and on their dynamical behavior as well, such as R-R charge and stability

In this paper we will refer to configurations in M theory by their names in the 
IIA theory that is related to the M theory through compactification of the (invisible) 
eleventh dimension. Hence a DO-brane is a Kaluza-Klein mode of a graviton, a D2- 
brane an M-membrane, a D4-brane a longitudinal M5-brane [20]. It is unclear what 
D6 and D8-branes in IIA really correspond to in M theory, but they are needed to give 
various D-branes under compactifications.

We will review related results in string theory in Sec.2 and M(atrix) description of 
D-brane configurations in Sec.3. In Sec.4 we derive the equations of motion for the 
bosonic and fermionic zero modes of the off-diagonal blocks, which we will use to find
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the zero modes, and explain how to derive their supersymmetry transformations and 
low-energy effective action, for 0-2 , 0-4, 0-6 and 0-8 strings respectively in Sec.5-7. 
Sec. 6 also includes a discussion on the application of the off-diagonal zero modes to 
the matrix description [9] of longitudinal fivebranes. More discussions on the physical 
implications of our results can be found in Sec. 7 and in Sec. 8 .

2 Review of p-p' Strings

In this section we briefly review the results in string theory on p-p' strings [11]. First 
we consider an open string connecting a Dp-brane and a Dp'-brane parallel to each 
other. Since we are using IIA language, both p and p' are even integers. Assuming that 
p' >  p. In directions 0,1, • • • ,p, where the two D-branes overlap, the bosonic fields X  
have Neumann boundary conditions on both ends. In directions p + 1, • • •,]/, they have 
Dirichlet boundary condition on the p-brane and Neumann condition on the p'-brane. 
In the rest directions p' +  1, • • • ,9, the open string has Dirichlet conditions on both 
ends.

There will be unbroken supersymmetries for a system of parallel Dp-branes and 
Dp'-branes, if and only if the number, v, of the directions in which the bosonic sector 
has DN or ND boundary conditions is 0,4 or 8 . (Note that v =  p' — p for a parallel Dp- 
and Dp'-brane.)

The Ramond sector of the p-p' string has the same kind of boundary conditions as 
the bosonic part. It always offers a massless fermionic 5 0 (1 , 9 — (p' — p)) Weyl spinor 
(after GSO projection) for the directions with NN or DD boundary conditions. The 
NS sector has the opposite kind of boundary conditions. Only when (p' — p) — 4 will 
there be a massless SO(p' — p) bosonic Weyl spinor for the directions with ND or DN 
boundary conditions.

Since we can always use T-duality to switch a Dp-brane to a DO-brane, we only need 
to consider four types of open strings: the 0-2, 0-4, 0-6 and 0-8 strings. In summary, the 
massless spectrum for a 0-p string consists of only a fermionic 5 0 (1 , 9 —p) Weyl spinor, 
except that when p — 4 there is in addition a bosonic 5 0 (4 )  Weyl spinor. Below we 
are going to verify this spectrum of massless fermionic and bosonic modes in M (atrix) 
theory. (Though it is amusing to note that in M (atrix) theory, the bosonic off-diagonal 
blocks that are supposed to correspond to 0-4 strings are 5 0 (4 )  vectors!)
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3 M (atrix) Description of D-Brane Configurations

The action of the M(atrix) model is [6]

S =  J  d tT r ^ F ^ F ^  -  4-]), (1)

where fi,v =  0,1, • • •, 9, =  [XM, X v] and X 0 =  - i D 0 =  - i (^ t +  A0). X^ and V]/a 
are Hermitian N  x N  matrices. The dynamical and kinematical SUSY transformations 
are respectively [7]

5XM =  i e i i  =  0,1, • • • ,9, (2)

S 9  =  (£ 'o X ,)r0ie +  | [X „ X J] r y e, i , j  =  1,2, •••,9, (3)

6X„ =  0, <5$ =  e, (4)

each with 16 generators.
The configuration of a Dp-brane in M(atrix) theory is given by big (infinite dimen­

sional) matrices giving the appropriate p-brane charge [7]: 1

• • • [X ^ -n X ^ ]).  (5)

We can choose the X ’s to satisfy

[X2n— 1, X 2n] =  F(2n-l)(2n) (6)

for n =  1 ,2 , - - - ,  p /2  with F ^  being constant K  x K  matrices. The fermionic partner 
is taken to be zero.

There are two ways to realize this physical setting in the M(atrix) theory Take the 
D2-brane as an example. One way is to set X\ — R\P, X 2 — R 2 Q, where [P, Q] — 
i2ir/N [6]. P  and Q can in turn be realized as P  — -i(27r/N)-J^ and Q — —a through 
an angle parameter a G [0, 2tt). Another way is to first compactify the M(atrix) model 
on a torus with radii Ri,i =  1,2, and then take the limit Ri —» 00 if one wishes. A Dp- 
brane configuration corresponds to a gauge field configuration with certain topological 
charge [7] (the k-th Chern character Qk — J trF k for k — p /2 .) on the dual torus which 
becomes infinitesimal in the large radii limit. The X  matrices in the p-brane directions

1Only the 2-brane and 4-brane charges are defined in the SUSY algebra. The 6 and 8-brane charges 
are extrapolations of those.
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become ((—i) times) the covariant derivatives. For a D2-brane it can be taken as, say, 
X\ — —i2i\R\-^ and X 2 — —i2TrR2-J  ̂ — R2<j i.

For our purpose the difference between the two descriptions is only a scaling in the 
derivatives. For simplicity in notation we choose to use the latter description in this 
paper.

A static Dp-brane configuration (6) preserves half of the total SUSY if and only 
if the F ’s are proportional to the unit matrix, in which case 16 linear combinations 
of the dynamical and kinematical SUSY are preserved [7]. These states contain DO, 
D2,..., D(p —2)-branes in addition to the Dp-brane. The kinematical SUSY (4) is never 
preserved by itself. The condition for part of the dynamical SUSY to be preserved is

p/2

F \2 — y :  £jF(2i - D ( 2i) =  o  ( 7 )
i=2

for some e* =  ± 1 . It preserves l /2 ^ /2-1  ̂ of the dynamical SUSY parametrized by e 
satisfying

r i2r (2*-i)(2*)e =  ^  i =  2 , 3 , . . . ,  p/2. (8)

Because tr(F 22) ^  0 it follows from (7) that any D6 or D8-brane configuration with 
unbroken dynamical SUSY must always include D4-branes. A discussion on general 
bound states from the low energy D-brane point of view can be found in [21].

If all F^v s in (6) are proportional to the unit matrix, they define a natural complex 
structure on the dual torus. It can be used to view the dual torus Tp as composed of 
p/2 complex tori T2. A D/>brane with unit p-brane charge can be realized by a U(K ) 
gauge field with twisted boundary conditions. This is analogous to how one defines 
a long string [19, 18] in the conjugacy class of length K . The unit Dp-brane charge 
means a twisted bundle with the minimal topological charge on each T2.

An explicit construction of the minimal twisted bundle of the fundamental repre­

sentation of U {K) is given in Ref. [8]. There the gauge fields can be chosen as A\ =  0 
and A2 =  — i(ai/27rK)l, where we use <7̂  as the coordinates on T2 normalized to range 
between 0 and 2tt and 1 is the unit matrix. The field strength F\2 is then 1/27tK. The 
quasi-periodic boundary conditions on A are [8]:

A m(27T, <72) =  Qi(<72) ^ m(0, <72)Q r1(cr2) +  ^1 (<72) ^ ^ r 1 (^2), (9)

A^(c71, 27r) =  ^ 2(<7i)Am(<7i, 0)^2 X(<7i) +  tl2((Ji)d^2 1(<7i), (10)

where Qi and fi2 can be chosen as

=  qmJ2"U, n 2(a i ) =  V, (11)
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where q =  e*27r/ K, Uij =  qtSij and with i , j  =  0, • • •, K  — 1 (mod K ). U
and V  satisfy UV — q~1VU. It can be checked that f2i(27r)Q2(0) =  Q2(27r)Qi(0). This 
is in contrast with the twisted bundle of SU(K)/Zk where one has Qi(27r)f22(0) =  
Q2(27r)f2i(0)Z for some element Z  in the center ZK of SU{K) [22].

The bundle in fundamental representation has the corresponding boundary condi­

tions:

(f)(2ir, cr2) =  0 i(cr2)(/)(0 , cr2), 27r) =  ft2(<7i)</>(oi, 0)- (12)

Note that consistency of the boundary conditions requires

Qi(2tt)Q2(0) =  0 2(27r)0i(0).

A section of the bundle has the general form of [8]

=  E  k^/27, +  j  +  m.R:)qW * + i+ ”>K)°1/**' j  =  0 , 1, .  •., K  -  1, (13)
toGZ

for an arbitrary function 0 for which the series converges.

Since this is the D-brane analogue of a long string in the conjugacy class of length 
K , this gauge field configuration is identified with a single D2-brane instead of K  D2- 
branes. Here K  gets interpreted as the longitudinal momentum carried by the single 
D2-brane, as can be seen by examining its light-cone energy.

It is essential that the gauge group is U {K) instead of SU{K). Although there are 
twisted SU(K)/Zk  bundles in the adjoint representation [22] with the same topological 
charge, there is no corresponding vector bundle in the fundamental representation, 
because the element Z  acts nontrivially on the fundamental representation while it acts 
trivially on the adjoint. Note that the presence of anything other than the D4-branes 
introduces off-diagonal blocks in the fundamental representation. Hence, for instance, 
although one can use two copies of the twisted 577(2) bundle on T2 with (anti-)self­

duality to construct pure D4-brane states preserving half of the dynamical SUSY, at 
this moment it is unclear how to describe their interaction with other D-branes.

4 Equations of Motion

Consider a DO-brane very close to a Dp-brane. We decompose the matrix fields into 
the block form:

6
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where ZM represents the Dp-brane and xM the DO-brane. The generalization to many 
Dp-branes and DO-branes is straightforward. While the Z Js are realized as covariant 
derivatives, the x Js in general can have nontrivial coordinate dependence on the dual 
torus, but when we take the limit of infinite radii, only coordinate-independent states 
can have finite energy and remain coupled to the theory. (We allow infinite energy for 
Z  because it is just the energy for the Dp-brane.)

For simplicity we choose the coordinates of spacetime such that x^ — 0 and Za — 
0, a =  p +  1, • • •, 9. The Dp-brane is parallel to the directions 1, 2, • • • ,p and the DO- 
brane is right on top of it. The diagonal part is taken as the background configuration.

When putting the two D-branes together as in (14) and set the off-diagonal parts 
to be zeros, one can check easily that part of the supersymmetry is preserved only if p 
is 0 ,4  or 8.

To count the number of zero modes, or equivalently to count the dimension of 
the moduli space for this background, it is easier to consider the perturbation of this 
background and keep only the lowest order terms to obtain linear differential equations 
for the perturbative fields y and 9. In this way we count the dimension of the tangent 
space on the moduli space. One may also introduce perturbations in the diagonal blocks 
for fluctuations on the Dp-brane and deviations of the DO-brane from the origin, but 
here we are for the time being only interested in the off-diagonal blocks y and 9 since 
they represent the p-p' strings. The perturbations of the diagonal blocks can be studied 
in the same way we study the off-diagonal part. To the lowest order in perturbation, 
the perturbative diagonal and off-diagonal parts are not correlated, hence we can treat 
the off-diagonal ones alone.

Plugging the expression of the matrix fields (14) into the action of the M(atrix) 
model (1), we find

l f  =  - e ^ T ^ z ^ e  -  e x ,)  +  -  y„v) + (j/J,e -  # p r ° r ^ .  (17)

where Lz  and Lx are of the same form as (1) except that we replace (X , ^ )  by (Z, 0 )  
and (x , ip), respectively. Ly — Lb +  Lp with

L b  2 Zi,yn -\-y^xv y^ x ^ ^  y^ Z ^ ^  Z,/\yu [x^^x^y^y^,

t t 1 t t 1 t t 
- y l v u v l y u  +  ^ y ^ y l y ^  +  ^ y ^ y l y ^ (16)

and

7
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For more than one DO-branes the :rs are matrices and we need to take traces for these 
formulas.

^From the action one can derive the equations of motion for y and 9. Since the 
Hamiltonian for a time-independent background in the temporal gauge [Aq =  0) is 
minimized by time-independent y } we look for time-independent solutions for y and 9. 
Ignoring the time derivative and higher order terms, we find

D ^ { D ^ y v -  D uy^ )  +  [Dv, D ^ y *  =  0, /i ,  v  =  1, • • • ,p, (18)

D^DfIya =  0, a =  p +  1, - - -, 9, (19)

where Dl( =  iZlt are covariant derivatives on the dual torus Tp as Dfl =  2nRll(-£ -̂ +  
A (a ))J fi — 1, • • •,p. Eq.(18) has to be supplemented by the gauge-fixing condition

=  0. (20 )

Using (20), eq.(18) can be written as

D ,D »yv +  2[Dv,D ,]y»  =  0. (21)

The equation of motion for 9 is

Y^D^O  =  0. (22 )

In terms of the covariant exterior derivative dA, its dual d*A, the Hodge dual * and 
the projection P  =  |(1 — *) (so P 2 =  P), eqs.(18) and (20) now read

d\PdAy =  0, (23)

d\y =  0, (24)

where y =  y^da^. These equations are formally the same as those for the instanton 
zero modes, which correspond to perturbations of the Z ’s above. The only difference is 
that the perturbations of Z  is in the adjoint representation of U (K), while y is in the 
fundamental representation.

Because we are considering the Euclidean torus, the inner product (-|-) defined 
by integration on the torus and the trace of matrices is positive definite. Hence 

(y\d*APdAy) =  0 implies that

PdAy =  0 . (25)

In addition, eq.(19) implies that (D^yalD^ya) — 0 and so D^ya — 0, which means 
that the topological charge vanishes unless ya =  0. Thus we conclude that ya =  0 for 
a =  p +  1, • • •, 9.

8
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5 0-2 Strings

Let Z\ and Z2 be realized as U (K ) covariant derivatives on the dual torus as Zt =  —iDt 
with Di — +  Ai as given in Sec.3 so that

[Zu Z2] = i f l ,  (26)

where /  =  2ttRiR2/K . For simplicity we are considering unslanted torus with radii 
Ri =  R -2 =  1/27T. It is straightforward to generalize to slanted tori with arbitrary radii. 
Let £ =  (<71 +  icr2)/27r, 5 =  (ai — i(T2)/2TT be the complex coordinates on T 2, and let 
V  — Di — iD2 and V  — Di +  iD2 — —V^} then [D, V] — 2 /1 . It follows that

D 2 =  V V  — f  =  V V  +  / ,  (27)

where D 2 — D^ +  D^- Note that the algebra of T> and — V  is the canonical commutation 
relation for annihilation and creation operators scaled by 2 / .  Therefore the spectrum 
of V V  is {0, —2 /, —4 /,  • • •} and the spectrum of D 2 is

{ - / ,  - 3 / ,  - 5 / ,  - ■ (28)

The fermionic zero modes satisfy (22), which gives +  r 1T2D2)9 — 0, so that

V6+ =  0, VO. =  0, (29)

where 9± are the two Weyl components of 9 satisfying iTlT29± — ±9±. Because 
(9+ \VV9+) — (9\(D2 — f)9 ) <  0 for any 9+ ^  0, we must have 9+ — 0. The solu­

tion of 9- is obviously the vacuum state annihilated by V.
One can easily get the explicit expression of the vacuum as a section of the twisted 

bundle using the explicit construction in Sec.3. Another way is to note that the equation 
Vcj) =  0 has the general solution of </> =  exp(—-^ {z 2 +  2zz ))f(z ) ,  where f (z )  is an 
arbitrary holomorphic function. For </> to be a section of the twisted bundle, we need to 
impose the quasi-periodic boundary conditions on (j). One then sees that f (z )  is related 
to the third elliptic theta function $3 and the solution is

(f>k(o-1, cr2) =  exp{7T/K[2i((T1/27T)((T2/27T +  k) -  (cr2/27T +  &)2]}$ 3(<?K(z +  ik)), (30)

where q =  exp(—ttK ) and fa (k =  0,1, • • •, K  — 1) gives a section on the vector bundle 
in the fundamental representation. Applying the creation operator V  to the vacuum 
one obtains other eigenstates of the operator D 2.

9
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Obviously the zero mode of 9- is just given by the solution (30). The fermionic zero 
mode is an SO(2) Weyl spinor with negative chirality.

The equations of motion (21) for are

(D 2 - 2 f ) y  =  0, (D 2 +  2 f)y  =  0, (31)

where y — yi +  iy2, y — y\ — iy2. The constraint (20) is

V y +  V y =  0. (32)

Since the spectrum of D 2 is given by (28), we see that there is no solution for y, y , 
hence there is no bosonic zero mode.

6 0-4 Strings

We decompose the 10 dimensional 7 -matrices as

r° =  ia2 (g) 1 (g) 1, (33)

=  (710 7 ^ 0  1, /x =  1, • • •, 4, (34)

ra =  di <S> 7 5 <g> 7a, a =  5, •••,9, (35)

r10 = (7 3 0 1 0 1 , (36)

where the cr*’ s are the Pauli matrices satisfying o\o2 =  ids, the 7M’s (/i =  1, • • •, 4) are 
the 7 -matrices for SO (4), the 7a’s (a =  5, • • •, 9) are £ 0 (5 )  7 -matrices. Corresponding 
to this decomposition, a 10-dimensional spinor 9iap has three indices, where i — ± ,  
a ,(3 — 1, * - *, 4. For Weyl spinors with positive (negative) chirality one has i — +  
(i =  —). Since all spinors in this theory are 10-dimensional Weyl spinors with positive 
chirality, we will omit the index i in the following. We consider the case where the gauge 
field for the D4-brane background is self-dual, so that half of the dynamical SUSY with 
parameter e satisfying

r i r 2r sr 4e =  £

is preserved.

The number of zero modes for the case of T 4 for (anti-)self-dual gauge field configura­

tions can be determined using the index theorem [23, 24]. The number of spinorial zero 
modes is found to be ayk, where ay  is the Dynkin index for the representation V  of the 
fermions, and k is the instanton number. The number of vectorial zero modes is 2ayk.

1 0
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For any U(K ), the number of spinorial and vectorial zero modes in the fundamental rep­
resentation are k and 2k. respectively. The general formula [23] for spinorial and vecto­

rial zero modes in arbitrary representation K o n a  4-manifold M  are ayk+^dim V r{M ) 
and 2 a yk — ^ d i m V ( x ( M ) respectively, where r(M ) =  I  e^ a/3R^ipR^pdv 
is the signature of M  and x (M ) =  3^ 2  I  e v̂af}elpi&R^vipRa^sdv is the Euler charac­
teristic.

While according to the the index theorem the number of zero modes is independent 
of the details of (anti-)self-dual gauge field configurations, here we give for example an 
explicit construction of a twisted bundle for the cases with R\R2 =  R 3 R 4 . On each T2 
factor of T 4, one can construct a twisted U (K ) bundle as in Sec.3. When putting them 
together, we obtain a U (K 2) bundle with unit instanton number: J tr(F 2) =  1. 
Unlike the case of twisted SU(K)/Zk  bundles which can have fractional instanton 
numbers, for U (K) the instanton number are always integral [21]. A  section on the 
twisted U (K 2) bundle on T 4 has the general form of a linear combination of products 
of sections on each T 2: 4>j((7i, ^2) ^ ( ^ 3, 04), where </> is defined by (13) for j ,k  — 
0,1, • • •, (K  — 1). Indices j  and k compose an index for the fundamental representation 
of U (K 2). In general one can also consider a U(K\) and U{K2) bundle on the two T2 
factors, respectively, and obtain a U{K\K2) bundle on T 4.

Because the supersymmetry is not completely broken, the solution of fermionic zero 
modes can be used to obtain the solution of bosonic zero modes. The solution of the 
fermionic and bosonic zero modes can be obtained explicitly by considering T 4 as T2 x T 2 
and using the methods in Sec.5. Let the 5 0 (4 )  spinor satisfying (22) be denoted by 9°. 
It is easy to see that the fermionic zero mode satisfies iTlT29Q =  ir 3r 4#0 =  —9°, which 
implies that 00 is of negative chirality as an 5 0 (4 )  Weyl spinor: r 1r 2r 3r 4^0 =  —9°. 
(If the gauge field is anti-self-dual, the zero mode will be a Weyl spinor with positive 
chirality.) For a single D4-brane there is only one fermionic zero mode, which is given 
by the product of the solutions (30) on each T2 factor in T 4.

The general solution of fermionic zero modes can then be written as Qpp =  9®X/3 
(and 9p/3 =  0), where p =  1,2 (p) is the index for an 5 0 (4 )  Weyl spinor with nega­

tive (positive) chirality and \ is an 5 0 (5 )  spinor for the directions 5, • • •, 9. Thus x  
represents the massless fermionic mode from the Ramond sector of the 0-4 string.

Since the equations of motion for y and 9 are supersymmetric, the bosonic zero 
mode can be obtained by SUSY transformation [25] as

VM (38)

where vp is an 5 0 (4 )  Weyl spinor with positive chirality This comes from the SUSY
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transformation of y: Sy  ̂ =  ieT^O. When one replaces in this transformation 6a/3 by 
the zero mode 09, Sy will satisfy the equations of motion of y for any ep in the SUSY 
preserved by the background (37). It follows that the y given by the above expression 
is a zero mode of y. Since 0° is a function (bosonic), v is a bosonic variable. It matches 
the massless bosonic field from the NS sector of the 0-4 string. Here it is amusing to see 
how supersymmetry dictates the zero modes of a field y in vector representation to be 
described by a variable v in spinor representation. The index theorem [23] assures us 
that these are all the zero modes in the theory, giving precisely the massless spectrum 
of 0-4 strings. The supersymmetry transformation between x  and v is induced from the 
SUSY transformation between 9 and y by factoring out the common factor of 0°. Up to 
first order perturbation, the SUSY transformation of 9 is: SO — \{DAyB ~ DuyA)^ABe, 
where A, B — 0,1, • • •, 9. Using (25), (19) and (37), one finds 2

S v p  =  x U p a ,  (39)

Sxa =  2i(D0vl)epa. (40)

The instanton connection lies in SU(2)R G 5 0 (4 )  which is supposed to be the 
global R-symmetry for the action of 0-4 strings. Field v carries the fundamental index 
of SU(2)r . Let r* denote generators of the R-symmetry group. There are two possible 
SU{2)r invariant D-terms, \v+r lv\2 and |v+v|2. The two terms are different when 
there are more than one DO-branes, in which case only the first is actually present in 
the action [11]. These D-terms are expected to arise from the F 2 term in the Super 
Yang-Mills theory. Upon expanding this term in y one finds tr\y^y+ — yuy^|2 and 
\y^yu — y^y |̂2- For a given instanton background, since SU(2)R is broken explicitly, 
these terms do not give those SU(2)R invariant D-terms. Only after averaging over the 
moduli space does one expect that the symmetry SU(2)R is restored. However, we do 
not know how to rule out the £7(1) D-term |i?+i?|2.

The above discussion easily generalizes to the case of instanton number k. There 
are 2k zero modes for and can be interpreted as the fundamental of U(k) x SU(2)R, 
where U(k) is the gauge group associated to k coincident D4-branes.

In ref. [9], an action describing M(atrix) theory of a longitudinal 5-brane is proposed. 
Since a longitudinal 5-brane in M-theory corresponds to a D4-brane in type IIA string 
theory, some extra dynamical variables corresponding to 0-4 strings were needed and 
were introduced by hand. Their quantum numbers are exactly the same as those of 
the variables v and x  that we have discussed above. Thus, it is natural to identify

2Our notation is slightly different from that of Ref. [9].
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the additional variables introduced by Berkooz and Douglas [9] with the degrees of 
freedom associated with the off-diagonal zero modes. We have verified that indeed 
the action of the latter naturally derives from the fundamental M(atrix) model action, 
and it agrees with the action postulated in ref. [9], with a possible £7(1) D-term as 
we mentioned above. (In the derivation, the coefficient of each term in the action is 
determined by an integral of a product of the zero mode solutions 0°. We have not 
been able to calculate all coefficients; presumbly they are uniquely determined by the 
surviving supersymmetry.)

In addition to the variables v and x, the action in ref. [9] has included also fields 
describing fluctuations of the longitudinal fivebrane background, which in our approach 
correspond to fluctuations residing in the diagonal blocks. In principle one can consider 
fluctuations of all blocks in the matrix fields for a given background, and then solve 
the exact (nonlinear) equations of motion. The parameters analogous to v and x  above 
for the general solutions correspond to the massless modes of the whole system of (p'- 
p)-branes. In the above we have only solved the linearized equations of motion for the 
off-diagonal blocks. The supersymmetry derived from our solutions will only hold to 
the lowest order in perturbation. If one solves the exact nonlinear equations of motion, 
one should be able to derive the exact SUSY transformation among the zero mode 
parameters.

In the above we have only considered the case with vanishing distance between the 
DO-brane and the D4-brane. When we pull the DO-brane away from the D4-brane, 
the zero modes will gain masses proportional to the distance. But we expect that the 
number and representation of the lowest energy modes will remain the same as the zero 
modes. The proposal of Ref. [9] contains only the lowest energy modes and therefore 
should be viewed as a low energy effective theory.

7 0-6 Strings and 0-8 Strings

The case of 0-6 strings and 0-8 strings can be studied in a similar fashion as the 0-2 
and 0-4 strings. To generalize the consideration for 0-2 and 0-4 strings to 0-p strings 
for p — 2,4, 6 , 8 , we choose the gauge field configuration for the Dp-brane to be p/2 
copies of the gauge field configuration on T2 described in Sec.5, that is,

[Z2i - i ,Z 2i \ = i f l ,   ̂ =  1, • • • ,p /2 , (41)

where /  =  1/27tK .  This defines a twisted U ( K P/ 2) bundle with unit p-brane charge: 
I  tr (F k) =  1 for k =  p/2.
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We focus our attention on the first copy of T2. Let y =  yi +  iyi and y =  yi — 
iy2. The equations of motion for them are (D 2 — 2f ) y  — 0 and (D 2 +  2f ) y  — 0, 
where D 2 =  Ŷ ,=i D 2 for a Dp-brane. Since the spectrum of D 2 +  D 2 is shown to be 
{ - / ,  - 3 / ,  - 5 / ,  • • •} in Sec,5, the spectrum of (D 2 +  2f ) y  is { - ( p /2  -  2 ) /, - p / 2 / ,  • • •} 
and the spectrum of (D 2 — 2 /)  is purely negative for any p. It then follows that there 
is a zero mode for y only if p =  4.

The equation of motion for the fermionic mode is decomposed into p /2  equations 
for a Dp-brane: (Z^i-i +  r 2 'l~ 1 V 2'1 =  0, i =  1, • • • ,p /2 . Obviously the solution of 
6 is simply the product of the solution (30) for each copy of T2 and it is of negative 
chirality on each T 2 so that T1 • • • T p 6  =  ip! 2 d. The index theorem [26]

Td(TM c )ind(E ,D ) =  (—l )m(TO+1)/2 ch(®r{ - l ) r Er) (42)
volIm v v ' ' e(TM ) 

can be used to show that there is only one fermionic zero mode if one can show that 
there is no zero mode of the opposite chirality: T1 • • • Tp9 =  —ip/26. Indeed one can 
consider the spectrum of the Dirac operator squared (I^Z^ ) 2 =  D 2 Dv\. The

spectrum of D 2 is given above and the spectrum of the second term is { —(p /2 )/, — (p /2— 
2 ) /, • • •, (p /2 ) /} .  It follows that the zero mode must have negative chirality on each

The result is therefore that for a 0-p string there is always a single fermionic zero 
mode and there is no bosonic zero mode except for the 0-4 string. This is in agreement 
with the results of string theory.

In Sec, 6 we showed that the SUSY property of the zero modes of a 0-4 string follows 
from that of the off-diagonal blocks. The SUSY transformation of the zero mode for a 
0-8 string can also be derived from the SUSY of SYM. Now let us show that the bosonic 
zero modes derived from the fermionic zero modes using the SUSY transformation as in 
Sec.6 merely vanish. Note that the £ 0 ( 1 ,9 )  symmetry is decomposed into £ 0 ( 1 ,1 )  x 
£ 0 (4 )  x £ 0 (4 )  for the 0-8 string, where the D8-brane has two D4-branes with it. The 
T matrices can be taken as in Sec.6 . A 10-dimensional spinor 6±ap has three indices 
corresponding to the three factors of orthogonal group. The SUSY preserved by the 
D8-brane background is parametrized by e with positive or negative chirality on both 
factors of £ 0 (4 ) ; and the zero mode of 6 has negative chirality for both £ 0 (4 ) . Since 
a given T-matrix can change the chirality of only one of the two copies of £ 0 (4 ) , the 
SUSY transformation Sy  ̂ — ieT^O vanishes for 6 being the zero mode and does not 
give nontrivial solutions to y.

It is easy to see that the fermionic zero mode is given by 6+ap =  where the

A0 is the zero mode solution on T 8. The SUSY transformation of the fermionic zero
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mode is trivial {5x =  0) because all y ’s vanish. This agrees with the proposal of Horava
[15] to interpret the zero modes as the extra fermions needed in the heterotic matrix 
theory [27, 12, 14].

If the gauge field configuration for a D4-brane is not (anti-)self-dual, it is found 
that [24] the configuration is not stable because of the existence of negative energy 
states in the perturbation of the gauge fields. Therefore all states tend to decay into 
an (anti-)self-dual state with the same topological charge. In our consideration of the 
off-diagonal blocks y, the spectrum of the operator (—D 2 ±  2 / ) / 2  corresponds to the 
energy of states on the 0-p strings. For the 0-2 string the lowest energy of y is —/  <  0 
and it signifies the instability of the system. This is consistent with the fact that the
0-brane tends to distribute uniformly over the D2-brane [28] to form a bound state. 
For D4-branes corresponding to (anti-)self-dual configurations the lowest energy of y is 
0 , but otherwise there would be states with negative energy equal to — \fi — / 2I where 
Fn  =  i.fi and F34 =  i f 2 . In general for a 0-p string the lowest energy is the minimum 
of {(Y?i=i fi ~  2 /j ) /2  | j  — 1, * * •,p / 2}. While there are D2-branes inside the D4, 
D6 and D8-brane configurations we considered, the interaction between the Dp-brane 
and DO-brane includes the attraction from the D2-brane and repulsion from the D6 . 
(The DO-brane is marginally bound to a pure D4-brane.) [29] If the lowest energy is 
positive, zero or negative, it means that the configuration is stable, marginally stable 
or unstable, respectively. In the cases of D6 and D8-branes, the negative modes are due 
to the D2-branes inside the higher branes. Take D6-brane as an example. Let /* >  0 
and fi  =  / 2, then there is a D4-brane wrapping around the first two tori. If / 3 >  2/ i ,  
there is a negative mode of energy 2/ i  — / 3. Apparently, the attractive force due to the 
D2-brane on the third torus overcomes the repulsive force of the D6-brane.

Generically for Dp-branes there is a Fock space Tii for each T 2, where — Z>,/ y/2 fi and 
T>i/\/2fl act as the creation and annihilation operators. After imposing the constraint

(20), the spectrum of yM is found to be 

p/2  p/2

{ ( £  fi  -  2 /i) /2 , ( E ( 2 n} +  1 )fj +  2 /0 /2  | i =  1, • • • ,p /2 ; n} =  0 ,1,2 , • • •}. (43)
3 = 1  3 = 1

8 Discussions

In this paper, we have presented a general framework and a systematic analysis for 
the zero modes in the off-diagonal blocks in M(atrix) theory. More concretely, we have 
shown how to determine the number of zero modes by index theorem and surviving 
supersymmetry, and moreover we have determined the quantum numbers of the zero
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modes, including the chirality of the fermion zero modes. These quantum numbers are 
nontrivial, and crucial for us to show the agreement with string theory predictions on 
open p — p' strings stretching between D-branes, providing one more check for M(atrix) 
theory Previously in Refs. [34, 35, 36], in the middle of computing the effective 
potential between a DO- and Dp-brane, the energy levels of the off-diagonal block have 
been determined using a slightly different representation for the Dp-brane. But the 
zero modes were not mentioned and identified, and their quantum numbers were not 
studied.

Now let us discuss the significance in M(atrix) theory of the zero modes residing in 
the off-diagonal blocks. First we have shown in Sec. 6 that for the case of a longitudinal 
fivebrane, the degrees of freedom associated with the off-diagonal zero modes naturally 
provide the extra degrees of freedom put in by hand by Berkooz and Douglas, ref. [9]. 
And we have checked that the action they postulated are derivable from the M (atrix) 
theory action, with a possible D-term. Indeed, in this case, besides the right topological 
number (or brane charge), the correct counting of zero modes we found in Sec. 6 is 
crucial for justifying our identification of a longitudinal 5-brane with proper instanton 
configuration on T 4 rather than on S'4. Also the correct number of zero modes is 
crucial for a check of the correct tension and R-R charge for the longitudinal 5-brane. 
It is argued in [9] that upon integrating out 0-4 strings the long range force between 
a longitudinal 5-brane and a probe supergraviton is generated. If we had a different 
number of zero modes we would obtain a gravitational field with a different magnitude 
for the 5-brane. Also as shown in Ref. [9], the R-R charge of a longitudinal 5-brane 
manifests itself in the Dirac quantization of a membrane moving in its background. By 
realizing the membrane as a collection of DO-branes, the zero modes on the 0-4 strings 
would induce fields on the membrane. It is the fermion zero mode \ induced on the 
membrane that is responsible for generating the Berry phase. In fact, by T-duality 
the induced zero mode is related to the zero mode on a 0-6 string. Our results in 
Sec.7 provide the proof for the existence of a single chiral zero mode necessary for the 
correct Berry phase. Had we had two zero modes, we would have generated twice the 
correct Berry phase, and therefore twice the R-R charge. As pointed out in Sec.6 , in 
the background of k instantons, there are k fermionic zero modes. The Berry phase is 
then k times as large, and this signals that there are k units of R-R charge.

Upon compactifying on a 5-torus T 5, instanton strings will appear in the spectrum. 
These are part of constituents of some 5D black holes [30, 10]. A  5D black hole is 
described by a long instanton-string carrying momentum. Probing the black hole with 
a supergraviton, one expects that the corresponding static potential as well as the
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velocity dependent force are generated by integrating out the off-diagonal blocks. This 
is shown to leading order in Ref. [31], where the full 5 +  1 massive modes are integrated 
out. It is an interesting question whether the relevant terms can be generated by 
integrating out only the zero modes discussed in Sec.6 .

It should be interesting to compare our result with the work of Ref. [32]. There a 
D5-brane is interpreted as an instanton inside 9-branes. The probe is a Dl-brane. The

1-5 string sector is constructed with the D-brane technology. A (0,4) sigma model in an 
instanton background [33] results from integrating out the massive 1-5 strings. There 
are two differences between the case under discussion and Ref. [32]. First, it is crucial 
for us to work with T 4, only then we have the correct number of zero modes. Second, 
the SU(2)r symmetry in our problem comes from the 5 0 ( 4) of T 4, while the SU(2)r 
of [32] does not act on the gauge field, since the gauge field carries an index transverse 
to the D5-brane.

Finally, the origin of p —p strings is also easy to see. When p =  2, the world-volume 
action is written down [7]. For p — 4, one can consider zero modes of the fundamental 
of SU (2) x SU (2) G SU (4) in the background instanton number 2 solution with a gauge 
group 577(4). It is important to embed the instanton to SU(4) rather than to a single 
SU (2), in order to be able to higgs the off-diagonal strings. By an index theorem, there 
are 16 real bosonic zero modes. 8 of them are W-bosons, and the other 8 are massive 
Higgs. The 8-8 strings are discussed in [15].

We have identified the stretched strings between a p-brane and a p'-brane as just 
the zero modes of off-diagonal blocks; one would like to ask what about the massive 
modes of p-p' strings in the M(atrix) theory. On one hand, for short open strings these 
modes, similar to the massive modes of short open 0-0 strings, are simply absent in 
the M(atrix) model by postulate. (It would be interesting to examine the long strings 
in M(atrix) theory ending on p p'-branes.) On the other hand, it might be wise to 
leave the possibility open that these massive modes on short strings and other massive 
modes, such as KK modes in a higher dimensional super Yang-Mills theory could be 
physically relevant so that their inclusion is necessary to make the high dimensional 
theory well-defined in the UV regime. We leave investigation of this issue to the future.

How about the higher modes of the off-diagonal blocks? Could their effects approxi­

mate to those of the massive modes of p-p' strings? We do not think so, since the latter 
is graded by a', while the former is determined by the scale of the background field 
and the scale of the torus. The modified M(atrix) model in the presence of a longitu­

dinal 5-brane proposed in Ref. [9] should be viewed as a low-energy effective theory of 
the fundamental M(atrix) model, in which the higher modes of the off-diagonal block
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are ignored. Indeed, in this case the zero-modes of the off-diagonal block dominate 
the low-energy physics, since surviving supersymmetry makes the contributions of the 
higher modes cancel in the leading order at large distances.

Although in this papers we have used the HA language for brane names, the above 
discussions are of M theory nature. It may be amusing to consider an alternative 
IIA theory which is obtained by compactifying the ninth direction and interchanging 
the role of the ninth and eleventh directions. What we called DO-branes above become 
short strings, which are also understood as DO-branes by introducing unit electric flux 
to the corresponding matrix element [19]. We leave the complete analysis and related 
topics for the future.
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